
All trademarks, brandnames, and brands appearing herein are the property of their respective owners.

• Critical and expedited services
• In stock / Ready-to-ship

• We buy your excess, underutilized, and idle equipment
• Full-service, independent repair center

Bit 3 400-902
Q22-Bus Adaptor VMS Support Software Kit

In Stock

Used and in Excellent Condition

Open Web Page

https://www.artisantg.com/78736-1

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/78736-1/Bit-3-400-902?pdf=78736-1
https://www.artisantg.com/78736-1?pdf=78736-1

Q22bus ADAPTOR
VMS SUPPORT

SOFTWARE

DISCLAIMER:

Please read and abide by the following paragraphs .
and comments should be directed to:

Technical Publications Department
Bit 3 Computer Corporation

8120 Penn Avenue South
Minneapolis, MN 55431-1393

612-881-6955

Questions

Bit 3 makes no warranty of any kind with regard to this
material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular
purpose. Bit 3 assumes no responsibility for any errors that
may appear in this document. The information in this document
is subject to change without notice.

Bit 3 Computer Corporation does not authorize the use of its
components in life support applications where failure or
malfunction of the component may result in injury or death .
In accordance with Bit 3's terms and conditions of sale, the
user of Bit 3 components in any and all life support
applications assumes all risks arising out of such use and
further agrees to indemnify and hold Bit 3 harmless against
any and all claims of whatsoever kind or nature (including
claims of culpable conduct [strict liability, negligence or
breach of warranty] on the part of Bit 3) for all costs of
defending any such claims.

Bit 3 does not authorize the use of its components in nuclear
control and process applications where failure or malfunction
of the component may result in radioactive releases ,
explosions, environmental damage/contamination , personal
injury or death. In accordance with Bit 3' s terms and
conditions of sale, the user of Bit 3 components in any and
all nuclear applications assumes all risks arising out of such
use and further agrees to indemnify and hold Bit 3 harmless
against any and all claims of whatsoever kind or nature
(including claims of culpable conduct [strict liability,
negligence or breach of warranty] on the part of Bit 3) for
all costs of defending any such claims.

Manual copyri ght (c) 1988, 1989, 1990, 1991 by Bit 3 Computer
Corporation.
Software copyright (c) 1988, 1989, 1990, 1991 by Bit 3
Computer Corporation.
All rights reserved .

Revi sion 2.3 03/91
Pub . No . 82602165

NOTE:

MULTIBUS is a trademark of Intel Corporation.
DEC, Q22-bus, MicroVAX, VAX and VMS are trademarks of Digital
Equipment Corporation.
PC/AT, Micro Channel and PS/2 are trademarks of IBM
Corporation.
NuBus is a trademark of Texas Instruments .

PREFACE

This manual describes Model 400-901 and Model 400-902 Support
Software for Bit 3 Q22-bus Adaptors, its installation, set up
and use. Both models are VMS Support Software for Q22-bus
adaptors. Model 400-901 is on RX50 diskettes and Model 400-
902 is on TK50 compact tapes. In this manual, Model 400-
901/902 refers to both Support Software models.

Information about jumper settings, the physical installation
of adaptor boards and descriptions of registers available on
each board is not included in this manual. This information
can be found in the hardware manual included with your Bit 3
adaptor.

To simplify installation and eliminate operation problems, we
recommend that you review this manual and the appropriate
adaptor hardware manual before beginning to install your new
Support Software.

About this manual:

* Chapter One introduces each component of the Support
Software. · It describes how each component is used, and
when it is needed.

* Chapter Two gets you started with information about the
software package, important notes, and a listing of
additional references.

* Chapter Three contains information needed when
installing and configuring the software on a system.
Any component of the software package that requires
special privileges is described in this chapter.
Explanations of the relationships between hardware
jumper settings and the Support Software are also
included.

* Chapter Four is for applications programmers. It
describes the use of the interface library used to
access the adaptor memory and registers.

* Chapter Five, also intended for applications
programmers, describes how to send and receive
interrupts using the interface library and the device
driver.

* Chapter Six, also for applications programmers,
describes the use of the DMA device driver.

* Chapter Seven describes the example programs included
with the Support Software and provides information
about: each example program's function; notes and

advice on using the programs; warnings; and suggestions
for using example programs to test the adaptor and
software installation.

* Chapter Eight is for users with multiple adaptors
installed in a single system.

Important notes:

* All example program runs in this manual use BOLD text
to indicate information the user enters. Normal text
is used for anything that VMS or an application
presents. All example sessions are indented from the
normal text.

* This manual uses standard C notation to indicate number
radix. A leading '0' indicates an octal number; a
leading 'Ox' indicates a hexadecimal number; otherwise
the number is assumed to be decimal.

TABLE OF CONTENTS

Chapter One: Support Software Functions

1.0

1.1
1.1.1
1.1. 2
1.1.3
1.1. 4

1.2

Executive Overview ...••.••............... 1

Components 2
Privileged Processes 2
Interface Library 2
Device Driver 3
Example Programs 3

Multiple Adaptor Unit Support 4

Chapter Two: Getting Started

2.0 Software Package Contents 5

2.1 Help! 5

Chapter Three: Installation

3.0

3.1

3.2
3.2.1
3.2.2

3.3

3.4
3.4.1
3.4.2

3.5
3.5.1
3.5.2

3.6

Introduction 6

Installing the Software ..•............... 6

Hardware Jumper Settings ••••...•...•••.•. 7
VECTOR and I/0 Range Settings 8
Adaptor Memory Ranges ..•.•.......... 9

Loading the Device Driver 10

Using the Privileged Processes 11
BIT3 MAP 11
BIT3 UNMAP 15

Adjusting System Parameters 15
GBLSECTIONS/GBLPAGES Using SYSGEN ... 15
WSQUOTA Using AUTHORIZE 17

Changing the System Startup Procedure 17

Chapter Four: Using the Interface Library

4.0 Introduction 19

4.1 Using the Mapping Routines 20

4.2 Accessing Node I/0 and Remote Bus I/0 21

Chapter Five: Interrupt Handling

5.0 Introduction•....... 23

5.1
5 .1.1
5.1. 2

5.2
5.2.1
5.2.2
5.2.3

Sending Interrupts•••....•••••.....• 23
PT interrupts 23
PR Interrupts•••....•........ 24

Receiving Interrupts•.•..•..•.... 25
Registering for an AST 26
Processing the AST•.......... 26
Communicating Outside an AST 27

Chapter Six: Using the Device Driver

6.0

6.1
6.1.1
6.1. 2
6.1.3
6 .1.4
6 .1. 5
6 .1. 6
6 .1. 7

Introduction •.........•..•..•....•....... 28

Using the $QIO Interface •................ 28
EFN and CHAN Parameters 29
Valid FUNC Parameters •...•.......... 29
IOSB Status Block•...... 30
Defining an AST Handler ...•.•....... 30
Data Buffer Address and Length 30
Specifying a Timeout Interval 31
Specifying Transfer Type/Direction .. 31

Chapter Seven: Example Programs

7.0

7.1

7.2

7.3
7.3.1
7.3.2
7.3.3
7.3.4

Introduction •............................ 33

DUMPPORT.C Example Program 33

DESTIN.MAR Example Program 34

HOST.MAR Example Program 35
Task One: Remote Bus Memory 35
Task Two: Dual-Port Memory 36
Task Three: DMA Device Transfers 36
Task Four: Interrupt Handling 36

Chapter Eight: Upgrading to Multiple Q22-bus Adaptors

8.0 Introduction •............•...••.•••...... 37

8.1 Changes to BIT3 MAP••....•.•........ 37

8.2 Changes for Q22-bus Device Driver 38

8.3 Changes to BIT3 IFLIB 39

APPENDIX A: GLOSSARY •••••••••••••••••••••••••••••••••••• A-1

APPENDIX B: BIT3 IFLIB Documentation A-4

APPENDIX C: Program Listings •....•..•................... A-26

APPENDIX D: Fortran Programming Example A-32

Chapter One -- Support Software Functions

1.0 Executive Overview

Model 400-901/902 Support Software provides a device driver
and interface library for the VMS operating system and example
programs to help applications programmers with adaptor and
system configuration. It currently supports Model 431 Q22-bus
to MULTIBUS I, Model 432 Q22-bus to VMEbus, Model 433 Q22-bus
to Q22-bus, and Model 436 Q22-bus to A32 VMEbus adaptors.

The software package provides a VMS device driver and
interface library, plus all the tools, including memory
mapping, to access dual-port and/or remote bus memory space
from an application. This allows memory sharing between a VMS
Q22-bus system (such as the MicroVAX II and MicroVAX III) and
another system.

Bit 3's VMS device driver provides an interface similar to the
DRVll-WA, allowing block transfers between application data
buffers and remote memory or a remote Bit 3 Dual Port RAM
card. Is also allows the registration of interrupts via
unsolicited Asynchronous System Traps (ASTs) for use in
receiving interrupts from the other system.

Bit 3's interface library allows direct mapping to dual-port
and/ or remote bus memory, without software overhead. After
setup, all access is handled by hardware.

The example programs included in the Support Software
demonstrate features of the adaptor hardware and software, and
are useful tools for:

*
*
*
*

Debugging.
Testing the hardware.
Receiving and sending programmed interrupts.
Displaying the contents of dual-port memory.

Example programs may be modified for your specific hardware
configuration.

Support Software Functions Page 1

1.1 Components

Model 400-901/902 Support Software consists of the following
components:

* Privileged level routines that set up and delete the
system resources used by the interface library
routines. These can be added to the system
startup/shutdown procedures.

* An interface library to allow access to the device
registers and memory mapped access to the remote bus
and/or Dual Port RAM.

* A VMS device driver that allows block data transfers
and registration for ASTs.

* Example programs in MACR032 and C.

1.1.1 Privileged Processes

These components require special privileges to operate. The
privileged processes are the only parts of the software that
need be configured with system-dependent hardware settings,
such as the memory windows and the interrupt vector used.
Once the system is configured, these procedures can be
automatically executed at system startup and shutdown.

If the interface library is used by an application, the
BIT3 MAP process must be run to create the system resources
required by the interface library. The BIT3_UNMAP process can
be executed to deallocate these same system resources, after
the application completes. Because the BIT3 MAP and
BIT3 UNMAP procedures allocate and deallocate system
resources, an application program can be created that does not
require any special privileges or configuration information .

If an application will perform DMA transfers or receive
interrupts (AS Ts), the device driver (BTDRIVER. EXE) must be
loaded by SYSGEN, a special application included as part of
VMS. This requires special privileges, as well as a knowledge
of the adaptor I/0 window and the interrupt vector used.

1.1.2 Interface Library

An interface library is provided to directly access and
control the adaptor. It provides procedures to:

1) Map the remote bus, dual-port, or local bus memory into
the application's virtual address space.

2) Access the adaptor node I/0 registers.
3) Access the remote bus I/0 registers.

Support Software Functions Page 2

Once an adaptor memory window -is mapped into application
space, an application can directly access memory in that
window. Each of the map procedures returns a pointer to the
beginning of the window, and optionally a pointer to the end
of the window created by that procedure. By referencing off
these pointers (or virtual addresses), the application can
directly access the memory window.

Separate procedures are provided to access adaptor or remote
bus I/0 space. The procedures for accessing adaptor node I/0
check that the reference is not to a DMA control register or
remote bus I/0. The remote bus I/0 procedures also allows
access to the node I/0, but not the DMA registers. Access to
the DMA Control and Status Registers is prevented so that an
application can not interfere with the device driver .

1.1.3 Device Driver

The DMA device driver, BTDRIVER.EXE, provides two functions.
It allows for the registration and receipt of interrupts (or
ASTs) , and it allows a process to perform a block transfer of
up to 65534 bytes (32767 words) of data . Both of these
services use the system QIO interface. The operation is very
similar to that of a DRVll-type device, with the addition of a
parameter defining the cable address.

The device driver can only transfer data to/from remote RAM or
a remote Dual Port RAM card . It can not transfer data when
both the source and destination memories are on the same side
of the interface cable.

1.1.4 Example Programs

The example programs provided with Support Software are meant
to serve two separate but related purposes. First, they can
be used as a simple test to make sure that the hardware and
software are configured correctly . Second, they demonstrate
how to use various features of the adaptor with the interface
library and device driver .

Before running any example program, we recommend that you read
this manual and understand what the example programs do.

The example programs read and write to the remote bus. If the
other chassis contains a running system (such as another
MicroVAX running VMS or a VMEbus running UNIX, with other
users currently logged in and using the system), it is
possible that running the example programs could interfere
with the other system's operation.

Support Software Functions Page 3

1.2 Multiple Adaptor Unit Support

Bit 3 Support Software provides support for one to four
adaptors, identified as Units 0, 1, 2, or 3. See Chapter
Eight for a detailed description of configuring and
programming multiple adaptors. This added functionality is
downwards compatible with existing Bit 3 hardware and software
configurations.

Support Software Functions Page 4

Chapter Two -- Getting Started

2.0 Software Package Contents

The Support Software package contains the items listed below.
Please identify each item and notify Bit 3 (612-881-6955) if
any are missing.

Model 400-901 Support Software:
* Two 5.25" RX50 diskettes; Part Number 82602210;

* Q22-bus Adaptor VMS Support Software manual; Pub.
number 82602165;

* Software license agreement.

Model 400-902 Support Software:
* Two TK50 compact tapes; Part Number 82602220;

* Q22-bus Adaptor VMS Support Software manual; Pub.
number 82602165;

* Software license agreement.

2.1 Help!

Technical support is available from 9 a.m. - 5 p.m. (Central
Standard Time) Monday - Friday, excluding holidays.

Contact Bit 3 at:

Mailing Address:

Phone:

FAX:

Getting Started

Bit 3 Computer Corporation
8120 Penn Avenue South
Minneapolis, MN 55431-1393

612-881-6955

612-881-9674

Page 5

Chapter Three -- Installation

3.0 Introduction

This chapter contains information for installing the software
and installing/configuring a system with the adaptor hardware.
Suggestions for determining the jumper settings on the Q22-bus
adaptor board for the IO LO/ IO HI (I/0 range), REM RAM
(Remote RAM), and PORT RAM (dual-port memory) windows, the
BIAS (local memory Bias), and the VECTOR (interrupt vector)
jumpers are included. Chapter Three also contains information
on how to use the privileged level routines.

This chapter is not intended be a complete reference to all
available jumpers or as an instruction guide for setting
individual jumpers. To correctly configure the Q22-bus
adaptor board, you need to read and be familiar with the
adaptor hardware manual.

3.1 Installing the Software

Bit 3 Support Software uses the standard VMSINSTAL procedure.
The installation kit includes release notes describing the
changes made to the software since the last major release.

The software comes on two separate media. One, labeled VMS4,
is for use on systems running VMS version 4. 4 to 4. 7. The
other, labeled VMS5, is for systems running VMS version 5.0 or
later.

To begin installation, log into the system manager's account
and enter the following commands:

$ SET DEFAULT SYS$UPDATE
$ ALLOCATE ddau:
$ @VMSINSTAL BIT30nn ddau: OPTIONS N

(Where 'nn' is the software version number (ex: BIT3022), and
'ddau:' is the name of the device (ex: MUAO:) in which the
media is installed.)

VMSINSTAL will display the current system date and time, and
ask if you are satisfied with the the backup of your system
disk. If you answer no (N), VMSINSTAL will exit without
installing any of the software. This allows you to gracefully
exit the VMSINSTAL procedure .

Installation Page 6

If you answer yes (Y), it will ask you to mount the media in
your device. This is either the RX50 floppy diskette or the
TK50 tape provided by Bit 3. Once the media is inserted into
the proper device, answer yes (Y) and VMSINSTAL will begin
software installation.

Assuming you specified 'OPTIONS N' on the VMSINSTAL command
line, you will be given a chance to display and/or print the
release notes provided with the software. After providing the
release notes, the installation procedure will give you a
chance to gracefully exit without installing the software.

Once installation is complete, remove the media and DEALLOCATE
the drive. You do not need to reboot the system. You will
probably want to change the system startup (SYSTARTUP.COM for
VMS versions before 5.0, SYSTARTUP VS for VMS 5.0 or above) to
setup the adaptor. Also, you may- need to change some SYSGEN
parameters, in which case it will be necessary to reboot the
system. The rest of this chapter details these procedures.

3.2 Hardware Jumper Settings

There are five jumper blocks on the Q22-bus adaptor board
relevant to configuring the Support Software. The other
jumper blocks still need to be set for proper hardware
operation, but they do not directly affect the Support
Software configuration.

The five jumper blocks and their factory settings are:

Octal Hexadecimal
1) Interrupt vector (VECTOR) 0524 Ox154
2) I/0 Range (IO LO I IO HI) 0762000 OxE400

0762040 OxE420
3) Remote RAM (REM RAM) 010000000 Ox200000

014000000 Ox300000
4) Dual Port RAM (PORT RAM) 004000000 OxlOOOOO

010000000 Ox200000
5) Address bias (BIAS) pass-through pass-through

The values of the interrupt vector and I/0 range are needed
before the device driver (BTDRIVER) can be connected by
SYSGEN. Usually, the system startup procedure does this.

Installation Page 7

The -values of the I/0 range; Remote Bus RAM, Dual Port · RAM,
and local bus memory are needed before BIT3 MAP can run. Any
of these windows except the I/0 range can be disabled. There
is no software default setting for the I/0 range, and the
default settings for the other ranges are listed in the table
below. All numbers are in hexadecimal, and are the same as
the current factory configuration of the Q22-bus adaptor
hardware.

Remote bus RAM
Dual Port RAM
Local bus memory

Ox200000 to Ox300000
OxlOOOOO to Ox200000
Disabled

3.2.1 VECTOR and I/0 Range Settings

Use SYSGEN to determine I/0 addresses and interrupt vectors
already in use on your system. Usually this is done from the
SYSTEM account, although any account with the CMEXEC is able
to view the I/0 database. To actually load the device driver,
you need CMKRNL privilege.

There are 16 possible I/0 (or CSR) start addresses for the Bit
3 Q22-bus adaptor board, from 0760000 through 0777000. The
minimum I/0 window is 32 bytes (040 octal), when IO LO jumpers
are set equal to IO HI. If you plan to perform remote bus
I/0, the minimum window size is 512 bytes, or 01000 octal.

By eliminating any addresses that conflict with devices listed
on the SYSGEN Device Table contained in Appendix B of the VMS
system Generation Utility Manual (DEC order number AA-LA30A­
TE), we can narrow the list of potential I/0 addresses to the
following:

0760000
0765000

0767000

0761000
0766000

0770000

0762000
0771000

0763000
0773000

Please note that the last two addresses (0767000 and 0770000)
will conflict with other devices on the device table unless
the adaptor is set for the minimum (32 byte) I/0 window.

Installation Page 8

Since your system may contain devices not listed in the device
table, use SYSGEN to check your own system's configuration.
By executing the following commands, SYSGEN will list all the
devices, their starting I/0 address (the CSR), and the
interrupt vector(s) used:

$ MCR SYSGEN
SYSGEN> SHOW/CONFIGURATION

System CSR and Vectors on l-APR-1989 12:34:56.78

Name: PUA Units:l Nexus:O (UBA) CSR:772150 Vectorl:774 Vector2:00
Name: LPA Units:l Nexus:O (UBA) CSR:777514 Vectorl:200 Vector2:00
Name: PTA Units:1 Nexus:O (UBA) CSR:774500 Vectorl:260 Vector2:00

SYSGEN> EXIT
$

All CSR and VECTOR addresses will be displayed in octal. You
should be able to use the factory setting of 0524 for the
interrupt vector. Compare the CSR values listed by SYSGEN
with the list of available CSR above, eliminating any
conflicts. The factory hardware configuration is 0762000 to
0762040 (Node I/0 only, 32 bytes).

3.2.2 Adaptor Memory Ranges

There are 4M bytes of Q22-bus memory space. Of this, the
first 248K bytes (496 map registers* 512 bytes) are reserved
by VMS for DMA device memory buffers. The MicroVAX II GPX,
VAX Station 2000, and other similar graphic systems use the
last 256K for a device frame buffer. Adaptor memory windows
must fall on 64K byte boundaries (hexadecimal OxlOOOO), this
leaves the space from Ox040000 to Ox3COOOO available for use
by the Bit 3 adaptor.

Please note that the Q22-bus can map up to 4M bytes of memory,
but VMS requires a number of Q22-bus mapping registers for its
own internal operations. If you are installing more than one
adaptor in a single system, you must allocate the resources
for all of the adaptors within 3.5M bytes for your
applications. None of the ranges for any of the adaptors may
overlap. If there is not enough space to directly access all
resources, you may need to use Page Mode to access some of the
remote memory or remote dual-port memory.

With the release of VMS 5.0, the system boot process polls all
Q22-bus memory address space to locate any hardware residing
there. Any locations that do not respond are put in a list of
free pages, which can also be used by a DMA device to transfer
a data buffer. To ensure proper system operation, the AWAKEN
configuration on the SYST jumper block must always be set for
HARDWARE AWAKEN.

Installation Page 9

There are no programs available to list the parts of the Q22-
bus address space currently in use. Most interface boards do
not use the Q22-bus memory space. The types of boards that
may use this space are graphics boards, memory boards, and
other boards that appear as memory boards. For most systems,
the factory configuration should not cause any conflicts.

The REM RAM and PORT RAM jumpers on the Q22-bus adaptor board
control where remote bus and dual-port memory appear.

To access a local bus memory card, set the BIAS jumpers that
translate (or bias) the address from the remote adaptor into a
window on the Q22-bus. This allows access to the local bus
memory card from the remote adaptor board but restricts the
remote adaptor board from accessing other parts of the Q22-bus
memory. It alse allows the remote system to function without
knowing the hardware address of the Q22-bus memory board.

3.3 Loading the Device Driver

The device driver is usually loaded at the time the system is
booted. Before loading the device driver, you must know the
location of your I/0 window (also referred to as the CSR
address) and the interrupt vector.

Initially, log into the SYSTEM account to load the device
driver. After making sure that the device driver is
configured correctly, edit the system startup procedure to
have the device driver automatically loaded.

To be consistent with the SYSGEN utility, this section uses
octal addresses for the I/0 and interrupt vector, unless
otherwise noted. Furthermore, the examples show the commands
assuming the factory configuration of IO LO 0762000 and VECTOR
0524.

Log into the SYSTEM account, and enter the following commands:

$ MCR SYSGEN
SYSGEN> LOAD BTDRIVER
SYSGEN> CONNECT BTAO /ADAPTER=UBO/CSR=%O762OOO/VECTOR=%O524
SYSGEN> EXIT
$

The CONNECT command uses the letter 'O' ('=%0') to prefix
octal addresses. Be sure to substitute your own I/0 address
arid interrupt vector settings for the CSR and VECTOR
addresses.

See Chapter Eight for information about SYSGEN support for
multiple adaptors.

Installation Page 10

Enter· the command "SHOW DEVICE· BT /FULL" to check that the
driver loaded correctly. If the device is off-line, either
the adaptor hardware is not installed or the wrong I/0 address
was entered. Use the SHOW/CONFIGURATION command from SYSGEN
to check the CSR and VECTOR settings. Refer to the Q22-bus
adaptor board and the hardware manual to check that the jumper
settings are correct.

3.4 Using the Privileged Processes

The BIT3 MAP and BIT3 UNMAP privileged processes allocate and
deallocate system resources required by the interface library.
To allocate these resources, an account must have the
following privileges:

* PFNMAP
* SYSGBL
* PRMGBL

Map to specific (memory) physical pages
Create system-wide global sections
Create permanent global sections

Do not run BIT3_UNMAP while applications using the memory
sections are running. An easy way to make sure these
restrictions are obeyed is to only execute BIT3 MAP in the
system startup command, at system boot.

You may also want to modify the MODPARAMS.DAT file and run
AUTOGEN so that the system can adjust for the resources
allocated by BIT3 MAP. Section 3.5 details which parameters
may need to be changed and the simplest way to do so.

3.4.1 BIT3 MAP

There are two ways to run BIT3_MAP. The first method assumes
the location and size of the dual-port and remote memory
windows, and only allows you to adjust the starting address of
the I/0 window, assuming the size of the I/0 window is 32
bytes. It assumes there is no local memory window. The
second method allows you to configure any or all of these
settings based on your system. Both methods can be used
either interactively or from inside a script file.

When the BIT3 MAP process is run, it first asks whether it
should create a remote memory window. If you want to
configure the software for settings other than the default,
answer "C" to this question. The later part of this section
explains the available configuration commands. Chapter Eight
contains additional information for configuring multiple
adaptors.

Installation Page 11

When you answer "Y" to the remote -memory prompt, the program
will configure itself for a remote memory window from Ox200000
to Ox300000. It then prompts for a starting I /0 or CSR
address. If you answer "N", the program does not create a
remote memory window.

The CSR address BIT3 MAP requests is the same address used
when loading the device driver. See section 3.2.1 for more
information on how to determine an I/0 window. The address is
assumed to be octal, unless prefixed with 'x' in which case
hexadecimal notation is assumed.

The next question BIT3 MAP asks is whether you want to create
a dual-port memory section. If you answer "Y", the program
configures itself for a dual-port memory section from OxlOOOOO
to Ox200000. If you have not already been asked, the program
will prompt you for a CSR address.

Finally, BIT3 MAP creates the I/0 and memory sections
requested. Below is an example session where BIT3 MAP was
asked to create the default remote memory and dual-port memory
windows, with an I/0 window at 0762000 octal.

$ RUN BIT3 MAP
BIT3 MAP.EXE V2.0
Copyright (c) 1988, 1989, 1990 by Bit 3 Computer Corporation
All rights reserved.

If you want to configure the adaptor to locations other than the
factory settings, answer C (CONFIGURE) to the first question.

Would you like to map the remote memory (Y/N/C)? Y
Valid CSR addresses for the Bit 3 device range from 760000 to 777
What is the CSR address of the Bit 3 device (e.g. 762000)? 76200
Would you like to map the Dual-Port memory (Y/N)? Y

Remote RAM mapping established.
Dual-Port memory mapping established.

All done.
$

When you answer "C" to the first question (remote memory:
Y/N/C), the program displays a "Bit 3>" prompt and waits for a
command. The "HELP" command displays a short help screen that
lists each of the commands available and their function.
Please note that it is not possible to abbreviate the
commands.

Many of the commands require an address or range of addresses
as parameters. All of these commands have a two-character
alias that performs the exact same function. All addresses
are assumed to be entered in octal, unless prefixed with 'x'
in which case hexadecimal notation is assumed.

Installation Page 12

The CSR (or IO) command allows you to set the starting I /0
address. If you enter two addresses, it interprets this as an
I/0 window, and creates a section larger than the default I/0
window of 32 bytes. Initially, there is no default I/0 window
set. The program will not allow you to "EXIT" and create the
memory sections unless you set an I/0 window.

The I/0 window must start on a 512 byte (01000 octal, Ox200
hexadecimal) boundary. The end address must also be on a 512
byte boundary, unless the minimal I/0 window is requested. In
this case the end address is equal to the start address plus
32. The end address is the first address greater than the
last I/0 location the adaptor responds to. This is consistent
with the way the jumpers are set on the adaptor board.

All of the following commands work in the same way -- to set
one of the three adaptor memory windows:

REMOTERAM
DUALPORT
LOCALMEM

RR
DP
LM

The remote RAM window
The dual-port memory window
The local memory window

Each command requires a start and end address, or the word
"DISABLE", as a parameter. The start and end address must be
on a 64K byte boundary (0200000 octal, OxlOOOO hexadecimal),
and the start address must be less than the end address. The
end address is the first location greater than the last memory
location the adaptor window responds to. Once again, this is
done to be consistent with the way the address ranges are
described for the adaptor hardware.

Please refer to section 3. 2 of this manual for other
restrictions on the I/0 and memory windows. The BIT3 MAP
process will not accept what it considers to be an invalid
address range, but does no further checking to make sure the
settings are valid. It is your responsibility to make sure
the settings match those of the adaptor hardware, and that no
two memory sections overlap.

The "AU" and "ADAPTOR" commands are used when multiple adaptor
units are used. They use the current settings to create
memory sections for the specified unit number. Valid unit
numbers range from zero to three, inclusive. See Chapter
Eight for more information.

Installation Page 13

Other commands available from the "Bit 3>" prompt are:

HELP
SHOW

EXIT

QUIT

Display a short help screen.
Display the current settings for the I/O and memory
windows.
Exit the program, using the current settings to
create any requested memory sections.
Exit the program without creating any memory
sections.

The "HELP" screen provides a brief description of each
command. It is not meant to be a complete reference on the
use of BIT3 MAP. However, if you already understand what
BIT3 MAP is used for, it does give enough information for you
to use all of the commands.

The "SHOW" command can be used to show any and/or all memory
window settings. Entering "SHOW" with no parameters gives you
information on all of the window settings. Otherwise, enter
any combination of the parameters "RR", "DP", "LM", and/or
"IO" to display only the remote RAM, dual-port memory, local
bus memory, or I/O windows, respectively. The settings for
each window are displayed in both octal and hexadecimal
notation.

After displaying the current settings, the SHOW command also
displays a set of recommended settings for the MODPARAMS.DAT
file. These lines reflect the system resources BIT3 MAP
allocates using the current settings. See section 3. 5 for
more information about how to use this information.

Please note: BIT3 MAP does not keep a record of the window
settings used. The "SHOW" command shows you the settings as
they are configured for that run. It will not show you the
previous settings.

Both the "EXIT" and "QUIT" commands allow you to leave the
program. The "QUIT" command exits without attempting to
create any I/O or memory windows. The "EXIT" command uses the
current settings and attempts to create the requested windows.
Please note that you must specify an I/O window before the
"EXIT" command will allow you to leave the program.

Installation Page 14

3.4.2 BIT3 UNMAP

The BIT3 UNMAP process deallocates any memory sections
BIT3 MAP may have created. It is important that this process
is NEVER run while an application that uses those memory
sections is executing. There is no checking from within the
BIT3 MAP or BIT3 UNMAP processes to prevent this type of
incorrect usage. It is up to you to make sure this does not
happen. Run BIT3 UNMAP to free the system resources for other
processes when there is no process running that needs them.

3.5 Adjusting System Parameters

The BIT3 MAP process allocates certain global system resources
to allow the mapping procedures contained in the interface
library to work. Because it is possible to create sections
that are quite large (slightly more than 3M byte total), the
system may need tuning to take these new demands into account.
This section discusses only the parameters that may need
adjustments and the most basic ways to make these adjustments.
For a more advanced discussion of these parameters and how
they affect system operations, refer to the DEC VMS System
Manager documentation.

3.5.1 GBLSECTIONS/GBLPAGES Using SYSGEN

The resources BIT3 MAP allocates require approximately 2100
GBLPAGES per mapped Megabyte and 1 GBLSECTIONS per type of
window. Even for a small (64K byte) memory window, about 130
GBLPAGES are required. System performance could be adversely
affected if these changes are not taken into account. Setting
the values too low could prevent BIT3_MAP from operating,
whereas setting the values too high would waste physical
memory.

To find exactly how many GBLSECTIONS
required, run BIT3 MAP and answer "C" to
memory query. If-you are used to using
abilities of BIT3_MAP, adjust the I/0
settings to your standard configuration.

and GBLPAGES are
the initial remote
the configuration

and memory window

If you normally use the default settings for the remote memory
and dual-port sections, use the "CSR" command to set the I/0
window. After answering "C" to the remote memory query, the
"Bit 3> "prompt appears. To set the the I/0 starting address
to 0762000 octal, enter "CSR 762000". If you normally do not
use the remote or dual-port memory, also enter the commands
"RR DISABLE" or "DP DISABLE" to disable these sections.

Installation Page 15

Once your configuration is set the way it is normally used,
enter the SHOW command. If you have more than one adaptor,
enter the SHOW command after each adaptor is configured. SHOW
gives only the system resources for the current settings.
When used with multiple adaptors, note the requirements of
each adaptor. After displaying the settings for each section,
it will display the number of global pages and global sections
these settings require. To leave the program, either enter
"QUIT" (to leave without creating any sections) or "EXIT" (to
attempt to use the current settings to create the requested
sections).

To con£ igure the system with these new settings, first add
this information to the MODPARAMS.DAT file in SYS$SYSTEM.
Assuming that you have a single lM byte window and a 512 byte
I/O window, add the following lines to MODPARAMS.DAT:

ADD GBLPAGES =
ADD GBLSECTIONS =

2054
2

BIT3 MAP resources

Substitute the numbers shown by BIT3 MAP for your own
configuration. After adding these lines to the MODPARAMS.DAT
file, run the AUTOGEN procedure. It is best if the system has
been operating at least 24 hours before running AUTOGEN. This
allows AUTOGEN to use the system feedback information to
better calculate new values for the various system parameters.

The first step is to use AUTOGEN to compute new values for the
system parameters. This can be done with the following
commands:

$ SET DEFAULT SYS$UPDATE
$ @AUTOGEN SAVPARAMS GENPARAMS

This procedure invokes AUTOGEN which uses the current feedback
information and the MODPARAMS data to calculate new values for
all parameters. It creates a new SETPARAMS.DAT file
containing the new parameters, and a AGEN$FEEDBACK.REPORT that
tells which parameters were changed along with their old and
new values. If you are not satisfied with the calculated
results, edit the MODPARAMS.DAT files and execute the first
AUTOGEN again.

When you are satisfied with the system parameters that AUTOGEN
calculates, make sure everyone is logged off the system, then
enter the following commands:

$ SET LOGIN/INTERACTIVE=O
$ SET DEFAULT SYS$UPDATE
$ @AUTOGEN SETPARAMS REBOOT

This tells AUTOGEN to use the newly calculated values for the
system parameters, and to reboot the system. It is necessary
to reboot the system before the new system parameters will
take affect.

Installation Page 16

If you require more information about SYSGEN, AUTOGEN, or
system balancing, see the DEC VMS System Manager
documentation.

3.5.2 WSQUOTA Using AUTHORIZE

In addition to adjusting the system parameters, it may be
necessary to adjust account parameters so that a process has
enough virtual address space in which to execute. This can be
done with the AUTHORIZE procedure. One indication that this
is necessary is when one of the interface library mapping
procedures returns the SS$ INSFWSL error code indicating an
insufficient working set limit.

Parameters that you may want to change are WSDEFAULT, WSQUOTA,
and WSEXTENT. The WSDEFAULT value is the initial value a
process has at image startup. Although the working set size
will grow, by setting the initial value closer to the required
value you can decrease the number of times VMS has to expand
the image size. The WSQUOTA value is the maximum size the
working set is allowed to grow when the system is loaded. The
WSEXTENT is the absolute working set limit allowed when the
system has excess free pages of memory. The working set size
will be reduced to WSQUOTA if the system later requires the
additional memory for another process.

Please read the VMS documentation on AUTHORIZE before
attempting to change any of these parameters.

3.6 Changing the System Startup Procedure

If you are using the BTDRIVER device driver, we strongly
recommended that you add lines to your system startup
procedure (SYSTARTUP.COM for versions of VMS before 5.0,
SYSTARTUP VS.COM for VMS 5.0 or later) to load and connect the
driver at system boot.

Also, if applications will be using the interface library, it
may be easier to have the system startup procedure execute the
BIT3_MAP process as well. This way, the resources are always
available to any applications that may use the adaptor and the
accounts will not need a special login script and privileges
to run the BIT3_MAP process.

To add either of these to your system startup script, log into
the system manager's account and edit either the SYSTARTUP.COM
file (for VMS versions less than 5.0) or SYSTARTUP VS.COM (for
VMS versions 5. 0 and greater) and add the text you normally
enter in response to prompts from SYSGEN (loading the device
driver) or BIT3 MAP (allocating system resources.)

Installation Page 17

The following is a simple example script that loads the device
driver with the default settings, and has BIT3 MAP create a
1024 byte I/0 section (for doing remote bus I/0-accesses), a
1.5M byte remote memory section, and no dual-port or local bus
memory section.

$! Set up the Bit 3 adaptor
$ RUN SYS$SYSTEM:SYSGEN
LOAD BTDRIVER
CONNECT BTAO /ADAPTER=UBO /CSR=%0762000/VECTOR=%0524
EXIT
$ RUN BIT3_ MAP
C
DUALPORT DISABLE
LOCALMEM DISABLE
REMOTERAM x200000 x380000
IO 762000 764000
EXIT
$

Installation Page 18

Chapter Four -- Using the Interface Library

4.0 Introduction

The BIT3 IFLIB interface library is a standard object module
library containing the routines that allow you to map the
various memory sections into an application's virtual address
space, access the adaptor node I/0 registers, and access
remote bus I/0 registers.

The following procedures are contained in the library:

Mapping procedures:
BIT3 MAP RR
BIT3-MAP-DP
BIT3-MAP-LM

Node I/0 procedures:
BIT3 READ REGISTER
BIT3-WRITE REGISTER
BIT3-IACK READ

Remote bus I/0 procedures:
BIT3 OUT BYTE
BIT3-0UT-WORD
BIT3-IN WORD

Before any other procedures can be used, one of the BIT3 MAP
procedures must have successfully completed .

None of the BIT3 MAP procedures are re-entrant.
other procedures are AST re- entrant .

All of the

Appendix B defines each of the procedures, their parameters ,
and the error codes returned by the procedures .

An application using these procedures would have to include
the language-dependent external procedure declarations in
their application code, and then link the program with
BIT3 IFLIB.

For example, to compile and link the DUMPPORT.C example
program , copy both the DUMPPORT.C and DUMPPORT.H files to your
own account and execute the following commands:

$ CC DUMPPORT
$ LINK DUMPPORT,SYS$LIBRARY:BIT3_IFLIB/LIBRARY

The executable file contains only those procedures contained
in BIT3 IFLIB that were actually called by the DUMPPORT
application.

Using the Interface Library Page 19

4.1 Using the Mapping Routines·

There are three separate routines that allow an application to
directly access sections of the Q22-bus memory space. These
sections are the remote bus memory, dual-port memory, and
local bus memory windows that the BIT3_MAP process created.
Few, if any, applications need to use all three sections.

VMS is a virtual memory system. A combination of hardware and
system level software allow the virtual address an application
uses to be redirected to a different physical address, or even
loaded from mass storage. If the page of virtual memory is
already loaded into physical memory, the process is completely
handled by hardware support.

The map procedures make use of these same virtual memory
mechanisms to create a section of the application's address
space which references the Q22-bus memory space. The map
procedures return a pointer to the beginning of this special
address space. The hardware support for virtual memory will
cause any program access to this address space to
automatically access the adaptor board on the Q22-bus.

An application needs only to execute any of the mapping
procedures once. The special memory section is available to
any part of that process until the application completes and
returns to VMS.

At least one of the three procedures must be called before any
other procedures in the interface library (for node I/0 or
remote bus I/0) will complete. The first map procedure to be
called will automatically do the initialization needed by the
I/0 routines.

If the error code after calling one of these procedures is
SS$ INSFWSL, you have run out of working set space. You will
need to have your WSQUOTA and WSEXTENT increased. Please
contact the system manager to arrange to have your working set
limits increased.

The error code SS$ NOSUCHSEC indicates one of the following
conditions:

1) BIT3 MAP was never run, or BIT3 UNMAP has removed the
sections that BIT3 MAP created.

2) BIT3 MAP was run, but told not to create that type of
memory section.

3) BIT3 MAP was run, but an error prevented it from
successfully creating the memory sections.

4) BIT3 MAP was run, but that adaptor Unit number was not
configured.

Using the Interface Library Page 20

If the board and the software are not configured identically,
any access to an adaptor memory window will cause an MCHECK
(Machine Check , also known as Q22-bus timeout). This could
be caused by configuring the window to a larger window, or an
incorrect window , with BIT3 MAP. It is your responsibility to
make sure that the software-is properly configured.

4.2 Accessing Node I/0 and Remote Bus I/0 Registers

These procedures are meant to allow an application to
read/write to the I/0 registers located either on the adaptor
board, or on a device existing on the remote bus . They will
not allow access to the DMA device registers.

These procedures are AST re-entrant . None will work until one
of the three memory mapping procedures has successfully
completed . All these procedures accept an optional adaptor
Unit parameter, specifying which adaptor to address. This
support for multiple adaptors is described in Chapter Eight.
The default is adaptor Unit O for use with software that only
requires a single adaptor .

The BIT3 IACK READ procedure reads the interrupt acknowledge
register; returning the 16-bit interrupt vector.

All other procedures have a register offset parameter that
defines which of the registers is being accessed. Please note
that this offset starts with the Local Command Register at
offset zero . Access to the DMA registers is not allowed, to
prevent any possible interference between the device driver
and the interface library. A register offset of 16 would be
the first remote bus register.

To access remote node or remote bus I/0, the SYST jumper block
on the Q22-bus adaptor card must have the "TRANSMITTER" jumper
installed . If not, the procedures will return a SS$ DEVINACT
error code .

The BIT3 READ REGISTER and BIT3 WRITE REGISTER allow an eight ­
bit value to be read/written to either a local node or remote
node adaptor register. If you attempt to access beyond the
node I/0 space, the procedure will return a value of
SS$ BADPARAM .

The BIT3 IN WORD, BIT3 OUT WORD, and BIT3 OUT BYTE procedures
allow 16-:bi t read/write and eight-bit write access to either
the adaptor node I/0 space or the remote bus I/0 space.
Accessing the remote bus I/0 space allows you to control the
registers of a device located on the remote bus. Also , the
IO HI jumpers must be set to a value greater than IO LO.

Using the Interface Library Page 21

If not enough I/O - space is available to position the remote
device at an I/0 address within this window, the adaptor also
allows a memory cycle to be converted into a remote bus I/0
access. For the Model 431 Q22-bus to MULTIBUS I and Model 433
Q22-bus to Q22bus adaptors, this is done by setting the select
I/0 page bit in the Remote Node Command Register. For the
Model 432 Q22-bus to VMEbus or Model 436 Q22-bus to A32
VMEbus, this is done by changing the value in the address
modifier register. By adding the absolute device register
address to the base of the remote memory section (as returned
by BIT3 MAP RR) , you can access the device using the remote
memory address window. By clearing the bit (Models 431, 433
adaptors) or restoring the normal address modifier (Models
432, 436 adaptors), the remote memory window will be restored
to its normal function.

Using the Interface Library Page 22

Chapter Five -- Interrupt Handling

5.0 Introduction

The Q22-bus adaptor board is capable of sending out one of two
types of programmed interrupts. It can receive and
distinguish between any one of eight different interrupts, one
of which the device driver software reserves for the DMA Done
interrupt.

The RINT and TINT jumper blocks on the Q22-bus adaptor board
control which interrupts it sends/receives. Please refer to
the sections of the hardware manual for a discussion of how to
configure these jumper blocks. We strongly recommend that you
leave the RINT jumper block wire-wrap line from DMA DONE to
External Interrupt 3 in place. The driver software assumes
this configuration.

The example programs demonstrate the concepts described here.
It will be helpful to have a listing of the example program to
reference while reading this chapter.

5.1 Sending Interrupts

When used on a MicroVAX processor, the only type of interrupts
the adaptor can send are programmed interrupts to the remote
bus. The BIRQ4-BIRQ7 lines should never be connected on the
TINT jumper block when used in these type systems.

The type of programmed interrupt used depends on which adaptor
is allowed to transmit across the cable. The SYST
"TRANSMITTER" jumper determines if this is allowed.

The PR (Programmed to Receiver) interrupt is used when the
"TRANSMITTER" jumper is installed.

The PT (Programmed to Transmitter) interrupt is used when the
"TRANSMITTER" jumper is not installed.

5.1.1 PT Interrupts

This interrupt requires a jumper connection on the TINT jumper
block. It allows a receiver board (an adaptor board that is
not allowed to access the other adaptor board across the
cable) to send an interrupt to the remote system.

Interrupt Handling Page 23

All processing for sending the PT interrupt is done with Local
Node I/0 Register accesses. The interrupt handler on the
remote system writes to its Remote Node Registers to clear the
PT interrupt. This way, the "receiver" board can send an
interrupt to the other system without having cable access
rights.

To cause a PT interrupt, the PT interrupt flip-flop in the
Local Node Command Register must be set. By reading the Local
Node Status Register, the application can determine when the
remote system has cleared the PT interrupt.

The remote system clears the PT flip-flop in its Remote
Command Register. This causes the interrupt signal to go
away, and the PT status bit in the Local Status Register to be
cleared.

Before the interrupt can occur on the remote system, the TINT
jumper block on the Q22-bus adaptor board and an interrupt
jumper block on the remote system must be properly configured.
The registers show the PT interrupt as set, but no interrupt
will be generated until both adaptor boards are jumpered
correctly. See the adaptor hardware manual for the location
and further explanation of the jumpers controlling the PT
interrupt.

If a system sends PT interrupts, it should receive PR
interrupts.

5.1.2 PR Interrupts

This interrupt allows a transmitter board (an adaptor board
that is allowed to access the other adaptor board across the
cable) to send an interrupt to the remote system.

All processing for sending the PR interrupt is done with
Remote Node I / 0 Register accesses. The interrupt handler on
the remote system would write to its Local Node Registers in
order to clear the PR interrupt. This way, the "receiver"
board can acknowledge and clear the interrupt from the other
system without having cable access rights.

To cause a PR interrupt, the PR interrupt flip-flop in the
Remote Node Command Register must be set. By reading the
Remote Node Status Register, the application can determine
when the remote system has cleared the PR interrupt.

Interrupt Handling Page 24

The remote system clears the PR flip-flop in its Local Command
Register. This causes the interrupt signal to go away, and
the PR status bit in the Remote Status Register to be cleared.
With some of the faster processors now available, the remote
system can process the interrupt and clear the status bit
between the time the MicroVAX processor causes the interrupt
and reads back the status register. This would look to the
MicroVAX system as if the PR interrupt status bit was never
set.

All jumpers for the PR interrupt are on the remote adaptor
board. There are no jumpers on the Q22-bus adaptor board that
control PR interrupts. Please refer to the hardware manual
for information about these jumper blocks. It is still
necessary to have the "TRANSMITTER" jumper in the SYST block
installed.

If a system sends PR interrupts, it should receive PT
interrupts.

5.2 Receiving Interrupts

To register to receive interrupt messages, the application
must use the BTDRIVER.EXE device driver. The application uses
a special QIO device call to register for each interrupt, or
unsolicited AST it wants to receive .

When an interrupt occurs, one of the parameters passed to the
application's AST handler is the DMA Control and Status
Register. By looking at bits 9-11 of this register, you can
determine which of the eight possible interrupts was passed.

The registration and handling of unsolicited ASTs is similar
to the method used by the DRVll-W device driver. If you need
more programming examples, we suggest that you look at code
for that device.

Interrupt Handling Page 25

5.2.1 Registering for an Unsolicited AST

Before registering for an Unsolicited AST, you must have used
the $ASSIGN system service to open a communications channel
between the device driver and the application.

The code to register for an unsolicited AST in MACR0-32 is:

; Register routine AST_TRAP for unsolicited AST from BTAO:

$QIO_S CHAN= BIT3 CHAN,- ; Device BTAO:
FUNC = #<IO$ SETMODE!IO$M ATTNAST>,-
Pl = AST TRAP ; Address of AST routine

where:

CHAN is the channel number returned by the $ASSIGN system
service.

FUNC is always the constant value
IO$ SETMODE+I0$M ATTNAST.

Pl is the address of the AST handling routine. This
routine is called when the interrupt occurs. If the Pl
address is equal to zero, all unsolicited ASTs in the
queue are canceled.

You can register for the next AST from within an AST handler
to continue to receive the messages. When you no longer want
to receive AST messages, perform the ATTNAST call with Pl
equal to zero. This cancels any pending requests for
unsolicited ASTs.

5.2.2 Processing the AST

In addition to registering for the AST, you need to write an
AST handler procedure. Usually the AST handler uses the OMA
CSR register value, extracting bits 9-11, and uses this value
in a CASE statement. Thus, the handler can immediately
determine the type of interrupt that occurred and do only the
processing for that interrupt type.

Cases 0, 1, and 2 indicate the receipt of a PR interrupt. The
first part of the processing in this case is to write to the
Local Node Command Register and clear the interrupt flip-flop.

Case 3 should always be a do-nothing case.
completes, you would receive this message.

Any time a DMA

Cases 4, 5, 6, and 7 indicate external interrupts. These can
be PT programmed interrupts, error interrupts, and/or remote
bus interrupts.

Interrupt Handling Page 26

If you will be receiving PT interrupts, assign one of the

external interrupt~ to do thi~. ~h~ flr~~ ~~f~ ~f ~k~~
section would do a remote command write to clear the PT
interrupt.

If you will be receiving error interrupts, assign one of the
external interrupts to do this. The adaptor would not require
you to do any processing, but you may want to read the Local
Node Status Register and then clear the status register by
writing to the Local Node Command Register.

If the interrupt was not a PT or error interrupt, a device on
the remote bus caused the interrupt. In the case of the
MULTIBUS I adaptor, the handler would immediately start
processing the interrupt. For the VMEbus and Q22-bus
adaptors, execute the BIT3 IACK READ procedure to acknowledge
receipt of the interrupt. - Before perf arming the interrupt
vector read on a VMEbus adaptor, the IACK CODE bits must be
set in the Remote Node Command Register. These bi ts
correspond to interrupt level being acknowledged. The
BIT3 IACK READ procedure returns the interrupt vector number.

5.2.3 Communicating Outside an AST Routine

Only global variables should be accessed from inside the AST
procedure. By using two linked list data structures, you can
allocate a number of message buffers for communications
between the AST routine and the main program. The AST
procedure removes one entry from the free list, fills the
buffer with information, and adds the buffer to the received
list. The application can look in the received list to check
for messages, and move the buffers back to the free list once
it has processed the message.

The system service event flag routines are also useful for
indicating if an interrupt message came in. By having the
interrupt routine set an event flag, the application can
either periodically poll that event flag or wait until after
the event flag is set. This is also an easy way to
synchronize operation between the local and remote systems.

Interrupt Handling Page 27

Chapter Six -- Using the Device Driver

6.0 Introduction

In addition to allowing the receipt of interrupts, the
BTDRIVER device driver allows an application to transfer large
blocks (up to 65534 bytes) of data across the adaptor link.
The $QIO system service provides the application interface to
the device driver.

This chapter describes the $QIO functions and parameters that
the device driver recognizes. It does not repeat the
information on registering for unsolicited AS Ts (receiving
interrupts). Please refer to Chapter Five for this
information.

Before using any of the $QIO calls, you must use the $ASSIGN
system service to open a communications channel between the
device driver and the application.

6.1 Using the $QIO Interface

There are two separate but related $QIO system services
$QIO and $QIOW. An application can use either of these calls
when using the device driver. Both have the same parameters
and options.

The $QIO call performs preliminary processing of the
parameters and queues the request to the device driver . If
the service reports an error, the request is not queued to the
driver. It does NOT wait for the transfer to complete before
returning contr6lto the application. This allows the
application to have several outstanding DMA transfers queued
simultaneously. Please note that a success condition value
does not mean that the transfer was completed successfully.

The $QIOW waits until the transfer is complete before
returning to the application. When this call is used, it is
not possible to do any other processing (such as queuing
another transfer) until the device driver completes this
request. A condition value of success means that the whole
operation completed successfully.

The formats of the $QIO and $QIOW system service calls are:

SYS$QIO EFN=EventFlag,
FUNC=DeviceCommand,
ASTADR=Handler,
Pl=BufferAddress,
P3=TimeoutSeconds,
P5=CableAddress

Using the Device Driver

CHAN=DeviceChannel , -
IOSB=StatusBlock, -
ASTPRM=ASTparameter , -
P2=BufferLength, -
P4=TransferType, -

Page 28

Most of this chapter assumes that FUNC is a device read or

write. Unless otherwise indicated, you should a~~UM~ All
parameter descriptions refer to their use with these
functions.

6.1.1 EFN and CHAN Parameters

The EFN parameter indicates which event flag to set when the
request completes. The $QIO system service can set an event
flag upon request completion. Providing an event flag is
equivalent to having an AST handler that always issues the
$SETEF system service. This is often used with the $QIO
system service, allowing an application to detect completion
without requiring an AST procedure.

The CHAN parameter points to the device channel returned by
the $ASSIGN system service.

6.1.2 Valid FUNC Parameters

The following FUNC device commands are recognized:

WRITEPBLK
READPBLK
SETMODE
SENSEMODE

WRITEVBLK
READVBLK
SETCHAR
SENSECHAR

WRITELBLK
READLBLK

The WRITEVBLK, WRITELBLK, READVBLK, and READLBLK functions are
all handled the same way. They indicate that this is a device
DMA transfer request. It does not matter whether the function
is a read or a write. The P4 parameter is used to determine
the direction of the transfer.

The WRITEPBLK and READPBLK functions can be used the same way
as the above functions. The only difference is that they
require a special privilege in order to execute.

The SETMODE and SETCHAR functions are used to register for
unsolicited ASTs -- such as programmed interrupts, error
interrupts, and/or remote bus interrupts. Chapter Five
contains an explanation of these functions.

The SENSEMODE and SENSECHAR functions return the standard
information any device returns in response to these functions.
The device driver does not do any special processing for these
functions.

Using the Device Driver Page 29

6.1.3 · IOSB Status Block

The IOSB parameter points to an aligned quad-word status
block. The first word of this value is the final condition
value of the request. The complete format of this parameter
is defined as follows:

31 15 0

+---------------+--------------+ I byte count I status I
+---------------+--------------+ I Reserved I Bit 3 CSR I
+---------------+--------------+

As noted above, the status field is the final condition value
indicating the status of the request. The byte count is the
number of bytes transferred by the driver. In the case of a
successful transfer, this should always match the requested
transfer size. In the case of an error, it is possible for
this value to slightly exceed the actual number of bytes
transferred. The CSR value is the value read from the DMA
Control/Status Register at the end of the transfer. The
Reserved field is always zero.

6.1.4 Defining an AST Handler

The ASTADR parameter is the address of the entry mask for an
AST handler. The ASTPRM value is passed as the first
parameter to the AST handler, allowing the application to pass
additional information to the AST handler.

This AST handler is executed when the I/0 request completes .
The application is suspended and the AST handler is called
with the ASTPRM value as the first parameter. The AST handler
can then use this information to do any special post­
processing that may be required. Program execution is
suspended until the AST handler completes.

6.1.5 Data Buffer Address and Length

The Pl parameter gives the virtual address of the application
data buffer to be used. The P5 parameter gives the physical
cable address for the transfer. Both of these values must be
word aligned. The P2 parameter is the number of bytes to
transfer. This must be an even value.

The device driver transfers data as words. The buffer address
(parameter Pl) is the virtual address of the application's
data buffer. The cable address is the physical address on the
remote system where the transfer is to take place.

Using the Device Driver Page 30

If both the·device driver and the interface library are used,
you can convert the virtual address used to access data in the
memory window to the physical cable address. By subtracting
the base virtual address (as returned in the first parameter
by BIT3 MAP DP or BIT3 .MAP RR) from the address at which the
data is - located, the result is the cable address the device
driver would use. ·

The device driver can only perform DMA transfers across the
cable. The source and destination of the transfer can not be
on the same side of the cable. For example, an attempt to
perform a DMA transfer to a local dual-port memory would
result in a SS$ DRVERR condition value.

6.1.6 Specifying a Timeout Interval

The P3 parameter can be used to specify a timeout interval, in
seconds, for the device to wait until the transfer is
complete. The timer is accurate plus or minus one second,
making the minimum interval two seconds. To specify a timeout
interval, add the IO$M TIMED modifier to the FUNC value.
Otherwise the default value of 10 seconds is used.

Since the Bit 3 Q22-bus adaptor board is capable of
transferring data in excess of SOOK bytes/second, it usually
takes less than one second to transfer the maximum size buffer
of data. Therefore, it is unlikely that you will need to use
this parameter.

6.1.7 Specifying Transfer Type/Direction

The P4 parameter determines in which direction the transfer
will be, and whether the transfer will be to remote bus memory
or remote dual-port memory. The parameter is the same value
that the device driver moves into bi ts 1-3 of the DMA
Control/Status Register.

The following values can be used to determine the direction
and type of transfer:

0 Transfer from application data buffer to remote bus
memory

1 = Transfer from remote bus memory to application data
buffer

4 = Transfer from application data buffer to dual-port
memory

5 = Transfer from dual-port memory to application data
buffer

By adding two to the value, the device can be reset before
beginning the transfer.

Using the Device Driver Page 31

Another war to view these values ·is· as additive bits(each bit

defini ng a function and the sum giving the complete code. For
example, bit O indicates the direction of transfer, when set
the transfer would be a write from the application buffer to
the remote. Bit 1 causes the adaptor OMA registers to be
reset before the transfer is begun . Bit 2 determines whether
the remote memory is bus memory or dual-port memory, when set
the transfer will use remote dual - port memory. These bits are
described in the adaptor hardware manual .

Using the Device Driver Page 2

Chapter Seven -- Example Programs

7.0 Introduction

Three example programs are provided with the Bit 3 Support
Software. All of these programs are located in the BIT3 sub­
directory of the SYS$EXAMPLES account. A listing of DUMPP0RT
is also contained in Appendix C of this manual. Please refer
to the actual source code provided rather than depend on the
listings in Appendix C; the programs may have been updated
since the last printing of this manual.

These programs support multiple adaptors. If your system is
configured with one adaptor, that adaptor is Unit 0. You can
specify one of four possible adaptors. See Chapter Eight for
multiple Q22-bus adaptor support.

The programs included with the software are:

DUMPP0RT.C

DESTIN.MAR

HOST.MAR

Displays the first few characters of the
dual-port memory both as hexadecimal bytes
and characters.

Example program demonstrating the software
and hardware features that the "RECEIVER"
system may use.

Example program demonstrating the software
and hardware features that the "TRANSMITTER"
system may use.

For your convenience, both the source and executable files for
each of these programs is provided.

Each of these programs is described individually in this
chapter.

7.1 DUMPPORT.C Example Program

This program consists of two files, DUMPP0RT.H and DUMPP0RT.C.
It uses the BIT3 IFLIB library to access a dual-port memory.

To compile and link the program, you must have a C compiler.
We use the VAX C product available from DEC. Using VAX C, the
commands to compile and link the program would be:

$ CC DUMPPORT
$ LINK DUMPPORT,SYS$LIBRARY:BIT3_IFLIB/LIBRARY

Example Programs Page 33

If you have the optional dual-port memory, this is the first
program to run after installing the hardware and running the
privileged process BIT3 MAP. There is nothing in this
arrlication that should 1nterf ere with the remote srstem' s

operation.

If this program is able to complete successfully, the I/0 and
dual-port starting addresses are set correctly. Assuming you
have some way to write into the dual-port from the other
system, this provides an easy way to dump the beginning of the
section from VMS.

This program also demonstrates how to use pointers in the C
language to locate data contained in dual-port memory.
Although it only references bytes of data, any data type or
structure can be put into dual-port memory.

Note that the data format of DEC floating-point numbers does
not conform to the IEEE 754 standard that many other systems
use. If floating-point values are passed between systems, it
may be necessary to write a routine that converts the format
between the DEC and IEEE floating types.

In addition, some processors use a different byte ordering
scheme than DEC VAX. The adaptor has a byte and word swapping
capability to aid in any conversions that may be needed .
Please refer to the adaptor hardware manual for more
information about byte and word swapping.

7.2 DESTIN.MAR Example Program

This program demonstrates many of the features
"RECEIVER" board usually uses. None of the code
example requires an access across the cable. The
assumes that the dual-port memory is on the local
adaptor board .

This program performs three separate tasks:

1) Access local bus memory
2) Access dual-port memory
3) Send PT and receive PR interrupts

that a
in this
program
Q22-bus

Of these, only the third task requires special setup and
jumpering of the adaptor boards. Task Three is also the only
one likely to cause any interference with the operation of the
remote system . Since it sends a PT interrupt and expects the
remote system to clear it, do not execute this task until you
are writing interrupt code and are ready for preliminary
testing.

The third task also requires that the device driver be loaded
correctly to receive the interrupt .

Example Programs Page 34

7.3 HOST.MAR Example Program

Th!s program 1s by tar the longest and most de~a!led ot the
example programs. It demonstrates the features that a
"TRANSMITTER" board may want to use. It is also the most
likely to interfere with the operation of the other system.

The program performs the following tasks:

1) Perform several different types of remote bus access,
including both direct and Page Mode addressing

2) Access the dual-port memory
3) Send and read back data to both the remote bus and

dual-port memory using the OMA device driver.
4) Send a PR and receive a PT interrupt

7.3.1 Task One: Remote Bus Memory

First, the remote bus memory is mapped into applications
space, and the adaptor board is set up.

The remote bus memory is byte-filled with a pattern of Ox55
hexadecimal. After the whole window is filled, it is read
back to make sure that nothing changed. If the remote system
used this memory to store operational data (such as the vector
table most processors put in low memory), it is likely that
running this section will interfere with the other system's
operation .

The program reports when it finishes the byte test, and gives
an error message if the data did not match what was written .

The next section of Task One uses Page Mode to access the
remote system. It inverts the value located at address
OxlOOO, which once again could interfere with a running system
on the remote side. It attempts to restore the value (inverts
it again) when it is done with the initial test of Page Mode.

After the initial test of Page Mode, the example uses Page
Mode to determine (by accessing at 4K byte boundaries and
testing for errors) how much contiguous memory the remote
system has starting at address zero.

Since it starts the test at address zero, some systems may
report OK of remote memory. This is not an error -- it just
means that there is no memory card at address zero.

The final section of Task One demonstrates use of the
Handshake Mode. Handshake Mode is a special type of access
that allows the Q22-bus system to read and write to devices
that can not be accessed fast enough to prevent a Q22-bus
timeout.

Example Programs Page 35

Most applications will not need to use this mode of operation.
However, since Handshake Mode access is more involved than a
normal access, we felt that an example of its use was in
order.

7.3.2 Task Two: Dual-Port Memory

The only real difference between this task and Task Two of the
DESTIN.MAR example program is in the SETUP procedure. Since
the HOST.MAR example program is for TRANSMITTER systems, the
SETUP procedure is more complex.

There is nothing in Task Two that should interfere with the
operation of a remote system.

7.3.3 Task Three: DMA Device Transfers

Task Three writes over the same section of remote bus memory
that Task One initially filled with the hexadecimal Ox55
pattern. It also attempts to transfer data to a remote dual­
port memory.

If you could safely run the first section of Task One, this
section should not cause any problems. If you do not have a
dual-port memory, or it is located on the local Q22-bus
adaptor board, the program will exit with a fatal device
error. Other than causing the program to exit, this should
not cause any problems.

Task Three requires the use of the device driver, but does not
require the interface library.

7.3.4 Task Four: Interrupt Handling

Since Task Four sends and receives interrupts, it could
interfere with the operation of the remote system. It also
requires that both adaptors be correctly jumpered to
send/receive inte~rupts.

Because it sends a PR interrupt and expects the remote system
to clear it, do not execute this task until you are writing
interrupt code and want to do preliminary testing.

Also, users of the VMEbus adaptor board should pay special
attention to the interrupt handler. This demonstrates how to
set the IACK bits of the Remote Node Command Register, by
assuming that VMEbus IRQ3 is jumpered to External Interrupt 7.

Example Programs Page 36

CHAPTER EIGHT -- Upgrading to Multiple Q22-bus Adaptors

8.0 Introduction

Bit 3 Support Software release 2.2 supports up to four Q22-bus
adaptors. Earlier versions supported a single adaptor. This
version of the Support Software is downwards compatible with
earlier releases. The software now allows the user application
to optionally specify an adaptor Unit in the range from Oto 3
for one of four possible adaptors. If you do not specify an
adaptor Unit, Unit O is assumed. This allows existing
applications using a single adaptor to function correctly
without change or'recompilation.

8.1 Changes to BIT3 MAP

The adaptor Unit is specified during system configuration by
running the BIT3 MAP program. This program has been modified
to support the menu options "AU [unit]" and "ADAPTOR [unit]".
Use the SHOW command to see all menu options available for the
system administrator to configure one or more adaptors. After
configuring the various memory partitions, use either the
ADAPTOR [unit], or shortened form AU [unit] command, to
allocate and map the memory, that was previously specified.

The following example demonstrates how to allocate and map
memory for two adaptors via the CONFIGURE option:

$RUN BIT3 MAP

Bit 3> CSR 762000
Bit 3> SHOW

I/0 range:
Remote RAM range:
Dual-Port range:

Octal
162000 162040

10000000 14000000
4000000 10000000

Local bus memory range: DISABLED.

Hexadecimal
0xE400 0xE420

0x200000 0x300000
0xl00000 0x200000

Recommended MODPARAMS.DAT settings for current configuration:

ADD GLBPAGES:
ADD GBLSECTIONS:

Bit 3> ADAPTOR 0

4122
3

Remote RAM (Adaptor 0) mapping established.
Dual-Port (Adaptor 0) mapping established.

Upgrading to Multiple Q22-bus Adaptors Page 37

Bit 3> CSR 763000
Bit 3> DP X300000 X320000

!1~ ~> M ,~noooo ,n~oooo
Bit 3> SHOW

Octal Hexadecimal
I/0 range: 163000 163040 OxE600 OxE620
Remote RAM range: 16000000 17000000
Dual-Port range: 14000000 14400000

Ox380000 Ox3COOOO
Ox300000 Ox320000

Local bus memory range: DISABLED.

Recommended MODPARAMS.DAT settings for current configuration:

ADD GLBPAGES: 782
ADD GBLSECTIONS: 3

Bit 3> AU 1

Remote RAM (Adaptor 1) mapping established.
Dual-Port (Adaptor 1) mapping established.

Bit 3> EXIT

In this example, the system has to be configured to allocate
4904 global pages and six global sections. The menu
selections took the default settings for the first board, and
specified a 128K byte dual-port window, as well as a 256K byte
remote memory window. See Section 3.5 for a description of
how to adjust system parameters.

8.2 Changes for Q22-bus Device Driver Configuration

During system configuration, the system administrator needs to
SYSGEN as many Bit 3 Device Drivers as there are adaptor
Units. In the start up procedure SYSTARTUP.COM, the following
commands need to be added to support four adaptors. The
example assumes the CSRs and the Vectors are available:

SYSGEN> LOAD BTDRIVER

SYSGEN> CONNECT BTAO /ADAP=UB0/CSR=%0762000/VECTOR=%0524

SYSGEN> CONNECT BTBO /ADAP=UB0/CSR=%0763000/VECTOR=%0530

SYSGEN> CONNECT BTCO /ADAP=UB0/CSR=%0764000/VECTOR=%0534

SYSGEN> CONNECT BTDO /ADAP=UB0/CSR=%0765000/VECTOR=%0540

SYSGEN> EXIT

Upgrading to Multiple Q22-bus Adaptors Page 38

8.3 Changes to BIT3_IFLIB ..

At run time, the application interfaces to the Bit 3 adaptor
board by way of interface library routines in BIT3_IFLIB.OLB.
In the absence of a unit specification, the library routines
default to Unit O. The calling syntax is illustrated below
with examples in Pascal and Macro32 that use adaptor Unit 2.
See Appendix D for a Fortran programming example.

Pascal:

STATUS:= BIT3_MAP_DP(VAR FWA:

Macro32:

VAR LWA
UNT

CALLG ARGS,BIT3_MAP_DP

ARGS: .LONG 3
.ADDRESS
.ADDRESS
.LONG

FWA
LWA
2

POINTER;
POINTER;
INTEGER:= 2);

; Adaptor Unit

Upgrading to Multiple Q22-bus Adaptors Page 39

Appendix A: Glossary

The following terms are used throughout this manual to
describe the components of a system using the Bit 3 Q22- bus
adaptor board.

"0":
Zero .

n 1 n:

One.

Adaptor Node Input/Output:

AST:

Any access to the I/0 registers contained on either the
local or remote adaptor board. These are referred to as
local note I/0 and remote node I/0, respectively.

Asynchronous System Trap. A VMS mechanism that allows a
routine to be called outside the normal linear flow of the
program. The Bit 3 device driver uses unsolicited ASTs to
send a software interrupt to applications when the device
interrupts the Q22-bus system.

Byte:
8 bits .

Cable Interrupt:
An interrupt sent from a device on the remote system
across the interface cable. The PT programmed interrupt
also comes across the interface cable, but is considered
as separate from the other cable interrupts .

Direct Memory Access Transfers (DMA):
The adaptor may be programmed to transfer large blocks of
data across the cable to or from the remote bus, rather
than requiring a processor to move data .

Dual Port Memory :
An optional Dual Port RAM board attached to either the
local or remote adaptor board .

Exchanging Interrupts:
Sending interrupts to and receiving interrupts from the
remote bus. This would also include any processing an
application should do to acknowledge the receipt of an
interrupt.

Appendix A: Glossary Page A-1

Hex:
Hexadecimal notation. A numbering system that uses 16
digits (0123456789ABCDEF) to denote a number. This manual
follows the Standard C notation conventions of preceding
hexadecimal numbers with 'Ox' to indicate hexadecimal
notation.

K byte:
Kilobyte. Two to the tenth power (exactly 1024) bytes.

Local.:
Pertaining to the system accessing either of the adaptor
boards. Implies that it is not necessary to go across the
interface cable to access the resource.

Local Bus Memory:
Any access to a memory board on the Q22-bus which the
other system is allowed access to. The other system would
consider this memory as remote bus memory. Note that this
must be a Q22-bus memory board, not an LMI memory board.
An example of such a memory board would be the DEC MSVll­
PK 256K Q22-bus memory board.

M byte:
Megabyte.
bytes.

Two to the twentieth power (exactly 1,048,576)

MB/sec:
Megabytes per second. Example 1,000,000 bytes per second.

Octal:
Octal notation. A numbering system that uses eight digits
(01234567) to denote a number. This manual follows the
Standard C notation convention of preceding octal numbers
with '0' to indicate octal notation.

Programmed Interrupts:
Interrupts caused by setting a flip-flop in one of the
adaptor node I/0 registers. The two types of programmed
interrupts are the PT (Programmed to Transmitter)
interrupt and the PT (Programmed to Receiver) interrupt.

Receiver:
An adaptor board that is not allowed to transmit messages
across the interface cable. This would prevent it from
accessing the Remote Node I/0, Remote Bus I/0, and Remote
Bus memory, or a remotely-installed Dual Port RAM board.

Remote:
Pertaining to the systems accessing either of the adaptor
boards. Implies that the resource is located at the other
end of the adaptor interface cable.

Appendix A: Glossary Page A-2

Remote Bus Input/Output:
Any access to the I/0 registers of devices that are
physically located on the remote system bus (NOT the
remote adaptor board).

Remote Bus Interrupts:
Interrupts generated by devices on the remote bus that are
passed, via cable interrupt lines, to software residing on
the local system.

Remote Bus Memory:
Any access to the memory space on the remote bus. This
may be a shared memory section, a device buffer, or any
device that responds to a memory access. This does not
include Dual Port RAM located on the remote adaptor board .

Transmitter:
An adaptor board that is allowed to
transfers across the interface cable.
be at least one transmitter in any pair

Word:
16 bits.

Appendix A: Glossary

initiate message
There must always
of adaptor boards.

Page A-3

Appendix B: BIT3 IFLIB Documentation

Appendix B: BIT3 IFLIB Documentation Page A- 4

BIT3 MAP RR

BIT3 MAP RR

Maps the remote bus memory window into the process'
virtual address space, and returns a pointer to the
beginning of this space. The adaptor I/0 registers are
also mapped at this time if they were not previously
mapped.

VMS PASCAL interface:

FUNCTION BIT3 MAP RR(VAR RR ADDRESS: POINTER;
[VAR- RR ENDADDR: POINTER;]
[UNIT :-INTEGER]) : INTEGER; EXTERNAL;

Returns:

type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

RR ADDRESS
type: address
access: write only
mechanism: by reference

The starting address of the remote memory window. The
value returned will be zero if an error occurs in the
procedure call. The address will be in the process' PO
region.

Optional Arguments:

RR ENDADDR
type: address
access: write only
mechanism: by reference

The ending address of the remote memory window. The
value is undefined if an error occurs on the procedure
call.

The size of the remote memory window can be computed by:
RR SIZE= 1 + RR ENDADDR - RR ADDRESS

Appendix B: BIT3 IFLIB Documentation Page A-5

BIT3 MAP RR

UNIT
type:
access:
mechanism:

longword unsigned
read only
by value

The adaptor Unit used to access remote memory . In the
absence of this parameter, this procedure assumes Unit 0.

Description:

This procedure maps the global sections created by the
privileged process BIT3 MAP into an applications virtual
address space. A pointer to the beginning of this address
space is returned by the procedure.

The Remote RAM global section is mapped into the PO
address space . The I/O register section is mapped into
the PO address space .

When an application needs to reference a section of the
remote memory, it is only necessary to index off of the
pointer . The address translation and adaptor access are
transparent to the application.

Condition Values Returned :

SS$ NORMAL

SS$ NOSUCHSEC

SS$ INSFWSL

SS$ VASFULL

SS$ BADPARAM

Successful execution.

The privileged application, BIT3 MAP,
has not successfully completed , or was
not told to create a remote memory
section.

The working set limit of the process
is not large enough to accommodate the
increased virtual address space .
Increase the WSQUOTA for the process .

The virtual address space for the
process is full; no space is available
to map the section.

An invalid adaptor Unit was specified .

Appendix B: BIT3 IFLIB Documentation Page A-6

BIT3 MAP DP

BIT3 MAP DP

Maps the dual-port memory window into the process'
virtual address space, and returns a pointer to the
beginning of this space. The adaptor I/0 registers are
also mapped at this time if they were not previously
mapped.

VMS PASCAL interface:

FUNCTION BIT3 MAP DP(VAR DP ADDRESS: POINTER;
[VAR-DP ENDADDR: POINTER;]
[UNIT :-INTEGER]) : INTEGER; EXTERNAL;

Returns:

type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

DP ADDRESS
type: address
access: write only
mechanism: by reference

The starting address of the dual-port memory window. The
value returned will be zero if an error occurs in the
procedure call. The address will be in the process' PO
region.

Optional Arguments:

DP ENDADDR
type: address
access: write only
mechanism: by reference

The ending address of the dual-port memory window. The
value is undefined if an error occurs on the procedure
call.

The size of the dual-port memory window can be computed
by:

DP SIZE= 1 + DP ENDADDR - DP ADDRESS

Appendix B: BIT3 IFLIB Documentation Page A- 7

BIT3 MAP DP

UNIT
type:
access:

longword unsigned
read onlr

mechanism: by value

The adaptor Unit used to access dual-port memory.
procedure assumes Unit Oby default.

This

Description:

This procedure maps the global sections created by the
privileged process BIT3 MAP into an application's virtual
address space. A pointer to the beginning of this
address space is returned by the procedure.

The dual-port global section is mapped into the PO
address space. The I/0 register section is mapped into
the PO address space.

When an application needs to reference a section of the
dual-port memory, it is only necessary to index off of
the pointer. The address translation and adaptor access
are transparent to the application.

Condition Values Returned:

SS$ NORMAL

SS$ NOSUCHSEC

SS$ INSFWSL

SS$ VASFULL

SSS BADPARAM

Successful execution.

The privileged application, BIT3 MAP,
has not successfully completed, or was
not told to create a dual-port memory
section.

The working set limit of the process
is not large enough to accommodate the
increased virtual address space.
Increase the WSQUOTA for the process.

The virtual address space for the
process is full; no space is available
to map the section.

An invalid adaptor Unit was specified.

Appendix B: BIT3 IFLIB Documentation Page A-8

BIT3 MAP LM

BIT3 MAP LM
Maps the local bus memory window into the process'
virtual address space, and returns a pointer to the
beginning of this space. The adaptor I/0 registers are
also mapped at this time if they were not previously
mapped.

VMS PASCAL interface:

FUNCTION BIT3 MAP LM(VAR LM ADDRESS: POINTER;
[VAR- LM ENDADDR: POINTER;]
[UNIT :- INTEGER]) : INTEGER; EXTERNAL;

Returns:

type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

LM ADDRESS
type: address
access: write only
mechanism: by reference

The starting address of the local bus memory window. The
value returned will be zero if an error occurs in the
procedure call. The address will be in the process' PO
region .

Optional Arguments:

LM ENDADDR
type: address
access: write only
mechanism: by reference

The ending address of the local bus memory window. The
value is undefined if an error occurs in the procedure
call.

The size of the local bus memory window can be determined
by:

LM SIZE= 1 + LM ENDADDR - LM ADDRESS

Appendix B: BIT3 IFLIB Documentation Page A-9

BIT3 MAP LM

UNIT
type: longword unsigned
access: read only
mechanism: by value

The adaptor Unit used to access local memory.
procedure assumes Unit Oby default.

This

Description:

This procedure maps the global sections created by the
privileged process BIT3_MAP into an application's virtual
address space. A pointer to the beginning of this
address space is returned by the procedure.

The local bus memory section is mapped into the PO
address space. The I/0 register section is mapped into
the PO address space.

When an application needs to reference a section of the
local bus memory, it is only necessary to index off of
the pointer. The address translation and adaptor access
are transparent to the application.

Condition Values Returned:

SS$ NORMAL

SS$ NOSUCHSEC

SS$ INSFWSL

SS$ VASFULL

SS$ BADPARAM

Successful execution.

The privileged application, BIT3 MAP,
has not successfully completed, or was
not told to create a local memory
section.

The working set limit of the process
is not large enough to accommodate the
increased virtual address space.
Increase the WSQUOTA for the process.

The virtual address space for the
process is full: no space is available
to map the section.

An invalid adaptor Unit was specified.

Appendix B: BIT3 IFLIB Documentation Page A-10

BIT3 READ REGISTER

BIT3 READ REGISTER

Reads data from one of the local or remote Bit 3 adaptor
registers. All registers are accessed as byte size.

VMS PASCAL interface:

FUNCTION BIT3 READ REGISTER(VAR REGISTER OFFSET: INTEGER;
VAR REGISTER VALUE : INTEGER;
[UNIT : INTEGER]) : INTEGER; EXTERNAL;

Returns:

type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

REGISTER OFFSET
type: longword unsigned
access: read only
mechanism: by reference

Offset from the address of the Local Command Register to
the register to be accessed. Can vary from Oto 15
decimal.

See the adaptor hardware manual for a list of the
specific registers available and an explanation of what
they do.

In order to read from remote bus I/0 registers, use the
BIT3 IN WORD procedure instead.

REGISTER VALUE
type: longword_unsigned
access: write only
mechanism: by reference

The value read from the adaptor register. Only the lower
eight bi ts are from the register. The upper bi ts are
always zero.

Appendix B: BIT3 IFLIB Documentation Page A-11

BIT3 READ REGISTER

Optional Arguments:

UNIT
type: longword unsigned
access: read only
mechanism: by value

Adaptor Unit used for read register operations. This
prodecure assumes Unit Oby default.

Description:

The application uses this procedure to read from the
registers of the Bit 3 adaptor. To access the registers
on the other bus, use the BIT3 IN_WORD procedure.

For a description of available local and remote node
adaptor registers, refer to the adaptor hardware manual.

When a function call returns the value SSS DEVINACT, the
procedure was unable to access the adaptor register. The
most likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the 1/0 address range given
BIT3 MAP.

* If the access was to the remote registers
(REGISTER OFFSET>= 8), the transmitter jumper in the
SYST block (location Cl) is not installed.

Condition Values Returned:

SS$ NORMAL

SS$ OPINCOMPL

SS$ DEVINACT

SS$ BADPARAM

Successful execution.

None of the MAP procedures
(BIT3 MAP RR, BIT3-MAP DP, or
BIT3_MAP_LM) successfully completed.
One of these procedures must complete
before the BIT3 READ REGISTER
procedure can complete.-

The routine could not access the
adaptor hardware.

The value of REGISTER OFFSET was
greater than 15, or an invalid adaptor
Unit was specified.

Appendix B: BIT3 IFLIB Documentation Page A-12

BIT3 WRITE REGISTER

BIT3 WRITE REGISTER

Writes data to one of the local or remote Bit 3 adaptor
registers. All registers are accessed as byte size.

VMS PASCAL interface:

FUNCTION BIT3_WRITE_REGISTER(VAR REGISTER_OFFSET: INTEGER;
VAR REGISTER VALUE: INTEGER;
[UNIT: INTEGER]) : INTEGER; EXTERNAL;

Returns:

Type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

REGISTER OFFSET
type: longword unsigned
access: read only
mechanism: by reference

Offset from the address of the Local Command Register to
the register to be accessed. Can vary from Oto 15
decimal.

See the adaptor hardware manual for a list of the
specific registers available and an explanation of what
they do.

To write to remote bus I/0 registers,
BIT3 OUT BYTE or BIT3 OUT WORD procedures.

REGISTER VALUE
type: longword_unsigned
access: read only
mechanism: by reference

use the

The value to write to the adaptor register. Only the
lower eight bits of the value are actually written to the
register.

Appendix B: BIT3 IFLIB Documentation Page A-13

BIT3 WRITE REGISTER

Optional Arguments:

UNIT
type: longword unsigned
access: read only
mechanism: by value

Adaptor Unit used for write register operations.
procedure assumes Unit Oby default.

This

Description:

The application uses this procedure to write to the
registers of the Bit 3 adaptor. To access the registers
on the other bus, use the BIT3 OUT BYTE or BIT3 OUT WORD
procedures.

For a description of available local and remote node
adaptor registers, refer to the adaptor hardware manual.

When a function call returns the value SSS DEVINACT, the
procedure was unable to access the adaptor register. The
most likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the I/0 address range given
BIT3 MAP.

* If -the access was to the remote registers
(REGISTER OFFSET>= 8), the transmitter jumper in the
SYST block (location Cl) is not installed.

Condition Values Returned:

SS$ NORMAL

SS$ OPINCOMPL

SS$ DEVINACT

SS$ BADPARAM

Successful execution.

None of the mapping
(MAP RR, MAP_DP, or
successfully completed.

procedures
MAP LM) has

The routine could not access the
adaptor hardware.

The value of REGISTER OFFSET was
greater than 15, or an invalid adaptor
Unit was specified.

Appendix B: BIT3 IFLIB Documentation Page A-14

BIT3 IACK READ

BIT3 IACK READ

Causes the
acknowledWe

generated on

remote adaptor to
crcle and returns

the remote bus.

VMS PASCAL interface:

perform an interrupt
the interrurt vector

FUNCTION BIT3 IACK READ(VAR VECTOR: INTEGER;
- [UNIT: INTEGER]) : INTEGER; EXTERNAL;

Returns:

Type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

VECTOR
type: longword unsigned
access: write only
mechanism: by reference

The 16-bit interrupt vector returned from the remote bus .
The precise meaning of this number is system dependent .

Usually, it indicates which of the boards on the system
caused the interrupt. However, it is possible for more
than one board to return identical vectors.

Optional Arguments:

UNIT
type: longword_unsigned
access: read only
mechanism: by value

Adaptor Unit: used to send and receive interrupts. This
procedure assumes Unit Oby default.

Appendix B: BIT3 IFLIB Documentation Page A-15

BIT3 IACK READ

Description:

An application normally uses this procedure only when bus

ar01 tration and control are being driven by the remote
Bit 3 adaptor board. Normally, the processor in a system
handles all interrupt acknowledge cycles in a system­
dependent way.

This function causes the remote adaptor to perform an
interrupt acknowledge cycle, and returns a 16-bi t
interrupt vector. Usually, this is done in response to
receiving an interrupt across the adaptor interface.

This function is equivalent to doing a BIT3 IN WORD call
with the REGISTER OFFSET set to 14. - -

Note that before performing a BIT3 IACK READ to a VMEbus
system (Model 432 or 436 adaptor), it is- necessary to set
the IACK code bi ts (bits O, 1, 2) of the Remote Node
Command Register to the VMEbus interrupt level being
acknowledged. See the interrupt handler section of the
example program provided with the Bit 3 software package
for an example.

The MULTIBUS I adaptor set does not support the
BIT3 IACK READ feature.

When a function call returns the value SS$ DEVINACT, the
procedure was unable to access the adaptor register. The
most likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the I/0 address range given to
BIT3 MAP.

* The transmitter jumper in the SYST block (location Cl)
is not installed.

Condition Values Returned:

SS$ NORMAL

5S$ OPINCOMPL

SS$ DEVINACT

SS$_BADPARAM

Successful execution.

None of the MAP procedures
(BIT3 MAP RR, BIT3-MAP DP, or
BIT3_MAP_LM) successfully -completed.
One of these procedures must complete
before the BIT3 IACK READ procedure
can complete.

The routine could not access the
adaptor hardware.

An invalid adaptor Unit was specified.

Appendix B: BIT3 IFLIB Documentation Page A-16

BIT3 IN WORD

BIT3 IN WORD

Reads data from one of the Bit 3 local or remote node
adaptor registers, or a remote bus I/0 register. The
registers are read as 16-bit quantities.

VMS PASCAL interface:

FUNCTION BIT3_IN_WORD(VAR REGISTER_OFFSET: INTEGER;
VAR REGISTER VALUE: INTEGER;

, [UNIT: INTEGER]) : INTEGER; EXTERNAL;

Returns:

Type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

REGISTER OFFSET
type: longword unsigned
access: read only
mechanism: by reference

Offset from the address of the Local Command Register to
the register to be accessed .

If the value is less than 16, one of the local or remote
node registers on the adaptor set will be accessed. If
the value is greater than 15, a word I/0 will be done on
the remote bus.

Note that the REGISTER OFFSET must be greater than 15 in
order to skip the local and remote adaptor registers.

See the adaptor hardware manual for more information .

REGISTER VALUE
type: longword_unsigned
access: write only
mechanism: by reference

The value read from the register. The upper 16-bits of
the longword value returned are always cleared .

Appendix B: BIT3 IFLIB Documentation Page A-17

BIT3 IN WORD

Optional Arguments:

UNIT
type: longword_unsigned
access: read only
mechanism: by value

Adaptor Unit used for input word operations.
prodecure assumes Unit Oby default.

Description:

This

The application uses this procedure to read from the Bit
3 adaptor or remote bus I/0 registers.

When the value of REGISTER OFFSET is less than 16, the
I/0 reference is to a Bit 3-local or remote node adaptor
register. Otherwise, the remote adaptor causes an I/0
read cycle on the remote bus.

To compute the physical I/0 address of the access,
determine the IO LO setting of the jumpers at location B9
of the Q22-bus adaptor board. Add OxlO to this base
address, plus the REGISTER_OFFSET value.

When a function call returns the value SS$ DEVINACT, the
procedure was unable to access the register. The most
likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the I/0 address range given
BIT3 MAP.

* The IO LO and IO HI settings are the same at location
B9. To access the remote bus I/0 using this function,
set IO HI greater than IO LO. See the adaptor
hardware manual for more information.

* If the access was to the remote registers
(REGISTER OFFSET>= 8), the transmitter jumper in the
SYST block (location Cl) is not installed.

Condition Values Returned:

SS$ NORMAL

SS$ OPINCOMPL

Successful execution.

None of the MAP procedures
(BIT3 MAP RR, BIT3-MAP DP, or
BIT3_MAP_LM) successfully -completed.
One of these procedures must complete
before the BIT3 IN WORD procedure can
complete.

Appendix B: BIT3 IFLIB Documentation Page A-18

8S$ DEVINACT

SS$ BADPARAM

BIT3 IN WORD

The routine could not access the
adaptor hardware.

The value of REGISTER OFFSET was
greater than the size of the I/0
section, or an invalid adaptor Unit
was specified.

Appendix B: BIT3 IFLIB Documentation Page A-19

BIT3 OUT BYTE

BIT3 OUT BYTE

Writes data from one of the local or remote node Bit 3
adaptor registers, or a remote bus I/0 register. The
registers are written as 8-bit quantities.

VMS PASCAL interface:

FUNCTION BIT3 OUT BYTE(VAR REGISTER OFFSET: INTEGER;
VAR REGISTER VALUE: INTEGER;
[UNIT: INTEGER]) : INTEGER; EXTERNAL;

Returns :

Type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

REGISTER OFFSET
type: longword unsigned
access: read only
mechanism: by reference

Offset from the address of the Local Command Register to
the register which should be accessed.

If the value is less than 16, one of the local or remote
node registers on the Bit 3 adaptor will be accessed. If
the value is greater than 15, a byte I/0 operation will
occur on the remote bus.

Note that the REGISTER OFFSET must be greater than 15 in
order to skip the Iocal and remote node adaptor
registers.

See the adaptor hardware manual for more information.

Appendix B: BIT3 IFLIB Documentation Page A-20

REGISTER VALUE

type:
access:

BIT3 OUT BYTE

longword ungian~d
read only

mechanism: by reference

The value to write to the register. Only the lower 8-
bits of the value are actually written to the register.

Optional Arguments:

UNIT
type: longword unsigned
access: read only
mechanism: by value

Adaptor Unit used for output byte operations.
procedure assumes Unit Oby default.

Description:

This

The application uses this procedure to write to the Bit 3
adaptor node I/0 or remote bus I/0 registers.

When the value of REGISTER OFFSET is less than 16, the
I/0 reference is to a Bit 3 adaptor register. Otherwise,
the remote adaptor causes an I/0 write cycle on the
remote bus.

To compute the physical I/0 address of the access,
determine the IO LO setting of the jumpers at location B9
of the Q22-bus adaptor board. Add OxlO to this base
address, plus the REGISTER_OFFSET value.

When a function call returns the value SSS DEVINACT, the
procedure was unable to access the register. The most
likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the I/0 address range given
BIT3 MAP.

* The IO LO and IO HI settings are the same at location
B9. To access the remote bus I/0 using this function,
set IO HI greater than IO LO. See the adaptor
hardware manual for more information.

* If the access was to the remote registers
(REGISTER OFFSET>= 8), the transmitter jumper in the
SYST block (location Cl) is not installed.

Appendix B: BIT3 IFLIB Documentation Page A-21

BIT3 OUT BYTE

Condition Values Returned:

SS$ NORMAL

SS$ OPINCOMPL

SS$ DEVINACT

SS$ BADPARAM

Successful execution.

None of the MAP procedures
(BIT3 MAP RR, BIT3-MAP DP, or
BIT3_MAP_LM) successfully -completed.
One of these procedures must complete
before the BIT3 OUT BYTE procedure can
complete.

The routine could not access the
adaptor hardware.

The value of REGISTER OFFSET was
greater than the size of the I/O
section, or an invalid adaptor Unit
was specified.

Appendix B: BIT3 IFLIB Documentation Page A-22

BIT3 OUT WORD

BIT3 OUT WORD

Writes data to one of the local or remote node Bit 3
adaptor registers, or a remote bus I/0 register. The
registers are written as 16-bit quantities.

VMS PASCAL interface:

FUNCTION BIT3 OUT WORD(VAR REGISTER OFFSET: INTEGER;
VAR REGISTER VALUE: INTEGER;
[UNIT: INTEGER]) : INTEGER; EXTERNAL;

Returns:

Type: cond value
access: write only
mechanism: by value

Longword condition value, returned in RO. See "Condition
Values Returned" below for a list of possible values.

Arguments:

REGISTER OFFSET
type: longword unsigned
access: read only
mechanism: by reference

Offset from the address of the Local Command Register to
the register which should be accessed.

If the value is less than 16, one of the local or remote
node registers on the Bit 3 adaptor set will be accessed.
If the value is greater than 15, a word I / 0 will be done
on the remote bus.

Note that the REGISTER OFFSET must be greater than 15 in
order to skip the local and remote node adaptor
registers.

See the adaptor hardware manual for more information.

REGISTER VALUE
type: longword_unsigned
access: read only
mechanism: by reference

The value written to the register. The upper 16-bits of
the longword value are ignored.

Appendix B: BIT3 IFLIB Documentation Page A-23

BIT3 OUT WORD

Optional Arguments:

UNIT
type: longword unsigned
access: read only
mechanism: by value

Adaptor Unit used for output word operations.
procedure assumes Unit Oby default .

Description:

This

The application uses these procedures to write to the Bit
3 adaptor or remote bus I/0 registers.

When the value of REGISTER OFFSET is less than 16, the
I/0 reference is to a Bit 3 -adaptor register. Otherwise,
the remote adaptor causes an I/0 read cycle on the remote
bus.

To compute the physical I/0 address of the access,
determine the IO LO setting of the jumpers at location B9
of the Q22-bus adaptor board. Add OxlO to this base
address, plus the REGISTER_OFFSET value.

When a function call returns the value SS$ DEVINACT, the
procedure was unable to access the register. The most
likely causes are:
* There is no adaptor board in the system.
* The I/0 space selected via the IO jumpers at location

B9 does not agree with the I/0 address range given
BIT3 MAP.

* The IO LO and IO HI settings are the same at location
B9. To access the remote bus I/0 using this function,
set IO HI greater than IO LO. See the adaptor
hardware manual for more information.

* If the access was to the remote registers
(REGISTER_OFFSET >= 8), the transmitter jumper in the
SYST block (location Cl) is not installed.

Condition Values Returned:

SS$_ NORMAL

SS$ OPINCOMPL

Successful execution.

None of the MAP procedures
(BIT3 MAP RR, BIT3-MAP DP, or
BIT3_MAP_ LM) successfully -completed.
One of these procedures must complete
before the BIT3 OUT WORD procedure can
complete.

Appendix B: BIT3 IFLIB Documentation Page A-24

SS$ DEVINACT

SS$ BADPARAM

BIT3 OUT WORD

The routine could not access the
adaptor hardware.

The value of REGISTER OFFSET was
greater than the size of the I/0
section, or an invalid adaptor Unit
was specified.

Appendix B: BIT3 IFLIB Documentation Page A-25

Appendix C: Example Program Listings

Program listings for:
DumpPort.H Include file for DumpPort.C
DumpPort.C C language example, dumps beginning of dual­

port memory

Appendix C: Program Listings Page A-26

/**
;* OumpPor t.h *

:* Copyright (el 1989, 1990 by
:* Dit ~ eomputer eorporation , Minneapoli ■, Minne ■ota .
;* All rights re ■erved .

: *
;* This software is furnished under a license and may be used and copied
:* only in accordance with the terms of such license and with the
:* inclusion of the a bove copyright notice. This ■ o ftware or any other
:* copies thereof may not be provided or otherwise made available to any
:* o ther person . No title t o and ownership of the software is hereby
:* tran ■ ferred .

:* The information in this ■ o ftware is s ubject to change without notice
;* and should not be construed as a commitment by Bit 3 Computer
; * Corporation.
; *

*
•

;••··
oumpPort.h

Include file for OumpPort . C example program.

* /

#define MAXLINE 512
/ * Maximum number of characters in a buffer*/

#define INCDUMP 16
/ * How much data to dump on one line*/

#define MAXDUMP (8 * INCDUMP)
/* How much data t o dump . Number o f lines* data per line*/

/ *

*/
Definitions used for BIT3_IFLIB procedures

#define BIT3_GK_CMD
#define BIT3 GK CMD EXT
#define BIT3_GK_STATUS

/* Local Status register

#define BIT3 M NOPOWER OxOl
#define BIT3 M PARITY Ox80
#define BIT3 M BERR Ox4 0
#define BIT3 M TIMEOUT Ox0 4

0
1
2

error bits *I

#define BIT3 GK ERROR \
(BIT3_M=NOPOWERiBIT3_M_PARITYjBIT3_M_BERRjBIT3_M_TIMEOUT)

/* Function prototype& f o r BIT3 IFLIB * /

int BIT3 MAP_DP(void ** pO_addr, ...);

int BIT3 _WRITE _REGISTER(int * o ffaet , unaigned * value , int unit);
int BIT3_READ_REGISTER(int * o ffaet, unaigned * value, int unit);

Appendix C: Program Listings Page A-27

1••···············-·· :* DumpPort.c *
:* copyright (c) 1989. 1990 by *
;* Bit 3 Computer corporation, Minneapolis. Minnesota. *
:* All rights reserved. *
; *
;* Thia software is furnished under a license and may be used and copied
;* only in accordance with the terms of such license and with the
;* inclusion of the ab ove copyright notice . This s oftware or any other
;* copies thereof may not be provided or otherwise made available to any
;* other person. No title to and ownership of the s o ftware is hereby
:* transferred.

; *
;* The information in this s oftware is s ubject to change without notice
;* and should not be construed as a commitment by Bit 3 Computer
:* Corporation .

: *

DumpPort.C

*/

#include
#include
#include
#include

#include
#include

#include

A simple examp le program written in VAX C .
Demonstrates the use of the BIT3_IFLIB in order to dump the first
few characters contained in the Dual-Port memory window.

< s·tdio. h>
<stdlib.h>
<ctype.h>
<string.h>

<ssdef .h>
<deacrip.h>

"DumpPort.h"

Global Variables

*************•********••···••1
int AdUnit; / * Adaptor Unit for Dump Port exercise*/

Function prototypes

v oid PrintError(int Errorcode): /* Prints VMS error message */

char * GetStatusMsg(int status); /* Returns string error message */
int Setup(int *status); /* Sets up the Q22bus Adaptor * I
int Errorstatus(int *status); I* Reads the l ocal node statu s */
int ClearStatus(void); I * Clears the local node status */

*
*
*
*
*
*
*
*
*
*
*
*

/***********************••··
Main program

···•·;
main()
{

unaigned char

int ErrorCode:

int Status:

unsigned char
unsigned char

* DualP o rtL ow.*DualPortHigh ;
/ * Start and end addreaa of Dua l-Port memory*/

/* VMS error code*/

/ * Status register error bits*/

*DumpAddr:
*Ptr;

/* Temporary pointer• into Dual-Port*/

Appendix C: Program Listings Page A-28

/* Map the Dual-Port RAM window*/

printf("On which Adaptor do you want to dump Dual Port RAM (0-3)? "):
scanf("%d". &AdUnit):
ErrorCode • BIT3_HAP_DP(&DualPortLow.&DualPortHigh.AdUnit);

if (ErrorCode I• SS$_NORMAL) {
if (ErrorCode -- SS$_NOSUCHSEC)

printf("Please use BIT3 MAP to create a Dual-Port window."):
exit(ErrorCode):

/* set up the link. abort if status error*/

if ((Errorcode • Setup(&Statue)) I• SS$_NORMAL)
exit(Errorcode);

else if (Status I• O) {
printf("\n%■ \n".OetStatusMsg(Status)):

exit(SS$_ABORT);

/* Dump the Dual-Port section as ASCII characters.
printing a period in place of non-printable or
control characters . */

pu tchar (' \n') :
for (DumpAddr • DualPortLow;

((DumpAddr <• DualPortHigh) && (DumpAddr < DualPortLow + MAXDUMP)):
DumpAddr +• INCDUMP) {

for (Ptr • DumpAddr; (Ptr < DumpAddr + INCDUMP) &&
(Ptr < DualPortHigh)): Ptr++)

printf("%02x ",*Ptr):

putchar('\t'):

for (Ptr • DumpAddr; ((Ptr < DumpAddr + INCDUMP) &&
(Ptr < DualPortHigh)) ; Ptr++) {

if (isprint(*Ptr) && (liscntrl(*Ptr)))
putchar(*Ptr) :

else putchar(' , ');

putchar('\n'):

/* Check again for Status errore */

if (ErrorCode • ErrorStatus(&Status)) I• SSS_NORMAL)
exit (Errorcode) ;

else if (Status I• 0)
printf("\n%s\n",GetStatusMsg(Status));
exit(SS$_ABORT);

printf("\n\nAll done.\n");
exit(SS$_NORMAL);

1••···
Setup

Initializes the Adaptor registers. Checks the local status register
for errors .

int Setup(Sts)
int *Sta:
{

int Error;
int Value;

/* Returned: Local Status Register error bits*/

/* Returned: VMS Error Code*/
/* Temporary: Data register read/write area*/

Appendix C: Program Listings Page A-29

Error• BIT3_WRITE_REGISTER(&BIT3_GK_CMD_EXT,&2,AdUnit);
if (Error 1• SS$_NORMAL) return(Error);

/* AWAKEN Adaptor*/

Error• BIT3_READ_REGISTER(&BIT3 _GK_STATUS,&Value,AdUnit); /* Flush status register*/
if (Error ! 2 SS$_NORMAL) return(Error);

Error• BIT3_WRITE_REGISTER(&BIT3_GK_CMD,&0,AdUnit);
if (Error I• SS$_NORMAL) return(Erro r);

/* Clear l ocal command register*/

Error• ClearStatus(); /* Clear status errors*/
if (Error 1• SS$_NORMAL) return(Error);

Error• Errorstatua(&Value);
if (Error•• SS$_NORMAL)

*Sta• Value;

return(Error);

/* Get status*/

1••···
ClearStatua

Clears the error status bits in the Local No de Status Register .

···•·1
int ClearStatus()

int value;
int Error;

Error• BIT3_READ_REGISTER(&BlT3_GK_CMD , &value,AdUnit);
if (Error 1• SS$_NORHAL) return(Error);

value I• OxBO :

return(B1T3 WRlTE_REGISTER(&BlTJ_GK_ CMD.&value,AdUnit));

/** *

int
int
{

ErrorStatua
Reads the Local Node Status Register , returns only the error bits
of that register .

ErrorStatua(Sta)
Sta; I Returned : Local Status Register

int Error; I* Returned: VMS error status code

Error• BlT3_READ_ REGISTER(&BlT3_GK_STATUS,Sts,AdUnit) ;
*Sta&• BIT3 _ GK_ ERROR;

return(Error);

GetStatusMag

error bits

*/

Creates a character string c ontaining a message appropriate to
the status bits set in the procedures parameter.

*I

···•·;
char* GetStatusMsg(Status)
int Statue: /* Local Statue Register error bits*/

static char Buffer[MAXLINE);
char *message• &Buffer[OJ;

Appendix C: Program Listings

/* Message buffer. local to procedure•;
/* Easier to work with a pointer*/

Page A-30

it ((Status & BIT3_GK_ERROR) -- 0)
strcpy(message,"No Adaptor errors.");

else {
sprintf(me ■ sage,"Adaptor status error Ox%02x:",Status);
if {Status & BIT3_M_NOPOWER)

strcat(message,"\n\tCable disconnected or remote power off."):
else {

if (Status & BIT3_M_PARITY)
strcat(message,"\n\tlnterface parity error.");

if (Status & BIT3_M_BERR)
strcat(message,"\n\tRemote bus error."):

if (Status & BIT3_M_TIMEOUT)
strcat(message,"\n\tlnterface timeout."):

return(message);

Appendix C: Program Listings Page A-31

Appendix D: Fortran Programming Example

Appendix D: Fortran Programming Example Page A-32

~n~ f~ll~wi~~ UM~ P~r~~Aft ~r~~r~m d~mo~~trat~~ how to access
(write and read) dual-port memory. This program could easily
be changed to use Remote Bus memory instead.

The main program maps to dual-port memory using the library
procedure BIT3 MAP DP. This program uses adaptor Unit 2.
Appendix B describes the detailed interface for all the Bit 3
library procedures.

If the mapping operation was successful, the program
computes the size of memory (in bytes) mapped. It then calls
the MODIFYDP subroutine, passing the base address and size of
the dual-port memory mapped.

The subroutine uses this input pointer as the base address of
an adj us table size local array. Writing and reading to and
from the local array results in a write/read operation to
the dual-port memory.

Al though this program uses dual-port memory, it could have
easily used Remote Bus memory instead.

PROGRAM TESTDP
EXTERNAL BIT3 MAP DP

INTEGER*4 IPTR_BGN, IPTR_END, ISTAT, ISIZE, IUNIT

IUNIT = 2

ISTAT BIT3_MAP_DP(IPTR_BGN, IPTR_END, %VAL(IUNIT))

ISIZE = (IPTR_END - IPTR_BGN) * 4

IF (ISTAT .NE. SSS NORMAL) THEN
CALL EXIT(ISTAT)

END IF

CALL MODIFYDP (%VAL(IPTR_BGN), ISIZE)
END

SUBROUTINE MODIFYDP (ARRAY,BSIZE)

BYTE ARRAY (BSIZE)
INTEGER* 2 I

DO 1000 I= 1, BSIZE
ARRAY(I) = I

1000 CONTINUE
RETURN
END

Appendix D: Fortran Programming Example Page A-33

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions
Extend the life of your critical industrial,

commercial, and military systems with our

superior service and support.

We buy equipment
Planning to upgrade your current

equipment? Have surplus equipment taking

up shelf space? We'll give it a new home.

Learn more!
Visit us at artisantg.com for more info

on price quotes, drivers, technical

specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?
(217) 352-9330 I sales@artisantg.com I artisantg.com

