
All trademarks, brandnames, and brands appearing herein are the property of their respective owners. 

•  Critical and expedited services
•  In stock / Ready-to-ship

•  We buy your excess, underutilized, and idle equipment
•  Full-service, independent repair center 

DY-4 Compact CHAMP-AV

High Performance Digital Signal Processing (DSP)

In Stock

Used and in Excellent Condition

Open Web Page

https://www.artisantg.com/61739-1

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/61739-1/Curtiss-Wright-Compact-CHAMP-AV?pdf=61739-1
https://www.artisantg.com/61739-1?pdf=61739-1


 

 
 

Manual for the IXA4 
Quad PowerPC Board 

 
 

Version 2.8 
September 2002 

 
 
 
 

Address: Dy 4 Systems, Inc. 
741-G Miller Drive, SE 
Leesburg, VA 20175 

 
Telephone: (703) 779-7800 
FAX:  (703) 779-7805 
Internet: www.dy4.com 

 

s

II
s

D y , 4
Systems

The future of high-integrity,
embedded technology

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Information furnished by Dy 4 Systems, Inc. is believed to be accurate and reliable. However, Dy 4 Systems, Inc. 
assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein; 
nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted 
by implication or otherwise under the patent rights of Dy 4 Systems, Inc. 

Dy 4 Systems, Inc. reserves the right to revise this document and to make changes from time to time in the content 
hereof without obligation of Dy 4 Systems, Inc. to notify any person or persons of such revision or changes. 

No part of this document may be reproduced or copied in any tangible medium, or stored in a retrieval system, or 
transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording, or facsimile, or 
otherwise, without prior written permission from Dy 4 Systems, Inc. 

Trademarks used herein are the property of their respective companies. 

PICMG® and CompactPCI® are registered trademarks of the PCI Industrial Computers Manufacturers Group 

PowerPCTM is a trademark of International Business Machines Corporation. 

VxWorks™, Tornado™, and WindSh™ are trademarks of Wind River Systems, Inc. 

© 2000-2002 Dy 4 Systems, Inc. 

ALL RIGHTS RESERVED     PRINTED IN THE USA 

 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 
 

Customer Support 
 

Technical Support Hotline 
 
If you have any questions about the IXA4, please contact Dy 4 Systems, Inc. 
 
Telephone: (703) 779-7800 
 
FAX:  (703) 779-7805 
 
email:  support@dy4.com 
 
Address: Dy 4 Systems, Inc. 

741-G Miller Drive, SE 
Leesburg, VA  20175 

  

Sales Hotline 
If you desire product pricing and availability, please contact Dy 4 Systems, Inc. 
 
Telephone: (703) 779-7800 
 
FAX:  (703) 779-7805 
 
email:  sales@dy4.com 
 
Address: Dy 4 Systems, Inc. 

741-G Miller Drive, SE 
Leesburg, VA  20175 

   

 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 
 

 
 
 
 

 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

Table of Contents 
 
Chapter 1: Getting Started ....................................................................................................................... 1-1 

1.1 Introduction ...................................................................................................................................... 1-1 
1.2 Assumptions ..................................................................................................................................... 1-1 
1.3 Conventions ...................................................................................................................................... 1-1 
1.4 Product Overview ............................................................................................................................. 1-1 
1.5 Related Documentation..................................................................................................................... 1-3 

Chapter 2: Installation .............................................................................................................................. 2-1 
2.1 Some Cautions .................................................................................................................................. 2-1 
2.2 Board Layout .................................................................................................................................... 2-1 
2.3 Configuring the Board’s DIP Switches............................................................................................. 2-2 
2.4 CompactPCI Interface....................................................................................................................... 2-3 
2.5 Installing PMCs ................................................................................................................................ 2-4 
2.6 Installing the Rear Panel Module...................................................................................................... 2-4 
2.7 Verifying cPCI Backplane Power..................................................................................................... 2-6 
2.8 Board Boot Operation....................................................................................................................... 2-6 
2.9 Power-up Diagnostics ....................................................................................................................... 2-9 
2.10 FLASH Recovery Procedure ........................................................................................................ 2-10 
2.11 JTAG/COP Connections............................................................................................................... 2-14 
2.12 Configuring an Emulator for an IXA4.......................................................................................... 2-14 
2.13 Configuring the VxWorks Boot Parameters ................................................................................. 2-16 
2.14 Installing IXAtools ....................................................................................................................... 2-19 

Chapter 3: Hardware Architecture ......................................................................................................... 3-1 
3.1 Introduction ...................................................................................................................................... 3-1 
3.2 IOPlus ............................................................................................................................................... 3-2 
3.3 SPEs.................................................................................................................................................. 3-2 
3.4 SPE-PCI Bridge ................................................................................................................................ 3-3 
3.5 PCI Local Bus................................................................................................................................... 3-3 
3.6 Board Resource Manager.................................................................................................................. 3-4 
3.7 Board Semaphores ............................................................................................................................ 3-4 
3.8 Global Memory................................................................................................................................. 3-5 
3.9 SPE Local Memory........................................................................................................................... 3-5 
3.10 FLASH Memory............................................................................................................................. 3-6 
3.11 PMC Sites ....................................................................................................................................... 3-6 
3.12 cPCI bus Interface......................................................................................................................... 3-11 

Chapter 4: Memory Maps ........................................................................................................................ 4-1 
4.1 Introduction ...................................................................................................................................... 4-1 
4.2 IOPlus Memory Map ........................................................................................................................ 4-2 
4.3 SPE Memory..................................................................................................................................... 4-3 
4.4 Global Memory................................................................................................................................. 4-5 
4.5 cPCI Memory ................................................................................................................................... 4-6 
4.6 Board Resource Manager Register Map ........................................................................................... 4-7 

Chapter 5: Using the IOPlus..................................................................................................................... 5-1 
5.1 Introduction ...................................................................................................................................... 5-1 
5.2 Command / Response Packet Format ............................................................................................... 5-1 
5.3 Packet Routing and Processor IDs.................................................................................................... 5-2 
5.4 Assignment of IDs to Host Processes ............................................................................................... 5-4 

i 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

5.5 Board Information Structure............................................................................................................. 5-5 
5.6 Linked Command List Overview...................................................................................................... 5-5 
5.7 Linked List Management Protocol.................................................................................................... 5-9 
5.8 Command Option and Status Register Definition........................................................................... 5-12 
5.9 Interrupt Protocol............................................................................................................................ 5-13 
5.10 Semaphore Protocol...................................................................................................................... 5-13 
5.11 FLASH Memory Management Protocol....................................................................................... 5-14 
5.12 IOPlus Command List .................................................................................................................. 5-16 

CMD_GENERATE_INT .................................................................................................................. 5-23 
CMD_LOOPBACK.......................................................................................................................... 5-24 
CMD_MOVE_DATA........................................................................................................................ 5-25 
CMD_READ_DATA ........................................................................................................................ 5-27 
CMD_RESET................................................................................................................................... 5-28 
CMD_SUPPORT_QUERY............................................................................................................... 5-29 
CMD_TOGGLE_LED...................................................................................................................... 5-30 
CMD_USER..................................................................................................................................... 5-31 
CMD_WAIT_INT ............................................................................................................................. 5-32 
CMD_WRITE_DATA....................................................................................................................... 5-34 

Chapter 6: Programming the IOPlus ...................................................................................................... 6-1 
6.1 Introduction ...................................................................................................................................... 6-1 
6.2 VxWorks and the IOPlus .................................................................................................................. 6-1 
6.3 The IOPlus Application Programming Interface .............................................................................. 6-9 

ioplus_calloc.................................................................................................................................... 6-10 
ioplus_check_pci_dma_done ........................................................................................................... 6-11 
ioplus_free ....................................................................................................................................... 6-12 
ioplus_generate_interrupt................................................................................................................ 6-13 
ioplus_malloc................................................................................................................................... 6-14 
ioplus_move_data ............................................................................................................................ 6-15 
ioplus_pci_find_device .................................................................................................................... 6-17 
ioplus_read_data ............................................................................................................................. 6-18 
ioplus_realloc .................................................................................................................................. 6-19 
ioplus_reset...................................................................................................................................... 6-20 
ioplus_toggle_led............................................................................................................................. 6-21 
ioplus_write_data ............................................................................................................................ 6-22 

Chapter 7: Programming the SPEs.......................................................................................................... 7-1 
7.1 SPE Software Development.............................................................................................................. 7-1 
7.2 The Common Boot Code .................................................................................................................. 7-1 
7.3 Performance Monitoring Capabilities............................................................................................. 7-17 
7.4 VxWorks and the SPEs................................................................................................................... 7-18 
7.5 Commanding the IOPlus from a SPE ............................................................................................. 7-18 
7.6 Function Reference......................................................................................................................... 7-22 

getchar ............................................................................................................................................. 7-23 
ixa_cache_enable............................................................................................................................. 7-24 
ixa_cache_disable............................................................................................................................ 7-25 
ixa_cache_flush ............................................................................................................................... 7-26 
ixa_cache_invalidate ....................................................................................................................... 7-27 
ixa_cache_inv_all ............................................................................................................................ 7-28 
ixa_cache_sync ................................................................................................................................ 7-29 
ixa_cache_throttle_read .................................................................................................................. 7-30 
ixa_cache_throttle_write ................................................................................................................. 7-31 
ixa_cmd_close.................................................................................................................................. 7-32 
ixa_cmd_error ................................................................................................................................. 7-33 
ixa_cmd_open .................................................................................................................................. 7-34 
ixa_cmd_set_next,   ixa_cmd_set_opcode,  ixa_cmd_set_option,   ixa_cmd_set_param................. 7-35 

ii 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

ixa_cmd_start................................................................................................................................... 7-37 
ixa_cmd_status................................................................................................................................. 7-38 
ixa_cmd_stop ................................................................................................................................... 7-39 
ixa_cmd_VME_error ....................................................................................................................... 7-40 
ixa_cmd_VME_read,   ixa_cmd_VME_write................................................................................... 7-41 
ixa_cmd_VME _status ..................................................................................................................... 7-43 
ixa_CPCI_close ............................................................................................................................... 7-44 
ixa_CPCI_open................................................................................................................................ 7-45 
ixa_CPCI_read ................................................................................................................................ 7-46 
ixa_CPCI_to_local, ixa_local_to_CPCI.......................................................................................... 7-47 
ixa_CPCI_write ............................................................................................................................... 7-48 
ixa_delay.......................................................................................................................................... 7-49 
ixa_delay_msec, ixa_delay_sec, ixa_delay_usec ............................................................................. 7-50 
ixa_dma_init .................................................................................................................................... 7-51 
ixa_dma_start .................................................................................................................................. 7-52 
ixa_evt_disable ................................................................................................................................ 7-55 
ixa_evt_enable ................................................................................................................................. 7-56 
ixa_evt_get ....................................................................................................................................... 7-57 
ixa_evt_set ....................................................................................................................................... 7-58 
ixa_evt_restore................................................................................................................................. 7-59 
ixa_flash_delete,   ixa_flash_read,   ixa_flash_write....................................................................... 7-60 
ixa_get_cluster_id............................................................................................................................ 7-61 
ixa_get_proc_id ............................................................................................................................... 7-62 
ixa_get_proc_info ............................................................................................................................ 7-63 
ixa_get_proc_rev ............................................................................................................................. 7-64 
ixa_get_proc_type............................................................................................................................ 7-65 
ixa_get_sysproc_id .......................................................................................................................... 7-66 
ixa_init ............................................................................................................................................. 7-67 
ixa_int_ack....................................................................................................................................... 7-68 
ixa_int_disable................................................................................................................................. 7-69 
ixa_int_enable.................................................................................................................................. 7-70 
ixa_int_getvect ................................................................................................................................. 7-71 
ixa_int_lock...................................................................................................................................... 7-72 
ixa_int_setpri ................................................................................................................................... 7-73 
ixa_int_setvect ................................................................................................................................. 7-74 
ixa_int_unlock.................................................................................................................................. 7-75 
ixa_ipi_ack....................................................................................................................................... 7-76 
ixa_ipi_disable................................................................................................................................. 7-77 
ixa_ipi_enable.................................................................................................................................. 7-78 
ixa_ipi_interrupt .............................................................................................................................. 7-79 
ixa_led_blink.................................................................................................................................... 7-80 
ixa_led_blink2.................................................................................................................................. 7-81 
ixa_led_off ....................................................................................................................................... 7-82 
ixa_led_on........................................................................................................................................ 7-83 
ixa_mmu_get_page_size .................................................................................................................. 7-84 
ixa_mmu_map_addr ........................................................................................................................ 7-85 
ixa_mmu_map_block ....................................................................................................................... 7-86 
ixa_mmu_map_page, ixa_mmu_map_pages.................................................................................... 7-87 
ixa_mmu_peek_l, ixa_mmu_poke_l ................................................................................................. 7-88 
ixa_mmu_peek_p, ixa_mmu_poke_p................................................................................................ 7-89 
ixa_mmu_remap_block .................................................................................................................... 7-90 
ixa_mmu_remap_page, ixa_mmu_remap_pages ............................................................................. 7-91 
ixa_mmu_set_block_attr .................................................................................................................. 7-92 
ixa_mmu_set_page_attr ................................................................................................................... 7-93 
ixa_mmu_unmap_block ................................................................................................................... 7-94 
ixa_mmu_unmap_page, ixa_mmu_unmap_pages............................................................................ 7-95 

iii 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

ixa_PCI_config_read, ixa_PCI_config_write.................................................................................. 7-96 
ixa_PCI_io_read, ixa_PCI_io_write ............................................................................................... 7-97 
ixa_pci_to_local, ixa_local_to_pci .................................................................................................. 7-98 
ixa_PCI_read,   ixa_PCI_write ....................................................................................................... 7-99 
ixa_pm_init .................................................................................................................................... 7-100 
ixa_pm_reset.................................................................................................................................. 7-102 
ixa_pm_term .................................................................................................................................. 7-103 
ixa_pm_display_stats..................................................................................................................... 7-104 
ixa_pm_display_trace .................................................................................................................... 7-105 
ixa_pm_start .................................................................................................................................. 7-106 
ixa_pm_stop ................................................................................................................................... 7-107 
ixa_proc_is_iop ............................................................................................................................. 7-108 
ixa_proc_is_750............................................................................................................................. 7-109 
ixa_proc_is_7400........................................................................................................................... 7-110 
ixa_proc_is_7410........................................................................................................................... 7-111 
ixa_sem_release............................................................................................................................. 7-112 
ixa_sem_request............................................................................................................................. 7-113 
ixa_tas_cluster ............................................................................................................................... 7-115 
ixa_tas_local.................................................................................................................................. 7-116 
ixa_temp_read ............................................................................................................................... 7-117 
ixa_timer_cancel............................................................................................................................ 7-118 
ixa_timer_create ............................................................................................................................ 7-119 
ixa_timer_get_ticks_per_second.................................................................................................... 7-120 
ixa_timer_get_TBL ........................................................................................................................ 7-121 
ixa_timer_get_time ........................................................................................................................ 7-122 
ixa_timer_get_usec ........................................................................................................................ 7-123 
ixa_timer_get_timebase ................................................................................................................. 7-124 
ixa_timer_init................................................................................................................................. 7-125 
ixa_timer_msec_to_ticks, ixa_timer_usec_to_ticks, ixa_timer_sec_to_ticks................................. 7-126 
ixa_timer_set.................................................................................................................................. 7-127 
ixa_timern_enable, ixa_timern_disable......................................................................................... 7-128 
ixa_timern_get_ticks_per_second, ixa_timern_get_timebase........................................................ 7-129 
ixa_timern_msec_to_ticks, ixa_timern_sec_to_ticks, ixa_timern_usec_to_ticks........................... 7-130 
ixa_timern_read............................................................................................................................. 7-131 
ixa_timern_set................................................................................................................................ 7-132 
ixa_timern_start, ixa_timern_stop ................................................................................................. 7-133 
ixa_timern_trap ............................................................................................................................. 7-134 
ixa_VME_close,  ixa_VME_open .................................................................................................. 7-135 
ixa_VME_dma ............................................................................................................................... 7-137 
ixa_VME_dma_start ...................................................................................................................... 7-138 
ixa_VME_dma_status .................................................................................................................... 7-139 
ixa_VME_int_clear ........................................................................................................................ 7-140 
ixa_VME_int_disable,   ixa_VME_int_enable ............................................................................... 7-141 
ixa_VME_int_gen .......................................................................................................................... 7-143 
ixa_VME_read,   ixa_VME_write .................................................................................................. 7-144 
ixa_VME_rmw ............................................................................................................................... 7-145 
printf .............................................................................................................................................. 7-146 
putchar........................................................................................................................................... 7-147 
puts................................................................................................................................................. 7-148 
sprintf ............................................................................................................................................. 7-149 

Chapter 8: Programming the FLASH Memory...................................................................................... 8-1 
8.1 Introduction ...................................................................................................................................... 8-1 
8.2 The IXA Board Configuration Utility............................................................................................... 8-1 
8.3 VME Configuration .......................................................................................................................... 8-5 
8.4 PCI Configuration............................................................................................................................. 8-5 

iv 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

8.5 SPE Configuration ............................................................................................................................ 8-7 
8.6 IOPlus Configuration........................................................................................................................ 8-9 
8.7 Firmware Configuration ................................................................................................................. 8-13 
8.8 FLASH Page................................................................................................................................... 8-14 
8.9 Health and Status Page ................................................................................................................... 8-15 
8.10 Burning FLASH using the Ethernet Burn Utility ......................................................................... 8-16 
8.11 The IXA FLASH Burn Utility ...................................................................................................... 8-20 
8.12 FLASH Validation........................................................................................................................ 8-28 

Chapter 9: Host Software ......................................................................................................................... 9-1 
9.1 Introduction ...................................................................................................................................... 9-1 
9.2 Porting HostAPI................................................................................................................................ 9-2 
9.3 HostAPI Functions............................................................................................................................ 9-9 

host_board_close ............................................................................................................................. 9-11 
host_board_open.............................................................................................................................. 9-12 
host_board_reset.............................................................................................................................. 9-13 
host_board_status ............................................................................................................................ 9-14 
host_close_flash_params................................................................................................................. 9-15 
host_free........................................................................................................................................... 9-16 
host_get_board_type........................................................................................................................ 9-17 
host_load_flash................................................................................................................................ 9-18 
host_load_program.......................................................................................................................... 9-20 
host_malloc...................................................................................................................................... 9-21 
host_map_resource .......................................................................................................................... 9-22 
host_memory_read........................................................................................................................... 9-24 
host_memory_write.......................................................................................................................... 9-25 
host_open_flash_params ................................................................................................................. 9-26 
host_read_board_info...................................................................................................................... 9-27 
host_read_error_log ........................................................................................................................ 9-28 
host_set_start_address..................................................................................................................... 9-29 
host_unmap_resource ...................................................................................................................... 9-30 
host_vme_read ................................................................................................................................. 9-31 
host_vme_write ................................................................................................................................ 9-32 
host_write_config_param ................................................................................................................ 9-33 

v 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

List of Figures 
 
Figure 1.1 - Block diagram of the IXA4...................................................................................................... 1-2 
Figure 2.1 - IXA4 board layout, top and front panel views......................................................................... 2-2 
Figure 2.2 – Rear Panel Module layout ....................................................................................................... 2-5 
Figure 3.1 - IXA4 Board Architecture......................................................................................................... 3-1 
Figure 4.1 - Interrupt Mask Register Format for CPE (IOPlus) processor ................................................ 4-10 
Figure 4.2 - Interrupt Mask Register 1 Format for SPE processors........................................................... 4-10 
Figure 4.3 - Interrupt Mask Register 2 Format for SPE processors........................................................... 4-11 
Figure 4.4 - Processor Interrupt Generation Registers............................................................................... 4-13 
Figure 4.5 - SPE AB Status Registers ....................................................................................................... 4-16 
Figure 4.6 - SPE CD Status Registers ....................................................................................................... 4-17 
Figure 4.7 - IOPlus Interrupt Status Registers........................................................................................... 4-18 
Figure 4.8 COMPACT PCI Geographical Address Register Format ........................................................ 4-19 
Figure 4.9 Miscellaneous Register Format ................................................................................................ 4-19 
Figure 5.1 - Command Packet ..................................................................................................................... 5-1 
Figure 5.2 - Source and Destination Command Packet Fields .................................................................... 5-4 
Figure 5.3 - Host Process ID Assignment with Two Host Processes Already Attached ............................. 5-5 
Figure 5.4 - All List Address Table Entries in Global Memory .................................................................. 5-7 
Figure 5.5 - List Address Table Entry Relocated to Local Memory............................................................ 5-8 
Figure 8.1 - Initial Screen (before connecting to board).............................................................................. 8-2 
Figure 8.2 – “Connecting” message window .............................................................................................. 8-2 
Figure 8.3 – Connection Timeout Dialog Box ............................................................................................ 8-3 
Figure 8.4 – Old Burn Task......................................................................................................................... 8-3 
Figure 8.5 – Product Information Page (after successful connection) ......................................................... 8-4 
Figure 8.7 - PCI Configuration Page ........................................................................................................... 8-6 
Figure 8.8 - SPE Configuration Page .......................................................................................................... 8-7 
Figure 8.9 - IOPlus Configuration Page .................................................................................................... 8-10 
Figure 8.10 - Firmware Configuration Page.............................................................................................. 8-13 
Figure 8.11 - FLASH Page........................................................................................................................ 8-15 
Figure 8.12 – Health and Status Page........................................................................................................ 8-16 
Figure 8.13 – Deleting Existing SPE Programs......................................................................................... 8-17 
Figure 8.14 – Changing Startup Code ....................................................................................................... 8-17 
Figure 8.15 – Changing VxWorks Boot ROM.......................................................................................... 8-17 
Figure 8.16 – Changing VxWorks Boot ROM.......................................................................................... 8-18 
Figure 8.17 – Invalid Checksum................................................................................................................ 8-18 
Figure 8.18 – Burning Program................................................................................................................. 8-18 
Figure 8.19 – Screen During Burn Operation............................................................................................ 8-19 
Figure 8.20 – Error Writing to FLASH ..................................................................................................... 8-19 
Figure 8.21 – Burn Completed with Errors ............................................................................................... 8-20 
Figure 8.22 – Burn Completed Successfully ............................................................................................. 8-20 
Figure 9.1 - HostAPI Relationship Diagram ............................................................................................... 9-1 
Figure A.1 - Command Packet ................................................................................................................... A-1 
Figure A.2 - Source and Destination Command Packet Fields .................................................................. A-4 
Figure A.3 - Host Process ID Assignment with Two Host Processes Already Attached ........................... A-5 
Figure A.4 - All List Address Table Entries in Global Memory ................................................................ A-7 
Figure A.5 - List Address Table Entry Relocated to Local Memory.......................................................... A-8 
 

vi 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

List of Tables 
 
Table 2.1 – DIP Switch definition ............................................................................................................... 2-3 
Table 2.2 – Rear Panel Module Jumper Definition ..................................................................................... 2-5 
Table 2.4 - IXA4 Power Supply Tolerances................................................................................................ 2-6 
Table 2.5 - Front panel LED diagnostic codes .......................................................................................... 2-10 
Table 2.6 - Serial Port Connector Definition............................................................................................. 2-17 
Table 2.7 - Multi-board IP Mapping Example .......................................................................................... 2-19 
Table 3.1 - PMC to cPCI connector mapping.............................................................................................. 3-8 
Table 3.2 - PMC Max. Current loads ........................................................................................................ 3-10 
Table 3.3 – J1 Connector Definitions ........................................................................................................ 3-11 
Table 3.4 – J2 Connector Definitions ........................................................................................................ 3-12 
Table 3.5 – J3 Connector Definitions ........................................................................................................ 3-13 
Table 3.6 – J4 Connector Definitions ........................................................................................................ 3-14 
Table 3.7 – J5 Connector Definitions ........................................................................................................ 3-15 
Table 3.8 – J3 Connector Definitions for Revisions A and B ................................................................... 3-16 
Table 3.9 – J5 Connector Definitions for Revisions A and B ................................................................... 3-17 
Table 4.1 - IOPlus-Local and PCI Memory Map ........................................................................................ 4-2 
Table 4.2 - SPE A/B Cluster Memory Map................................................................................................. 4-3 
Table 4.3 - SPE C/D Cluster Memory Map................................................................................................. 4-4 
Table 4.4 - PCI Memory Map ..................................................................................................................... 4-5 
Table 4.5 - Global Memory Map................................................................................................................. 4-6 
Table 4.6 – cPCI Inbound Memory Map..................................................................................................... 4-6 
Table 4.7 – cPCI Outbound Memory Map .................................................................................................. 4-7 
Table 4.8 - Board Resource Manager Memory Map for Cluster AB .......................................................... 4-8 
Table 4.9 - Board Resource Manager Memory Map for Cluster CD .......................................................... 4-8 
Table 4.10 - Board Resource Manager Memory Map for the IOPlus.......................................................... 4-9 
Table 4.11 - Bit Field Definitions for the Interrupt Mask Registers.......................................................... 4-11 
Table 4.12 - Relationship of General Interrupt Status Register Fields to Other Status Registers.............. 4-15 
Table 5.1 - Assignment of Processor IDs .................................................................................................... 5-3 
Table 5.2 - Command Option Register...................................................................................................... 5-12 
Table 5.3 - Status Register......................................................................................................................... 5-13 
Table 5.4 - Semaphore Assignments ......................................................................................................... 5-14 
Table 5.5 - FLASH Memory Data Types .................................................................................................. 5-15 
Table 5.6 - Example FLASH Directory..................................................................................................... 5-16 
Table 5.7 - Memory Section IDs ............................................................................................................... 5-17 
Table 5.8 - Format of Version Information Table (Table ID 24) .............................................................. 5-18 
Table 5.9 - Format of Status Information Table (Table ID 25) ................................................................. 5-18 
Table 5.10 - Format of Board Information Table (Table ID 26) ............................................................... 5-19 
Table 6.1 - IOPlus VxWorks BSP Features................................................................................................. 6-2 
Table 6.2 - IOPlus VxWorks BSP Functions .............................................................................................. 6-3 
Table 6.3 - RAM Map for VxWorks ........................................................................................................... 6-4 
Table 6.4 - Default BAT Configuration ...................................................................................................... 6-5 
Table 6.5 - Default PTE Configuration ....................................................................................................... 6-6 
Table 6.6 - VxWorks BSP Device Drivers.................................................................................................. 6-6 
Table 6.7 - Interrupt Vectors and Priorities ................................................................................................. 6-7 
Table 7.1 - SPE Local Map with no CBC ................................................................................................... 7-2 
Table 7.2 - SPE Local memory with CBC .................................................................................................. 7-2 
Table 7.3 - SPE VxWorks BSP Features................................................................................................... 7-18 
Table 7.4 - SPE VxWorks BSP Functions................................................................................................. 7-19 
Table 8.1 - ldflash Commands................................................................................................................... 8-22 
Table 8.2 - FLASH Sections that can be Modified by Users..................................................................... 8-23 
Table 8.3 - FLASH Sections that can be Modified by Users at the Direction of Dy 4 Systems................ 8-24 

vii 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Table of Contents 
 

Table 8.4 - FLASH Sections not Modifiable by Users.............................................................................. 8-24 
Table 8.5 - FLASH Configuration Parameters .......................................................................................... 8-25 
Table A.1 - Assignment of Processor IDs .................................................................................................. A-3 
Table A.2 - Command Option Register.................................................................................................... A-12 
Table A.3 - Status Register....................................................................................................................... A-13 
Table A.5 - FLASH Memory Data Types ................................................................................................ A-14 
Table A.6 - Example FLASH Directory................................................................................................... A-15 
 
 
 
  
 

viii 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 1:  Getting Started  
 

1.1 Introduction 
This manual describes the IXA4 and its operation. It is organized into three sections.  
The first section contains an introduction to the product, installation instructions, and 
some general operational information to enable you to get the board up and running.  
The next section provides a detailed reference on the hardware architecture. The last 
section provides a detailed reference for the IXA4 software.     

 

1.2 Assumptions 
We wrote this manual assuming that users would have a basic level of expertise.  That 
expertise includes: 

  a solid foundation in C programming 
  an understanding of the basics of the cPCI and PCI bus 
  an understanding of the basics of Digital Signal Processing 

 

1.3 Conventions 
This manual uses several conventions. They are: 

  An asterisk following the signal name (e.g. BERR*) indicates active low.  
  0x00000 indicates hexadecimal numbers and offset addressing. 
  Software listings use a courier font. 

  
 
 A gray highlighted box emphasizes an important point.  
 

  
 
 ! An exclamation point and a gray highlighted box express caution. 
 

 

1.4 Product Overview 
The IXA4 is a 6U cPCI board featuring four Motorola PowerPC 7400 or 7410 
processors, a PowerPC referred to as the IOPlus, and two PMC sites.  Figure 1.1 
depicts the IXA4 architecture. 
 

1-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 1: Getting Started 
 

L2 Cache

MPC7400, or
MPC7410
PowerPC

L2 Cache

MPC7400, or
MPC7410
PowerPC

SPE-PCI
Bridge

Local
SDRAM

PMC Site #2

PCI - PCI
Bridge

10/100 Mbps
Ethernet

L2 Cache

MPC7400, or
MPC7410
PowerPC

L2 Cache

MPC7400, or
MPC7410
PowerPC

SPE-PCI
Bridge

Local
SDRAM

PMC Site #1

PCI - PCI
Bridge

10/100 Mbps
Ethernet

Board Resource
Manager

Global
FLASH

Global
SDRAM

MPC 8240
IOPlus

PCI - PCI
Bridge

10/100 Mbps
EthernetH.110

Compact PCI Backplane

32 bit

33 MHz

32 bit

33 MHz

32 bit         33 MHz

J3 J5 J4 J1/J2 J5 J3 / J5 J3

UART

RS-232

To J3 &
J5

Bus 0Bus 1 Bus 2

Bus 3

 

Figure 1.1 - Block diagram of the IXA4 
 

The IXA4 board can be functionally divided into three sections, two Signal 
Processing Element (SPE) clusters and one Core Processing Element (CPE).  The 
SPE clusters are the two “sides” of the design and each consist of two PowerPC 
processors, L2 cache, a SPE - PCI bridge, local SDRAM and a PMC site.  The CPE 
consists of:  the IOPlus processor, global SDRAM, global FLASH, three PCI - PCI 
bridges, Dual UART (DUART) and the Board Resource Manager logic.  As shown 
on the block diagram, the board resources are accessible to each SPE over a Port X 
interface from the SPE - PCI bridge.  This means that the SPE processors can access 
particular board resources without tying up bandwidth on the PCI buses.  Each SPE is 
connected to the CPE through an PCI-PCI bridge.  The PCI-PCI bridges provide PCI 
bus isolation so that simultaneous data movement can occur over the PCI bus in each 
element. 
 
The IOPlus is responsible for board initialization, Power On Self Test, cPCI bus and 
board resource management functions.  It can also be used for applications as long as 
the developer follows Dy 4 Systems’ guidelines. 
 
Both local and global memory is available on the IXA4 board.  The local memory can 
be populated with up to 256 MB of SDRAM (100 MHz) per SPE.  Global memory is 

1-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 1: Getting Started 
 

accessible by the IOPlus and the four PowerPC processors, and is populated with 
64MB of SDRAM (100 MHz).  
 
The internal 33MHz, 32-bit PCI buses allow for multiple, simultaneous high-speed 
transactions. Because of the segmented architecture of the PCI buses, both PMCs can 
be transferring data to local memory, while the cPCI bus accesses global memory 
simultaneously.   
 
The IXA4 supports standard development environments such as VxWorks, and is 
further enhanced by Dy 4 Systems’ IXAtools software package. This package 
contains VxWorks board support packages (BSPs) for both the IOPlus processor and 
the SPE processors (7400, or 7410).  IXAtools further provides a board support 
library of “C” functions that support: cache control, memory mapping, timer control, 
DMA control, interrupt services, LED control, PCI support, and IOPlus command 
control.  It also provides a standard I/O library that contains some basic standard I/O 
calls, such as printf, sprintf, and putchar.  Should the FLASH on the IXA4 board 
become corrupted, IXAtools includes the files necessary to reburn the FLASH to 
bring the board back to working condition.  Additionally, a host resident C library is 
included in IXAtools that allows a host processor to load, start, and reset the SPEs 
across the cPCI bus. The library of C functions is supplied in source code format so 
the developer can compile and link these functions into a host application. Host 
support is offered for a number of processor and operating system configurations. 
Contact Dy 4 Systems for a current list. 
 
For those who wish to operate in a well-defined development environment, a 
VxWorks kernel may be run on each processor.  Further, all processors are 
individually addressable over the Ethernet.  This provides a flexible multiprocessing 
development and debug environment through the Tornado interface. Two serial 
interfaces into the board are also provided. 
 
The user of the IXA4 board may also choose to write application code, foregoing the 
use of any operating system or kernel.  In this scenario, the user may use the JTAG 
port for code download, execution and debug. In another scenario, a user may run a 
VxWorks kernel on the IOPlus while using the SPE processors without a real-time 
kernel. 

 

1.5 Related Documentation 
The following publications provide additional reference information: 

 
  Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards: 

PMC; IEEE P1386.1-2001 

  Draft Standard for a Common Mezzanine Card Family: CMC; IEEE P1386-2001 

 

1-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 1: Getting Started 
 

  Draft Processor PMC Standard (VITA 32-199x) Draft 0.5, May 9, 2002. 

  PCI Local Bus Specification Revision 2.3, 29 March 2002  

  PowerPCTM Microprocessor Family: The Programming Environments for 32-Bit 
Microprocessors, Motorola 

  CompactPCI Specification, PICMG 2.0 R3.0, October 1, 1999 

  CompactPCI Hot Swap Specification, PICMG 2.1 R2.0, January 17, 2001. 

  ComapactPCI Computer Telephony Specification, PICMG 2.5 R1.0, April 3, 
1998 

 
 
 

1-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 2:  Installation 
 

2.1 Some Cautions 
The IXA4 was designed to provide a long reliable period of service.  However, like most 
sophisticated electronic devices certain precautions must be taken when installing or 
handling the product.  The following warnings should be heeded at all times.  

  
 ! WARNING:  The board components are static sensitive. Use care and 

static control when handling the circuit board. 
 

 
 
 ! WARNING: Do not short the JTAG / COP pins together. 
 

 
 
 ! WARNING: Both PMC sites only support 5V signaling bus levels.  Do 

not install a 3.3 V PMC on a 5 V site.  Installing incompatible PMCs can 
permanently damage the IXA baseboard and/or the PMC. 

 
 
 

2.2 Board Layout 
Figure 2.1 illustrates the physical layout of the IXA4 board as viewed from the top of the 
board and the front.  This diagram is to be used with the rest of this chapter to locate the 
board switches, and status LEDs.  
 
The Product Information Block contains part number, Assembly/Revision number and 
serial number information.  The second line is the Assembly/Revision number.  The first 
alpha-numeric character is the revision on the baseboard.  Different revisions of the 
baseboard have different cPCI pinouts on J3 and J5 and different PMC to backplane pin 
mappings.  Tables in the relevant sections later in this document contain the different 
mappings.  Locate the Assembly/Revision number and use this to locate the proper table 
for you revision on IXA4 board. 

 

2-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 
Figure 2.1 - IXA4 board layout, top and front panel views 

 
 

2.3 Configuring the Board’s DIP Switches 
Table 2.1 defines the DIP switches (SW1 – SW12) on the IXA4 that reside at top middle 
of the board.  These are the only switches on the board. The “On” and “Off” positions are 
indicated in silkscreen on the board, near SW1.  Switches are available for setting the 
various board operational modes.  Switches identified as Dy 4 Systems reserved must be 
left in the default setting and only changed under direction of Dy 4 Systems customer 
support. 

 

2-2 

J5 J4 J3 J2 J1

~•.1 J12 II JU IDI J22 II m 1

~~I '" I 0 I w I DDD
"''' aD PCI -PCI I;l D~DD

=bd ."dg, 8 D~ ~....-----------

:~ ~bd bd D~ [] 10Plu, []

~ 0 D~ PCI.-PCI IDJ IDJ
m 0 U ."dg, IDJ IDJ A

Product 0PE ~ C!::±j
Infonnauon D

JTJ ~ Block

~========:::~ ....~'~".,----.J m ~

C PMC Site #1 access) i O~ C PMC Site #2 access ) gg 0
~ 0

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

Table 2.1 – DIP Switch definition 

Switch On Off Default 
SW1 Reserved Off 
SW2 Reserved On 
SW3 Reserved On 
SW4 Reserved On 
SW5 Standard 

Startup/Runtime 
code will execute 

Minimal boot recovery code will execute, 
allowing FLASH to be re-burned or reconfigured1 

On 

SW62 Reserved but must be left in ON position for board to work properly 
in recovery mode. 

On 

SW7 Load common boot 
code and SPE 
applications 

Inhibit loading of common boot code and SPE 
applications on reset 

On 

SW8 Enable VxWorks 
Boot ROM3 

Do not load VxWorks Boot ROM program On 

SW 9 & 
SW10 

These two switches are used to select which SPE the JTAG header corresponds 
to.  They have the following meaning: 
 

SW9 SW10 SPE 
Off  Off   D 
Off  On   C 
On  Off   B 
On  On   A 

 
 

SW11 Reserved. Must be left in Off position Off 
SW12 Reserved Off 

 

 

2.4 CompactPCI Interface 
The IXA4 utilizes an Intel 21554 PCI-PCI bridge. This bridge is called non-transparent, 
meaning that the addresses on one side are completely independent of addresses on the 
other. All communication between the two sides makes use of address translation 
registers which take addresses from one domain and map them to addresses in the other. 
This addresses scheme allows the address map on each side of the bridge to be set up 
independently of the other. 
 

                                                 
1 Turning off SW5 boots the board into a minimal recovery state, so that firmware can be re-

burned, or FLASH parameters can be re-configured.  This is used when FLASH firmware or 
configuration parameters have become corrupted. 

2 This switch has no meaning unless SW5 is also OFF. 
3 This switch has no effect unless VxWorks is loaded into FLASH memory and enabled using 

FLASH configuration parameters. 

2-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

The IXA4 Board functions as a Compact PCI Peripheral Slot board only, it cannot be 
used in the System Slot.  Among other things this means that it does not generate the 
cPCI locking and arbitration, and only transmits interrupts on the backplane. 
 
It is the responsibility of the system controller (the CPU board plugged into the system 
slot) to configure the CompactPCI addresses. It will determine the memory map for each 
board in the system and assign a base address for each IXA4 board in the system. The 
startup code on the IXA4 board will set up its internal memory map and will program the 
internal (on board) side of the address translation registers so that when a CompactPCI 
address destined for the IXA4 is seen it goes to the appropriate on board address. Chapter 
4 contains more information on configuring the internal side of the address translation 
registers. 

2.5 Installing PMCs 
PCI Mezzanine Cards (PMCs) should be installed according to the directions provided by 
the PMC vendor. Before installation, however, you must remove the filler panel that is 
attached to the IXA4 by Dy 4 Systems before shipment.   

2.6 Installing the Rear Panel Module 
If you have purchased the Rear Panel module, IXA-RP, you must configure the module’s  
jumpers prior to use.  Figure 2.2 depicts the location of jumpers and connectors on the 
IXA-RP.  The connectors are designed to plug into the backside of the cPCI backplane, 
and must be plugged into the same slot as the IXA4 board.  The Rear Panel module 
provides three Ethernet connections and two serial port connections.   
 
The IXA-RP has jumper blocks that are used for configuring the serial ports. Table 2.2 
provides the jumper definitions. Connecting a console to the serial port and interacting 
with the IOPlus VxWorks boot loader software on the IXA4 configures the Ethernet 
ports.  Ethernet port configuration and the serial port pin out are documented later in this 
chapter. 
 

 
 

2-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 
Figure 2.2 – Rear Panel Module layout 

 

Table 2.2 – Rear Panel Module Jumper Definition 

Mode Settings 
Sport A set for DTE 

(default setting) 
Shunt JM16 
Shunt JM17 
Shunt JM20 
Shunt JM21 
Shunt JM24 
Shunt JM25 
Shunt JM28 
Shunt JM29 

Sport A set for DCE Shunt JM16 to JM17 
Shunt JM20 to JM21 
Shunt JM24 to JM25  
Shunt JM28 to JM29 

Sport B set for DTE 
(default setting) 

Shunt JM18 
Shunt JM19 
Shunt JM22 
Shunt JM23 
Shunt JM26 
Shunt JM27 
Shunt JM30 
Shunt JM31 

Sport B set for DCE Shunt JM18 to JM19 
Shunt JM22 to JM23 
Shunt JM26 to JM27 
Shunt JM30 to JM31 

 

2-5 

'8 ""
'" '":::8 '":::8 '"•

"' "" .,
111111111111 1111111 1111111111111111111

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

2.7 Verifying cPCI Backplane Power 
The IXA4 uses 5 V and 3.3 V power sources from the cPCI bus backplane.  +12 V and –
12 V from the backplane go directly to the PMCs and are not used on the IXA4 board. 
The voltage tolerances and power requirements for each supply are shown in Table 2.4.  
Missing or below level voltages will cause the power detection circuitry on the board to 
hold the board in a powered down state.   

 
Table 2.4 - IXA4 Power Supply Tolerances 

Power Supply Required Tolerance Maximum Ripple (pk – pk) 
+5 V 4.875 V to 5.25 V 50 mV 

+3.3 V 3.20 V to 3.45 V 50 mV 
+12 V 11.4 V to 12.6 V 240 mV 
-12 V -11.4 V to -12.6 V 240 mV 
V(I/O) Same as 5 V or 3.3 V tolerance 50 mV 

 
 

2.8 Board Boot Operation 
Boot Sequence 

After power is applied or the front panel reset switch is depressed, the board goes through 
its boot sequence.  The specifics of the boot sequence are determined by jumper settings 
and FLASH parameters.  The general case is described here: 
 

1. All processors are reset.  The CPE starts execution from FLASH memory, and the 
SPE processors stall, waiting for their bridges to be enabled.  The red Fail LED 
illuminates. 

 
2. Depending on jumper settings, the CPE either proceeds with initialization, or 

enters FLASH recovery mode.  The remainder of this section describes the 
completion of the initialization steps. 

 
3. The CPE initializes the on-board FPGA.  It initializes all bridges.  It initializes, 

but does not enable, the SPE bridges. 
 
4. The CPE places a small executable program into SPE memory, and enables the 

SPE bridges.  The SPEs run this program, completing bridge initialization from 
the processor side, and then loop, waiting for a more significant download. 

 
5. If enabled in the FLASH parameters, the IOP coordinates the execution of POST 

on all processors.  Green LEDs FLASH at this point. 
 
6. If enabled in FLASH parameters and jumpers, the IOP loads common boot code 

(CBC) on all SPE processors. 
a. The SPEs begin executing common boot code. 

2-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

b. The SPEs initialize their respective memory management units. 
c. The green LEDs display the rotating, faded blinking pattern while waiting 

for a more significant download. 
d. If enabled, the IOP loads SPE applications programs into SPE memory, 

normally starting at location 0x20000.  The SPE does not start the 
applications.  The lights continue to FLASH the pattern.  

 
7. The red Fail LED goes out.   
 
8. If enabled in FLASH, the IOP runs its application.  Normally this is a VxWorks 

boot ROM capable of loading executables over the network connection. 
 
9. The boot ROM uncompresses itself and relocates itself to high IOP memory.  The 

boot ROM counts down, waiting up to 7 seconds for terminal input.  You may 
enter any character to stop the auto-boot sequence.  This allows you to edit the 
FLASH boot parameters. 

 
10. After finishing the count down, the boot ROM examines FLASH boot parameters, 

initializes the network device driver, and downloads the specified application.   
 
11. The downloaded application is normally a VxWorks kernel linked with 

applications and/or debug support tools.  This program starts the SPE processors, 
loads its symbol table, and initializes the on-board shared memory network. 

 
12. Having been started by the IOP, the SPE processors begin execution of their 

applications. This is normally a VxWorks boot ROM image (etc/spboot.s), 
executed from memory.  This image does the following: 

 
a. It uncompresses itself and relocates itself to high memory 
b. It derives its boot parameters, including the Ethernet address, host name, 

and login parameters, from the IOPs boot parameters.  See below for how 
these parameters are altered by the SPEs. 

c. It attaches to the shared memory network. 
d. Using the IOP as a network gateway, each SPE loads its executable image 

over the network into low memory. 
e. It detaches from the shared memory network, and jumps to the newly 

loaded image. 
 

13. The loaded image is normally a VxWorks kernel linked with debug support tools 
and applications.  The kernel attaches to the shared memory network, and 
initializes its applications. 

 
 

The time from reset until SPE execution of application software is a function of 
executable size, whether or not the applications boot directly from FLASH or over the 

2-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

network, and network loading.  For most applications, the above sequence completes in 
well under one minute.   

 

SPE Boot Parameter Alteration 
 

The IOP boot parameters govern the boot process for both the IOP and all SPEs.  The 
SPEs use the same Ethernet host address, login, password, and flags as are used by the 
IOP.  The SPEs ignore the start-up script parameter.  The SPEs determine their network 
address by using the shared memory backplane address specified for the IOP, 
incrementing the least significant byte for each processor. 
 
The executable file name for the SPEs is derived from the other field within the boot 
parameters.  The SPE boot ROM uses the other field as the full path name of the 
executable image to be loaded.   
 
It is often desirable to have each SPE boot using a different executable image.  In order to 
accommodate this, the SPEs scan the other field and substitute the following parameters: 
 

%b is replaced by the two-digit slot ID, as determined by the slot ID read from the 
backplane. 
 
%p is replaced by the SPE processor ID:  A, B, C, or D. 
 
 

Example: 
 

If other is  “/export/home/project/vxWorks5_2”, all SPEs boot the file 
  “/export/home/project/vxWorks5_2”. 
 
If other is “/export/home/project/vxWorks5_2%p”, then SPEs boot: 

 “/export/home/project/vxWorks5_2A” for SPE A,  
 “/export/home/project/vxWorks5_2B”, for SPE B, etc. 

 
If other is “/export/home/project/board%b/vxWorks5_2%p”, then SPEs on 

the board in card slot two boot: 
  “/export/home/project/board02/vxWorks5_2A” for SPE A, 
  “/export/home/project/board02/vxWorks5_2B” for SPE B, etc. 

 
 
This approach permits the use of the same boot ROM and boot parameters for all cards in 
the system.  Of course, you need not specify %b or %p if you want all processors to boot 
the same executable image.    

2-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

2.9 Power-up Diagnostics 
The front panel LEDs are used to indicate the health and status of the IXA4 board. The 
board status LED is red and the four SPE status LEDs are green.  See Figure 2.1 for the 
location of these LEDs.  When the board is first powered up, or after a reset, the 
following behavior should be observed: 

1. The board status LED and the SPE status LEDs should all illuminate.  The SPE 
LEDs will quickly turn off, while the board status LED will remain on during 
board initialization and self-test. 

2. When the board self-test passes, the red board status LED will turn off -- this 
indicates that the board is healthy. 

3. This sequence should take approximately two seconds. 
4. The SPE LED’s should blink in a rotating pattern, indicating that the Common 

Boot Code has run and the processors are waiting for a load. 
 

If a self-test failure occurs, the board status LED will blink four SOS sequences (three 
short blinks, followed by three long blinks, followed by three short blinks) after the boot 
sequence has completed.  The SPE status LEDs can be used to diagnose the failure as 
defined in Table 2.5.  After the four SOSes, the board status LED will begin to flash 
rapidly – this flashing indicates that the board has entered “recovery” mode, which allows 
the board firmware to be re-burned into the FLASH memory. 

 
When the reset button is pressed and quickly released (much shorter than two seconds), 
the status LED will illuminate after the reset button is released (events 1 and 2 above).  
When the reset button is pressed and held for longer than two seconds, the LED will 
illuminate after approximately two seconds and remain illuminated until after the reset 
switch is released.  If the board status LED does not illuminate, the board has been 
damaged or one of the required power supply voltages is missing.  If this occurs be sure 
to check the +3.3 and +5 volt supplies. 

 

 

 

2-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 

Table 2.5 - Front panel LED diagnostic codes 

SPE status LEDs  
Board Status  

LED A B C D 

 
Meaning 

Off off off off off board booted successfully and is ready for use
Off on 

or 
off 

on 
or 
off 

on 
or 
off

on 
or 
off

if one or more green LEDs remains and the 
red LED is off, this indicates that a problem 
has occurred programming the Xilinx 

On off off off off Xilinx programming problem 
On on off off off A/B SPE POST failure 
On off on off off C/D SPE POST failure 
On on on off off Reserved 
On off off on off PCI bridge #1 problem 
On off off off on PCI bridge #2 problem 
On off off on on PCI bridge #3 problem 
On on off on off A/B cluster local memory failed test 
On off on off on C/D cluster local memory failed test 
On  on off off on global memory failed test 
On off on on off FLASH failed test 
On on on on on Board held in reset 

2.10 FLASH Recovery Procedure 
The board may have difficulty booting or may behave erratically if FLASH memory 
becomes corrupted.  FLASH corruption can result from loss of power during a FLASH 
burn operation, or from burning an inoperative test program into FLASH memory.  In 
many cases, the board can still boot even with a corrupted FLASH.  In these cases, the 
procedures listed in section 8.12 describe how to determine the extent of the corruption 
and repair it.  However, in some situations, the board is unable to boot if the FLASH is 
severely corrupted.  Procedures for recovering the board in these situations are described 
in this section. 

  
 
! The VxWorks command bootChange when run from windShell is asynchronous 
to burning the FLASH. That is, when the command is done, the command prompt 
immediately comes back and does not wait for the FLASH to complete the burn.  
Because of this, a user may reset the card before FLASH has been completely 
burned, which will corrupt the FLASH memory.  For further information, please 
contact Dy4 Systems Technical Support. 
 
 
The following situations require FLASH memory recovery steps in order to restore the 
board to a working state: 
 

IOPlus firmware stored in FLASH has become corrupted. 
Xilinx firmware stored in FLASH has become corrupted. 

2-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

FLASH configuration parameters have become corrupted. 
Common Boot Code (CBC) has been improperly configured. 
A user SPE program that is automatically being loaded from FLASH on power-up is 

crashing the board. 
 

FLASH recovery involves booting the IOP with one of the delivered vxWorks images 
(either vxWorks or vxWorks5_2), and then re-burning FLASH memory.  The delivered 
vxWorks images include a FLASH burn task that services network connections.  Once 
this task is operational, FLASH memory can be re-burned from a PC using the Board 
Configuration Utility described in Chapter 8. 
 
If you are not sure which recovery procedure to try, then use the recovery for CBC and 
SPE errors first.  This procedure, if applicable, only takes a few minutes to perform. 
 

Recovering from CBC and SPE Errors 
An improperly configured CBC or a faulty SPE image both have the ability to lock up the 
board shortly after board reset, potentially eliminating the possibility of reburning 
FLASH memory. Recovery from these conditions is straightforward.  The SPE 
processors must be disabled, and the IOP must be booted with a vxWorks image that 
includes an Ethernet FLASH burn task. (The delivered vxWorks images for the IOP 
incorporate this task.) This task accepts a new CBC or SPE program over the network 
and reburns FLASH: 
 

1. Power down the board. 
 

2. Configure the board to inhibit SPE downloads: switch SW7 off.)    
 

3. Apply power, and boot the IOP using vxWorks or vxWorks5_2 from the 
delivered software. 

 
4. Using the Board Configuration utility, replace the CBC or SPE software. 

 
5. Power down. 

 
6. Restore SW7 to the on position. 

 
7. Reapply power to the board. 

 
Recovering from VxWorks Boot ROM or Startup Firmware Errors 

A faulty VxWorks Boot ROM image or corrupted startup firmware both have the ability 
to lock up the board shortly after board reset, potentially eliminating the possibility of 
reburning FLASH memory. Recovery from these conditions is straightforward.  The 
IOPlus must be configured to boot the Recovery VxWorks Boot ROM rather than the 
standard VxWorks Boot ROM, and the Boot ROM is then used to boot a vxWorks image 
that includes an Ethernet FLASH burn task. (The delivered VxWorks images for the IOP 

2-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

incorporate this task.) This task allows a new Boot ROM or startup firmware to be 
reburned using the Ethernet Burn Utility: 
 
1. Power down the board. 

 
2. Configure the board to load the recovery Boot ROM: switch SW5 and SW6 off.    

 
3. Apply power, and boot the IOP using vxWorks or vxWorks5_2 from the delivered 

software. 
 

4. Using the Ethernet Burn utility, replace the VxWorks Boot Rom or startup firmware. 
 

5. Power down. 
 

6. Restore SW5 and SW6 to the on position. 
 

7. Reapply power to the board. 
 
 

Recovering from Other Errors – Serial Port Download 
Recovery from other errors is slightly more involved, and may take up to 15 minutes.  
This recovery procedure requires that the IOPlus be booted with a vxWorks image having 
an Ethernet FLASH burn task (as above).  First, a new boot loader must be downloaded 
using the serial port.  Serial port download during recovery is provided in revisions 2.3 or 
later of the recovery code.   
 

1. Power down the board. 
 
2. Place the board in “recovery” mode:  set SW5 off, SW6 on, and install the card in 

a slot fitted with a rear panel module. 
 

3. Connect the serial port from the rear panel module to a PC executing terminal 
emulation software with file download capability. Attach the Ethernet cable.  
Configure the PC serial port for 9600 baud, 8 data bits, no parity, one stop bit. 

 
4. Power-up the board -- it will boot into a “recovery” configuration. The red LED 

will flash rapidly to indicate that the board is in the “recovery” mode. 
 

5. Download the S-record file “etc/dwnldrom.hex” through the serial port.  This is a 
special vxWorks boot loader capable of loading IOP software over the Ethernet 
interface.  The red LED will flash slowly to indicate the download is in progress.  
The flash rate is tied to the download data rate;  pausing the download will pause 
the flashing.  The download process takes 10 - 15 minutes.  

 

2-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

6. If a download error is detected, the red LED will begin flashing an “SOS” pattern, 
and will ignore subsequent serial data.  Stop the download from the PC, reset the 
board, examine the serial parameters, and go back to step 5. 

 
7. If the download was successful, the red LED will turn off and execution control 

will be given to the downloaded code.  DO NOT reset or power off the board at 
this point. 

 
8. Within a few seconds, the vxWorks system boot prompt will appear on the PC 

screen.  Enter appropriate vxWorks boot parameters, configuring the IOP to boot 
VxWorks. You MUST boot a VxWorks image having a FLASH burn task.  Use 
vxWorks or vxWorks5_2 in the IOP directory of the delivered software. 

 
9. Boot VxWorks without resetting the board  (enter an ‘@’ at the prompt). 

 
10. Once booted, the IOP can accept FLASH burn commands using the Ethernet 

interface.  Run the Board Configuration utility, and re-burn the IOP software.  If 
you believe the CBC and SPE loads were corrupted, you may re-burn those now 
as well. 

 
11. Power off the board.    

 
12. Restore SW5 to the on position. 

 
13. Re-apply power to the board -- it will now boot into a full configuration. 

 
 
Recovering from Other Errors – FLASH Burn via the Backplane 

The recovery code also accepts FLASH burn parameters over the backplane.  If your 
installation includes a PC with a PCI to backplane adaptor card with drivers supported by 
Dy 4 Systems, you can reburn FLASH over the backplane using the IXA FLASH burn 
utility.  This tool, described in section 8.11, reads files on the PC and deposits FLASH 
burn commands in the IXA board’s memory.  The recovery code interprets these 
commands, erasing and reburning FLASH as needed.   
 

1. Power down the board.  Move the board to a chassis containing the backplane 
adaptor. 

 
2. Place the board in “recovery” mode.  Set SW5 off. Configure backplane address 

jumpers for the default backplane address  (See table 2.1). 
 

3. Power-up the board -- it will boot into a “recovery” configuration. Initially, the  
red LED will flash rapidly to indicate that the board is in the “recovery” mode.   

 

2-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

4. Run the “ldflash” program, specifying the appropriate input file containing the list 
of FLASH commands to be performed.  The red LED will flash as each file is 
downloaded to the board. 

 
5. Power off the board.    

 
6. Restore SW5 to the on position. 

 
7. Re-apply power to the board -- it will now boot into a full configuration. 

 
 

2.11 JTAG/COP Connections 
There are two JTAG/COP connectors on the IXA4 board: JT1 for the IOPlus and JT2 for 
the SPEs.  

 
 ! WARNING: Improper connection of the emulator can damage the IXA4 

board and/or the emulator.  Emulator connector should be keyed. 
 

 
 

2.12 Configuring an Emulator for an IXA4 
An emulator may be used to interact with each processor and the board hardware on the 
IXA4 card.  Two JTAG/COP connections are provided on the IXA4 for this purpose.  
Connector JT1 is used to connect an 8240 emulator to the IOPlus processor while 
connector JT2 is used to connect an 74xx emulator to one of the SPE processors.  When 
connecting an emulator to JT1 or JT2, make sure that pin one of the pod aligns with pin 
one on the connector.  Figure 2.1 shows pin one for both of these connectors outlined by 
a box. Always turn off the power before connecting or disconnecting the emulator. 

 
Dy 4 Systems has tested the emulation capabilities of the IXA4 with WindRiver 
VisionProbe emulators. Therefore, the information in this section is based on the use of 
the WindRiver 74xx and WindRiver 82xx  emulators.  Both VisionICE and VisionProbe 
emulators have been used. 
 

 

2-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 
 ! WARNING: When emulating the IOPlus, apply power to the emulator 

after the IXA4 has had power applied to prevent driving signals to un-
powered components on the IXA4 card.  Ignoring this warning, in some 
instances, may result in card latch-up. 

 

 
The JTAG/COP interface on PowerPC processors is a combined JTAG interface and 
Common Onchip Processor (COP) interface.  The JTAG interface on PowerPC 
processors is used for accessing the JTAG scan chain.  The COP interface is used for 
emulation.  Unlike JTAG interfaces, the COP interface cannot be daisy chained together.  
Therefore, since there is only one connector to support the SPE processors, this connector 
is multiplexed between the four SPE processors.  The target processor is chosen via IXA 
baseboard switches SW9 and SW10 (see Table 2.1).  The steps for using an EST 
emulator with the SPE processors are outlined below.  For other emulators, follow a 
similar procedure. 

1. Turn off the board (chassis) power. 
2. Set SW9 and SW10 to the processor that you wish to target. 
3. Connect the emulator to the JT2 connector on the IXA4 
4. Power up the IXA4 board. 
5. Open the Vision Click software and follow the procedures outlined for 

opening communication with the emulator. 
6. Type “inn” to get into background mode (do not type “in” as this command 

will attempt to initialize the SPE-PCI bridge). 
7. Type “go” to put the emulator and card into the proper state.   
8. You should now be able to communicate with the board. 

 
Please note that when the target processor is reset, the entire board resets.  This is 
necessary to make sure that the local processor bus is synchronized correctly and that the 
SPE-PCI bridges are properly configured.  In the case of the WindRiver 74xx emulator, 
this means that each time the “inn” command is executed, the IXA4 board will reset.  
Once the board has been reset, it is important to run the emulator (step 7).  This assures 
that the board and COP interface are in the proper mode for further communication.  If 
this is not done, you will not be able to communicate with the target processor.   
 
Also note that in order to load the SPEs from the emulator, the load SPE enable flag in 
the FLASH configuration parameters must be reset and FLASH re-burned (see Chapter 
8). 
 
When using an 8240 emulator, no procedures other than those described in the emulator 
instructions need to be followed. 

 

2-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 
 ! WARNING: Resetting the SPE target processor (“inn” in the case of the 

WindRiver emulator) will reset the entire IXA4 board.  
 

2.13 Configuring the VxWorks Boot Parameters 
The SPORTA serial port on the IXA-RP module is used to configure the VxWorks boot 
parameters.   When the IXA4 is ordered with the VxWorks boot loader, the IOPlus will 
run board initialization and test software on startup and then load a VxWorks kernel into 
the IOPlus from FLASH.  This kernel considers the serial port to be a system console and 
on start-up displays the boot loader banner page and commences a seven-second-
countdown.  If a character is received from a console device connected to the serial port 
during this countdown, the countdown will stop and a prompt will be displayed on the 
console.  Otherwise, the VxWorks boot loader will try to load from the host defined in 
the boot parameters 
 
The VxWorks boot parameters are set from the system console.  To work properly, the 
system console serial port must be compatible with the jumper settings on the IXA-RP 
(See Table 2.2).  SPORTA by default is RS-232, 9600 baud, 8 bit, no parity, and 1 stop 
bit and the driver expects a software handshake protocol  (XON/XOFF).   The DB-9 
connector is configured with the jumpers on the IXA-RP.   See Table 2.6 for the pin 
definition of the DB-9 for DTE and DCE operation.  
 

2-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 

Table 2.6 - Serial Port Connector Definition 

Pin Signal Description DCE Definition DTE Definition 
1 DCD Data Carrier Detect output input 
2 RD Receive Data output input 
3 TD  Transmit Data input output 
4 DTR Data Terminal Ready input output 
5 GND Signal Ground   
6 DSR Data Set Ready output input 
7 RTS Request to Send input output 
8 CTS Clear to Send output input 
9 RI Ring Indicator output input 

 
 

Once you have the boot prompt on your system console, type: 
 

     p<CR> 
 

This will display the boot parameters.  A list similar to the following will be displayed:   
 

boot device  : fei 
unit number  : 0 
processor number : 0 
host name  : james 
file name     :/export/home/tornado/target/config/iop/vxWorks5_2 
inet on ethernet  : 207.96.24.235:ffffff00 
inet on backplane : 192.99.22.100:ffffff00 
host inet   : 207.96.24.237 
user    : wrsuser 
ftp password : wrsuser 
flags   : 0x0 
target name  : vxtarget 
other   :/export/home/tornado/target/config/spe7x/vxWorks 

 
To change the boot parameters, type: 
  

c<CR> 
 
The boot device should be set to “fei” to specify the INTEL 82559 device.  The updated 
boot parameters are stored in FLASH on the IXA4 and preserved there when the card is 
powered off.  Therefore, subsequent boots of the card can auto-boot without intervention. 
 
The boot parameters are also parsed by each SPE to automatically set the SPE boot 
parameters for your site.  The “other” field must be filled in with the full path of the SPE 
VxWorks image (vxWorks or vxWorks5_2) in order to successfully boot the SPEs.  
Make sure the version of the image file corresponds to the file you intend to burn into 
FLASH; spworks.s or spworks5_2.s.   
 

2-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

Other commands are also available at the system console. They can be displayed by 
typing h<CR> or ?<CR>.  Refer to the Tornado User’s Guide for further information on 
the shell interface commands. 

 

Adding Tornado Routes 
Before you can successfully communicate with the SPE processors, you must inform 
your Tornado host system of the shared memory IP addresses that each IXA4 processor 
uses.  Each of the shared memory IP addresses must be associated with the IP address of 
the IOPlus processor (inet on ethernet) on the user network.  To inform your host of this 
information, add the shared memory addresses to your host’s route table.  To do this, 
enter the route add command at the system prompt.  The syntax for this command differs 
between the NT and UNIX operating system, so you should consult your host 
documentation for the correct format. 
 
So, for example, if the IOPlus boot parameters are as shown above, the route add 
command to add the IOPlus to the route table would be: 

 
route add 192.99.22.100 207.96.24.235 

  
 And for the SPE’s: 
 

route add 192.99.22.101 207.96.24.235 
route add 192.99.22.102 207.96.24.235 
route add 192.99.22.103 207.96.24.235 
route add 192.99.22.104 207.96.24.235 

 
As you can see, the ffffff00 should not be appended to this address when performing the 
route add command. 
 
When using more than one IXA4, be sure to assign different IP addresses for each board. 
Table 2.7 shows an example of a three-board system configuration.   

2-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

Table 2.7 - Multi-board IP Mapping Example 

Board Processor Shared Memory 
IP Address 

Ethernet 
IP Address  

    
1 IOPlus 192.99.22.100 207.96.24.235 
1 SPE A 192.99.22.101 None 
1 SPE B 192.99.22.102 None 
1 SPE C 192.99.22.103 None 
1 SPE D 192.99.22.104 None 
    
2 IOPlus 192.99.22.200 207.96.24.236 
2 SPE A 192.99.22.201 None 
2 SPE B 192.99.22.202 None 
2 SPE C 192.99.22.203 None 
2 SPE D 192.99.22.204 None 
    
3 IOPlus 192.99.22.300 207.96.24.237 
3 SPE A 192.99.22.301 None 
3 SPE B 192.99.22.302 None 
3 SPE C 192.99.22.303 None 
3 SPE D 192.99.22.304 None 

 
  

2.14 Installing IXAtools 
The installation procedure for IXAtools appears on the back of the IXAtools CD case.  
To install the software, you will be required to execute an installation program on the CD 
which will lead you through the installation.  However, installing IXAtools may involve 
several different software destination selections.  This will depend on your development 
environment and target application configuration.   
 
IXAtools contains software for the following development system components: 
 
PowerPC Development Environment  - This is the system where the PowerPC 
development tools reside.  On this system compiling, linking, simulating, and debugging 
the SPE software, and optionally the IOPlus software, occurs.  This system may use a 
JTAG emulator connection or/and Ethernet connection to permit the load, execution and 
debug on the IXA4.   IXAtools contains support libraries for code development in this 
environment.  If this environment supports a Tornado host, BSPs for both the IOPlus and 
the SPEs are provided.   
 
FLASH Configuration Workstation - IXAtools provides a Board Configuration Utility 
for writing software and board configuration parameters into the IXA4’s FLASH 
memory.  This utility runs under Windows 95/98/2000/NT and requires an Ethernet 
connection between the IXA4 and the workstation.  Chapter 8 describes the use of this 
utility.  If the PowerPC Development Environment is compatible with this utility, select 

2-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

the installation of this component when installing the rest of the development 
environment software.  Otherwise, you will need to install this utility separately on a 
compatible system.  Installing this utility will create a IXAtools group in your desktop’s 
Programs sub-menu.  
 
Target Host Computer - Typically this will be a single board computer that is located in 
the cPCI chassis with the IXA4.  Software libraries are provided with IXAtools to 
support applications running on this computer to load, start, and exchange information 
with the IXA4 over the cPCI bus.  This software is provided as verified linkable libraries 
for a number of host computers.  For customers having an unsupported host requirement, 
the software is provided in source format also with porting procedures that are 
documented in this manual.  See Chapter 9 for more details.    
 
Your requirements will determine how many of the components you need to install and 
what systems to install them on.   Everyone will need to install the development tools, but 
it is not necessary to program the IOPlus to reap the full benefit of the device since it 
comes from Dy 4 Systems preprogrammed for run-time board services.  If you intend to 
develop the Host software on a PC, and develop PowerPC software using a different 
computer, you may need to install the relevant components in the two computers in two 
separate installations.  The installation program allows you to dissect the installation into 
multiple installs.  
 
Components installed in a Windows environment can be uninstalled by selecting the 
Add/Remove Icon in the Control Panel and selecting the removal of IXAtools.  This 
uninstall relies on the install.log file and the file unwise.exe to be present at the top-level 
of the install directory.  You can also uninstall the software by running the unwise.exe 
program directly. 
 

Reprogramming the FLASH memory 
The FLASH memory is programmed with the most recent board software at Dy 4 
Systems prior to shipment, so if you’ve received the IXA4 with IXAtools you will not 
need to update the software in the FLASH.  However, if you are receiving IXAtools as an 
update, you may need to upgrade the FLASH.  The release notes included with IXAtools 
will direct you as to what files need to be updated.   IXAtools always includes a complete 
set of the most recent FLASH programs that are installed with the Board Configuration 
Utility in the /etc subdirectory. 
 
Reprogramming the FLASH memory will typically be done with the Board 
Configuration Utility. This utility is described in Chapter 8.  Capability to program the 
FLASH is also provided in HostAPI, IOPlusAPI, and IXAbsp libraries. The use of these 
libraries for burning FLASH requires an application program to be developed that calls 
the functions with the appropriate file parameters. 
 

2-20 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 2: Installation 
 

 Installing VxWorks BSPs 
The installation process will place the BSPs for the IOPlus and the SPEs under the 
directory you specify as your Tornado base directory path ($WIND_BASE) under the 
paths: 

$WIND_BASE/target/config/iop         IOPlus BSP 
$WIND_BASE/target/config/spe7x       SPE BSP 

 
You will also specify the directory for the IXAtools libraries: libioplus_api.a, libixaio.a, 
and libixabsp.a, to be installed.  To build VxWorks with the BSPs and these libraries you 
will have to be sure the environmental variables $IOPLUS and $WIND_BASE are 
defined as the IXAtools and the Tornado base directories. 
 
On-line manual pages are provided with the BSPs.  In order to conveniently access these 
from the Tornado Help menu add the following code to the list of BSPs referenced in the 
$WIND_BASE/docs/BSP_Reference.html file: 
 

<p><i><a href="./vxworks/bsp/iop.html">iop<a></i></p> 
<p><i><a href="./vxworks/bsp/spe7x.html">spe7x<a></i></p> 

 
Chapter 6 describes the IOPlus BSP and its use, and Chapter 7 describes the SPE BSP 
and its use.  

 
 

2-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 3:  Hardware Architecture 
 
 

3.1 Introduction 
The IXA4 is composed of a number of major board components, which are depicted in 
Figure 3.1.  This chapter will discuss each one of these components: their operation and 
their inter-operability with other board components. 
 
 

 

L2 Cache

MPC7400, or
MPC7410
PowerPC

L2 Cache

MPC7400, or
MPC7410
PowerPC

SPE-PCI
Bridge

Local
SDRAM

PMC Site #2

PCI - PCI
Bridge

10/100 Mbps
Ethernet

L2 Cache

MPC7400, or
MPC7410
PowerPC

L2 Cache

MPC7400, or
MPC7410
PowerPC

SPE-PCI
Bridge

Local
SDRAM

PMC Site #1

PCI - PCI
Bridge

10/100 Mbps
Ethernet

Board Resource
Manager

Global
FLASH

Global
SDRAM

MPC 8240
IOPlus

PCI - PCI
Bridge

10/100 Mbps
EthernetH.110

Compact PCI Backplane

32 bit

33 MHz

32 bit

33 MHz

32 bit         33 MHz

J3 J5 J4 J1/J2 J5 J3 / J5 J3

UART

RS-232

To J3 &
J5

Bus 0Bus 1 Bus 2

Bus 3

 
Figure 3.1 - IXA4 Board Architecture 

 

3-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

3.2 IOPlus 
The IOPlus is a Motorola MPC 8240 integrated processor.  This is a PowerPC 603e core 
with the following integrated features: 

  33 MHz 32-bit PCI bus interface, including PCI arbitration 
  100 MHz 64-bit SDRAM controller, supporting up to 1 GByte of external 

memory 
  2-channel DMA controller 
  Enhanced Programmable Interrupt Controller (EPIC) 
  FLASH memory controller (8-bit) 
  Port X Interface – Generic programmable interface for register or peripheral 

support 
  Generation of Type 0 and Type 1 PCI configuration cycles 
  Support for Big and Little Endian bus modes 

 
The IOPlus is code compatible with existing flavors of the 603e processor. The IOPlus is 
used for the following tasks: 

  Initialization of memory 
  Initialization of cPCI bus interface  
  Initialization of all PCI bridges  
  Initialization of PMC modules 
  Loading and configuration of firmware devices 
  Command and status for cPCI bus interface 
  Initialization of the SPEs 
  Communication with the SPEs  

 
The power up initialization and run-time support programs for the IOPlus are written into 
FLASH memory prior to shipment.   User’s can also add application software to the 
IOPlus run-time programs. To use the resources of the IXA4 via the IOPlus software, it is 
important to not overwrite or disable the IOPlus run-time software.  Chapter 5 details 
how the IOPlus can be commanded by the SPEs to perform a number of useful services. 

 

3.3 SPEs 
The IXA4 comes with MPC7400/7410 Signal Processing Elements (SPEs).  They are 
configured as paired clusters with SPE A and SPE B sharing a PCI/memory bridge, and 
SPE C and SPE D sharing a PCI/memory bridge.   

 
Each SPE is loaded with common boot code by the IOPlus upon board reset and started. 
This code permits the paired SPE’s to operate out of a shared local memory space.  
Chapter 7 provides more information on how the common boot code facilitates this and 
how to write applications for it. 

3-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

3.4 SPE-PCI Bridge 
There are two SPE-PCI bridges on an IXA4, one for the SPE A and SPE B cluster and 
one for the SPE C and SPE D cluster.   The primary function of the bridge is to interface 
two SPE’s to the PCI bus, the local SDRAM, and to the board resources available on the 
Port X.   
 
The SPE-PCI bridge has the following features: 

  32-bit PCI V2.1 compliant interface with a frequency of 33 MHz 
  Full PCI Target / Initiator functionality 
  Two 32-byte (one cache line) PCI to memory write buffers 
  Two 16-byte processor to PCI write buffers 
  One 32-byte (one cache line) processor read from PCI buffer  
  Interrupt controller logic 
  Two DMA channels 
  Four high resolution timers 
  100 MHz SDRAM interface 
  100 MHz 60x bus interface for connection to the SPE processors 
  Port X interface for connection to the Board Resource Manager 
  Support for memory coherency 

 

3.5 PCI Local Bus 
The IXA4 contains four local PCI buses each isolated by PCI bridges.  The Primary PCI 
bus, PCI bus #0 in Figure 3.1, is a 32 bit, 33MHz bus that hosts the IOPlus and the three 
bridges (connected to the primary PCI interface on the bridges). On the other side of the 
three bridges are secondary buses.  PCI bus #3 is dedicated to servicing the cPCI bus.  
PCI bus #1 and PCI bus #2 serve the two SPE clusters and the two PMC sites.  The PMC 
sites are addressed later in this chapter.  Since all the key components of the IXA4 exist 
in PCI space, the PCI memory map of the board plays an important role in the 
programming and data movement of the IXA4.  This map is presented in Chapter 4. 
   
Major features of the PCI-PCI bridges: 
  Three 33 MHz, 32-bit PCI-PCI bridges providing bus isolation and transaction 

forwarding 
  Accepts Type 0 and Type 1 configuration accesses 
  Supports a uniform linear system address map (with the exception of the 21554 as 

discussed earlier) 
  Performs clocking, reset, and arbitration for the secondary bus 

 

3-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

3.6 Board Resource Manager 
The Board Resource Manager is an FPGA that provides interrupt and LED access for the 
IXA4.   The device has three isolated Port X interfaces: one connected to the IOPlus and 
one connected to each of the SPE-PCI bridges. This provides a means of inter-processor 
interrupts and board resource utilization that is independent of the PCI bus. 
 
The following are the capabilities provided by the Board Resource Manager: 

  Interrupt support functions such as routing, masking, and clearing, 
  LED control for each SPE’s status LED 

 
The Board Resource Manager is controlled by a group of addressable registers that are 
defined in Chapter 4. 
 

Interrupts 
One function of the board resource manager is to multiplex interrupts from the many 
sources supported by the IXA4 board and selectively route them to one or more of the 
processors on the board. The interrupt multiplexor function is controlled by the mask 
registers defined in Chapter 4.  Each processor (all four SPEs and the IOPlus) has an 
interrupt mask register.  On power up the mask register masks out all interrupts so that no 
interrupts will be seen at the processors. The application code sets up the mask register so 
that when a particular interrupt becomes active it will interrupt one or more processors. 
 
The interrupts, including the user interrupts on J3 and J5, are not latched inside the Board 
Resource Manager.  Therefore they must be either latched at the source (as is the case 
with all on board interrupts), or active long enough to guarantee that the interrupted 
processor can enter its Interrupt Service Routine (ISR) and read the register within the 
Board Resource Manager that identifies the source of the interrupt.  If the interrupt goes 
away before this happens, the processor will not be able to identify any interrupt source. 
The time required for the processor to do this is very dependent upon the application 
software.  
 
One interrupt is provided from the cPCI backplane bridge (intel 21554).  This interrupt 
can be asserted through software by writing to the secondary IRQ or I2O registers in the 
21554 (see 21554 documentation for further details).  This is the only way for another 
board in the system to generate an interrupt to the IXA4 over the backplane.  
 
User I/O interrupts from the backplane are active low. 

3.7 Board Semaphores  
Board semaphores are provided via secure locations in global memory.  Semaphores can 
only be set when they are zero. A non-zero value in a semaphore is cleared by writing the 
value to the semaphore.  Logic compares the data being written to the current value and if 
they are the same clears the semaphore. Semaphores do not generate interrupts. 

 

3-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Semaphores are used to access critical board resources. As such many requestors may 
want a particular semaphore. The first requestor to actually write its value into the 
semaphore gains control of the resource. Once a requestor has written its value it must 
read the semaphore back to see if it has control of the resource. 
 
Dy 4 Systems does not provide library functions to gain control of and release hardware 
semaphores, but instead supplies test and set functions that can be used for the same 
purpose. 

3.8 Global Memory 
The IXA4 has 64 Mbytes of SDRAM that is used by the IOPlus for local memory and a 
global memory area for the board.  This memory has a 100Mhz clock rate and is 64/32/16 
and 8-bit accessible.  The page size is 2048 bytes and multiple open pages are allowed.  
The global memory is available to the SPE’s, cPCI bus, IOPlus, and any other devices 
that can reach the PCI local bus.  See Table 4.1 in Chapter 4 for the address range of the 
global and IOPlus local portions.  

 

3.9 SPE Local Memory 
The IXA4 can be populated with up to 256 Mbytes of SDRAM per SPE cluster.  The 
SDRAM bus runs at 100MHz. IXA4 SDRAM is located in the SPE’s local address space, 
which starts at 0x00000000. The page size is 2048 bytes and multiple open pages are 
allowed. The SDRAM is 64/32/16 and 8-bit accessible and accesses to it are managed by 
the SPE-PCI Bridge.  The bridge will arbitrate accesses by the two SPE’s in the cluster as 
well as PCI accesses from the other board devices.  

 
Since the SDRAM is shared by a SPE cluster, applications must map into the shared 
space in a controlled manner so that each processor sees the space appropriately.  The 
PowerPC expects its exception vector table to be mapped at address 0x00000000 and 
therefore presents a complication when two processors are trying to make use of the same 
space.  IXAtools has solved this problem with Common Boot Code (CBC) that is loaded 
to the SPEs by the IOPlus at startup.  Chapter 7 covers the operation and use of the CBC.  
 
When writing applications that run on each processor which share the local SDRAM, the 
user must be careful in the method used to access the memory in order to achieve 
maximum data transfer performance.  This is particularly true if both processors access 
memory while at the same time, data is being read or written to the local memory over 
the PCI bus. If both processors are polling on local SDRAM locations using a tight loop 
(three or four assembly instructions), PCI transactions to local memory may be 
continually retried because the PCI transaction cannot break in.  This is especially true if 
both processors are polling on locations in separate pages of the SDRAM.  If the polling 
cannot be avoided, PCI bus snooping may be turned on to elevate the priority of the PCI 
transaction.  However, with snooping on, an extra address cycle only occurs on the SPE 
local 60x bus for every PCI transaction which affects the 60x bus performance.   

 

3-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

If both processors run instructions out of local SDRAM from separate pages, and 
snooping is not turned on, PCI retries will also occur.  In this case, it is suggested to run 
out of instruction cache as much as possible. 

 
 ! Caution: PCI accesses to local SDRAM may be continually retried (fail) 

if user code on the SPE processors associated with the SDRAM accessed 
by the PCI bus “hogs” the memory interface. 

   

 

3.10 FLASH Memory 
The IXA4 provides up to 32 Mbytes of 90 ns FLASH memory that is connected to the 
IOPlus. It is used to store initialization code, IXA4 configuration data, and user 
application code.  FLASH memory can be accessed from the IOPlus, the SPEs, and from 
a host computer using routines contained in IXAtools.  Chapters 5 - 9 present a number 
of different approaches to command the IOPlus to set FLASH values.  IXAtools contains 
a utility that provides a user-friendly interface for programming FLASH memory.  See 
Chapter 8 for more information on this utility.  

 

3.11 PMC Sites 
The IXA4 provides two PCI Mezzanine Card (PMC) sites: PMC Site 1 and PMC site 2.  
The PMC Site 1 and the A/B SPE-PCI Bridge are both connected to the Secondary PCI 
Bus 1.  The PMC Site 2 and the C/D SPE-PCI Bridge are both connected to the 
Secondary PCI Bus 2.  See Figure 3.1. 
 
The PMC sites are designed to conform to the following specifications with the 
exceptions noted below: 
  PCI Local Bus Specification Revision 2.3, 29 March 2002. 
  Draft Processor PMC Standard (VITA 32-199x) Draft 0.5, May 9, 2002. 
  Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC; 

IEEE P1386.1-2001. 
  Draft Standard for a Common Mezzanine Card Family: CMC; IEEE P1386-2001. 
 
PMCs on the IXA4 board use 5 V signaling only.  A 5 V keying pin is provided to 
prevent you from inadvertently plugging in the wrong type of PMC. 
 
When a PMC manufacturer does not provide the required keying hole, the keying pin on 
the IXA4 PMC site must be removed in order to install the PMC.  If this is done, extreme 
care must be exercised to prevent the wrong type of PMC from being installed on the 
PMC site.  Installing a PMC with incompatible signaling levels can cause permanent 
damage to the IXA4 baseboard as well as the PMC. 
 

3-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

 
 
 

 
 
 ! WARNING: Each PMC site is configured for 5 V signaling levels only!  

Do not install a 3.3 V PMC on a 5 V site.  Installing incompatible PMCs 
can permanently damage the IXA4 baseboard and/or the PMC. 

 
 

 
The IXA4 supports front panel user I/O and backplane user I/O through the J3 and J5 
connectors.    The PMC routing to J3 and J5 was changed on Revision C and higher 
IXA4 boards. On Revision C and higher,  backplane I/O for the PMC Site 1 is routed out 
the J5 connector and   backplane I/O for the PMC Site 2 is routed out the J3 and J5 
connectors.  
 
On Revisions A and B, backplane I/O for the PMC Site 1 is routed out the J3 connector 
zand  backplane I/O for the PMC Site 2 is routed out the J5 connector.  
 
Table 3.1  

 
 

3-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.1 - PMC to cPCI connector mapping 

 Revisions A and B Revisions C and Higher 
 PMC  Jn4 
Connector 

PMC Site 1  
(cPCI bus  Pin) 

PMC Site 2  
(cPCI bus Pin) 

PMC Site 1  
(cPCI bus Pin) 

PMC Site 2  
(cPCI bus Pin) 

1 J3E-13 J5E-13 J5D-20 J5D-4 
3 J3D-13 J5D-13 J5E-20 J5E-4 
2 J3C-13 J5C-13 J5A-20 J5A-4 
4 J3B-13 J5B-13 J5B-20 J5B-4 
5 J3A-13 J5A-13 J5D-19 J5D-3 
7 J3E-12 J5E-12 J5E-19 J5E-3 
6 J3D-12 J5D-12 J5A-19 J5A-3 
8 J3C-12 J5C-12 J5B-19 J5B-3 
9 J3B-12 J5B-12 J5D-18 J5D-2 

11 J3A-12 J5A-12 J5E-18 J5E-2 
10 J3E-11 J5E-11 J5A-18 J5A-2 
12 J3D-11 J5D-11 J5B-18 J5B-2 
13 J3C-11 J5C-11 J5D-17 J5D-1 
15 J3B-11 J5B-11 J5E-17 J5E-1 
14 J3A-11 J5A-11 J5A-17 J5A-1 
16 J3E-10 J5E-10 J5B-17 J5B-1 
17 J3D-10 J5D-10 J5D-16 J3D-12 
19 J3C-10 J5C-10 J5E-16 J3E-12 
18 J3B-10 J5B-10 J5A-16 J3A-12 
20 J3A-10 J5A-10 J5B-16 J3B-12 
21 J3E-9 J5E-9 J5D-15 J3D-11 
23 J3D-9 J5D-9 J5E-15 J3E-11 
22 J3C-9 J5C-9 J5A-15 J3A-11 
24 J3B-9 J5B-9 J5B-15 J3B-11 
25 J3A-9 J5A-9 J5D-14 J3D-10 
27 J3E-8 J5E-8 J5E-14 J3E-10 
26 J3D-8 J5D-8 J5A-14 J3A-10 
28 J3C-8 J5C-8 J5B-14 J3B-10 
29 J3B-8 J5B-8 J5D-13 J3D-9 
31 J3A-8 J5A-8 J5E-13 J3E-9 
30 J3E-7 J5E-7 J5A-13 J3A-9 
32 J3D-7 J5D-7 J5B-13 J3B-9 
33 J3C-7 J5C-7 J5D-12 J3D-8 
35 J3B-7 J5B-7 J5E-12 J3E-8 
34 J3A-7 J5A-7 J5A-12 J3A-8 
36 J3E-6 J5E-6 J5B-12 J3B-8 
37 J3D-6 J5D-6 J5D-11 J3D-7 
39 J3C-6 J5C-6 J5E-11 J3E-7 
38 J3B-6 J5B-6 J5A-11 J3A-7 
40 J3A-6 J5A-6 J5B-11 J3B-7 

 
 
 

3-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.1 - PMC to cPCI connector mapping (cont.) 

 Revisions A and B Revisions C and Higher 
 PMC  Jn4 
Connector 

PMC Site 1  
(cPCI bus Pin) 

PMC Site 2  
(cPCI bus Pin) 

PMC Site 1  
(cPCI bus Pin) 

PMC Site 2  
(cPCI bus Pin) 

41 J3E-5 J5E-5 J5D-10 J3D-6 
43 J3D-5 J5D-5 J5E-10 J3E-6 
42 J3C-5 J5C-5 J5A-10 J3A-6 
44 J3B-5 J5B-5 J5B-10 J3B-6 
45 J3A-5 J5A-5 J5D-9 J3D-5 
47 J3E-4 J5E-4 J5E-9 J3E-5 
46 J3D-4 J5D-4 J5A-9 J3A-5 
48 J3C-4 J5C-4 J5B-9 J3B-5 
49 J3B-4 J5B-4 J5D-8 J3D-4 
51 J3A-4 J5A-4 J5E-8 J3E-4 
50 J3E-3 J5E-3 J5A-8 J3A-4 
52 J3D-3 J5D-3 J5B-8 J3B-4 
53 J3C-3 J5C-3 J5D-7 J3D-3 
55 J3B-3 J5B-3 J5E-7 J3E-3 
54 J3A-3 J5A-3 J5A-7 J3A-3 
56 J3E-2 J5E-2 J5B-7 J3B-3 
57 J3D-2 J5D-2 J5D-6 J3D-2 
59 J3C-2 J5C-2 J5E-6 J3E-2 
58 J3B-2 J5B-2 J5A-6 J3A-2 
60 J3A-2 J5A-2 J5B-6 J3B-2 
61 J3E-1 J5E-1 J5D-5 J3D-1 
63 J3D-1 J5D-1 J5E-5 J3E-1 
62 J3C-1 J5C-1 J5A-5 J3A-1 
64 J3B-1 J5B-1 J5B-5 J3B-1 

 
The PMC BUSMODE[4:2] signals are hardwired on the IXA4 and constantly drive the 
following values:  BUSMODE[4:2] = 0b001.  This signals the PMC card that it is 
connected to a PMC site.  If the card is a PMC card, it will begin driving its interface 
signals and will drive a logic 0 on the BUSMODE1 signal.  Note that the IXA4 receives 
the BUSMODE1 signals from each PMC but does not check its value. 
 
The IXA4 provides support for the PPMC standard.  The PPMC support includes:   
frequency signaling capability, Optional Second PCI Agent capability (IDSELB, REQB#, 
and GNTB# signals implemented), support for the RESET_OUT# and EREADY signals.  
The following signals are supported on the IXA4 board: 

The MONARCH# signal is on Jn2 pin 64.  The IXA4 baseboard is the Monarch.   
The MONARCH# signals on each PMC site are not connected and allowed to 
float high 

M66EN signal is on Jn2 pin 47.  This pin is grounded on the IXA4 board 
indicating 33 MHz PCI bus operation. 

The IDSELB signal is on Jn2 pin 34.  It is used to select an optional second PCI 
agent. 

3-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

The REQB# signal is on Jn2 pin 52.  This signal is a request issued by the 
optional second PCI agent requesting the ownership of the PCI bus. 

The GNTB# signal is on Jn2 pin 54.  This signal is a grant issued to the optional 
second PCI agent requesting the ownership of the PCI bus via the corresponding 
REQB# signal. 

The RESET_OUT# signal is on Jn2 pin 60.  This signal is an open drain output 
from the PMC.  When asserted by the PMC, the IXA4 will perform a board reset 
(same as pushing the reset switch on the IXA4 board). 

The EREADY signal is on Jn2 pin 58.  This signal is an open drain output on non-
monarch PPMCs that indicates the PMC has completed its on-board initialization 
and can respond to PCI bus enumeration.  The IXA4 configuration software will 
not perform enumeration on the respective PMC until the PMC releases this 
signal. 

 
The IXA4 provides support for an Optional Second PCI Agent.  Non-monarch PPMCs 
may include an optional second PCI agent 

 
 

Power Requirements 
 

The IXA4 supplies +5 V, 3.3 V, +12 V, -12 V power to the PMC sites.  The maximum 
current for each supply is shown in Table 3.2.  The VIO voltage is configured for 5 V 
signaling.  The maximum power dissipation allowed for each PMC site is 10 Watts. 

 

Table 3.2 - PMC Max. Current loads 

Supply Max. Supply Current 
5 V 2 A 

3.3 V 3 A 
+ 12 V 500 mA 
- 12 V 100 mA 

 
 

3-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

 

3.12 cPCI bus Interface  
The IXA4 is fully compliant with the cPCI specification.  The board can only function as 
a cPCI peripheral board (i.e., it cannot act as the system controller).  A major change was 
made to the pinout of J3 and J5 on Rev C of the IXA4 board.  Tables 3.3, 3.4, and 3.67 
give the signal mappings for J1, J2  and J4 respectively, for all revisions on the IXA4.  
Tables 3.5 and 3.7 give the pinout for J3 and J5 respectively, for revision C and higher 
IXA4 boards.  Tables 3.8 and 3.9 show the pinouts of J3 and J5 for Revisions A and B of 
the IXA4 board. 

Table 3.3 – J1 Connector Definitions 

Pin Z A B C D E F 
25 GND 5V RSV ENUM# 3.3V 5V GND 
24 GND AD[1] 5V V(I/O) AD[0] RSV GND 
23 GND 3.3V AD[4] AD[3] 5V AD[2] GND 
22 GND AD[7] GND 3.3V AD[6] AD[5] GND 
21 GND 3.3V AD[9] AD[8] M66EN C/BE[0]# GND 
20 GND AD[12] GND V(I/O) AD[11] AD[10] GND 
19 GND 3.3V AD[15] AD[14] GND AD[13] GND 
18 GND SERR# GND 3.3V PAR C/BE[1]# GND 
17 GND 3.3V RSV RSV GND PERR# GND 
16 GND DEVSEL# GND V(I/O) STOP# RSV GND 
15 GND 3.3V FRAME# IRDY# BD_SEL# TRDY# GND 

12-14 Key Area 
11 GND AD[18] AD[17] AD[16] GND C/BE[2]# GND 
10 GND AD[21] GND 3.3V AD[20] AD[19] GND 
9 GND C/BE[3]# IDSEL AD[23] GND AD[22] GND 
8 GND AD[26] GND V(I/O) AD[25] AD[24] GND 
7 GND AD[30] AD[29] AD[28] GND AD[27] GND 
6 GND REQ# PCI_PRES 3.3V CLK AD[31] GND 
5 GND RSV RSV RST# GND GNT# GND 
4 GND RSV HEALTHY# V(I/O) INTP RSV GND 
3 GND INTA# RSV RSV 5V RSV GND 
2 GND RSV 5V RSV RSV RSV GND 
1 GND 5V -12V RSV +12V 5V GND 

3-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.4 – J2 Connector Definitions 

Pin Z A B C D E F 
22 GND GA4 GA3 GA2 GA1 GA0 GND 
21 GND RSV RSV RSV RSV RSV GND 
20 GND RSV RSV RSV GND RSV GND 
19 GND RSV RSV RSV RSV RSV GND 
18 GND RSV RSV RSV GND RSV GND 
17 GND RSV GND RSV RSV RSV GND 
16 GND RSV RSV RSV GND RSV GND 
15 GND RSV GND RSV RSV RSV GND 
14 GND RSV RSV RSV GND RSV GND 
13 GND RSV GND V(I/O) RSV RSV GND 
12 GND RSV RSV RSV GND RSV GND 
11 GND RSV GND V(I/O) RSV RSV GND 
10 GND RSV RSV RSV GND RSV GND 
9 GND RSV GND V(I/O) RSV RSV GND 
8 GND RSV RSV RSV GND RSV GND 
7 GND RSV GND V(I/O) RSV RSV GND 
6 GND RSV RSV RSV GND RSV GND 
5 GND RSV GND V(I/O) RSV RSV GND 
4 GND V(I/O) RSV RSV GND RSV GND 
3 GND RSV GND RSV RSV RSV GND 
2 GND RSV RSV RSV RSV RSV GND 
1 GND RSV GND RSV RSV RSV GND 

 

3-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

 

Table 3.5 – J3 Connector Definitions  

Pin Z A B C D E F 
19 GND SGA4   SGA3 SGA2 SGA1 SGA0 GND 
18 GND 1TX+  1TX- GND    GND 
17 GND 1RX+   1RX- GND    GND 
16 GND  2TX+  2TX- GND    GND 
15 GND 2RX+  2RX- GND    GND 
14 GND 1TRMPLN 2TRMPLN USER_INT0USER_INT1 RPMPRES GND 
13 GND RTSB_232 CTSB_232 RXB_232 TXB_232 CDB_232 GND 
12 GND PMC2-16 PMC2-20 GND PMC2-17 PMC2-19 GND 
11 GND PMC2-22 PMC2-24 GND PMC2-21 PMC2-23 GND 
10 GND PMC2-26 PMC2-28 GND PMC2-25 PMC2-27 GND 
9 GND PMC2-30 PMC2-32 GND PMC2-29 PMC2-31 GND 
8 GND PMC2-34 PMC2-36 GND PMC2-33 PMC2-35 GND 
7 GND PMC2-38 PMC2-40 GND PMC2-37 PMC2-39 GND 
6 GND PMC2-42 PMC2-44 GND PMC2-41 PMC2-43 GND 
5 GND PMC2-46 PMC2-48 GND PMC2-45 PMC2-47 GND 
4 GND PMC2-50 PMC2-52 GND PMC2-49 PMC2-51 GND 
3 GND PMC2-54 PMC2-56 GND PMC2-53 PMC2-55 GND 
2 GND PMC2-58 PMC2-60 GND PMC2-57 PMC2-59 GND 
1 GND PMC2-62 PMC2-64 GND PMC2-61 PMC2-63 GND 

 

3-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.6 – J4 Connector Definitions 

Pin Z A B D C E 
25 NP SGA4 SGA3 SGA2 SGA1 SGA0 FP 
24 NP GA4 GA3 GA2 GA1 GA0 FP 
23 NP +12V RSV CT_EN -12V CT_MC FP 
22 NP RSV RSV RSV RSV RSV FP 
21 NP RSV RSV RSV RSV RSV FP 
20 NP NP NP NP NP NP NP 
19 NP NP NP NP NP NP NP 
18 NP RSV RSV RSV RSV RSV NP 
17 NP NP NP NP NP NP NP 
16 NP NP NP NP NP NP NP 
15 NP RSV RSV RSV RSV RSV NP 

12-14 Key Area 
11 NP CT_D29 CT_D30 CT_D31 V(I/O) /CT_FRAME_A GND 
10 NP CT_D27 3.3V CT_D28 5V /CT_FRAME_B GND 
9 NP CT_D24 CT_D25 CT_D26 GND FR_COMP# GND 
8 NP CT_D21 CT_D22 CT_D23 5V CT_C8_A GND 
7 NP CT_D19 5V CT_D20 GND CT_C8_B GND 
6 NP CT_D16 CT_D17 CT_D18 GND CT_NETREF_2 GND 
5 NP CT_D13 CT_D14 CT_D15 3.3V CT_NETREF_1 GND 
4 NP CT_D11 5V CT_D12 3.3V SCLK GND 
3 NP CT_D8 CT_D9 CT_D10 GND SCLK-D GND 
2 NP CT_D4 CT_D5 CT_D6 CT_D7 GND GND 
1 NP CT_D0 3.3V CT_D1 CT_D2 CT_D3 GND 

F 

 

3-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.7 – J5 Connector Definitions 

Pin Z A B C D E F 
22 GND RTSA_232 CTSA_232 RXA_232 TXA_232 CDA_232 GND 
21 GND 0TX+ 0TX- 0TRMPLN 0RX+ 0RX- GND 
20 GND PMC1-2 PMC1-4 GND PMC1-1 PMC1-3 GND 
19 GND PMC1-6 PMC1-8 GND PMC1-5 PMC1-7 GND 
18 GND PMC1-10 PMC1-12 GND PMC1-9 PMC1-11 GND 
17 GND PMC1-14 PMC1-16 GND  PMC1-13 PMC1-15 GND 
16 GND PMC1-18 PMC1-20 GND  PMC1-17 PMC1-19 GND 
15 GND PMC1-22 PMC1-24 GND  PMC1-21 PMC1-23 GND 
14 GND  PMC1-26 PMC1-28 GND PMC1-25  PMC1-27 GND 
13 GND PMC1-30 PMC1-32 GND PMC1-29 PMC1-31 GND 
12 GND PMC1-34 PMC1-36 GND PMC1-33 PMC1-35 GND 
11 GND PMC1-38 PMC1-40 GND PMC1-37 PMC1-39 GND 
10 GND PMC1-42 PMC1-44 GND PMC1-41 PMC1-43 GND 
9 GND PMC1-46 PMC1-48 GND PMC1-45 PMC1-47 GND 
8 GND PMC1-50 PMC1-52 GND PMC1-49 PMC1-51 GND 
7 GND PMC1-54 PMC1-56 GND PMC1-53 PMC1-55 GND 
6 GND PMC1-58 PMC1-60 GND PMC1-57 PMC1-59 GND 
5 GND PMC1-62 PMC1-64 GND PMC1-61 PMC1-63 GND 
4 GND PMC2-2 PMC2-4 GND PMC2-1 PMC2-3 GND 
3 GND PMC2-6 PMC2-8 GND PMC2-5 PMC2-7 GND 
2 GND PMC2-10 PMC2-12 GND PMC2-9 PMC2-11 GND 
1 GND PMC2-14 PMC2-16 GND PMC2-13 PMC2-15 GND 

 

 

3-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.8 – J3 Connector Definitions for Revisions A and B 

Pin Z A B C D E F 
19 GND CDA    CDB   2RD- GND 
18 GND  CTSA    CTSB   2RD+ GND 
17 GND RTSA    RTSB   2TD- GND 
16 GND  RDA    RDB   2TD+ GND 
15 GND TDA    TDB  USER_INT1  GND 
14 GND 3.3V 3.3V 3.3V 5V 5V GND 
13 GND PMC1-5 PMC1-4 PMC1-3 PMC1-2 PMC1-1 GND 
12 GND PMC1-10 PMC1-9 PMC1-8 PMC1-7 PMC1-6 GND 
11 GND PMC1-15 PMC1-14 PMC1-13 PMC1-12 PMC1-11 GND 
10 GND PMC1-20 PMC1-19 PMC1-18 PMC1-17 PMC1-16 GND 
9 GND PMC1-25 PMC1-24 PMC1-23 PMC1-22 PMC1-21 GND 
8 GND PMC1-30 PMC1-29 PMC1-28 PMC1-27 PMC1-26 GND 
7 GND PMC1-35 PMC1-34 PMC1-33 PMC1-32 PMC1-31 GND 
6 GND PMC1-40 PMC1-39 PMC1-38 PMC1-37 PMC1-36 GND 
5 GND PMC1-45 PMC1-44 PMC1-43 PMC1-42 PMC1-41 GND 
4 GND PMC1-50 PMC1-49 PMC1-48 PMC1-47 PMC1-46 GND 
3 GND PMC1-55 PMC1-54 PMC1-53 PMC1-52 PMC1-51 GND 
2 GND PMC1-60 PMC1-59 PMC1-58 PMC1-57 PMC1-56 GND 
1 GND VIO PMC1-64 PMC1-63 PMC1-62 PMC1-61 GND 

 

 

3-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 3: Hardware Architecture 
 

Table 3.9 – J5 Connector Definitions for Revisions A and B 

Pin Z A B C D E F 
22 GND GTCK KTCK PTCK PCHKSTPO 1TD+ GND 
21 GND GTMS KTMS PTMS PCHKSTPI 1TD- GND 
20 GND GTDI KTDI PTDI PQCK 1RD+ GND 
19 GND GTDO KTDO PTDO PQREQ 1RD- GND 
18 GND GTDO2 KTRST PTRST PBRST  0TD+ GND 
17 GND GTCK_R JSRESET PSRESET  USER_INT0 0TD- GND 
16 GND GTCK_C JHRESET PHRESET  XTCK 0RD+ GND 
15 GND GTRST XTDO XTDI   XTMS 0RD- GND 
14 GND  IX RSVD IX RSVD  IX RSVD  IX RSVD  IX RSVD  GND 
13 GND PMC2-5 PMC2-4 PMC2-3 PMC2-2 PMC2-1 GND 
12 GND PMC2-10 PMC2-9 PMC2-8 PMC2-7 PMC2-6 GND 
11 GND PMC2-15 PMC2-14 PMC2-13 PMC2-12 PMC2-11 GND 
10 GND PMC2-20 PMC2-19 PMC2-18 PMC2-17 PMC2-16 GND 
9 GND PMC2-25 PMC2-24 PMC2-23 PMC2-22 PMC2-21 GND 
8 GND PMC2-30 PMC2-29 PMC2-28 PMC2-27 PMC2-26 GND 
7 GND PMC2-35 PMC2-34 PMC2-33 PMC2-32 PMC2-31 GND 
6 GND PMC2-40 PMC2-39 PMC2-38 PMC2-37 PMC2-36 GND 
5 GND PMC2-45 PMC2-44 PMC2-43 PMC2-42 PMC2-41 GND 
4 GND PMC2-50 PMC2-49 PMC2-48 PMC2-47 PMC2-46 GND 
3 GND PMC2-55 PMC2-54 PMC2-53 PMC2-52 PMC2-51 GND 
2 GND PMC2-60 PMC2-59 PMC2-58 PMC2-57 PMC2-56 GND 
1 GND RPMPRES PMC2-64 PMC2-63 PMC2-62 PMC2-61 GND 

 

 

 

3-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 
 

Chapter 4:  Memory Maps 
 

4.1 Introduction 
This chapter presents memory maps for the IOPlus, the SPEs, and the global memory.  
(Note that since the IOPlus can access the SPE memory, the SPE memory maps are of 
interest to the IOPlus.)  Table 4.1 presents the board memory map as viewed by the 
IOPlus and the PCI bus. 
 
The board’s PCI bus is represented as 4 segments in Tables 4.1 - 4.3.  These segments 
correspond to the PCI buses that exist between the PCI bridges. Bus 0 corresponds to the 
bus that connects the IOPlus to the three PCI-PCI bridges. Bus 1 is for PMC site #1 and 
the SPE A/B cluster. Bus 2 is for PMC site #2 and the SPE C/D cluster.  The actual bus 
numbers that get assigned during the board’s initialization may differ if a PMC site is 
populated with a PMC device that contains PCI bridges that further segment the PCI bus.   
In that case, the device buses will pick up the extra sequences in the numbers at that 
location.  For example a PMC device that has three local buses and that is located in the 
PMC site #1, will contain bus 2, 3, & 4 with bus 5 being the new number for PMC site 
#2. 
 
Since all the components of the IXA4 are connected together by the PCI buses, 
effectively, all the memory on the board is globally accessible.  When this manual uses 
the term “global memory”, it is referring to the SDRAM local to the IOPlus.  This is done 
because part of this memory area is used as a global resource for IOPlus / SPE 
communication. 
 
In viewing Table 4.1 you’ll notice many “holes” in the PCI and IOPlus address maps.  
Some of these will be filled with future upgrades of the memory, and others are 
unreachable regions by design.   
 
The memory map of the IXA4 may look a little intimidating at first, but the capability to 
address many of the boards features, and the ability to make the maps work for you, make 
the IXA4 a unique solution.      
 
 
 
 
 
 
 

4-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

4.2 IOPlus Memory Map 
Table 4.1 presents the memory map for the IOPlus. 

 
 

Table 4.1 - IOPlus-Local and PCI Memory Map 
 

IOPlus Address Range Size Description IOPlus Description PCI Address Generated 
00000000 - 07FFFFFF 128 MB Global Memory System Memory None 
08000000 - 3FFFFFFF 896 MB Reserved  None 
40000000 - 7FFFFFFF 1 GB IOPlus Reserved  None 
80000000 – 9FFFFFFF 512 MB PMC 1 and PCI A/B Devices 80000000 – 9FFFFFFF 
A0000000 – AFFFFFFF 256 MB SPE AB SDRAM A0000000 – AFFFFFFF 
B0000000 – B5EFFFFF 95 MB Reserved B0000000 – B5EFFFFF 
B5F00000 – B5FFFFFF 1 MB SPE AB Embedded Utilities 

Memory Block 
B5F00000 – B5FFFFFF 

B6000000 - BFFFFFFF 160 MB Dy 4 Systems Reserved 00000000 – 07FFFFFF 
C0000000 – DFFFFFFF 512 MB PMC 2 and PCI C/D Devices C0000000 – DFFFFFFF 
E0000000 – EFFFFFFF 256 MB SPE CD SDRAM E0000000 – EFFFFFFF 
F0000000 – F5EFFFFF 95 MB Reserved F0000000 – F5EFFFFF 
F5F00000 – F5FFFFFF 1 MB SPE CD Embedded Utilities 

Memory Block 
F5F00000 – F5FFFFFF 

F6000000 – F6FFFFFF 16 MB Reserved F6000000 – F6FFFFFF 
F7000000 – F7FFFFFF 16 MB IOPlus Ethernet F7000000 – F7FFFFFF 
F8000000 – FBFFFFFF 64 MB CPCI Upstream Memory 

Window 
F8000000 – FBFFFFFF 

FC000000 – FCFFFFFF 16 MB cPCI Control/Status Registers 

 
 
 
 
 
 
 
 
 

PCI Memory Space 

FC000000 – FCFFFFFF 
FD000000 – FD0FFFFF 1 MB IOPlus Embedded Utilities 

Memory Block 
Available ONLY to 

the IOPlus 
 

FD100000 – FDFFFFFF 15 MB PCI/ISA Memory Space PCI/ISA Memory 
Space 

FD100000 – FDFFFFFF 

FE000000 – FEBFFFFF 12 MB PCI I/O Space PCI I/O Space  
FEC00000 – FEDFFFFF 2 MB Configuration Address 

Register 
IOPlus Registers  

None 
FEE00000 – FEEFFFFF 1 MB Configuration Data Register   
FEF00000 – FEFFFFFF 1 MB PCI Interrupt Acknowledge   
FF000000 - FF7FFFFF 8 MB EPLD Registers, FPGA 

Interrupt Mux (Port X) 
RCS1- FLASH/ROM None 

FF800000 – FFDFFFFF 6 MB Reserved Not Used None 
FFE00000 – FFFFFFFF 2 MB Boot FLASH (Port X) RCS0- FLASH/ROM None 

4-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

4.3 SPE Memory 
Tables 4.2 and 4.3 present the memory maps for the SPEs while Table 4.4 presents a 
summary of the PCI memory map. 

 

Table 4.2 - SPE A/B Cluster Memory Map 

SPE Local Address Size Description Local Description PCI Address Generated 
00000000 – 0FFFFFFF 256 MB SPE AB SDRAM Local System Memory None 
10000000 - 3FFFFFFF 768 MB Not Used  None 
40000000 - 77FFFFFF 896 MB SPE-PCI Bridge Reserved  None 
78000000 – 7BFFFFFF 64 MB 64-bit Extended FLASH/ROM  Not Used (RCS3) None 
7C000000 – 7FFFFFFF 64 MB 64-bit Extended FLASH/ROM Not Used (RCS2) None 
80000000 – 9FFFFFFF 512 MB PMC Site 1 and PCI A/B 

Devices 
80000000 – 9FFFFFFF 

A0000000 – A7FFFFFF 128 MB Illegal Block  None 
A8000000 – B5EFFFFF 223 MB Reserved A8000000 – B5EFFFFF 
B5F00000 – B7FFFFFF 33 MB Illegal Block None 
B8000000 – BFFFFFFF 
 
 

128 MB Global SDRAM  
(must use SPE_PCI Bridge 
Outbound Translation Register 
to translate address to global 
memory) 

00000000 – 07FFFFFF 
 
(After Boot and 
Initialization) 

C0000000 – DFFFFFFF 512 MB PMC Site 2 and PCI C/D 
Devices 

C0000000 – DFFFFFFF 

E0000000 – EFFFFFFF 256 MB SPE CD SDRAM  E0000000 – EFFFFFFF 
F0000000 – F5EFFFFF 95 MB Reserved F0000000 – F5EFFFFF 
F5F00000 – F5FFFFFF 1 MB SPE CD Embedded Utilities 

Memory Block 
F5F00000 – F5FFFFFF 

F6000000 – F6FFFFFF 16 MB Reserved F6000000 – F6FFFFFF 
F7000000 – F7FFFFFF 16 MB IOPlus Ethernet F7000000 – F7FFFFFF 
F8000000 – FBFFFFFF 64 MB cPCI Upstream Memory 

Window 
F8000000 – FBFFFFFF 

FC000000 – FCFFFFFF  16 MB cPCI Control/Status Registers 

 
 
 

 
 
 
 
 

PCI Memory Space 

FC000000 – FCFFFFFF 
FD000000 – FD0FFFFF 1 MB Local Address of SPE AB 

Embedded Utilities Memory 
Block 

Available ONLY to 
SPE AB at this 

Address 

None 

FD100000 – FDFFFFFF 15 MB PCI/ISA Memory Space PCI/ISA Memory 
Space 

FD100000 – FDFFFFFF 

FE000000 – FEBFFFFF 12 MB PCI I/O Space PCI I/O Space  
FEC00000 – FEDFFFFF 2 MB Configuration Address 

Register 
 

FEE00000 – FEEFFFFF 1 MB Configuration Data Register 

SPE-PCI Bridge 
 Registers 

None 
FEF00000 – FEFFFFFF 1 MB PCI Interrupt Acknowledge   
FF000000 - FF7FFFFF 8 MB FPGA Interrupt Mux. (Port X) RCS1 – FPGA Access None 
FF800000 – FFEFFFFF 7 MB Not Used Not Used None 
FFF00000 – FFF01FFF 8 KB Boot Area 

(must use SPE-PCI Bridge 
Outbound Translation Register 
to translate address to global 
memory) 

 
 

Global SDRAM 

40000 – 41FFF 
 
(At Boot Time Only; 
This range is 
Programmable in the 
SPE-PCI Bridge) 

FFF02000 - FFFFFFFF 1016 KB Not Used  FFF02000 - FFFFFFFF 

 
 

4-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 

Table 4.3 - SPE C/D Cluster Memory Map 

 

SPE Local Address Size Description Local Description PCI Address Generated 
00000000 – 0FFFFFFF 256 MB SPE CD SDRAM Local System Memory None 
10000000 - 3FFFFFFF 768 MB Not Used  None 
40000000 - 77FFFFFF 896 MB SPE_PCI Bridge Reserved  None 
78000000 – 7BFFFFFF 64 MB 64-bit Extended 

FLASH/ROM  
Not Used (RCS3) None 

7C000000 – 7FFFFFFF 64 MB 64-bit Extended 
FLASH/ROM 

Not Used (RCS2) None 

80000000 – 9FFFFFFF 512 MB PMC Site 1 and PCI A/B 
Devices 

80000000 – 9FFFFFFF 

A0000000 – AFFFFFFF 256 MB SPE AB SDRAM A0000000 – AFFFFFFF 
B0000000 – B5EFFFFF 95 MB Reserved B0000000 – B5EFFFFF 
B5F00000 – B5FFFFFF 1 MB SPE AB Embedded Utilities 

Memory Block 
B5F00000 – B5FFFFFF 

B6000000 – B7FFFFFF 32 MB Reserved B6000000 – B7FFFFFF 
B8000000 – BFFFFFFF 128 MB Global SDRAM 

(must use SPE-PCI Bridge 
Outbound Translation 
Register to translate 
address to global memory) 

00000000 – 07FFFFFF 
 
(After Boot and 
Initialization) 

C0000000 – DFFFFFFF 512 MB PMC Site 2 and PCI C/D 
Devices 

C0000000 – DFFFFFFF 

E0000000 – E7FFFFFF 128 MB Illegal Block  
E8000000 – F5EFFFFF 223 MB Reserved E8000000 – F5EFFFFF 
F5F00000 – F5FFFFFF 1 MB Illegal Block  
F6000000 – F6FFFFFF 16 MB Reserved F6000000 – F6FFFFFF 
F7000000 – F7FFFFFF 16 MB IOPlus Ethernet F7000000 – F7FFFFFF 
F8000000 – FBFFFFFF 64 MB cPCI Upstream Memory 

Window 
F8000000 – FBFFFFFF 

FC000000 – FCFFFFFF  16 MB cPCI Control/Status 
Registers 

 
 
 
 
 
 
 

 
PCI Memory Space 

FC000000 – FCFFFFFF 

FD000000 – FD0FFFFF 1 MB Local Address of SPE CD 
Embedded Utilities Memory 
Block 

Available ONLY to SPE 
CD at this Address 

None 

FD100000 – FDFFFFFF 15 MB PCI/ISA Memory Space PCI/ISA Memory Space FD100000 – FDFFFFFF 
FE000000 – FEBFFFFF 12 MB PCI I/O Space PCI I/O Space  
FEC00000 – FEDFFFFF 2 MB Configuration Address 

Register 
SPE-PCI Bridge 

Registers 
Reserved  

FEE00000 – FEEFFFFF 1 MB Configuration Data Register   
FEF00000 – FEFFFFFF 1 MB PCI Interrupt Acknowledge   
FF000000 - FF7FFFFF 8 MB FPGA Interrupt Mux. (Port 

X)  
RCS1 – FPGA Access None 

FF800000 – FFEFFFFF 7 MB Not Used Not Used None 

FFF00000 – FFF01FFF 8 KB Boot Area 
(must use SPE-PCI Bridge 
Outbound Translation 
Register to translate 
address to global memory) 

 
Global SDRAM 

40000 – 41FFF  
 
(At Boot Time Only; 
This Range is 
Programmable in the 
SPE-PCI Bridge) 

FFF02000 – FFFFFFFF 1016 KB Not Used  FFF02000 – FFFFFFFF 

4-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Table 4.4 - PCI Memory Map 

PCI Address Range Size Description 
   
00000000 - 07FFFFFF 128 MB Global Memory 
08000000 - 7FFFFFFF 1920 MB Not Used 
80000000 – 9FFFFFFF 512 MB SPE AB PMC 
A0000000 – AFFFFFF 256 MB SPE AB SDRAM 
B0000000 – B5EFFFFF 95 MB Reserved  
B5F00000 – B5FFFFFF 1 MB SPE AB Embedded Utilities 

Memory Block 
B6000000 – BFFFFFFF 160 MB Not Used 
C0000000 – DFFFFFFF 512 MB SPE CD PMC 
E0000000 – EFFFFFF 256 MB SPE CD SDRAM 
F0000000 – F5EFFFFF 95 MB Reserved  
F5F00000 – F5FFFFFF 1 MB SPE CD Embedded Utilities 

Memory Block 
F6000000 – F6FFFFFF 16 MB Reserved 
F7000000 – F7FFFFFF 16 MB IOPlus us Ethernet 
F8000000 – FBFFFFFF 64 MB cPCI Upstream Memory Window 
FC000000 – FCFFFFFF  16 MB cPCI Control/Status Registers 

 

4.4 Global Memory  
The global memory block is the SDRAM memory that is local to the IOPlus.  This 
memory is partitioned into several sections, some which are reserved for the IOPlus to 
use and others, which are available to the SPEs and the cPCI bus.  The IOPlus does not 
control the allocation of the global memory area available for the SPE and cPCI bus 
usage.  It is up to the developer to prevent one application from overwriting another 
application’s space.  The partitioning of the global memory area is shown in Table 4.5.  
There are two sections that are reserved for the IOPlus, one for user applications, and one 
section containing the Board Information Structure (BIS) that is created by the IOPlus but 
globally available.    

 

Board Information Structure 
The board information structure contains a collection of board configuration and status 
information.  This structure is used by IXAtools.  Memory mapping for the board 
information structure is provided for those customers developing their own interfaces.  
Two values in the structure are of significant value to the developer. They are the address 
of the host list table, and the address of the master list address table.   
 
The board information structure is located at PCI address 0x30000.  Both the IOPlus and 
the SPEs can access this structure.  The structure is stored in "big endian" mode. 
 
The host list table’s address is located at an offset of 0x138 and the master list address  
table’s address is located at an offset of 0x13C from the board information structure’s 
address. 
 
 
 
 

4-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 

Table 4.5 - Global Memory Map 

PCI/IOP Address Range Size Description Notes 
00000000 – 0002FFFF  192 KB IOPlus Reserved  
00030000 – 00030FFF       4 KB Board Information Structure Fixed address 
00031000 – 0007FFFF   316 KB IOPlus Reserved  
00080000 – 00FFFFFF  15.5 MB Used by VxWorks, if 

installed 
VxWorks treat this memory 
space as reserved if VxWorks 
is running on the IOPlus.  
Otherwise, this area is 
available to the developer. 

01000000 – 03FFFFFF     48 MB  User area Currently the global memory is 
only populated with 64 M. 
Space exists in the map for 
128 MB  

4.5 cPCI Memory  
 

Inbound Address Translation  
 
There are three Inbound (downstream) Address Translation Windows. These are used to 
translate cPCI addresses to IXA4 addresses. These are set up by the IXA4 boot code and 
should not be modified by the application. These windows are used to map all of global 
memory and the upper 32 MB of each SPE local memory space.  Table 4.6 shows the 
windows.  
 
The two windows for the SPE clusters show the upper 32 MB of memory for that cluster. 
Therefore the offset from the board base address changes depending on whether each 
SPE has 64 MB, 128 MB, or 256 MB of memory. 
 

Table 4.6 – cPCI Inbound Memory Map 

Offset from 
cPCI base 
address 

Window 
Size 

Address 
size 

Privileged / 
Non-Privileged 

Program / 
Data 

Description 

0x00000000 – 
0x3FFFFFFF 

64 MB A32 Both Both Global Memory 

0xA2000000 – 
0xA3FFFFFF 

32 MB A32 Both Both SPE A/B (if cluster has 64 MB of 
memory) 

0xA6000000 – 
0xA7FFFFFF 

32 MB A32 Both Both SPE A/B (if cluster has 128 MB of 
memory) 

0xAE000000 – 
0xAFFFFFFF 

32 MB A32 Both Both SPE A/B (if cluster has 256 MB of 
memory) 

0xE2000000 – 
0xE3FFFFFF 

32 MB A32 Both Both SPE C/D (if cluster has 64 MB of 
memory) 

0xE6000000 – 
0xE7FFFFFF 

32 MB A32 Both Both SPE C/D (if cluster has 128 MB of 
memory) 

0xEE000000 – 
0xEFFFFFFF 

32 MB A32 Both Both SPE C/D (if cluster has 256 MB of 
memory) 

 
 
 

4-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 
 

Outbound Address Translation  
 

There are also three Outbound (upstream) memory windows. These windows map 
addresses on the cPCI bus into IXA4 memory space. Two of these windows must be set 
up by the application code, the third window is reserved and must not be used by 
application code. Table 4.7 shows the location of these windows. 
 
These windows are 32 MB each and are accessible from any device on the IXA4 PCI 
address space (IOPlus, SPEs, PMCs, etc.) 
 

Table 4.7 – cPCI Outbound Memory Map 

IXA4 PCI 
Address 

Window 
Size 

Address 
size 

Privileged / 
Non-Privileged 

Program / 
Data 

Description 

0xF8000000 – 
0xF9FFFFFF 

32 MB A32 Both Both Outbound window 1 

0xFA000000 – 
0xFBFFFFFF 

32 MB A32 Both Both Outbound window 1 

 
 

4.6 Board Resource Manager Register Map 
The Board Resource Manager occupies 8 MB of the IOPlus and SPE-PCI bridge memory 
maps in the range FF00_0000 and FF7F_FFFF.  Tables 4.8 and 4.9 present the registers 
available in that address range from the AB cluster’s and CD cluster’s respective window 
into that space.  Table 4.10 presents the registers available to the IOPlus in that space. 

4-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 

Table 4.8 - Board Resource Manager Memory Map for Cluster AB 

Processor 
A/B Address 

Register Type Description 

FF000000 Read/Write Processor A INT Mask 1 Register 
FF000008 Read/Write Processor A INT Mask 2 Register 
FF000010 Read/Write Processor B INT Mask 1 Register 
FF000018 Read/Write Processor B INT Mask 2 Register 
FF000020 Read Only AB General Interrupt Status Register 
FF000028 R (Bits 0-6) 

W (Bit 7) 
AB Interrupt Status 1/LED A Control Register 

FF000030 R (Bits 0-6) 
W (Bit 7) 

AB Interrupt Status 2/LED B Control Register 

FF000038 Read Only Reserved 
FF000040 Read/Write Interrupt Status and Clear A Register  
FF000048 Read/Write Interrupt Status and Clear B Register 
FF000050 Write Only Processor Interrupt Generation Register A 
FF000058 Write Only Processor Interrupt Generation Register B  
FF000060 Read/Write AB Test Register 
FF000068 Read/Write Reserved 
FF000070 Read/Write Reserved 

 

Table 4.9 - Board Resource Manager Memory Map for Cluster CD 

Processor 
C/D Address 

Register Type Description 

FF000000 Read/Write Processor C INT Mask 1 Register 
FF000008 Read/Write Processor C INT Mask 2 Register 
FF000010 Read/Write Processor D INT Mask 1 Register 
FF000018 Read/Write Processor D INT Mask 2 Register 
FF000020 Read Only CD General Interrupt Status Register 
FF000028 R (Bits 0-6) 

W (Bit 7) 
CD Interrupt Status 1/LED C Control Register 

FF000030 R (Bits 0-6) 
W (Bit 7) 

CD Interrupt Status 2/LED D Control Register 

FF000038 Read Only Reserved 
FF000040 R/W Interrupt Status and Clear C Register  
FF000048 R/W Interrupt Status and Clear D Register 
FF000050 Write Only Processor Interrupt Generation Register C 
FF000058 Write Only Processor Interrupt Generation Register D  
FF000060 Read/Write CD Test Register 
FF000068 Read/Write Reserved 
FF000070 Read/Write Reserved 

 

4-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 

Table 4.10 - Board Resource Manager Memory Map for the IOPlus 

IOPlus 
Address 

Register Type Description 

FF400000 Read Only IOPlus General Interrupt Status Register 
FF400008 Read Only Reserved 
FF400010 Read Only IOPlus Status 1 Register 
FF400018 Read Only IOPlus Status 2 Register 
FF400020 Read/Write Processor Interrupt Status and Clear 

Register K 
FF400028 Write Only Processor Interrupt Generation Register K 
FF400030 Read/Write IOPlus Interrupt Mask Register (High Order) 
FF400038 Read/Write IOPlus Interrupt Mask Register (Low Order) 
FF400040 Read/Write Reserved 
FF400048 Read/Write Reserved 
FF400050 Read/Write Reserved 
FF400058 Read/Write Reserved 
FF400060 Read/Write Reserved 
FF400068 Read/Write Reserved 
FF400070 Read/Write Reserved 
FF400078 Read/Write Miscellaneous Register 
FF400080 Read Only CPCI Geographical Address Register 
FF400088 Read/Write IOPlus Test Register 
FF400090 Read Board Resource Manager Revision ID 

Register 

Mask Registers 
The Interrupt Mask Registers are used to route certain interrupt sources to interrupt 
outputs.  Although the Board Resource Manager provides nine interrupt outputs, only 
five of these are affected by the masks (the other four interrupt outputs are not masked 
and are connected directly to the IOPlus).  Four of the masked outputs go to the SPEs 
(one per processor) while one of the outputs connects into the IOPlus.  Each SPE 
processor is provided with two INT interrupt mask registers which are accessible locally 
(i.e. no PCI bus transactions are necessary).  The IOPlus processor is also provided with 
two mask registers. 
 
The interrupt mask registers are shown in Figure 4.1 through Figure 4.3.  Figure 4. 1 
shows the IOPlus controlled mask registers (which are accessible only to the IOPlus) 
while Figure 4.2 and Figure 4.3 show the INT interrupt mask registers that are accessible 
by the SPE processors. In Figure 4.2 note that bit 7 of the Processor X INT Mask is a 
global mask for processor interrupts targeted for processor X.  Setting this bit will allow 
any of the other processors on the IXA card to interrupt processor X. 

 
 
 
 
 
 

4-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 

Figure 4.1 - Interrupt Mask Register Format for CPE (IOPlus) processor 

 
 
 
 
 
 
 
 EN 

 
 
 
 
 EN 

 

High Order Register 
 

Bit 15 14 13 12 11 10 09 08 
 Reserved Reserved 0INTA_EN Ethernet0 UART 

Channel  B 
UART 

Channel  A 
CCD_ 

INT_EN 
CCD_PCI_ 

EN 

Bit 07 06 05 04 03 02 01 00 
 CAB_ 

INT_EN 
CAB_PCI_ 

EN 
USER_ 

INT1_EN 
USER_ 

INT0_EN 
PMC2_B/D 

_EN 
PMC2_A/C 

_EN 
PMC1_B/D 

_EN 
PMC1_A/C_

EN 
 
Low Order Register 
 

Bit 15 14 13 12 11 10 09 08 
Low 

Register 
INT5_EN INT4_EN INT3_EN INT2_EN INT1_EN INT0_EN Reserved Reserved 

Bit 07 06 05 04 03 02 01 00 
 Reserved 

 
Reserved Reserved Reserved Reserved Reserved Reserved Reserved 

 
(Note that this register is split into a high and low order register in order to accommodate all 
the bits needed) 

 
Processor X INT Mask 1 Register (where X is A or B) 
 

Bit 07 06 05 04 03 02 01 00 
 Global PIGR 

Mask 
EthernetAB USER_ 

INT1_EN 
PMC2_B/D_ PMC2_A/C_

EN 
USER_ 

INT0_EN 
PMC1_B/D_

EN 
PMC1_A/C_

EN 

 
Processor X INT Mask 1 Register (where X is C or D) 
 

Bit 07 06 05 04 03 02 01 00 
 Global PIGR 

Mask 
EthernetCD USER_ 

INT1_EN 
PMC2_B/D_ PMC2_A/C_

EN 
USER_ 

INT0_EN 
PMC1_B/D_

EN 
PMC1_A/C_

EN 

Figure 4.2 - Interrupt Mask Register 1 Format for SPE processors 

 

4-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Processor X INT Mask 2 Register (where X is A or B) 
 

Bit 07 06 05 04 03 02 01 00 
 INT5_EN INT4_EN INT3_EN INT2_EN INT1_EN INT0_EN CAB_PCI_ 

EN 
CAB_ 

INT_EN 

 
Processor X INT Mask 2 Register (where X is C or D) 
 

Bit 07 06 05 04 03 02 01 00 
 INT5_EN INT4_EN INT3_EN INT2_EN INT1_EN INT0_EN CCD_PCI_ 

EN 
CCD_ 

INT_EN 

 

Figure 4.3 - Interrupt Mask Register 2 Format for SPE processors 

 

Table 4.11 - Bit Field Definitions for the Interrupt Mask Registers 

Bit Field Description:  Enable Signal for: 
PMC1_A/C_EN Cluster AB PMC interrupts A & C 
PMC1_B/D_EN Cluster AB PMC interrupts B & D 
PMC2_A/C_EN Cluster CD PMC interrupts A & C 
PMC2_B/D_EN Cluster CD PMC interrupts B & D 
INT(5-0)_EN Processor Interrupt Identification bits 
CAB_PCI_EN PCI Interrupt from Cluster AB MPC107 
CAB_INT_EN Primary Interrupt from AB SPE-PCI bridge 
CCD_PCI_EN PCI Interrupt from Cluster CD MPC107 
CCD_INT_EN Primary Interrupt from CD SPE-PCI bridge 
USER_INT0_EN User Interrupt 0  
USER_INT1_EN User Interrupt 1  
UART Channel A UART Interrupt on Channel A (IOPlus only) 
UART Channel B UART Interrupt on Channel B (IOPlus only) 
Ethernet0 Ethernet on MPC8240 bus (IOPlus only) 
EthernetAB Ethernet on Cluster AB side 
EthernetCD Ethernet on Cluster CD side 
0INTA_EN 21554 Doorbell interrupt (IOPlus only) 

 
 
 
 
The definitions of Mask Register bit fields are provided in Table 4.11. All mask registers 
are read/write registers.  On hardware reset all bits are cleared. A one in any bit will 
enable that interrupt source. Multiple interrupt sources can be forwarded to a single 
output. A single source can also be used to generate multiple interrupts although, in this 
case, the application software running on the processors interrupted must properly 
coordinate the clearing of the interrupt if it is latched only at the source. Please note that 
the PMC interrupts (PMC1_A/C_EN, PMC1_B/D_EN, PMC2_A/C_EN, and 

4-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

PMC2_B/D_EN) are wired or’ed in pairs.  For example, PMC1_A/C_EN will allow 
interrupt A or C from PMC site 1 to activate an interrupt output. 
 
The IOPlus Interrupt Status Registers reflect the status of the masked interrupts.  The 
interrupt source is masked prior to being captured in the IOPlus Interrupt Status 
Registers. In contrast, the SPE Interrupt Status registers reflect the current status of the 
interrupt input. In other words, INT Interrupt Mask 1 and 2 registers do not affect the 
values latched in the SPE Interrupt Status Registers.  This means that when a SPE 
processor is interrupted, it must read the interrupt status registers with the foreknowledge 
of the interrupt mask configuration that it set. 
 
  
 NOTE:  By enabling the appropriate mask bit and writing to the PIGR 

register, a processor may interrupt any other processor on the board, 
including itself. 

 
 

  
 WARNING: The SPE interrupt Status Registers reflect the current status 

of the interrupt inputs, not the masked version of these interrupts.  
 

 

Processor Interrupt Generation Register 
The external interrupts are not latched in the Board Resource Manager since they are 
latched at the source.  However, the interrupts generated from Processor Interrupt 
Generation registers (PIGR) are latched. The PIGR has two primary fields to consider.  A 
three-bit Processor ID field defines the processor to be interrupted and a three-bit field 
which defines the Processor Interrupt Identification value. To use the register, a six-bit 
value is written to the PIGR.  This causes the Interrupt Status and Clear Register to be 
updated for the target processor. The Interrupt Status and Clear Register for the target 
processor reflects the decoded Processor Identification value.  For instance, SPE A 
writing a binary 0001_0011 to its PIGR register causes Processor Identification bit 3 to 
be set in SPE B Interrupt Status and Clear register. Note that the processor which 
originated the interrupt is not evident by the value in the Interrupt Status and Clear 
Register. See Figure 4.4 for further details.    

 
Since the Processor interrupts are latched, the user application must clear these interrupts 
by writing to the appropriate Processor Interrupt Status and Clear register.  For the 
example described above, processor B receives an interrupt from processor A, with a 
status value reflecting INT3 asserted in the Interrupt Status and Clear Register.  The user 
must write a one to this bit to clear the interrupt.  The Processor Interrupt Generation 
Registers are shown in Figure 4.4. 

 
 

4-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Processor Interrupt Generation Register A (PIGR_A; available to SPE AB only) 
 

Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved P2 P1 P0 INT2 INT1 INT0 

 
Processor Interrupt Generation Register B (PIGR_B; available to SPE AB only) 
 

Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved P2 P1 P0 INT2 INT1 INT0 

 
Processor Interrupt Generation Register C (PIGR_C; available to SPE CD only) 
 

Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved P2 P1 P0 INT2 INT1 INT0 

 
Processor Interrupt Generation Register D (PIGR_D; available to SPE CD only) 
 

Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved P2 P1 P0 INT2 INT1 INT0 

 
Processor Interrupt Generation Register K (PIGR_K; available to IOPlus only) 
 

Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved P2 P1 P0 INT2 INT1 INT0 

 
The bit definitions are: 
 
P2-0                            Processor Identification Bits 

 000 Interrupt IOPlus 
                                     001 Interrupt SPE A 
                                     010 Interrupt SPE B 
                                     011 Interrupt SPE C 
                                     100 Interrupt SPE D 
                                     101 Reserved 
                                     110 Interrupt SPE A,B,C,D 
                                     111 Interrupt SPE A,B,C,D,IOPlus 
INT2-0             Interrupt  Identification Bits decoded to bits 5:0 in the 
                                    Target Processor Interrupt Status and Clear Register 
  
   

Figure 4.4 - Processor Interrupt Generation Registers 
 

4-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Interrupt Status 
There are three different register types for interrupt status: Interrupt Status Registers, 
Interrupt Status and Clear Registers and Interrupt Status/LED Control Registers. 
 

1) Interrupt Status Registers per Port X interface:  
  SPE AB: 

  AB General Interrupt Status Register 
  SPE CD: 

  CD General Interrupt Status Register  
  IOPlus: 

  IOPlus General Interrupt Status Register 
  IOPlus Status 1 Register 
  IOPlus Status 2 Register 

 
2) Interrupt Status and Clear Registers per Port X interface:  

  SPE AB: 
  Processor A Interrupt Status and Clear 
  Processor B Interrupt Status and Clear 

  SPE CD: 
  Processor C Interrupt Status and Clear 
  Processor D Interrupt Status and Clear 

  IOPlus: IOPlus Interrupt Status and Clear Register 
 

3) Interrupt Status/LED Control Registers: 
  SPE AB: 

  AB Status 1/LED A Control Register 
  AB Status 2/LED B Control Register 

  SPE CD: 
  CD Status 1/LED C Control Register 
  CD Status 2/LED D Control Register 

 
 
There are a total of eight Interrupt Status Registers, five Interrupt Status and Clear 
Registers, and four Interrupt Status/LED Control Registers.   The Interrupt status registers 
for each SPE convey the same SPE interrupt information.  These registers are used to 
determine the Processor Interrupt Identification. The General Interrupt Status Registers 
are read by each processor to determine the general interrupt source.  Once this is 
determined, the processor reads the appropriate Interrupt Status Register (as specified by 
the active bit in the General Interrupt Status Register) to determine the specific interrupt 
source.  The relationship between the bits in the General Interrupt Status Register and the 
other interrupt status registers is provided in Table 4.12. 
 
 
 

4-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Table 4.12 - Relationship of General Interrupt Status Register Fields to Other Status 
Registers 

General Interrupt 
Status Register Bit 

Field 

Corresponding Status Register to Check 

Group 1 Status 1/LED Control Register 
Group 2 Status 2/LED Control Register 
A_INT Processor A Interrupt Status & Clear Register 
B_INT Processor B Interrupt Status & Clear Register 
C_INT Processor C Interrupt Status & Clear Register 
D_INT Processor D Interrupt Status & Clear Register 
K_INT Processor K Interrupt Status & Clear Register 

 
Each processor has an associated Interrupt Status and Clear Register and must read this 
register to determine Processor Interrupt Identification bits.  This register is also used to 
clear processor interrupts by writing a binary one to clear a specific active interrupt. Bit 7 
of the Interrupt Status and Clear Register indicates the processor cluster ID. Bit 7 is set to 
zero for processors A and B and one for processors C and D.  Bit 7 is read-only. 
 
The registers defined to convey interrupt status are illustrated in the Figures 4.5, 4.6, and 
4.7.  The figures are grouped according to processor access privileges.  
 
The Status Registers are read-only registers while the Status and Clear Registers are 
read/write registers. On hardware reset all bits are cleared to zero. 

4-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

4-16 

AB General Interrupt Status Register  
 
Bit 07 06 05 04 03 02 01 00 
 Revision Reserved Reserved B_INT A_INT Group 2 Group 1 Reserved 

 
where: 

Group 1: Source of Interrupt was from SPE AB or User Interrupt 0 
Group 2: Source of Interrupt was from SPE CD or User Interrupt 1.   
A_INT: A Processor Interrupt occurred and is intended for processor A 
B_INT: A Processor Interrupt occurred and is intended for processor B 
Revision: 1 indicates support of multiple inter-processor interrupts 

 
AB Status 1/LED A Control Register (Accessible to Processors A and B only) 
 
Bit 07 06 05 04 03 02 01 00 

 LED_A  Reserved EthernetAB USER 
INT0 

PMC1 
_B/D 

PMC1 
_A/C 

CAB_PCI CAB_INT 

 
AB Status 2/LED B Control Register  
 
Bit 07 06 05 04 03 02 01 00 

 LED_B  Reserved Reserved USER 
INT1 

PMC2 
_B/D 

PMC2 
_A/C 

CCD_PCI CCD_INT 

 
Processor A Interrupt Status and Clear Register  
 
Bit 07 06 05 04 03 02 01 00 

 Cluster ID 0 
 

Reserved INT5 INT4 INT3 INT2 INT1 INT0 

 
Processor B Interrupt Status and Clear Register  
 
Bit 07 06 05 04 03 02 01 00 

 Cluster ID 0 
 

Reserved INT5 INT4 INT3 INT2 INT1 INT0 

 
where: 

INT5-0   Interrupt Identification Bits 
                                    One bit is set when a Processor Interrupt Occurs 
                                    Multiple bits set indicate that more than one processor 

                        Interrupt has occurred. 
 

Figure 4.5 - SPE AB Status Registers 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Figure 4.6 - SPE CD Status Registers 

 
CD General Interrupt Status Register 
Bit 07 06 05 04 03 02 01 00 
 Revision Reserved Reserved D_INT C_INT Group 2 Group 1 Reserved 

 
where: 

Group 1: Source of Interrupt was from SPE AB or User Interrupt 0 
Group 2: Source of Interrupt was from SPE CD or User Interrupt 1.   
C_INT: A Processor Interrupt occurred and is intended for processor C 
D_INT: A Processor Interrupt occurred and is intended for processor D 
Revision: 1 indicates support of multiple inter-processor interrupts 

 
CD Status 1/LED C Control Register 
 
Bit 07 06 05 04 03 02 01 00 

 LED_C  Reserved EthernetCD USER 
INT0 

PMC1 
_B/D 

PMC1 
_A/C 

CAB_PCI CAB_INT 

 
CD Status 2/LED D Control Register 
 
Bit 07 06 05 04 03 02 01 00 

 LED_D  Reserved Reserved USER 
INT1 

PMC2 
_B/D 

PMC2 
_A/C 

CCD_PCI CCD_INT 

 
Processor C Interrupt Status and Clear Register  
 
Bit 07 06 05 04 03 02 01 00 

 Cluster ID 1 Reserved INT5 INT4 INT3 INT2 INT1 INT0 

 
Processor D Interrupt Status and Clear Register  
 
Bit 07 06 05 04 03 02 01 00 

 Cluster ID 1 Reserved INT5 INT4 INT3 INT2 INT1 INT0 

 
where: 

INT5-0   Interrupt Identification Bits 
                                    One bit is set when a Processor Interrupt Occurs 
                                    Multiple bits set indicate that more than one processor 

                        Interrupt has occurred. 
 

4-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 - IOPlus Interrupt Status Registers 

 
IOPlus General Interrupt Status Register  
 
Bit 07 06 05 04 03 02 01 00 
 Reserved Reserved Reserved Reserved K_INT Group 2 Group 1 Reserved 

 
where: 

Group 1: Source of Interrupt was from SPE AB or User Interrupt 0 
Group 2: Source of Interrupt was from SPE CD or User Interrupt 1.   
K_INT: A Processor Interrupt occurred and is intended for IOPlus 
  

IOPlus Status 1 Register  
 
Bit 07 06 05 04 03 02 01 00 

 Reserved 0INTA Ethernet0 USER 
INT0 

PMC1B/D PMC1A/C CAB_PCI CAB_INT 

 
IOPlus Status 2 Register  
 
Bit 07 06 05 04 03 02 01 00 

 Reserved UART 
Channel A 

UART 
Channel B 

USER 
INT1 

PMC2B/D PMC2A/C CCD_PCI CCD_INT 

 
IOPlus Interrupt Status and Clear Register  
 
Bit 07 06 05 04 03 02 01 00 

 Reserved Reserved INT5 INT4 INT3 INT2 INT1 INT0 

 
where: 

INT5-0   Interrupt Identification Bits 
 
The GISR register is mapped to the external interrupt pins of the IOPLUS. 
When GISR[3] is set to one,  external interrupt 0 asserts 
When GISR[2] is set to one,  external interrupt 1 asserts 
When GISR[1] is set to one,  external interrupt 2 asserts 
When GISR[0] is set to one,  external interrupt 3 asserts 
 

 
 

4-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 4: Memory Maps 
 

Processor Status LED Control 
The Board Resource Manager contains bits for controlling the SPE Processor Status 
LEDs.  The bits for LED control are contained in the SPE AB and SPE CD Interrupt 
Status/LED Control Registers defined in Figure 4.5 and Figure 4.6. The LEDs are active 
after configuration of the Board Resource Manager by the boot code. 

 

TEST Registers 
There is one Read/Write test register for each Port X interface.  These registers are 
provided to facilitate Port X validation.  They are intended for test use only. The Test 
Register for each Cluster Port X interface is eight bits wide while the Test Register for 
the IOPlus Port X interface is 16 bits wide. 

 

cPCI Geographical Address Register 
 
This 16 bit read only register allows the software to read the COMPACT PCI Geographical 
Address pins. 
 
The format of the COMPACT PCI Geographical Address Register is shown in Figure 4.8.  This 
register may be accessed only by the IOPlus. 
 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
 Not Used SGA(4:0) NU GA(4:0) 

Figure 4.8 COMPACT PCI Geographical Address Register Format 
 
GA(4:0) COMPACT PCI Geographical Address pins. 
SGA(4:0) COMPACT PCI Shelf Geographical Address pins. 
 

Miscellaneous Register 
 
This 16 bit read only register allows the software to read miscellaneous status information. 
 
The format the Miscellaneous Register is shown in Figure 4.9.  This register may be accessed 
only by the IOPlus. 
 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
 Not Used CFGAUX RPMPRES

Figure 4.9 Miscellaneous Register Format 

 

4-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 5:  Using the IOPlus 

5.1 Introduction 
This chapter contains information on the generic IOPlus capabilities.  Some of these 
capabilities pertain specifically to a VME bus backplane.  Such capabilities are not 
applicable to the IXA-4 product. 
 
This chapter describes the communication protocols used by the IOPlus to communicate 
with host software and SPE software (also referred to as external software components).  
When the IXA4 board boots, an IOPlus runtime kernel is loaded into the IOPlus 
processor.  This code is of minimal size and is not active until it is “awakened” by an 
interrupt.  The IOPlus kernel is used to process commands that it receives from the SPE 
processors and/or the host.  Routines are provided in IXAtools that can be linked into a 
SPE user application to command the IOPlus kernel.  An understanding of the command 
protocol details discussed in sections 5.2 – 5.8 is not required in order to use the routines 
provided by IXAtools.  However, you will want to refer to the information provided in 
these sections if you are writing your own interface to the IOPlus.   
 
External software components communicate with the IOPlus by placing one or more 
command packets into a linked command list.  The IOPlus responds to these commands 
by placing a response packet into a linked list of responses.   

 

5.2 Command / Response Packet Format 
All commands and responses are formatted into standard data packets.  These packets 
consist of a packet header and packet data.  The packet header consists of five 32-bit 
words.  The packet data is variable-length.  The format of a packet is shown in Figure 
5.1. 

 
Opcode 

Source Processor ID 
Destination Processor ID 

Size of entire packet 
Options 

Data Word 1 
Data Word 2 

… 
… 
 

Data Word N 
Figure 5.1 - Command Packet 

5-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

 
The packet header fields are defined as follows: 
Opcode: Defines the command to be performed (or identifies the 

response) 
Source Processor ID: Identifies the processor (SPE, IOPlus, or host process) 

which initiated the command. 
Destination Processor ID: Identifies the processor (SPE, IOPlus, or host process) 

which should receive and process the command 
Size of entire packet: Specifies the number of 32-bit data words in the entire 

packet, including both the packet header and any attached 
data.  The meaning of the data words appended to the 
packet header depends on the Opcode. 

Options: Specifies options that modify how the command should be 
processed. 

Bit 0: 1 means respond to this command with a 
CMD_ACK 
0 means do not respond to this command. 

Bit 1: 1 (atomic operation) means that after the 
command is processed, the next command in 
this list will be processed 

 0 (fair operation) means that other in-
progress lists will be processed after this 
command has been processed. 

Bit 2-31: reserved (must be set to zero). 
Data words: Zero or more data words are attached to the packet, which 

provide additional information necessary for processing the 
command.  The meaning of the data words is command-
specific.  Refer to the list of commands processed by the 
IOPlus (provided later in this chapter) for more 
information. 

 

5.3 Packet Routing and Processor IDs 
The term “packet routing”, as used in this manual, is defined simply as the process of 
getting a packet where it needs to be, so that it can be processed.  Packet routing can be 
either direct or indirect. When the initiating software component places the command 
packet in a place where it can be accessed and processed by the destination software 
component, this is referred to as direct packet routing.  When the initiating software 
component places the command packet in a place that cannot be accessed directly by the 
destination software component, this is referred to as indirect packet routing.  In this 
situation, one or more intermediate software components must transfer the packet from 
where the initiator placed it to a location that can be accessed by the destination software 
component. 

The IOPlus software supports direct packet routing only.  Indirect packet routing is not 
supported.  This implies that software components initiating command packets will place 

5-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

these packets where they can be processed directly by the destination software 
component. 

Supporting only direct packet routing greatly simplifies the assignment of processor IDs.  
Processor IDs need to be unique only on a specific board, rather than within an entire 
system.  This type of processor ID is sometimes referred to as a relative processor ID or 
board processor ID.  The IOPlus assigns the processor IDs to the processors on an IXA4 
board as shown in Table 5.1.  

 

Table 5.1 - Assignment of Processor IDs 

Relative 
Processor ID 

Processor Name 

0 IOPlus 

1 SPE A 

2 SPE B 

3 SPE C 

. . . . . . . . 

N SPE N – last SPE on board as defined by 
FLASH parameter 

N+1 Host process 1 

N+2 Host process 2 

. . . . . . . . 

N+M Host process M – last host process that can 
access board simultaneously as defined by 
FLASH parameter 

 

There are situations where a processor ID that is unique within an entire system is 
required (this type of processor ID is referred to as an absolute processor ID or system 
processor ID).  For this reason, the IOPlus only examines the lower 16-bits of processor 
ID fields; the upper 16-bits are ignored.  Thus, an absolute processor ID can be placed in 
the upper 16 bits of any processor ID fields, when this information is required by the 
application.  The format of the source and destination processor ID fields in the packet 
header is provided in Figure 5.2. 

Absolute processor IDs could be used to discriminate a multi-board IXA4 system. In such 
a system the first board (board #0) would use an absolute processor ID of 0x0000 for its 
IOPlus, and the second board (board #1) would use an absolute processor ID of 0x0100 
for its IOPlus. 

5-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Source Processor ID field: 

 
Bit 

32 ……….. 16 15 ………. 0 
Ignored by IOP Board processor ID 

Destination Processor ID field: 

 
Bit 

32 ……… 16 15 ………. 0 
Ignored by IOP Board processor ID 

Figure 5.2 - Source and Destination Command Packet Fields 
 

Host processes also are assigned “processor IDs”.  This ID is used for generating 
response packets, as well as for generating interrupts and using semaphores.  Each host 
process accessing the board must have a unique “processor ID”  (how these IDs are 
assigned is described in the next paragraph).  The number of simultaneous host processes 
that can access the board is controlled by a parameter in FLASH, and thus is variable (the 
number of SPEs on the board is also variable).  As shown in Table 5.1, the host processor 
IDs are assigned immediately after the last SPE processor ID. 

5.4 Assignment of IDs to Host Processes 
Each host process “attached” to a board must have a unique “processor ID” number for 
communicating with software components on that board.  Note that the “processor ID” 
which a host process uses to communicate with one board may differ from the “processor 
ID” that the same host process uses to communicate with a second board. 
 
Host Process “Processor IDs” are assigned on a first-come, first-served basis.  A host 
process must “attach” to a board before it communicates with any of the software 
components on the board.  After all communications with a board are completed, the host 
process should “detach” from the board.  Failure to detach from a board will result in 
board resources being wasted, since they will not be properly released for use by other 
host processes. 

 
Attaching to a board: 
1) Get address of host list table from board information structure(see section 5.5) 
2) Get maximum number of allowed host processes from board information structure 
3) Scan host list table for free entries (entries which are non-zero) 
4) When a non-zero entry is found, perform a read/modify/write cycle to set the zero-

value to a any non-zero value.  An atomic access must be used to test the zero-value 
and write the non-zero value; otherwise, it is possible for two host processes to be 
assigned the same ID. 

5) The “processor ID” for the host process is determined using the following equation: 
    “processor ID” = offset of non-zero entry  + “maximum # of SPEs on board” + 1 

5-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

 
Detaching from board: 
1) Get address of host list table from board information structure. 
2) Determine offset in “host list table” using the following formula: 
      Offset = “processor ID” – “maximum # of SPEs on board” - 1 
3) Write a zero to this offset in the “host list table” (note that this write does not need to 

be atomic). 
 
 
 

Board
Information
Structure

&Host List
Table

 Non-zero value
 Non-zero value

 0

…..

 0

 0

 0

 0

 0

Host List Table

 Host Process 0

 Host Process 1

 Host Process M

 Host Process 2

 

Figure 5.3 - Host Process ID Assignment with Two Host Processes Already Attached 
 

5.5 Board Information Structure 
The board information structure is a global repository of information that describes the 
configuration of a board.  The structure is accessible from a host process (through the 
cPCI bus), from the IOPlus (through its local bus), and from the SPEs (through the PCI 
bus).  See 4.3 for the memory mapping of the board information structure. 

5.6 Linked Command List Overview 
The interface supported by the IOPlus uses linked lists of commands and linked lists of 
responses.  Each processor can create multiple linked lists of commands, but the IOPlus 
can process only one linked list of commands at a time.  Linked command lists can point 
to other lists, and can be used to create complicated command sequences, which can be 
“played” by the IOPlus upon command.  Linked lists can be located either in global 
memory (the IOPlus’ SDRAM ) or local SPE memory.      

A linked list of commands or responses consists simply of a sequence of command / 
response packets.  The packets are encapsulated in a simple data structure, with a “next” 

5-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

pointer preceding the packet header.  The “next” pointer is used to “link” a command to 
the next command in the list (see Figure 5.4 for an example of this structure). 

The link lists organizational structure used by the IOPlus consist of a “master list address 
table” and groups of “list address tables”.   

Master List Address Table 
The “master list address table” is a list of pointers to individual “list address tables”. A 
“list address table” contains pointers to linked lists of commands created by software 
components for processing by the software component that owns the “list address table”, 
as well as pointers to linked lists of responses created when the owning software 
component processes the command lists.  A single “list address table” is provided for 
sending commands to the IOPlus.  Slots for additional “list address tables” are provided 
for each SPE, and for the host processes.  Note that SPE and host linked list command 
support are for future expansion.  However, the IOPlus will create the “list address 
tables” for these software components. 

The address of the “master list address table” is located in the board information structure 
and is always located in global memory.  The “list address table” associated with each 
software component is also located in global memory, although individual entries in a 
“list address table” may be relocated into SPE local memory.  Linked command lists may 
be located in either global or local memory, but a single command list must reside 
entirely in either local or global memory.  Figure 5.4 illustrates a “list address table” with 
all the linked command list entries in global memory.  Figure 5.5 illustrates a “list 
address table” that has the entry for SPE 2 linked command list relocated into SPE 2’s 
local memory so that the table can be accessed without using the PCI bus.   

 

5-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

5-7 

Figure 5.4 - All List Address Table Entries in Global Memory 

 Board 
Information 
Structure 

&Master List 
Address Table 

Command Data 

Command Header 
NEXT pointer 

IOPlus List Address 
Table

SPE N

IOPlus
SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Master  List Address
Table

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

&List Address Table for IOPlus

&List Address Table for SPE 1

&List Address Table for SPE 2

&List Address Table for ….

&List Address Table for SPE N

&List Address Table for Host 1

&List Address Table for Host 2

&List Address Table for …..

&List Address Table for Host M

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Global Memory Global Memory 

Global Memory

Global or Local Memory 

List Address Tables for Host 
processes are provided in case the 
host implements a commanding 
scheme using linked lists

List Address Tables for the SPEs 
are provided in case the SPEs 
implement a command scheme 
using linked lists 

This command list was created by 
SPE 2 in either global or local 
SPE memory, for processing by 
the IOPlus 

This response list was created  for
SPE 2 by the IOPlus as the IOPlus
processed the commands in the
command list

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

5-8 

Figure 5.5 - List Address Table Entry Relocated to Local Memory 

 Board 
Information 
Structure 

&Master List 
Address Table 

Command Data 

Command Header 
NEXT pointer 

IOPlus List Address 
Table 

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Entry Address Rspnse List  Addr  00000004 Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Master List Address
Table

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

SPE 2 Cmd List Addr Rspnse List Addr Command Status

Global Memory Global Memory 

Global Memory

Local Memory 

Global or Local Memory 

SPE 2 has relocated its list address 
table entry to its local memory, so 
that the table can be accessed 
without using the PCI bus.  The 
LAT entry in global memory 
points to the relocated LAT entry 
in local SPE memory 

SPE  2 commands the IOPlus to 
perform a command list by writing 
the address of the command list to 
the LAT entry 

Command list created by SPE 2 in
global or local memory for
processing by IOPlus

Response list created by 
IOPlus as it processes the 
SPE 2 command list

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

List Address Table 
The “list address table” for the IOPlus, located in global memory, is a list of pointers to 
linked command lists created by other software components, and linked response lists 
created by the IOPlus as it processes command lists, as shown in Figure 5.4. The “list 
address table” also contains command modifiers and status indicators for each 
command/response list.  When a software component wishes to send a command to the 
IOPlus, it creates a linked list of commands in either global or local memory.  It places 
the address of the linked command list into the IOPlus’s “list address table” using its 
relative processor ID as an index into the table (e.g. SPE 2 will write into the table entry 
reserved for SPE 2).  After writing the command list address into the table, it generates an 
interrupt to the IOPlus. 

 

  
 After writing the command list address into the table, an interrupt to the 

IOPlus must be generated to start the command processing. 

A “list address table” entry for a software component can be relocated from global 
memory to SPE local memory by setting the “relocate” bit in the “command option” field 
of the “list address table” entry being relocated.  When an entry is relocated, the 
“command list address” field in the global memory “list address table” entry must contain 
the address in SPE local memory of the relocated “list address table” entry.  The 
relocated “list address table” entry contains pointers to the actual linked command and 
response lists, which can be located in either global or local SPE memory.  Figure 5.5 
illustrates SPE 2 relocating its “list address table” entry to its local memory. 

 

Why relocate a “list address table” entry from global into local memory?  Depending on 
the application, it may be valuable to locate the commands “closer” to the IOPlus (i.e. in 
global memory), or “closer” to the SPE (i.e. in SPE local memory).  For instance, to 
minimize PCI traffic used for IOPlus commanding, pre-configure the IOPlus command 
lists in global memory.  The command lists can then be started (and restarted) by doing a 
single PCI write.  

5.7 Linked List Management Protocol 
The linked list interface has been designed to provide a simple, low latency mechanism 
for commanding the IOPlus.  The protocol for using the linked list interface is 
straightforward.  A description of the process of initiating a command sequence using a 
linked command list and responding to a linked command list is provided below. 
 

5-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

 
Relocate the “List Address Table” entry if necessary:  
1) Determine whether the “list address table” entry should be located in global or local 

memory.  If the table entry does not need to be relocated, then skip to the “Initiating” 
portion of this sequence.  To relocate the table entry from global to local memory, 
perform the following steps: 

2) Allocate 16 bytes of local memory to hold the relocated “list address table” entry. 
3) Locate the “list address table” using the pointer contained in the “master list address 

table”. 
4) Locate the appropriate “list address table” entry using the software component’s 

relative processor ID as an index into the “list address table”. 
5) Relocate the “list address table” entry from global to local memory by writing the 

SPE local address of the 16 byte region allocated in step 2 into the “command list 
address” field of the “list address table” entry in global memory. 

6) Set the relocation bit in the “command option” field of the “list address table” entry in 
global memory. 

7) The table entry is now relocated from global to local memory. 
 
Initiating:  
1) To initiate a command sequence, a linked list of commands must be created in 

memory that belongs to the initiating software component.  This list can be located 
either in local memory, in the user portion of global memory, or in a reserved area of 
global memory that is dedicated to the linked lists belonging to each software 
component.  The address of this reserved area of global memory is found in the board 
information structure. The “command list address” field of the “list address table” 
entry is used to indicate whether the linked lists are located in local(1) or global(0) 
memory. 

2) Verify that the IOPlus has finished the previous command sequence by checking that 
the active bit in the “status” field of the “list address table” entry is zero.  If it is non-
zero, then try again later. 

3) Write the address of the first packet of the command sequence to the appropriate 
“command list address” field in the “list address table” entry belonging to the 
software component generating the command.  Note that if the “list address table” 
entry was relocated into local SPE memory, then the address of the first packet should 
be written to “command list address” field in the local “list address table” entry, 
rather than in the global memory “list address table” entry. 

4) If you wish to specify where the IOPlus should place responses, write the address of 
the response area to the “response list address” field in the “list address table” entry.  
If you want the IOPlus to manage the memory for response packets, write a zero to 
this location. 

5) Generate an interrupt to the IOPlus. 
6) The IOPlus will clear the “active” bit of the status word in the “list address table” 

entry when the command sequence has been processed. 
 

5-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Responses:  
1) The IOPlus will respond to all commands with a CMD_ACK packet (see the 

description of this packet below).  If the address in the appropriate “response list 
address” is zero, then the IOPlus will place responses in a reserved area of global 
memory.  If the address is non-zero, then the IOPlus will place responses at the 
specified address.  The address can be either in global or local SPE memory, as 
specified by a bit in the command option field of the “list address table” entry. 

2) A list of responses will be created at the “response list address” as the IOPlus 
performs the command sequence.  This list will grow as the command sequence is 
processed.  Upon successful completion of the command sequence, the IOPlus will 
clear the “active” bit of the appropriate status word in the “list address table”.  If an 
error is encountered while processing the command sequence, the IOPlus will set the 
“error” bit of the appropriate status word in the “list address table”.  The initiating 
software component can determine the type of error by examining the linked list of 
responses (if it doesn’t care, it can simply ignore the response list). 

5-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

5.8 Command Option and Status Register Definition 
The command option register associated with each software component in the “list 
address table” is used to specify how linked command lists are processed.  Each bit in the 
register is defined in Table 5.2.  

 

Table 5.2 - Command Option Register 

Bits Name Function 
0 Command 

List 
Address 
Location 

0  the address in the “command list address” field 
refers to global memory 
1  the address in the “command list address” field 
refers to local memory 

1 Response 
List 
Address 
Location 

0  the address in the “response list address” field 
refers to global memory 
1  the address in the “response list address” field 
refers to global memory 

2 Relocation 
flag 

0  this entry is not relocated; the addresses in the 
“command list address / response list address” fields 
point to linked command list packets 
1  this entry is relocated; the address in the 
“command list address” field points to the address of 
the relocated entry in local SPE memory; the 
“response list address” field is unused. 

3 Halt on 
Error flag 

0  IOPlus should continue processing subsequent 
commands when an error occurs in one command 
1  IOPlus should not process subsequent commands 
when an error occurs in a command 

4 Only save 
errors flag 

0  Save all response packets 
1  Only save response packets when they contain an 
error 

5-12 SPE ID Indicates which SPE the command list belongs to.  
SPE Ids are: 
     SPE A: 0x00 
     SPE B: 0x40 
     SPE C: 0x80 
     SPE D: 0xC0 

13-30 3-30 Reserved. 
31 Stop Commands the software component to stop processing 

the chain. 
1  Stop chain processing 
0  Do not stop chain processing 

 

5-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

The status register (see Table 5.3) associated with each software component in the “list 
address table”, is used by the IOPlus to report summary status information to each 
software component.  

 

   Table 5.3 - Status Register 

Bits Name Function 
0 Active bit 0  IOPlus is not currently processing the command list 

pointed to by this table entry 
1  IOPlus is currently processing the command list pointed 
to by this table entry 

1 Error bit 0  no error occurred during the processing of the command 
list pointed to by this table entry 
1  an error occurred during the processing of the command 
list pointed to by this table entry 
Note: The contents of this bit are only valid when the “Active 
bit” is zero 

2 Done bit 0  IOPlus has not completed this command chain 
1  IOPlus has finished processing this command chain 

3 Blocked bit 0  This command channel is not blocked 
1  This command channel is blocked on a shared resource 

4 Halted bit 0  This command channel has not been halted 
1  This command channel has been halted 

5 Waiting for 
Interrupt bit 

0  Command channel is not blocked on an interrupt 
1  Command channel is blocked waiting for an interrupt 

6 Interrupt 
found 

0  No interrupt found 
1  The interrupt that this command channel was waiting for 
(if any) has occurred. 

7-31 reserved Reserved for future use 
 

5.9 Interrupt Protocol 
The SPEs interrupt the IOPlus when they want the IOPlus to begin processing a 
command list.  When the SPEs are running VxWorks, interrupts are generated by calling 
ixa_ipi_interrupt.  It the host wishes to interrupt the IOPlus, it writes to the attention flag 
in the board information structure. 

5.10 Semaphore Protocol 
The IXA4 hardware provides four 7-bit wide semaphore registers, which may be used for 
sharing system resources.  The algorithm for requesting and releasing a semaphore is as 
follows: 

Requesting a semaphore: 

1) Write your processor ID + 1 to the semaphore register, setting the upper bit to 1. 

2) Read the semaphore register 

3) If you read back the value that you wrote, then you have been granted the 
semaphore --  utilize the shared resource, then release the semaphore 

5-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

4) If you read back a value different than the value you wrote, then someone else has 
been granted the semaphore – you must request the semaphore again (jump to step 
1) 

Releasing a semaphore: 

1) Write zero to the semaphore register with the upper bit set to 1 (i.e. write an 0x80 
to the semaphore register). 

Semaphore values between 32 and 255 refer to off-board semaphores (note that no 
protocol is currently defined by the IOPlus for using off-board semaphores).   

Table 5.4 shows the uses for each semaphore. 

 

Table 5.4 - Semaphore Assignments 

Semaphore ID Use 
0 Protects queue data structures 
1 Protects mailbox registers 

2 Reserved by Dy 4 Systems  

3 Reserved by Dy 4 Systems 

4 Reserved by Dy 4 Systems 

5 Reserved by Dy 4 Systems 

6 Reserved by Dy 4 Systems 

7 Reserved by Dy 4 Systems 

8 For customer use 

. . . .  

15 For customer use 

 

5.11 FLASH Memory Management Protocol 
The IXA4 provides from 4 MB to 16 MB of on-board non-volatile FLASH memory.  
This memory needs to store a variety of different data types as defined in Table 5.5. 

SPEs should not access the FLASH memory directly (even though it is possible to do this 
through the PCI bus); rather, they should use the commands in IXAtools to access 
FLASH memory.  This section is provided as support information for using those 
commands. 

 

 

5-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Table 5.5 - FLASH Memory Data Types 

Single 
or 

Multiple 

Data type Name Directory Entry Name Description 

S Directory directory Specifies all items stored in 
FLASH memory.  The format of 
the directory is provided below 

S Initial boot iop_copy Executes from FLASH; copies 
startup code to memory 

S Minimal 
boot/recovery code 

iop_recovery This item is located at the IOPlus 
boot address.  It either jumps to 
the initialization code, or performs 
minimal initialization and then 
waits for the FLASH to be 
reburned.   This sector is 
electrically write-protected. 

S Initialization/startup 
code 

This code initializes the hardware 
attached to the IOPlus, including 
the Xilinx, MPC-107s, and PCI 
bridge chips.  After completing, it 
jumps to the run-time code 

S Run-time code iop_runtime The run-time code for the IOPlus 
command servicing.   

S Production 
parameters 

prod_params These parameters are set when 
the board is initially built, or when 
it is returned for a RMA.  This 
sector should be electrically write-
protected. 

S Configuration 
parameters 

config_params Various parameters which control 
the operation of the board, 
including the PCI parameters 

S FPGA 1 program xilinx Data stream used to program the 
Xilinx 

S User programs spea, speb, spec, sped, 
speab, speac, spead, 
spebc, spebd, speabc, 

speabd, spebcd, speabcd 

User programs can be 
automatically loaded into the 
SPEs by the IOPlus upon startup 

S 

 

User global memory 
load 

Gmemdata This may be code or data that will 
be loaded into global memory on 
startup 

M User data  This is data that the user wants to 
store in non-volatile memory 

iop_startup 

 

5-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

A directory is stored in FLASH, which describes the location, size, and type of all items 
currently stored in FLASH.  The directory is located at the FLASH base address, and 
shall contain 64 entries.  An example directory is shown in Table 5.6. 

 

Table 5.6 - Example FLASH Directory 

Entry Offset 
(4 bytes) 

Entry Size 
(4 bytes) 

Entry Name 
(32 bytes) 

00000000 768 directory 

00100100 1000 iop_copy 

00101100 5000 iop_startup 

00200000 2000 prod_params 

00202000 2000 config_params 

 

1) Note that data does not need to be stored contiguously in FLASH.  Data is segmented 
so that maximum usage is made of the available FLASH memory space. 

2) Entry names must be unique. 

3) Reserved entry names (as shown above) have special meaning to the IOPlus software, 
and should not be used by application software. 

4) User programs, which are intended to run on the SPEs, must be in S-Record format 
before they are written into FLASH memory.  The name spe[a][b][c][d] you give to 
the file when writing it determines what SPE(s) it gets loaded to upon board reset.  
For instance, if you want the program to automatically load into SPEs A, C and D 
upon board reset, when writing the program into FLASH, name it speacd.   Chapter 8 
has more information on the procedure for writing programs into FLASH memory.  

5) User global memory load, can be a program or data that will be automatically written 
to global memory at board reset.  The contents must be burned into FLASH memory 
from an S record file so that address information is obtainable.  The contents can be 
written to any location in global memory with the exception of the addresses between 
0x4000 – 0x40000. A configuration flag can be set to start execution of the contents 
at the completion of the copy to global memory.  See Chapter 8 for more information 
on using this option.    

5.12 IOPlus Command List 
This section describes all commands processed by the IOPlus.  The format of the 
command, as well as a description of the command, is provided. All commands consist of 
packet header, parameters, and data, as described in the Command/Response Packet 
Format paragraph 5.3. 
 

5-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

These commands can be issued by SPE applications, by using functions in the SPE 
library. These functions are defined in Chapter 7. 

 
Several commands use a memory section ID as a parameter.  Table 5.7 lists the valid IDs 
for that parameter. Tables 5.8, 5.9 and 5.10 give the offsets for the ID locations that 
contain tables of information.  The offsets are used as an additional parameter to 
commands that require a memory section ID. 
 

Table 5.7 - Memory Section IDs 

ID Memory Type Supported 
by IOPlus 

Supported 
by SPE 

0 Local data memory X X 
1 Local program memory X X 
2 Global memory (base address) X  
3 Global memory (user space) X X 
4 PMC1 memory X X 
5 PMC2 memory X X 
6 Local SDRAM memory  X 
7 Reserved   
8 Reserved   
9 Reserved   

10 SPE A SDRAM memory X  
11 Reserved   
12 Reserved   
13 Reserved   
14 SPE B SDRAM memory X  
15 Reserved   
16 Reserved   
17 Reserved   
18 SPE C SDRAM memory X  
19 Reserved   
20 Reserved   
21 Reserved   
22 SPE D SDRAM memory X  
23 Reserved   
24 Version Information table X  
25 Status Information table X  
26 Board Information table X  
27 FLASH recovery code X  
28 FLASH startup code X  
29 FLASH runtime code X  
30 Production parameters X  
31 Configuration parameters X  
32 Xilinx program X  
33 Reserved X  
34 User program X  
35 User data X  
36 This table X  

 

5-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Table 5.8 - Format of Version Information Table (Table ID 24) 

Field offset Value 
0 Version ID of the version information (default is 0) 
1 IOPlus recovery code version 
2 IOPlus initialization code version 
3 IOPlus run-time code version 
4 Reserved 
5 Reserved 
6 Board Resource Manager version 
7 Reserved 
8 Reserved 
9 Reserved 

10 Serial Number 
11 Initial Build Configuration 
12 Current Build Configuration 
13 Initial Production Release Date 
14 PCO / RMA 1 ID 
15 PCO / RMA 1 Date 
16 PCO / RMA 2 ID 
17 PCO / RMA 2 Date 
18 PCO / RMA 3 ID 
19 PCO / RMA 3 Date 
20 PCO / RMA 4 ID 
21 PCO / RMA 4 Date 
22 PCO / RMA 5 ID 
23 PCO / RMA 5 Date 

24-31 Reserved 

 

Table 5.9 - Format of Status Information Table (Table ID 25) 

Field 
offset 

Processor 
 

Valid Processor Status Values 

0 IOPlus status 
1 SPE A status 
2 SPE B status 
 

. . . . 
 
. . . . 
 
 

N SPE N status 

0x00000000: Unknown 
0x00000001: Reset 
0x00000002: Waiting for load of user code 
0x00000003: Loading, waiting to start 
0x00000004: Running 
0x00000005: Stopped at breakpoint 
0x00000006: Failed self test 
0x00000007: Not Installed 

 

5-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Table 5.10 - Format of Board Information Table (Table ID 26) 

Field offset Value 
0 Board Type 
1 Trace status 
2 Board health 
3 Product version 
4 Initialization code version 
5 Initialization code date 
6 Runtime code version 
7 Runtime code date 
8 Software status ( 0 = no errors ) 
9 Health counter 

10 IOPlus type 
11 DSP/SPE type 
12 Number of SPEs 
13 Number of Hosts 
14 Number of unallocated LAT entries 
15 Reserved 
16 Global Memory bank 0 size 
17 Global Memory bank 0 type 
18 Global Memory bank 1 size 
19 Global Memory bank 1 type 
20 Global Memory bank 2 size 
21 Global Memory bank 2 type 
22 Global Memory bank 3 size 
23 Global Memory bank 3 type 
24 Local Memory bank 0 size 
25 Local Memory bank 0 type 
26 Local Memory bank 1 size 
27 Local Memory bank 1 type 
28 Local Memory bank 2 size 
29 Local Memory bank 2 type 
30 Local Memory bank 3 size 
31 Local Memory bank 3 type 

32 – 35 FLASH memory ( 0 – 3 ) types 
36 Reserved 

37 – 40 PMC ( 0 – 3 ) Ids 
41 – 59 Reserved 

60 Reserved 
61 Reserved 
62 Reserved 
63  Reserved 
64 Board Information Structure address 
65 Host list table address 
66 Reserved 
67 Address of user area of global memory 
68 Upper 24 bits of MAC address 
69 Lower 24 bits of MAC address 
70 Reserved 
71 Host command area address 

 

5-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

Table 5.10 - Format of Board Information Table (Table ID 26) cont. 
Field offset Value 

72 Host command area size 
Host response area address 

74 Host response area size 
75 Hardware variant id 
76 New command in LAT flag 

77 - 78 Reserved 
79 Address of PMC configuration space contents 

Reserved 
92 System Processor ID 
93 Board revision ID 

94 - 95 Reserved 
96 Local processor clock rate 
97 Local memory bus speed 
98 L2 cache size 
99 L2 cache ratio 
100 FLASH size 

73 

80 - 91 

 
    

5-20 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_ACK 
 
Header: 
 Opcode: 0xACEF 0001 
 Source: source ID 
 Destination: destination ID 
 Size:  9 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  status  0:  Yes or Pass 

      <>  0: Error code 
 Parm2:  Info1 
 Parm3:  Info2 
 Parm4:  Command Op-code 
 
Description: 

CMD_ACK is a generic command acknowledgment message.  Parameter 1 specifies a 
result code, where zero indicates the command has completed successfully, and a non-
zero value indicates that an error has occurred.  The other parameter fields provide more 
detailed information about the error condition.  
 
The IOPlus will return a CMD_ACK packet in response to all commands.  The following 
error messages may be returned in the CMD_ACK packet: 

 
    ERR_NONE: 

Param 1 0 
Param 2 0 
Param 3 0 
Param 4 Op-code 

 
 ERR_NOT_SUPPORTED: 

Param 1 -1 
Param 2 Opcode that is not supported 
Param 3 0 
Param 4 Op-code 

 
 ERR_INVALID_PARAM: 

Param 1 -2 
Param 2 Parameter number that is invalid 
Param 3 Value of invalid parameter 
Param 4 Op-code 

 
 ERR_BUS_ERROR: 

Param 1 -3 
Param 2 Address at which bus error occurred 
Param 3 0 
Param 4 Op-code 

 

5-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

 ERR_OPERATION_FAILED: 
Param 1 -4 
Param 2 0 
Param 3 0 
Param 4 Op-code 

 
 ERR_NOT_OPENED: 

Param 1 -5 
Param 2 0 
Param 3 0 
Param 4 Op-code 

 
 ERR_FULL: 

Param 1 -6 
0 

Param 3 0 
Param 4 Op-code 

Param 2 

 
 ERR_DATA_MISMATCH: 

Param 1 -7 
Param 2 Expected Value 
Param 3 Actual Value 
Param 4 Op-code 

 

5-22 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_GENERATE_INT 
 
Header: 
 Opcode: 0xACEF 0007 
 Source: source ID 
 Destination: destination ID 
 Size:  8 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Interrupt type 
    cPCI  1 
    Mailbox: 2 
    reserved: 3 
 Parm2:  Info1 
    When generating cPCI interrupts: 
     Interrupt level 
    When generating Mailbox interrupts: 
     Processor ID 
 Parm3:  Info2 
    Reserved (must be 0) 
 
Description: 

This command generates interrupts on the cPCI bus.  It also will generate mailbox 
interrupts to specific SPEs.  The meaning of the Info1 and Info2 fields changes 
depending on the type of interrupt being generated.  Validity checks are performed on the 
interrupt type field, interrupt level, and processor ID. 

 
Response: 

ERR_NONE after the interrupt has been generated and acknowledged successfully. 

INVALID_PARAM if any of the parameter fields is invalid. 

BUS_ERROR if an error occurs while generating the interrupt. 

5-23 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_LOOPBACK 
 
Header: 
 Opcode: 0xACEF 0005 
 Source: source ID 
 Destination: destination ID 
 Size:  5 + size of data 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters:  
 Data to be looped back 
 
Description: 

This command is used for debugging a communications path between processors.  When 
the command is received, the IOPlus will echo the command along with any attached 
data fields, back to the sender. 

 
 Response: 

CMD_LOOPBACK is sent to the processor initiating the command. 

5-24 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_MOVE_DATA 
 
Header: 
 Opcode: 0xACEF 0006 
 Source: source ID 
 Destination: destination ID 
 Size:  17 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Source address 
 Parm2:  Offset in bytes 
 Parm3:  Stride in words 
 Parm4:  Option flag 
 

Bit Fields 
31 ------------ 10 9 - 6 5 ------------ 0 

Reserved (must be 0) Bus 
Type 

Memory  
Address Type 

 
    Memory address type: 
     0x00000000: PCI address 
     0x00000001: cPCI address 
     0x00000002 IOP local address 
     0x00000003: SPE A local address 

     0x0000000A: SPE D PCI SDRAM address 

     0x000000C0: FLASH 

     0x00000004: SPE B local address 
     0x00000005: SPE C local address 
     0x00000006: SPE D local address 
     0x00000007: SPE A PCI SDRAM address 
     0x00000008: SPE B PCI SDRAM address 
     0x00000009: SPE C PCI SDRAM address 

     0x0000000B - 
0x0000003F: reserved 

    Bus type: 
     0x00000000: cPCI 
     0x00000040: PCI 
     0x00000080: reserved 

     
        
 Parm5:  Destination address 
 Parm6:  Offset in bytes 
 Parm7:  Stride in words 
 Parm8:  Option flag (see definition of option flag above) 

5-25 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

 Parm9:  Number of words 
 Parm10: Operation code 
 

Operation Code Operation performed Info 1 Info 2 
0 Copy (no operation) 0 0 
1 Byte swap 0 0 
2 Word swap 0 0 
3 Fixed to float 0 0 
4 Float to fixed 0 0 
5 Increment Increment 

amount 
0 

6 Mask & shift 
7 Mask, shift and convert to 

float 

 
Mask 

Shift amount 
minus is left 

positive is right 
 
 Parm11: Info1 
 Parm12: Info2 
 
Description: 

This command moves data between memory located on the cPCI bus, PCI bus, and local 
SPE bus.  Data is copied from the source address (with the specified stride), to the 
destination address (with the specified stride), while performing the operation on the data 
specified in the operation code. 

 
Validity checks are performed on all parameters except Stride.  The option flag indicates 
options for the address, which indicate whether the address is on the PCI, cPCI or local 
bus.  The operation code specifies an operation to be performed on the data while it is 
copied from the source to the destination memory.  The Info parameters provide 
additional information required by certain operation codes. 

 
Response: 

ERR_NONE after the data has been successfully written. 

INVALID_PARAM if any of the parameter fields is invalid. 

 BUS_ERROR if an error occurs while performing the move. 

5-26 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_READ_DATA 
 
Header: 
 Opcode: 0xACEF 000C 
 Source: source ID 
 Destination: destination ID 
 Size:  9 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Memory Section ID (See Table 5.7) 
 Parm2:  Offset 
 Parm3:  Stride 
 Parm4:  Option flag 

 BUS_ERROR if an error occurs while performing the read. 

0: bus type = PCI 
1: bus type = reserved 

 
Description: 

This command is used to read a block of data from on-board memory.  Memory Section 
ID selection is described in CMD_WRITE_DATA.  Validity checks for memory ID and 
option flag are performed. 

 
Response: 

ERR_NONE after the data has been successfully read.  The read data is appended to the 
CMD_ACK message after the fourth parameter. 

INVALID_PARAM if any of the parameter fields is invalid. 

 

5-27 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_RESET 

    0x00000020 C/D cluster 

Description: 

 

 
Header: 
 Opcode: 0xACEF 0003 
 Source: source ID 
 Destination: destination ID 
 Size:  7 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Reset type Reset or release | SPE processor or board 
    0x00000001 Reserved 
    0x00000002 Reserved 
    0x00000004 Reset Board 
    0x80000001 Reserved 
    0x80000002 Reserved 
 Parm2:  Processor ID or Cluster ID 
    0x00000001 SPE A  
    0x00000002 SPE B  
    0x00000003 SPE C  
    0x00000004 SPE D  
    0x00000010 A/B cluster 

 

This command is used to reset/release SPE processors or reset the board.  Validity checks 
for Reset type and Processor ID. 

 
Response: 

ERR_NONE indicates that the reset (or release from reset) has been performed 
successfully. 

INVALID_PARAM if any of the parameter fields is invalid. 

5-28 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_SUPPORT_QUERY 
 
Header: 
 Opcode: 0xACEF 0002 
 Source: source ID 
 Destination: destination ID 
 Size:  7 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Command query op-code 
 Parm2:  Command version (reserved for future use; must be 0x00000000) 
 
Description: 

This command is used by either the host, or a SPE, to determine whether the IOPlus 
supports a specified command.  The IOPlus responds to this command with either a 
CMD_ACK / ERR_NONE or a CMD_ACK / ERR_NOT_SUPPORTED. 

 

5-29 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_TOGGLE_LED 
 
Header: 
 Opcode: 0xACEF 0006 
 Source: source ID 
 Destination: destination ID 
 Size:  8 
 Options: see Command/Response Packet Format paragraph 5.3 

 

 
Parameters: 
 Parm1:  Count  
 Parm2:  On duration (in milliseconds) 
 Parm3:  Off duration (in milliseconds) 

Description: 
This command is used to toggle LEDs.  Count specifies the number of toggle cycles.  No 
validity checks necessary. 
 
If count is zero, then the state of the LED is toggled (i.e. if the LED is currently on, it is 
turned off; if the LED is currently off, it is turned on).  When count is zero, the second 
and third parameters are ignored. 

 
Response: 

ERR_NONE indicates that the toggle has been performed successfully. 

5-30 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_USER 
 
Header: 
 Opcode: 0xACEF 000F 
 Source: source ID 
 Destination: destination ID 
 Size:  4 
 Next:  0 or pointer 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Info1 
 Parm2:  Info2 
 Parm3:  Info3 
 Parm4:  Info4 
 
Description: 

User software can use this command to setup user-defined command. 
 
Response: 

The response to this command is user-defined. 
  

 

5-31 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_WAIT_INT 
 
Header: 
 Opcode: 0xACEF 000E 
 Source: source ID 

 

 Destination: destination ID 
 Size:  8 
 Options: see Command/Response Packet Format paragraph 5.3 

Parameters: 
 Parm1:  Interrupt type 

Wait for cPCI0: 0x000000001 
Wait for Mailbox: 0x000000003 
Trap Mailbox:  0xFFFFFFFD 
Trap VME:  0xFFFFFFFF 

 Parm2:  Info1 
    When waiting for cPCI interrupt: 
     Specifies the interrupt level to wait for 
    When waiting for mailbox interrupt: 
     Specifies the value in the mailbox to wait for 
 Parm3:  Info2  
    When waiting for cPCI interrupt: 

If 0xFFFFFFFF, then wait for any vector 
Otherwise, specifies the interrupt vector to wait for. 

 Parm4:  Info3 
    Action to take when desired interrupt occurs: 
 

Bit Fields 
31 ---- 26 25 ------------ 3 2 1 0 
Processor 

ID 
 

Reserved (must be 
0) 

Global Write Interrupt 

 
 
 

Interrupt bit: Setting this bit to one causes the SPE with 
ID “processor ID” to be interrupted 

Write bit: Setting this bit to one causes the value at the 
address specified in parameter 5 to be filled 
with the value described below 

Global bit:  Setting this bit indicates that the address 
specified in parameter 5 is located in global 
memory rather than in the local memory of 
the SPE specified by the relative processor 
ID. 

Note: Setting both the “interrupt bit” and the 
“write bit” to zero causes the IOPlus to 

5-32 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

continue chain processing without other 
action. 

 Parm5:  Address 
Address (either local SPE address or global memory address) to 
modify when the desired interrupt occurs and the “write bit” of 
parameter 4 is set.  This field is ignored by the IOPlus if the “write 
bit” of parameter 4 is cleared.  The value written to this address 
will have the following format: 
 

Bit Fields 
31 ---- 24 23 ------------ 16 15 ----------- 8 7 -------

 
0xFF 0xFF Vector 

0 
Level 

 

INVALID_PARAM if any of the parameter fields is invalid. 

Description: 
SPE processors use this command to signal a wait for interrupt to I/O controller.  Validity 
checks are performed on the interrupt type field.  When the Interrupt Type is set to 
“wait”, then the IOPlus will wait until the specified interrupt occurs before continuing to 
process the command list (note that command lists for other software components will 
continue to be processed).  When the Interrupt Type is set to “trap”, then the IOPlus will 
continue chain processing, and perform the specified action when an interrupt occurs. 

 
Response: 

ERR_NONE after the interrupt has been received. 

5-33 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_WRITE_DATA 
 
Header: 
 Opcode: 0xACEF 000B 
 Source: source ID 
 Destination: destination ID 

 Parm2:  Offset within section 

1: bus type = reserved 

4: final write to FLASH data, type, flush data 

Memory section ID set to the proper FLASH data type 

 Size:  9 + size of data 
 Options: see Command/Response Packet Format paragraph 5.3 
 
Parameters: 
 Parm1:  Memory Section ID (See Table 5.7) 

 Parm3:  Stride 
 Parm4:  Option flag 

0: bus type = PCI 

2: initial write to FLASH data type, ignore data 

 
Description: 

This command can be used to write a block of data to on-board memory.  Memory 
Section ID indicates what memory section is targeted.  Offset specifies the location 
within the memory section.  Stride specifies the incremental step used to increment the 
memory pointer.  Option Flag specifies the type of bus used to transfer the data.  Fields to 
be checked for validity in this command are memory ID and option flag. 

 
Response: 

ERR_NONE after the data has been successfully written. 

ERR_INVALID_PARAM if any of the parameter fields is invalid. 

 ERR_BUS_ERROR if an error occurs while performing the write. 

 
Note: to write data to VME address space, use CMD_MOVE_DATA 

 
Writing to FLASH memory: 

Note: This command may be used to write to the FLASH memory.  Because dealing with 
FLASH is different than dealing with memory, a slightly different protocol must be used 
when writing to FLASH.  To write a specific FLASH data type to FLASH, the following 
sequence of commands should be used: 
CMD_WRITE_DATA 

Size set to size of the entire data object that will be written 

Options flag set to 2, This indicates that this is the first write to FLASH for the 
new FLASH data type.  No write is actually performed; rather, the 
directory structure is configured properly for the write that is about to occur 

No data should be appended to this command 

5-34 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 5:  Using the IOPlus 
 

CMD_WRITE_DATA 
Size set to size of block of data attached to this command 
Memory section ID set to the proper FLASH data type 
Options flag set to 0, which indicates a normal FLASH memory write 
Data to be written to FLASH 

CMD_WRITE_DATA 

Size set to size of the entire data object that has been written 

Size set to size of block of data attached to this command 
Memory section ID set to the proper FLASH data type 
Options flag set to 0, which indicates a normal FLASH memory write 
Data to be written to FLASH 

CMD_WRITE_DATA 
Size set to size of block of data attached to this command 
Memory section ID set to the proper FLASH data type 
Options flag set to 0, which indicates a normal FLASH memory write 
Data to be written to FLASH 

CMD_WRITE_DATA 

Memory section ID set to the proper FLASH data type 
Options flag set to 4, which indicates that the write of this FLASH type has 

completed, and any buffered data should be flushed to the FLASH 
No data should be appended to this command 

 

5-35 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 6:  Programming the IOPlus 
 

6.1 Introduction 
Chapter 5 shows how the IOPlus firmware can be used by SPE and host applications to 
perform various background data movement and board resource manipulation activities.  
This chapter addresses the subject of developing and running an application on the 
IOPlus.  There are two approaches to accomplishing this, using the IOPlus JTAG for 
code load and debug, or using the Ethernet port and a boot loader to remotely load and 
debug from a networked workstation.  The boot loader supports VxWorks development 
from a Tornado based workstation. 
 
When using the IOPlus for an application you can still use the IOPlus service commands 
from the SPEs in the same manner described in Chapter 5.  This is accomplished by 
linking your application to a library that has background services it provides in addition 
to services your application can directly access. This chapter defines the IOPlus 
functional interface for IOPlus application development (IOPlusAPI). 

6.2 VxWorks and the IOPlus 
The development of an application for the IOPlus, that uses VxWorks and supports the 
Tornado environment, requires the installation and configuration of the RP as described 
in Chapter 2.  It also requires the VxWorks BSP for the IOPlus to be installed as part of 
the IXAtools installation process.  This BSP is a library of C and assembly, source and 
object files that enables VxWorks to use the IOPlus resources.   

 

VxWorks BSP for the IOPlus 
The VxWorks BSP implementation for the IOPlus is a subset of the full BSP definition 
given in the Wind River documentation.   This is primarily due to the IXA4’s design 
having less single board computer attributes, and the off-loading of a number of 
capabilities to the IOPlusAPI library.  Table 6.1 presents a summary of BSP features and 
Table 6.2 provides a list of the BSP functions implemented. 

6-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

Table 6.1 - IOPlus VxWorks BSP Features 

Feature Description 
Boot ROM Images bootrom.hex  
Boot Devices Ethernet:fei 
VxWorks images vxWorks, vxWorks.st, vxWorks5_2 
MMU - basic bundled MMU support 

- uses BAT registers and PTEs for address  translation 
Cache mode Instruction, data, & L1 cache in copyback cache mode 
Sysclock using PPC Decrementer 

using timer 0 of EPIC 
Serial using 16C2550 dual UART  

using timer 1 of EPIC 

AuxClock 

Timestamp 
Ethernet END driver INTEL 82559  

 
The default configuration of the BSP and the supplied VxWorks image, bootrom.hex, are 
meant to be a starting point to allow you to quickly run VxWorks with the IOPlus.  
Therefore, the configuration may not be initially suitable for the user application or target 
system, and reconfiguration of the BSP may be necessary.  Refer to the VxWorks 
Programmer’s Guide: Configuration: The Board Support Package for more information 
on the configuration of the BSP. 
 
All BSP configuration modifications should be made to the file config.h (unless specified 
differently in this document) that resides in the build directory of the BSP. You should 
walk through the file and make changes to reflect your system configuration, then rebuild 
the image with the new configuration.   Changes to RAM_LOW_ADRS or 
RAM_HIGH_ADRS require the bootrom.hex image to be rebuilt and the FLASH 
memory re-programmed. 

  
 Since FLASH memory is managed by the IOPlus firmware, the VxWorks boot 

entry point in FLASH memory is fixed.  Users should not attempt to modify 
ROM_BASE_ADRS or ROM_TEXT_ADRS. 

 

 

6-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

Table 6.2 - IOPlus VxWorks BSP Functions 

Function Description 
sysAuxClkConnect() connect a routine to the auxiliary clock interrupt 
sysAuxClkDisable() turn auxiliary clock interrupts off 
sysAuxClkEnable() turn auxiliary clock interrupts on 
sysAuxClkInt() handle auxiliary clock interrupts 
sysAuxClkRateGet() get the auxiliary clock rate 
sysAuxClkRateSet() set the auxiliary clock rate 
sysBspRev() return the bsp version and the bsp revision number 
sysBusIntAck() acknowledge/clear interrupt 
sysBusIntGen() generate an interrupt 
sysBusTas() test and set a location across the cPCI bus 
sysBusToLocalAdrs() convert bus address to local address 
sysClkConnect() connect a routine to the system clock interrupt 

turn off system clock interrupts 
sysClkEnable() turn on system clock interrupts 
sysClkRateGet() get the system clock rate 
sysClkRateSet() set the system clock rate 
sysCpuCheck() check CPU type 
sysLocalToBusAdrs() convert local address to bus address 
sysIntDisable() disable interrupts 
sysIntEnable() enable interrupts 
sysMemTop() 

return the model name of the target card 
sysNvRamGet() get the contents of non-volatile RAM 
sysNvRamSet() 

get the address of the top of physical memory 
sysProcNumGet() get the processor number 

set the processor number 
sysSerialChanGet() get the SIO_CHAN device associated with a serial channel 
sysTimestamp() get the timestamp timer tick count 
SysTimestampConnect() 

disable the timestamp timer 
SysTimestampEnable() initialize and enable the timestamp timer 
sysTimestampFreq() get the timestamp timer clock frequency 
sysTimestampLock() get the timestamp tick counter 
SysTimestampPeriod() get the timestamp timer period 
sysToggleLed() turn the status LED on or off 
sysToMonitor() transfer control to the ROM monitor 
sys557Init initialize Intel 82559 END driver  

disable PMC interrupt for RP Ethernet 
sys557IntEnable enable PMC interrupt for RP Ethernet 

sysClkDisable() 

get the address of the top of VxWorks memory 
sysModel() 

write to non-volatile RAM 
sysPhysMemTop() 

sysProcNumSet() 

connect a user routine to the timestamp interrupt 
SysTimestampDisable() 

sys557IntDisable 

 
 

RAM Usage 
The first 256K bytes (0x40000) of RAM is reserved for exception vector handlers and 
global IOPlus data structures.  This area of memory is configured to be uncached.  This is 
necessary since on-board SPEs must be able to access global IOP data structures residing 

6-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

in this region.  RAM_LOW_ADRS, defined in config.h, is defined to start after this 
location. 
 
Locations RAM_LOW_ADRS through (LOCAL_MEM_SIZE – 
USER_RESERVED_MEM) are available for VxWorks.  In order to maximize VxWorks 
performance, this region is configured to have cache enabled. Other on-board processors 
must not use memory in this region, since coherency is not guaranteed.  These constants 
are defined in config.h, and may be adjusted according to your application’s needs.   
 
The region from (LOCAL_MEM_SIZE – USER_RESERVED_MEM) through the end 
of memory is non-cached.  This region is available for use by other processors and PMC 
devices.  Because this region is uncached and guarded, write operations to this region 
from the IOPlus occur in order and are visible to other processors. 
 
The VxWorks ROM boot loader uses an additional region of memory, 
RAM_HIGH_ADRS through LOCAL_MEM_SIZE, for its workspace.  After reset, the 
ROM bootstrap loader moves a copy of VxWorks from FLASH memory to this region, 
uncompressing the load during the move.  The boot loader then runs from this location, 
loading a VxWorks image using FTP and a specified host on the network.  Therefore, 
SPE devices should not use this region of memory if the ROM boot loader is employed.  
Typically this loader is used only during development and debug.  Users can replace the 
bootstrap loader with a VxWorks application that relocates itself from FLASH memory 
to low memory. 
 
Table 6.3 shows the VxWorks memory map and how it partitions the first block of global 
memory space.  This memory is further partitioned into a VxWorks region and a shared 
memory region.  This partitioning can be adjusted by modifying config.h.  The use of 
separate regions for VxWorks and shared memory allows optimal caching attributes to be 
specified. The shared region should not be cached, since any other processor or device 
can access it.  However the VxWorks area may be cached. 
 

Table 6.3 - RAM Map for VxWorks 

From To Description 
0x00000000 0x00002FFF Interrupt Vectors 
0x00030000 0x00037FFF Board information data structure 
0x00037000 0x0003FFFF VxWorks initial stack and work area 
0x00040000 0x00FFFFFF VxWorks text data bss and stack 
0x01000000 0x01FFFFFF Shared global memory 

    

Memory Management Unit 
The BSP uses both the Block Address Translation (BAT) and segment models for 
memory mapping.  Refer to the VxWorks Programmer’s Guide: Appendix F - PowerPC 
for details on the Memory Management Unit of the PowerPC, and the memory map 
models. 
 

6-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

The BSP is configured to use the bundled basic memory management support 
(INCLUDE_MMU_BASIC) for both data and instructions.   
 
The region of memory from RAM_LOW_ADRS through (LOCAL_MEM_SIZE – 
USER_RESERVED_MEM) is cache enabled.  Applications must avoid accessing this 
region of memory from other processors.  All other regions of memory are cache 
inhibited and guarded. 
 
 

MMU and Cache Configuration in sysLib.c 
The BAT registers are configured using the data structure sysBatDesc[] defined in 
sysLib.c.  Translation using BAT registers is faster than translation using Page Table 
Entries (PTEs), and is better suited for mapping large regions of memory.  The first four 
BAT registers translate instruction addresses. The last four translate data addresses. Table 
6.4 shows the default configuration of the BAT registers. 
 

Table 6.4 - Default BAT Configuration 

BAT Description Address Range Cache Attribute 
IBAT0 FLASH Cache Inhibited ROM_BASE_ADRS .. 0xFFFFFFFF 
IBAT1 Unassigned 0x .. 0x Disabled 
IBAT2 Unassigned 0x .. 0x Disabled 
IBAT3 Unassigned 0x .. 0x Disabled 
DBAT0 PMC space 0xD0000000 .. 0xDFFFFFFF Cache Inhibited, Guarded 
DBAT1 PMC1 space 0x80000000  .. 0x8FFFFFFF Cache Inhibited, Guarded 
DBAT2 PMC2 space 0xC0000000 .. 0xCFFFFFFF Cache Inhibited, Guarded 
DBAT3 I/O, FLASH 0xF8000000 .. 0xFFFFFFFF Cache Inhibited, Guarded 

 
PTEs govern address translation and memory access for other regions of memory.  PTEs 
are built by VxWorks during initialization from information in the sysPhysMemDesc[] 
data structure.  Page Table Entries are more costly than BAT registers since PTEs require 
a data structure for each 4K of mapped space.  Furthermore, PTEs are fetched on demand 
from memory when not found in the processor’s translate look-a-side buffer, resulting in 
some performance impact. 
 
Because of this, PTEs are used to manage smaller regions of memory.  The default PTE 
configuration is shown in Table 6.5.  Developers may change this by changing constants 
in config.h, or by editing the sysPhysMemDesc as needed. The last entry allows the 
processors to access control registers within the Ethernet controller, and must not be 
modified. 

6-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

 

Table 6.5 - Default PTE Configuration 

Address Range Cache Attributes 
LOCAL_MEM_LOCAL_ADRS .. (RAM_LOW_ADRS-1) Write-able, cache inhibited 
RAM_LOW_ADDRS .. (LOCAL_MEM_SIZE–USER_RESERVED_MEM-1) Write-able, cacheable 
(LOCAL_MEM_SIZE-USER_RESERVED_MEM)..(LOCAL_MEM_SIZE-1) Write-able, cache inhibited 
ENET_IXA4_DEVICE_ADDR .. (ENET_DEVICE_ADDR+4k) Write-able, cache inhibited 

 
 

Device Drivers 
The BSP includes the device drivers listed in Table 6.6.  This section provides additional 
information on these drivers. 

 

Table 6.6 - VxWorks BSP Device Drivers 

Device Driver Name Description 
ppcDecTimer.c PPC decrementer driver 
auxTimer.c auxiliary clock 
nvRamToFlash.c FLASH storage driver 

interrupt controller for the EPIC 
epicTimestamp.c timestamp driver 

Ethernet driver for the INTEL 82559 
xr2550.c serial driver for the dual UART 

epicIntrCtl.c 

fei82557End.o 

 

 

System Clock 
The system clock is implemented using the PowerPC decrementer register.  The 
minimum and maximum clock rates are defined as follows: 
 
 SYS_CLK_RATE_MIN  10 
 SYS_CLK_RATE_MAX  5000 
 

Auxiliary Clock 
The auxiliary clock is implemented using timer 1 of the EPIC on the IOPlus.  The 
minimum and maximum clock rates are defined as follows: 

 
 AUX_CLK_RATE_MIN  20 
 AUX_CLK_RATE_MAX  5000 

Non-Volatile RAM  
The IXA4 contains no NVRAM.  Instead, functions are provided to simulate NVRAM 
using a region of FLASH memory.  Instead of a flat model for accessing FLASH 
memory, the IOPlus superimposes a directory structure onto FLASH memory.  A 1K 

6-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

region of FLASH memory, called vxworks_nvram, is used to simulate NVRAM.  This 
memory location is used to store the boot strings for the processors. 

 
Interrupt Controller 

The IOPlus includes an on-chip Enhanced Programmable Interrupt Controller (EPIC).  
This device is initialized and configured from the BSP interrupt controller device driver.  
VxWorks functions that connect, enable, and disable interrupts call this device driver. 
 
External input 4 into the EPIC is driven from an interrupt multiplexer, an FPGA that 
connects any combination of up to 32 interrupt sources to the EPIC.  Interrupt vectors and 
priorities are described in epicIntrCtl.h and shown in Table 6.7.   This includes vector 
numbers for all EPIC interrupts, and vector numbers for the interrupt multiplexer as well.  
The priorities can be modified to suit the needs of your application.  The vector numbers 
should not be altered. 

Table 6.7 - Interrupt Vectors and Priorities 

Name Vector Priority Description 
INT_VECTOR_TIMER0 00 08 Epic timer 0 (timestamp timer) 
INT_VECTOR_TIMER1 01 08 Epic timer 1 (auxiliary timer) 
INT_VECTOR_TIMER2 02 08 Epic timer 2 (unused) 
INT_VECTOR_TIMER3 03 08 Epic timer 3 (unused) 
INT_VECTOR_EXT0 04 06 interrupt (SPE A) 
INT_VECTOR_EXT1 05 06 interrupt (SPE B) 
INT_VECTOR_EXT2 06 06 interrupt (SPE C) 
INT_VECTOR_EXT3 07 06 interrupt (SPE D) 
INT_VECTOR_EXT4 08 06 Interrupt multiplexer 
INT_VECTOR_DMA0 09 07 DMA 0 completion 
INT_VECTOR_DMA1 0A 07 DMA 1 completion 
INT_VECTOR_MSG FD 05 I2O Messaging (unused) 
INT_VECTOR_I2C FE 05 I2C (unused on IXA4) 
INT_VECTOR_SPURIOUS    FF n/a Spurious interrupt 

 
In addition to the vectors shown in Table 6.7 vectors 0x80 through 0x9F represent 
interrupt sources into the interrupt multiplexer. The device driver translates these 
interrupt vectors into appropriate bit masks that are then applied to the interrupt 
multiplexer. 
 

6-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

  
 In this implementation, the VxWorks functions intEnable and intDisable, take 

a specific interrupt vector as an input, and they enable or disable that specific 
interrupt.  This differs from many implementations, where all interrupts below 
a certain level are enabled or disabled as a group. 

 

 
Timestamp Driver 

The timestamp driver is implemented using timer 0 of the EPIC. 
 
Network Driver 

The  BSP includes an Ethernet interface for the INTEL 82559.  The driver interface is 
based on the 4.4 BSD network stack (END).  To use the INTEL 82559 boot device, 
specify “fei” as the boot device. 

 
The IOPlus BSP initializes the shared memory network, allowing Ethernet access to all 
processors on the board with the IOPlus as the gateway (master).  
 
The MAC address for an IXA4 is programmed in FLASH memory at Dy 4 Systems and 
is not user alterable. 
 

Serial Interface  
The serial interface is provided by a 16C2550 dual channel UART.  
 
The VxWorks serial device driver is programmed to accept any baud rate and modem 
control commands, and return 9600 baud should an application try and read the baud rate.  
This information is fictitious, since the device driver cannot access or alter these 
parameters over the I2C interface. 
 
The IOPlus BSP will set up receive/transmit buffers for each processor in a shared 
memory region dedicated to serial I/O. 

 
PCI  

The IOPlus initialization software, which runs before VxWorks, performs all PCI 
configuration cycles.  Since these resources are sharable between the IOPlus and the 
SPEs it is advisable to use the IOPlusAPI functions. 
 

IOPlus Task Configuration 
By default the IOPlus task is started under VxWorks using the USER_APPL_INIT code 
block in config.h.  This task provides the IOPlus command interface for the SPEs. It also 
manages the allocation of FLASH memory as explained in Chapter 5.  The task 
parameters may be modified to the point of excluding the task totally by undefining 
INCLUDE_USER_APPL in config.h.  However excluding the task will result in the 
IOPlus becoming unresponsive to SPE commands. 

 

6-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

6.3 The IOPlus Application Programming Interface  
The IOPlus Application Programming Interface, IOPlusAPI, contains routines that 
provide access to IOPlus functionality from within programs running on the IOPlus 
(either standalone or within VxWorks).  These routines are contained in a library called 
libioplus_api.a.  Prototypes for the IOPlusAPI functions are specified in an include file 
called ioplus_api.h. 

 
 There is one additional file that goes with libioplus_api.a called 

“iop_semaphore.o”, which contains stub routines that “fake” VxWorks 
semaphore.  For VxWorks development, you should NOT link with this 
file.  For standalone development on the IOPlus, you SHOULD link with 
this file. 

 

 
 
 
The functionality provided by the IOPlusAPI follows: 

6-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_calloc 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_calloc( unsigned long num_bytes, 
                                  unsigned long **ptr ); 
 
 

DESCRIPTION: 
 

ioplus_calloc  allocates num_bytes of memory, then zeros the allocated memory. 
 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: memory allocated successfully. 
IOPLUS_OUT_OF_MEMORY: not enough free memory in the heap 

 
NOTES: 
  

This routine should be called instead of ioplus_malloc when the allocated memory needs 
to be zeroed. 

6-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_check_pci_dma_done 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_check_pci_dma_done( void ); 
 
 

DESCRIPTION: 
 

ioplus_check_pci_dma_done checks whether the PCI DMA initiated by 
ioplus_move_data has completed. 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: transfer completed. 
IOPLUS_BUS_ERROR: a bus error occurred while attempting the transfer. 
IOPLUS_PCI_DMA_IN_PROGRESS: the DMA transfer has not yet completed. 

 
NOTES: 
  

Call this routine when ioplus_move_data returns a status of 
IOPLUS_PCI_DMA_IN_PROGRESS. 
 
 

6-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_free 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_free(unsigned long *ptr ); 
 
 

DESCRIPTION: 
 

ioplus_free  releases memory that was allocated by ioplus_malloc. 
 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: memory released successfully. 
 
NOTES: 
  

This routine should be called to de-allocate memory that was previously allocated by 
ioplus_malloc. 

6-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_generate_interrupt 

RETURN STATUS: 

 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_generate_interrupt( unsigned long int_type, 
                                              unsigned long id, 
                                              unsigned long vector ); 
 
 

DESCRIPTION: 
 

ioplus_generate_interrupt  generates an interrupt on the specified interrupt line. 
Interrupt types are: 1 cPCI 
 2 Mailbox 
 3 reserved 
Interrupt ID When generating cPCI interrupts, specifies interrupt level, 
 otherwise, specifies processor ID. 
Interrupt Vector When generating cPCI interrupts, specifies interrupt vector, 
 otherwise, reserved. 

 
  

 
IOPLUS_NO_ERROR: transfer completed. 

 
NOTES: 
  

This routine may be used to notify another processor or board that an event has occurred. 

6-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_malloc 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_malloc( unsigned long num_bytes, 
                                  unsigned long **ptr ); 
 
 

DESCRIPTION: 
 

ioplus_malloc  allocates num_bytes of memory from a heap managed by the IOPlus.  
Note that this heap is shared among the IOPlus and the SPEs.  The SPEs can cause 
memory to be allocated from this heap by commanding the IOPlus. 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: memory allocated successfully. 
IOPLUS_OUT_OF_MEMORY: not enough free memory in the heap. 

 
NOTES: 
  

This routine implements a multi-processor memory allocator. 
  
  

 

6-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_move_data 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_move_data( unsigned long src_address, 
                                     unsigned long src_address_type, 
                                     unsigned long src_stride, 
                                     unsigned long src_options, 
                                     unsigned long dest_address, 
                                     unsigned long dest_address_type, 

    0x00000002:  IOPlus local address 

                                     unsigned long dest_stride, 
                                     unsigned long dest_options, 
                                     unsigned long num_words ); 
 
 

DESCRIPTION: 
 

ioplus_move_data moves data from a source memory resource to a destination memory 
resource.  These memory resources include global memory, SPE local memory, and cPCI 
bus memory (i.e. other boards on the cPCI bus).  The routine determines the correct bus 
to use to perform the transfer (including PCI, and cPCI bus).  Note that optimal 
performance is obtained when using a stride of 1.  DMA transfers will be performed 
when transferring between two PCI memory regions or between PCI memory and cPCI 
bus memory. 

 
Address Type is:  0x00000000: PCI address 
    0x00000001: cPCI address 

    0x00000003: SPE A local address 
    0x00000004:  SPE B local address 
    0x00000005: SPE C local address 
    0x00000006: SPE D local address 
    0x00000007: SPE A PCI SDRAM address 
    0x00000008: SPE B PCI SDRAM address 
    0x00000009:  SPE C PCI SDRAM address 
    0x0000000A: SPE D PCI SDRAM address 
Options word is: 

Bit Fields 
10 9 - 6 5 ------------ 0 

Reserved 
(must be 0) 

 

Bus 
Type 

Set to address 
type (see 
above) 

31 ---- 

  

6-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

    Bus type: 
     0x00000000: cPCI 
     0x00000040: PCI 
     0x000000C0: FLASH 

   
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: transfer performed successfully. 
IOPLUS_BUS_ERROR: a bus error occurred while attempting the transfer. 
IOPLUS_VME_DMA_IN_PROGRESS: the routine initiated a DMA transfer using the 
Universe II. 
IOPLUS_PCI_DMA_IN_PROGRESS: the routine initiated a DMA transfer using the 
IOPlus DMA engine. 

 
NOTES: 
  

Optimal performance is obtained when both the source and destination have a stride of 1, 
and when transferring either between two PCI addresses, or between a PCI and cPCI 
address. 
 
When the return indicates that a DMA is in progress, use the routine  
ioplus_check_pci_dma_done to determine when the DMA has completed.  

6-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_pci_find_device 
 

                                     unsigned int *function, 

Retrieve information for the index instance of the PCI device having the specified 
vendorID and deviceID.  The bus number, device number, function number, and PCI 
device header information for the specified function are returned. 

 

 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_pci_find_device( unsigned int vendorID, 
                                     unsigned int deviceID, 
                                     unsigned int index, 
                                     unsigned int *bus, 
                                     unsigned int *device, 

                                     PCI_CONFIG_DEVICE_HEADER *config 
); 
 
 

DESCRIPTION: 
 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: success. 
IOPLUS_DEVICE_NOT_FOUND: Device with specified vendor and device ID not 
found. 

NOTES: 
index specifies which instance of a device should be located.  For instance, to find the 
first device, set index to 0.  To find the third PCI-PCI bridge, set index to 2. 
 
To determine the base addresses at which a PCI device is mapped, call the 
ioplus_pci_find_device() function, then inspect the base0 through base5 fields. 

6-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_read_data 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 

                                      unsigned long stride, 

 

IOPLUS_API_STATUS  ioplus_write_data( unsigned long section_id, 
                                      unsigned long offset, 

                                      unsigned long option, 
                                      unsigned long num_words, 
                                      unsigned long *ptr, 
                                      unsigned long *name ); 
 
 

DESCRIPTION: 
 

ioplus_read_data reads the data buffer referenced by ptr from the offset within the 
memory section specified by section_id.  The data may be strided if desired.  Num_words 
is the number of 32-bit words to transfer. 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: data written successfully. 
IOPLUS_INVALID_PARAM: Unrecognized parameter. 

 
NOTES: 
  

This routine is used to access memory regions by name without specifying their physical 
address. 
 
A list of section Ids is provided in Table 5.7 

Options: 0 – PCI bus,  2 – initial write to FLASH, 3 – final write to FLASH. 
 
Refer to the command “CMD_READ_DATA” for additional information on using this 
command. 

6-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_realloc 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_realloc( unsigned long num_bytes, 
                                  unsigned long **ptr ); 
 
 

DESCRIPTION: 
 

ioplus_realloc  resizes memory which was previously allocated by either ioplus_malloc 
or ioplus_calloc. 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: memory allocated successfully. 
IOPLUS_OUT_OF_MemORY: not enough free memory in the heap. 

 
NOTES: 
  

This routine should be called whenever you need to resize a previously allocated memory 
block.  Note that the pointer returned by ioplus_realloc will most likely be different from 
the pointer input to this function.  Note also that the contents of the previous memory are 
preserved. 

6-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

 ioplus_reset 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_reset( unsigned long reset_type, 
                                 unsigned long reset_item ); 
 
 

 

DESCRIPTION: 
 

ioplus_reset  resets the specified device. 
Reset types are: 0x00000001 Reset SPE 
   0x00000002 Reset Cluster 
   0x00000004  Reset board 
   0x80000001 Release SPE from reset 
   0x80000002 Release cluster from reset 
Reset Items are: 0x00000001 SPE A 
   0x00000002 SPE B 
   0x00000003 SPE C 
   0x00000004 SPE D 
   0x00000010 A/B cluster 
   0x00000020 C/D cluster 

 
  
RETURN STATUS: 

IOPLUS_NO_ERROR: reset performed successfully. 
IOPLUS_INVALID_PARAM: Unknown reset type or reset item. 

 
NOTES: 
  

This routine may be used to reset on-board devices. 

6-20 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_toggle_led 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_toggle_led( unsigned long num_blinks, 
                                      unsigned long duration ); 
 
 

DESCRIPTION: 
 

ioplus_toggle_led  toggles the red board status LED. 
 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: transfer completed. 
 
NOTES: 
  

This routine can be used to indicate board failure, or to facilitate code debugging. 
 
 
 
 

6-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 6: Programming the IOPlus 
 

ioplus_write_data 
 
 
 
CALLING SEQUENCE: 

 
#include <ioplus_api.h> 

 
IOPLUS_API_STATUS  ioplus_write_data( unsigned long section_id, 
                                      unsigned long offset, 
                                      unsigned long stride, 
                                      unsigned long option, 
                                      unsigned long num_words, 
                                      unsigned long *ptr ); 
 
 

DESCRIPTION: 
 

ioplus_write_data  writes the data buffer referenced by ptr to the offset within the 
memory section specified by section_id.  The data may be strided if desired.  Num_words 
is the number of 32-bit words to transfer. 

 
  
RETURN STATUS: 
 

IOPLUS_NO_ERROR: data written successfully. 
IOPLUS_INVALID_PARAM: Unrecognized parameter. 

 
NOTES: 
  

This routine is used to access memory regions by name without specifying their physical 
address. 
 
A list of section Ids is provided in Table 5.7 
 
Options: 0 – PCI bus, 2 – initial write to FLASH, 3 – final write to FLASH. 
 
Refer to the command “CMD_READ_DATA” for additional information on using this 
command. 
 
 
 

6-22 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 7:  Programming the SPEs 
 

7.1 SPE Software Development  
Developing software programs to execute on the SPE’s on an IXA4 board requires 
IXAtools, a development environment that can link with C applications, and either a 
JTAG emulator or a VxWorks workstation with an Ethernet connection to the IXA4.  
 
IXAtools includes several files used in the development process specifically for IXA 
boards.  The IXAbsp object library (libixa.a) provides C-callable functions for managing 
many board-specific resources like cPCI bus access, board interrupts and semaphores, 
and DMA’s.  Several example programs that demonstrate how to use the IXAbsp 
functions are included in the IXAtools release along with makefiles for compiling.   

 
 
IXAtools also provides for the SPEs: a VxWorks compatible BSP, an Ethernet boot 
loader capability for the IOPlus, a stdio library, and a common boot code component.  
The common boot code is a key element in running applications on an SPE pair which 
share a local memory. 
 
In addition, IXAtools includes standard C libraries for developing SPE applications 
without an OS environment like VxWorks.  See Applications Note #26 – “Creating a 
Standalone, Non-OS program for the SPE’s” for more information. 

 

7.2  The Common Boot Code 
The IXA architecture incorporates four PowerPC processors, organized as two pairs.  
Each pair has its own bridge device and physical memory.  Both processors within a pair 
see this memory as a linearly addressed space, starting at location zero.  
 
The PowerPC defines an exception vector table (EVT) at physical locations zero through 
0x2fff.  The EVT is organized as 48 sections of 0x100 bytes each.  Each section is 
associated with an event, such as an external interrupt, an instruction exception, or a 
floating-point exception. 

  
 Dy 4 Systems does not provide a make utility as a part of our software.  If a 

make utility is not available, you will either have to enter the compiler 
commands at the command prompt or construct a batch file to do the compile 
and link process. 

 

7-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
Because the EVT lives in physical memory starting at location zero, and because both 
processors in a pair see the exact same physical memory, both processors share the 
exception vector table.  This is highly undesirable, because it is often necessary for each 
processor to take different actions for each exception.  For example, the external interrupt 
event (0x500) indicates that a device has asserted an interrupt to a processor.  Each 
processor has its own interrupt input line and interrupt sources.  Therefore, each 
processor will need to take different actions to service the external interrupt. 
 
The common boot code was designed to establish separate environments for each 
processor before the processors boot and run the main application.  (The main application 
can be a user program, or an operating system running several user programs).  The 
common boot code does this in a manner that is transparent to the application. 

 

How it Works 
At initialization, each processor within a pair sees physical memory starting at location 0 
and extending through the end of physical memory, 32 or 64 megabytes in length.  The 
only reserved area is the EVT, which occurs at locations 0 through 0x2fff.  The 
processors share the EVT, and the remainder of physical memory.  There is no protection 
to keep one processor from disrupting the operation of the other as shown in Table 7.1. 

 

Table 7.1 - SPE Local Map with no CBC 

      Begin        End Processor 1 Processor 2 
0x00000000 0x00002FFF physical EVT physical EVT 
0x00003000 0x01FFFFFF available memory available memory 

 
The CBC establishes an environment where each processor has separate, logical address 
spaces.  Each space includes an EVT, starting at logical address zero, but at some other 
physical address.  In order to do this, the CBC must establish a page translation table, and 
enable the memory management unit within the PowerPC.  Physical memory then looks 
like that shown in Table 7.2. 

 

Table 7.2 - SPE Local memory with CBC 

Begin End Processor 1 Processor 2 
0x00000000 0x00002FFF physical EVT physical EVT 
0x00008000 0x0000FFFF common boot code common boot code 
0x00040000 0x00FFFFFF processor 1 memory  
0x01000000 0x01FABFFF  processor 2 memory 
0x01FAC000 0x01FB1FFF proc 1 initial stack  
0x01FB2000 0x01FB5FFF  proc 2 initial stack 
0x01FB6000 0x01FBAFFF proc 1 EVT  
0x01FBB000 0x01FBFFFF  proc 2 EVT 
0x01FC0000 0x01FDFFFF proc 1 page table  
0x01FE0000 0x01FFFFFF  proc 2 page table 

 

7-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

Notice that each processor is assigned its own regions of memory.  The MMU limits 
access to the assigned regions, so that attempts to access the other processor’s memory 
result in an exception.   
 
Each processor sees a single, shared copy of the common boot code starting at location 
0x8000.  This region of memory is write-protected to insure the integrity of the common 
boot code.  Each processor also shares the single physical EVT starting at location 0.  
This EVT is not mapped into either processor’s logical address space, so it is protected 
from unauthorized alteration.  However, each processor includes a logical EVT, which 
starts at logical address zero. 

 
When an exception occurs, the PPC automatically disables the memory management unit, 
and branches to the appropriate offset within the physical EVT.  The CBC takes over at 
this point.  It enables the MMU, and branches to the appropriate offset within the logical 
EVT.  This processing adds about 10 instructions to the interrupt service overhead.  This 
mapping is completely transparent to the application.  In fact, this method has been 
successfully tested with the VxWorks operating system. 
 
Each processor uses a page table to contain MMU data.  The page table has specific 
alignment and size requirements.  A page table must have a size that is a power of two, 
between 64k and 32 megabytes.  The page table must start at a physical address that is a 
multiple of its size.  For example, a 128k page table must start on a 128k physical 
boundary.  In order to meet these alignment and size requirements, the CBC places the 
page tables at the end of physical memory.  The page tables are not mapped into either 
processor’s address space:  they are therefore protected from unauthorized alteration.  
The contents of the page tables may be interrogated and altered through IXA board 
support library function calls. 
 
The configuration shown in Table 7.2 is an example.  All sizes and boundaries (except 
for the start address and size of the physical EVT, and the start and size of the common 
boot code) are user-configurable. 

   
 The logical EVT is actually 0x5000 bytes in length.  Using this length 

remaps the EVT, and some reserved work areas used by the VxWorks 
operating system. 

 

 
 

7-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

  
 Locations 0x2000 - 0x2100 within the logical and physical EVTs are used 

to maintain CBC specific information.  These locations must not be used 
or altered by the applications program. 

 

 

Using the CBC 
 
Initialization 

The IOPlus automatically loads the CBC into memory and starts the CBC on reset.  No 
special user action is required to start the CBC. 

 
Version Identification. 

By displaying the contents of the common boot code in memory, starting at location 
0x8000, you may examine the version of the CBC.  This information is stored in ASCII, 
and immediately follows a branch around the ASCII data.  The copyright notice includes 
a compile time and date. 

 
Loading Applications using FLASH Memory 

After loading and starting the CBC, the CBC initializes memory data structures, and then 
waits for a download. 
 
The IOPlus will examine its FLASH memory to determine if an application is to be 
loaded into the processor.  If so, the IOPlus waits until the CBC has completed its 
initialization.  The IOPlus then downloads the application, and informs the CBC to begin 
processing. 

 
Loading Applications using an Emulator 

If no application exists in FLASH memory, the CBC begins a polling operation, waiting 
to receive the starting address of the application.  The CBC polls physical location 
0x2000 (for processor 1, or 0x2008 for processor 2), for a nonzero value.  This polling is 
accomplished once every several milliseconds, with cache enabled, so that a polling 
processor is not consuming bus bandwidth.  When the processor detects a nonzero 
address at the poll location, it assumes the address is the application entry point, and it 
calls the function at that entry point.   While polling, the CBC displays a distinctive LED 
blink pattern.  This pattern stops when the CBC jumps to the application. 
 
Executable images can be loaded using an emulator.  The download should be performed 
only after the CBC has completed its initialization, and the download must not disturb the 
physical EVT, page tables, or common boot code.  A good practice is to begin execution 
at location 0x8000 (the start of the common boot code), wait for the LED flash pattern 
(indicating initialization is complete), and then download the application.   After 
completing the download, set the 32-bit word at location 0x2000 (or 0x2008 for 
processor 2) to the entry point of the application, and then resume execution.  The CBC 
will detect the nonzero address, and call the entry point. 

7-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
The Application Environment 

When the CBC jumps to the application, caches (instruction and data) are enabled, and 
address translation (the MMU) is enabled for instructions and data.  The application 
should NOT disable the memory management unit, as this defeats the protections 
afforded by the CBC.  Memory mapping can be adjusted through IXA board support 
library function calls.  The application may disable or flush cache at any time. 
 
The stack pointer is located within the initial stack area.  This area is mapped so that its 
physical and logical addresses are equal.  It is normal for an application to switch to a 
larger stack area within the main memory region. 

  
 Note to VxWorks users:  The VxWorks BSP must be configured to run 

with the memory management unit disabled.   When configured in this 
mode, VxWorks will not alter the state of the MMU, leaving it enabled.  
Enabling the MMU under VxWorks will cause a re-initialization of the 
MMU, and will most likely destroy the processor segregation provided by 
the CBC. 

 

 
 
 
Returning to the CBC 

The application can return to the CBC.  If the application returns, the CBC will re-
initialize, and wait for another download.  The application can also force re-initialization 
by disabling interrupts and jumping to location 0x8000. 

 
Circumventing the CBC 

An application need not use the CBC.  However, the applications programmers must 
understand that the EVT will be shared by both processors, if the CBC is circumvented.  
The CBC can be disabled by an application simply by clearing the address translation 
enable bits within the MSR.  The application can then re-initialize the MMU if desired. 

 
 

Configuring the CBC 
Users of this section must have a good understanding of memory management in the 
PowerPC, including BAT register use, and page table construction.  The data structures 
employed by the PowerPC are complicated and sensitive.  In a multi-processor 
environment with large caches and memory mapping, it is possible to create an 
environment that has the appearance of working but has some latent bugs that are very 
difficult to repeat and characterize. 
 
By default, the CBC comes configured to provide each processor with access to about 
half of the physical memory.  The file cbconfig.c contains memory size information for 

7-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

all processors.  This can be altered.  To alter the CBC configuration, perform the 
following steps: 

 
1. Edit cbconfig.c to reflect the new configuration. 

 
2. Recompile cbconfig.c 

 
3. Relink this file with cbcmain.o and libixa.a.   

 
4. Save the old cbc.hex S-record file for recovery.  Burn the new cbc.hex file into FLASH 

memory. 
 
 
Adding Regions 

The file cbconfig.c contains data structures that describe regions of memory for each 
processor.  During initialization, the CBC reads these data structures and populates the 
page table.  A region data structure entry contains the physical and logical start addresses, 
the size of the region, and the region attributes. 
 

 ATTR_RO: the region is readable, and executable. 

The addresses and lengths must be a multiple of the page size (4096).  As the CBC reads 
the data structure and establishes map entries, it checks for conflicts.  A conflict will 
occur if a region includes one or more logical page addresses that have already been 
mapped.   Logical addresses must be unique within a processor’s address space.  Physical 
addresses can be repeated:  a processor may view the same physical address through 
more than one logical address. 
 
For a region of length N, the CBC adds N/4096 page table entries to the page table during 
initialization.  It is possible for a page table overflow to occur.  In this case, the size of the 
page table must be increased.  Page table resizing guidelines are provided latter in this 
chapter. 

 
Attributes govern how the processor accesses the region.  Attributes consist of protection 
bits, and cache control bits.  Protection bits can be one of the following: 
 
 
 ATTR_RWX: the region is readable, writable, and executable 

 
Additional attributes can be specified by OR’ing or adding one or more of the following 
attribute values: 

 
 ATTR_W: if cache is enabled, the region is treated as write-through 
 ATTR_I: cache is inhibited for the region 
 ATTR_M: memory coherency is required when accessing the region 
 ATTR_G: access to the region is guarded 
 

7-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

Attributes ATTR_G + ATTR_I should be used for I/O addresses and large blocks of 
shared memory.  These attributes treat the access as an I/O space.  The guarded attribute 
prevents the processor from re-ordering accesses to the memory area. 

 

 
ATTR_M can be used for small regions of memory shared between processors A and B 
(or C and D).  This attribute causes certain cache management machine instructions to 
synchronize cache contents.   
 
ATTR_W can be used at the discretion of the applications engineer.  This causes write 
operations to update the contents of cache and the target memory, rather than waiting 
until a cache flush operation is required.  This attribute is desirable for writing output data 
to regions of memory that other processors can examine. 

 
The most efficient memory access occurs when none of ATTR_W, ATTR_I, ATTR_M, 
and ATTR_G are employed.  The resulting memory accesses will be fully cached 
(assuming cache is enabled).  Private areas of memory that are not used for I/O or 
interprocessor communication should be set to this mode. 
 
The attributes of pages can be changed by the application during program execution.  
This is accomplished through a board support library function that changes page 
attributes.  A common practice is to allocate an I/O buffer, and then change the attributes 
of the buffer to be cache inhibited and guarded.  Of course, the buffer must start at a 4k 
boundary and be a multiple of 4k in length. 

Adding Blocks 
The PowerPC includes two separate MMU mapping facilities.  The page table maps 
memory in 4k pages.  This requires a large data structure (a page table) that describes the 
mapping and attributes for each page.  The CBC builds a page table from the region data 
structures as describe above. 

 
It is often desirable to map a large contiguous block of memory.  A large page table is not 
recommended.  Performance would be somewhat degraded, because the probability of a 
memory access requiring a page table access is increased.  As an alternative to using the 
page table, the PowerPC provides a block address translation mechanism. 
 
Up to four blocks can be defined for mapping instruction accesses, and four blocks can be 
defined for mapping data accesses.  A block is a contiguous region of logical and 
physical memory, having a length that is a power of two between 128k bytes to 256 
megabytes (inclusive).  A block must start at an address that is a multiple of its size, and 
be mapped to an address that is a multiple of its size.  Regions of memory that do not 
meet this criteria must be mapped using the page table. 
 
cbconfig.c includes data structures for each processor which load the Block Address 
Translation (BAT) registers.  These registers can be altered by the user.  Macros translate 
the logical address, physical address, length, and attribute flags into BAT register images.   

7-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

The CBC loads these images into the BAT registers during setup.  The flag values used 
are the same as those used to describe region attributes. 
 
BAT registers must not describe overlapping logical address spaces.  Conflicts among 
BAT registers cause a machine fault.    BAT registers may conflict with page table 
entries.  In this case, the processor uses the BAT register mapping, not the page table 
mapping. 

 
Altering the Page Table Size 

The page table size is described in cbconfig.c.  The page table size must be a power of 
two, between 64k and 32 megabytes in length.  Furthermore, the page table must start at a 
memory address that is a multiple of the page table size.  That is, a page table of length 
256k bytes must start at a 256k byte boundary. 
 
When a page table overflows (because more or larger regions have been added), the page 
table size must be increased.  Because the page table size must be a power of two, the 
next larger page table size is twice the last page table size. 
 
The page table is organized as a hash table, with each entry requiring 8 bytes.  In order to 
leave adequate room for hashing collisions, Motorola recommends the page table be 
sized using the following formula: 

 
 Page Table Size =   [(total # pages) * 16] rounded to the next highest power of two. 
 

This is the minimum recommended size.  Certain combinations of logical addresses may 
generate more collisions, and require a larger page table.   
 
The CBC meets the page table alignment requirements by placing the page tables at the 
end of physical memory.  Since the size of memory is a power of two (32 megabytes or 
64 megabytes), the memory size minus the page table size is always aligned to a multiple 
of the page table size.  Two page tables must live within each physical memory (one page 
table for each processor).  The source file cbconfig.c places the largest page table at the 
end of physical memory, followed by the smaller page table.  This insures alignment of 
both page tables. 

 
Note that page tables are not mapped into either processor’s logical address space.  Page 
tables are accessed by physical address.  The processor has no need to map the tables into 
its logical space.  The processor updates and accesses the page tables using physical 
accesses.  Excluding the page tables from the logical mapping prevents the application 
from inadvertently altering the page table contents. 

 
Altering Memory Allocation 

The file cbconfig.c allocates approximately half of the physical memory to each 
processor within the pair.  This allocation can easily be changed by altering cbconfig.c. 

 

7-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

Creating Shared Regions 
Some regions are mapped into the logical address space of more than one processor.  
Such regions are said to be shared regions.  Both processors can access such a region. 
 
One example of a shared region is the common boot code, starting at physical (and 
logical) address 0x8000.  Both processors see (and execute) the exact same code from 
this region.  The attributes for this region are set to ATTR_RO.  If either processor tries 
to write to the common boot code region, an exception will result. 

 
Data regions can be shared as well.  Such a region will have attributes of ATTR_RWX.  
Note that creating a shared region is a necessary, but not sufficient, step in sharing data in 
a way that provides coherency and integrity.  Further steps must be taken to insure data 
integrity.  These steps depend on the level of visibility that other processors (or I/O 
devices) require. 
 
If a region includes data to be shared only between the two processors sharing a common 
bridge, then the data pages can be marked with the attribute ATTR_M.  This causes the 
caching mechanism to enforce memory coherency.  This coherency requires additional 
bus bandwidth and coordination, so it must be used judiciously.   
 
Regions shared between processors and I/O devices (or between processors serviced by 
different bridge chips) require a different approach.  This is because the signals used to 
provide memory coherency are not extended across the PCI bus.  One approach is to 
mark such regions as cache inhibited and guarded.  This causes the processors to bypass 
cache and to perform reads and writes in the order generated by the software. 
 
If a region of memory is used for output data from the processor to an I/O device (or to 
other processors), then the region can be marked as cache enabled and write-through.  
This forces the processor to update memory and cache as writes to the output area are 
performed. 

 
Finally, a shared region can be fully cached if the application software assumes 
responsibility for flushing and invalidating the cache.  The processor should flush cache 
immediately after writing, and invalidating cache before reading.  Functions within the 
board support library can accomplish this. 

 
Error Conditions 

During initialization, the CBC checks the following requirements.  If all requirements are 
met, the CBC completes its initialization, and waits for a starting address.  If any 
condition is not met, the CBC stops with an error code.  The CBC checks the following 
during initialization: 

 
1. Region addresses, including the page table, EVT, and stack, must be multiples of 

4k, and start on a 4k boundary. 
 

2. A nonzero physical address for the EVT must be specified. 

7-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
3. The EVT map length must be at least 0x4000 in length. 

 
4. The page table must be a power of two, between 128k and 32 megabytes 

 proca_regions,  /* private memory regions     */ 

 
5. The page table start address must be a multiple of its size. 

 
6. Mapped regions must not overlap  (although they may overlap with BAT 

registers.) 
 

If all of these conditions are met, the CBC will complete initialization, and wait for an 
application start address. 

 

Memory Configurations 
The memory configuration for each processor is described in cbconfig.c.  The CBC 
establishes memory management data structures at power-up time from the data 
structures in this source file.  This file may be edited, recompiled, and re-burned into 
FLASH to customize the memory configuration. 
 
A processor’s memory configuration is described using the following primary data 
structure: 

 
struct CBC_CONFIG 
{ 
 unsigned long stack_ptr; /* initial stack ptr       */ 
 unsigned long *bats;  /* -> bat register values  */ 
 struct REGION *r;        /* -> region information   */ 
 struct REGION *shared;  /* -> shared regions       */ 
}; 
 

Because each processor must have a separate stack, the initial stack pointer value must be 
specified here.  The remaining fields point to other data structures used during 
initialization.  “bats” contains block address translation (BAT) register images.  The “r” 
region information points to a table of private regions, while the “shared” region pointer 
points to a list of regions which will be mapped in for all processors.  “shared” is 
intended for commonly accessible board resources, such as PCI devices.  An example 
instance of this data structure for processor A follows: 

 
struct CBC_CONFIG _cbc_config_A =  
{ 
 STACK_A+STACK_SIZE_A, /* initial stack pointer      */ 
 proca_batregs,  /* bat registers              */ 

 shared_regions  /* shared memory regions      */ 
}; 

 
Region Data Structure 

A region describes an area of contiguous memory having a length that is a multiple of the 
page size.  The exception vector table is mapped to a region.  The initial stack can occupy 

7-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

its own region.  During initialization, the CBC adds a page table entry for each page 
represented by a region.  A region has the following format: 

 
struct REGION 
{ 
        unsigned long logical; /* logical start addr  */ 
        unsigned long physical; /* mapped to this addr  */ 
        unsigned long size;      /* region size (bytes)  */ 
        unsigned long attr;      /* cache attributes  */ 
}; 

 
The address and size fields must be multiples of the page size.  Attributes are the sum or 
logical OR of one or more of the following values: 

 
#define ATTR_CLEAR 0x80  /* zero out during init */ 
 
#define ATTR_W  0x40  /* write through mode */ 
#define ATTR_I  0x20  /* inhibit cache mode   */ 
#define ATTR_M  0x10  /* memory coherency reqd*/ 
#define ATTR_G  0x08  /* guarded   */ 
 
#define ATTR_RWX        0x02  /* rd, wr, and execute */ 
#define ATTR_RO         0x01  /* rd, execute only */ 

 
A region attribute consists of exactly one protection attribute (ATTR_RWX or 
ATTR_RO), optionally OR’ed with one or more caching attributes (ATTR_W, ATTR_I, 
ATTR_M, ATTR_G), optionally OR’ed with an initialization attribute (ATTR_CLEAR).   
The protection and cache attributes correspond to the PPC’s memory access control bits.  
The ATTR_CLEAR bit is an artificial extension used by the common boot code during 
initialization.  Example: 

 
  ATTR_RWX | ATTR_I | ATTR_G |  ATTR_CLEAR 
 
 

 
 ATTR_CLEAR must not be specified for a stack segment.  This is 

because the stack is in use at the time the common boot code initializes the 
segments.  Clearing out the stack segment results in an unrecoverable 
exception during initialization. 

 

 
 

The values PAGE_TABLE and REGION_END have special meaning within the logical 
address field.  PAGE_TABLE indicates an area of memory with a valid length and 
physical address, but the logical addresses will not be mapped.  As the name implies, this 
is used to specify a region used for a page table.  Within an array of multiple regions, 
REGION_END follows the last segment.  Example:  

 

7-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

static struct REGION proca_regions[] = 

static unsigned long proca_batregs[] =  

BAT register contents consist of two 32-bit words.  These words are constructed from the 
following macros:   

 

{ 
    {0x00000000,    EVT_A,         EVT_SIZE,     ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A,  MAIN_BEGIN_A,  MAIN_SIZE_A,  ATTR_CLEAR+ATTR_RWX}, 
    {STACK_A,       STACK_A,       STACK_SIZE_A, ATTR_RWX}, 
    {PAGE_TABLE,    PGTBL_A,       PGTBL_SIZE_A, 0}, 
    {REGION_END,    REGION_END,    0,            0} 
}; 

 
 
External Memory Configuration 

External memory is on-board memory that is not attached to the local processor’s bridge 
device.  The IOPlus’ memory (the on-board global memory), memory belonging to the 
“other” processor pair, and memory available on PMC cards are considered to be external 
memory from a single processor’s point of view. 
 
The global memory and the other processor pair’s memory may be mapped in using BAT 
registers.  Because these memories are large and meet alignment requirements for block 
translation, BAT registers are ideal for this purpose.  BAT registers for each processor are 
described in a data structure having eight entries corresponding to the eight PowerPC 
BAT registers.  The first four map instruction accesses, the last four map data accesses:  
 

{ 
    BATREG_NULL,   /* instruction BATS */ 
    BATREG_NULL,  
    BATREG_NULL,  
    BATREG_NULL,   
    BATREG_GLOBAL, /* data BATS */ 
    BATREG_NULL,  
    BATREG_NULL,  
    BATREG_NULL    
}; 

 

 
BATREG_S(log,phys,len,attr) generates BAT register values for a block 
which is accessible in supervisor mode only. 
 
BATREG_P(log,phys,len,attr) generates BAT register values for a block 
which is accessible in problem (user) state only. 
 
BATREG_SP(log,phys,len,attr) generates BAT register values for a block 
accessible in both problem and user states. 
 
BATREG_NULL must be specified for unused BAT registers. 

 
The len parameter specifies the block length.  The length must be a power of two, 
between 128k and 256M, inclusive.  Attributes can be one or more of the following 
values, logically Ored together: 
 

7-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

#define BATREG_G 0x08  /* guarded                    */ 
#define BATREG_M 0x10  /* memory coherence required  */ 
#define BATREG_I 0x20  /* cache inhibited          */ 
#define BATREG_W 0x40  /* write through          */ 
#define BATREG_RW 0x02  /* read/write protection      */ 

 
Example:  The following BAT register specification maps the global memory on the 
board into the address space of one of the PPCs.  The global memory resides at a PCI 
starting address of 0xb8000000, and has a length of 32 megabytes.  This region of 
memory will be readable and writable.  We specify cache inhibited and guarded 
attributes, since this memory space is used for communication between processors across 
PCI bus: 
 
/* 
 *  BATREG value for global memory.  Global (CPE) memory starts 
 *  at address 0xb800_0000 on the PCI bus, and is 32 meg long.   
 *  It is accessible from supervisor state and problem state. 
 */ 
 
#define BATREG_GLOBAL \ 
      BATREG_SP(0xb8000000, 0xb8000000, 0x02000000, \ 

BATREG_G+BATREG_I+BATREG_RW) 
 

PMC cards can be mapped-in using BAT registers or pages.  Page table entries are best 
suited for PMC cards requiring a small address space (e.g., for control registers).  BAT 
registers may be used for PMC cards requiring a large address space,  provided the 
address space meets block alignment criteria.  Recall that there are only four BAT 
registers available for data mapping.  Using BAT registers for PMC access may 
necessitate trading a BAT register entry configured for some other purpose.  

 

Local Memory Configuration Strategies 
 
Separate Logical and Physical Address Spaces 

In this model, each processor within a pair may access to up to approximately half of the 
available memory.  Logical EVTs, stacks, and page tables are located at the end of 
physical memory.  Each processor maps in the common boot code and data areas 
(addresses 0x8000 through 0xffff).  Each processor then maps in a “main” region of 
memory as follows: 

 
 Processor A (C): 
  Logical 0x0001_0000  to  (memory size)/2    
  mapped to physical 0x0001_0000 to (memory size)/2 
 Processor B (D): 
  Logical (memory size)/2 + 0x0001_0000 to END_MEMORY 
  mapped to physical (memory size)/2 + 0x0001_0000 to END_MEMORY 
 

where 
 END_MEMORY = size of memory - sizeof(page tables) - sizeof (stacks)  

- sizeof (EVTs) 

7-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
Note that applications built to run on processor A and B must be built to run in these 
separate address spaces.  Note also that logical addresses within the main memory region 
correspond to physical addresses. 

 
Region tables for processors A and B having this memory configuration might look like 
this.  Note that MAIN_BEGIN_A and MAIN_BEGIN_B are mapped so that the logical 
addresses within these regions equal the physical addresses.  This example presumes that 
the MAIN regions do not overlap. 

 
static struct REGION proca_regions[] = 
{ 
    {0x00000000,   EVT_A,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A, MAIN_BEGIN_A,MAIN_SIZE_A,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_A,      STACK_A,     STACK_SIZE_A, ATTR_RWX}, 
    {PAGE_TABLE,   PGTBL_A,     PGTBL_SIZE_A, 0}, 
    {REGION_END,   REGION_END,  0,            0} 
}; 
static struct REGION procb_regions[] = 
{ 
    {0x00000000,   EVT_B,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_B, MAIN_BEGIN_B,MAIN_SIZE_B,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_B,      STACK_B,     STACK_SIZE_B, ATTR_RWX}, 
    {PAGE_TABLE,   PGTBL_B,     PGTBL_SIZE_B, 0}, 
    {REGION_END,   REGION_END,  0,            0} 
}; 
 

Congruent Logical/Separate Physical 
As in the previous model, each processor within a pair may access up to approximately 
half of the available memory.  Logical EVTs, stacks, and page tables are located at the 
end of physical memory.  Each processor maps in the common boot code and data areas 
(addresses 0x8000 through 0xffff).  Each processor then maps in a “main” region of 
memory as follows: 

 
 Processor A (C): 
  Logical 0x0001_0000  to  (memory size)/2    
  mapped to physical 0x0001_0000 to (memory size)/2 
 Processor B (D): 
  Logical 0x0001_0000 to (END_MEMORY - (memory size)/2 ) 
  mapped to physical (memory size)/2 + 0x0001_0000 to END_MEMORY 

where 
 END_MEMORY = size of memory - sizeof(page tables) - sizeof (stacks) 

 - sizeof (EVTs) 
 

In this case, both processors see a region of memory beginning at logical address 
0x0001_0000 covering approximately half of memory.  This means that any application 
built to run in the logical space starting at 0x0001_0000 will run in processors A or B.  
Each processor will have a separate copy of the application in its physical memory, but 
they can run the same application.   

 

7-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

static struct REGION proca_regions[] = 
{ 
    {0x00000000,   EVT_A,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A, MAIN_BEGIN_A,MAIN_SIZE_A,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_A,      STACK_A,     STACK_SIZE_A, ATTR_RWX}, 
    {PAGE_TABLE,   PGTBL_A,     PGTBL_SIZE_A, 0}, 
    {REGION_END,   REGION_END,  0,            0} 
}; 
static struct REGION procb_regions[] = 
{ 
    {0x00000000,   EVT_B,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A, MAIN_BEGIN_B,MAIN_SIZE_B,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_B,      STACK_B,     STACK_SIZE_B, ATTR_RWX}, 
    {PAGE_TABLE,   PGTBL_B,     PGTBL_SIZE_B, 0}, 
    {REGION_END,   REGION_END,  0,            0} 
}; 
 
Notice that processor B’s MAIN logical address space begins at the same location as 
processor A’s address space.  Both processors have a similar logical address space, but 
the MAIN portion of each processor’s memory occupies a different physical region of 
memory. 

   
Combined 

This is the factory configuration of cbconfig.c.  This strategy combines the above two 
strategies.  A single physical page can be mapped to multiple logical addresses.  In this 
case, the B (D) processor maps its main memory region into the logical space starting at 
0x0001_0000, and the logical address space starting at (memory size)/2 + 0x0001_0000. 
 
An advantage of this method is that the B (D) processor can accept and execute software 
built to run in processor A, or it can accept and execute software built to run in the high 
spaces available to processor B (D) only. 
 
A disadvantage of this approach is that a larger page table is required. 
 
In the example below, note that the B processor maps its MAIN memory space into two 
logical address spaces:  the logical address space beginning at MAIN_BEGIN_A, and 
also the space beginning at MAIN_BEGIN_B. 

 
static struct REGION proca_regions[] = 
{ 
    {0x00000000,   EVT_A,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A, MAIN_BEGIN_A,MAIN_SIZE_A,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_A,      STACK_A,     STACK_SIZE_A, ATTR_RWX}, 

    {REGION_END,   REGION_END,  0,            0} 
}; 
 

    {PAGE_TABLE,   PGTBL_A,     PGTBL_SIZE_A, 0}, 

7-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

static struct REGION procb_regions[] = 
{ 
    {0x00000000,   EVT_B,       EVT_SIZE,   ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_A, MAIN_BEGIN_B,MAIN_SIZE_B,ATTR_CLEAR+ATTR_RWX}, 
    {MAIN_BEGIN_B, MAIN_BEGIN_B,MAIN_SIZE_B,ATTR_CLEAR+ATTR_RWX}, 
    {STACK_B,      STACK_B,     STACK_SIZE_B, ATTR_RWX}, 
    {PAGE_TABLE,   PGTBL_B,     PGTBL_SIZE_B, 0}, 
    {REGION_END,   REGION_END,  0,            0} 
}; 

 

Leaving Space for Global Buffers 
It is sometimes desirable to leave a portion of the memory available for buffer space.  
External devices (PMC devices or other processors on the board) can use this space for 
data movement. 

 
Because the space will be available for access by other devices, caching attributes must 
be carefully considered.  Enabling cache for such a region is not recommended.  While 
the bridge device is capable of “snooping” PCI accesses to local memory, the snooping 
activity will compete for the local processor bus, compromising the bus bandwidth of 
both processors, whether they are interested in the data buffer or not. 

 
Inhibiting cache is the simplest option, but this may not provide the best performance.  It 
may be more effective to leave cache enabled, and then to use the cache flush (or cache 
invalidate) functions after writing output data (or before reading input data) to externally 
visible memory. 
 
In order to carve out a space for data buffers, reduce the size of the main memory region 
for one or both processors.  If the size of the A (C) processor main memory region was 
reduced, then adjust the starting address of the B (D) memory region as well.   Adjusting 
the sizes will open up a “gap” in the physical address space between the end of the B (D) 
processor main memory region, and the start of the stack/EVT/page table area.  Recall 
that these areas are always allocated at the end of physical memory. 

 
This new region can be mapped into one, or both, processors by adding an appropriate 
region to the processor’s region table.  The shared region table is for regions common to 
all four processors on a board.  If each pair of processors has a buffer space with the same 
size and starting address, a region entry may be added to the shared region table.  
Otherwise, the new region should be added to the private region table for all processors 
requiring access to the region. 

 

VxWorks Memory Sizing Implications 
The size of a memory region used by VxWorks varies with the CBC configuration.   The 
BSP for VxWorks interrogates the CBC in order to determine the size of the region in 
which VxWorks lives.  Therefore, changes in the CBC configuration are automatically 
reflected in the BSP, with no need to change the BSP. 
 

7-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

7.3 Performance Monitoring Capabilities 
 

Software Development Support 
Several performance monitoring capabilities are introduced with release 2.4 of IXATools.  
These capabilities allow the developer to access to the internal performance monitoring 
features of the 74x0, determine the junction temperature of the processor, and 
dynamically control the instruction execution rate of the processor. 
 
The 74x0 processors include performance monitoring registers.  These registers can be 
configured to count internal processor events, such as cache hits and misses, instructions 
completed, branch operations, and so forth.  The processors allow the user to specify four 
events to be counted chosen from a list of over 100 separate events.  
 
Enabling the performance monitoring does not interfere with real-time execution.   
 
IXATools provides a series of functions (ixa_pm_xxxx) that control the processor’s 
performance monitoring features.  Using these functions, software designers define 
events.  An event has a specific starting point within the code, and a specific ending 
point.  Performance monitoring data and timing data are collected for each event.  Events 
can be nested or overlap.  Collected data is analyzed and displayed using the performance 
monitor display functions. 
 
 

Runtime Support 
Also introduced in release 2.4 is the temperature read function (ixa_temp_read), and 
cache throttling functions (ixa_cache_throttle_read, ixa_cache_throttle_write). 
 
The temperature read function determines the junction temperature of the part by reading 
the processor’s thermal assist unit (TAU) registers.  The accuracy of the TAU is a 
function of the processor family and may vary between revisions of parts. 
 
Cache throttling can be used to control power use, and, to a limited extent, component 
temperature.  By default, the instruction cache feeds instructions to the execution unit as 
fast as the execution unit can process them.  By adjusting the cache throttling value, the 
execution rate of the processor can be controlled.   
 
Writing any value to the cache throttling register enables dynamic power management 
(DPM).  DPM places the processor in a mode where unused execution units are not 
clocked.  DPM results in some power savings, even if the cache throttle value is zero 
(indicating full-speed execution).  There are no performance penalties for enabling DPM. 

 
 
 

7-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

7.4 VxWorks and the SPEs 
The VxWorks BSP for SPEs relies on the IOPlus to initialize global board resources and 
on the Common Boot Code (CBC) to perform initialization for the majority of the local 
processor resources.  Table 7.3 presents a summary of the BSPs features and Table 7.4 
provides a list of the BSPs functions. 

 

Table 7.3 - SPE VxWorks BSP Features 

Feature Description 
Boot ROM Images Bootrom.hex  
Boot Devices Ethernet:sm 
VxWorks images vxWorks, vxWorks.st, vxWorks5_2 
MMU - basic bundled MMU support 

- uses BAT registers and PTEs for address translation 
Cache mode Instruction, data, L1 & L2 cache in copyback cache mode 
Sysclock using PPC Decrementer 
AuxClock using timer 0 of EPIC 
Serial using shared memory protocol 
Timestamp using timer 1 of EPIC 
Ethernet shared memory network using PCI bus 

 

7.5 Commanding the IOPlus from a SPE 
The IXAbsp library includes functions to create and manage linked lists of command 
packets to be processed by the IOPlus.  From the IXAbsp perspective, the mechanism for 
controlling IOPlus command processing is called a command channel.  The IOPlus 
defines a fixed number of command channels that can be allocated by the SPEs or by host 
processes.  The IXAbsp library provides functions to open and close command channels, 
to create command lists associated with a command channel, to start and stop command 
list processing for a specific command channel, and to check the status of command 
channels. 
 
Associated with a command channel is a command list where command packets for 
IOPlus processing are located.  A command list consists of one or more command 
packets and can be located either in SPE memory space or in PCI memory space.  Also 
associated with a command channel is a response list where the IOPlus places response 
packets created during the processing of the commands in the command list.  Like the 
command list, the response list consists of one or more response packets and can be 
located either in SPE memory space or in PCI memory space.  The locations of the 
command and response lists are specified by the IXAbsp function call that opens a 
command channel.  The command and response lists are located independently of each 
other, i.e. both can reside in PCI memory space, both in SPE memory space, or one in 
PCI memory space and the other in SPE memory space.   
 
By default, the control structure for command channels is located in global memory.  
When opening a command channel, you have the option of relocating this command 

7-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

structure into SPE memory.   The advantage of relocating the command channel is that 
the SPE processor has complete control of the command channel without having to go 
out onto the PCI bus to access the channel control structure.  The disadvantage is a 
decrease in command processing performance as the IOPlus must access the channel 
control structure through the PCI bridges. 
 

Table 7.4 - SPE VxWorks BSP Functions 

Function Description 
sysAuxClkConnect() connect a routine to the auxiliary clock interrupt 
sysAuxClkDisable() turn auxiliary clock interrupts off 
sysAuxClkEnable() turn auxiliary clock interrupts on 
sysAuxClkInt() handle auxiliary clock interrupts 
sysAuxClkRateGet() get the auxiliary clock rate 
sysAuxClkRateSet() set the auxiliary clock rate 
sysBspRev() return the bsp version and the bsp revision number 
sysBusIntAck() acknowledge/clear interrupt 
sysBusIntGen() generate an interrupt 
sysBusTas() test and set a location across the cPCI bus 
sysBusToLocalAdrs() convert bus address to local address 
sysClkConnect() connect a routine to the system clock interrupt 
sysClkDisable() turn off system clock interrupts 
sysClkEnable() turn on system clock interrupts 
sysClkRateGet() get the system clock rate 
sysClkRateSet() set the system clock rate 
sysCpuCheck() check CPU type 
sysLocalToBusAdrs() convert local address to bus address 
sysIntDisable() disable interrupts 
sysIntEnable() enable interrupts 
sysMemTop() get the address of the top of VxWorks memory 
sysModel() return the model name of the target card 
sysNvRamGet() get the contents of non-volatile RAM 
sysNvRamSet() write to non-volatile RAM 
sysPhysMemTop() get the address of the top of physical memory 
sysProcNumGet() get the processor number 
sysProcNumSet() set the processor number 
sysSerialChanGet() get the SIO_CHAN device associated with a serial channel 
sysTimestamp() get the timestamp timer tick count 
sysTimestampConnect() connect a user routine to the timestamp interrupt 
sysTimestampDisable() disable the timestamp timer 
sysTimestampEnable() initialize and enable the timestamp timer 
sysTimestampFreq() get the timestamp timer clock frequency 
sysTimestampLock() get the timestamp tick counter 
sysTimestampPeriod() get the timestamp timer period 
sysToggleLed() turn the status LED on or off 
sysToMonitor() transfer control to the ROM monitor 

 
 
 

7-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

Command channels are designed so that a program can open any number of channels 
provided they are available.  Most likely, you will want to configure all the command 
channels needed in the initialization sequence, start the processing loop, and kick off 
command channels in response to events as they occur.  Thus the overhead of setting up 
the command channels will not be incurred during the time-critical processing loop. 

 

Using Command Channels 
A SPE program allocates a command channel using the ixa_cmd_open function.  The 
parameters of this function include memory addresses where the command and response 
lists for the channel are located, whether they exist in SPE or PCI memory space, and if 
the command channel is to be relocated to SPE memory space. 
 
For example, the following code segment opens a command channel, placing the 
command list in a global memory block allocated using the ixa_malloc function, the 
response list local memory allocated using malloc, and relocating the command channel 
to local memory: 
 
CMD_CHANNEL   cmd_chan; 
unsigned int *cmd; 
unsigned int *response; 
unsigned int  src_opt; 
unsigned int  dest_opt; 
IXABSP_STATUS stat; 
unsigned int  cmd_chan_option; 
CMD_ERROR     cmd_err; 
 
cmd = (unsigned int *) ixa_malloc((CMD_MOVE_DATA_SZ + 

     CMD_GENERERATE_INT_SZ) *    
     sizeof(unsigned int)); 
 

response = (unsigned int *) malloc(2 * CMD_ACK_SZ 
 * sizeof(unsigned int)); 

 
cmd_chan_option =  CMD_CHANNEL_OPTION_RESP_LOCAL | 
                   CMD_CHANNEL_OPTION_RELOCATE; 
 
stat = ixa_cmd_open(&cmd_chan,  

                     cmd,  
                     response,  
                     cmd_chan_option); 
 
It is important to note that the ixa_cmd_open function does not allocate memory for the 
command or response lists.  You must ensure that the addresses selected for these lists are 
protected and have sufficient memory available to hold command/response packets.  In 
the above examples, sufficient memory was allocated for the response list to hold two 
CMD_ACK response packets. 

 
Once a command channel is opened, the command list can be built using the ixa_cmd_set 
functions.  Most ixa_cmd_set functions have 4 arguments - a pointer to the command 
channel structure, a command packet index, a command packet field id, and the value to 

7-20 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

be placed in that field.  The ixa_cmd_set_param function has an additional parameter 
index argument.  When building a command list, care must be taken to create the list in 
the proper order, starting with the first command packet in the list and ending with the 
last.  The next pointer field in a command packet is used to determine where the 
subsequent command in the list is located, so it is particularly important to set the next 
pointer of a command packet before attempting to set fields in subsequent command 
packets. Failure to do so is likely to cause errors in processing the command list and 
could result in corrupted memory.  The next field of the last command packet in the list 
should be set to zero.  It is also a good practice to set all of the parameter fields for a 
command packet, including those to be set to zero as there may be residual non-zero 
values in those memory locations that may cause unexpected results when the command 
is processed. 
 
The following code segment builds a command list consisting of a move data command 
packet which transfers data from the cPCI bus to global memory followed by a generate 
interrupt command packet which will trigger a mailbox interrupt: 
 
src_opt = CMD_MOVE_DATA_PCI_ADDR; 
 
dest_opt = CMD_MOVE_DATA_PCI_ADDR; 
 
ixa_cmd_set_opcode(&cmd_chan, 0, CMD_MOVE_DATA); 
ixa_cmd_set_option(&cmd_chan, 0, CMD_OPTION_ACK); 
ixa_cmd_set_param( &cmd_chan, 0, 0, 0x84000000);    /* source address 
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 1, 1);             /* source stride  
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 2, src_opt);       /* source options 
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 3, 0x80000);         /* dest address 
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 4, 1);               /* dest stride  
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 5, dest_opt);        /* dest options 
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 6, 4096);               /* num words 
*/ 
ixa_cmd_set_param( &cmd_chan, 0, 7, CMD_MOVE_DATA_COPY); /* operation 
*/ 
ixa_cmd_set_next(  &cmd_chan, 0, cmd+CMD_MOVE_DATA_SZ); 
 
ixa_cmd_set_opcode(&cmd_chan, 1, CMD_GENERATE_INT); 
ixa_cmd_set_option(&cmd_chan, 1, CMD_OPTION_ACK); 
ixa_cmd_set_param(&cmd_chan, 1, 0, CMD_GENERATE_INT_MBOX);/* int type 
*/ 
ixa_cmd_set_param(&cmd_chan, 1, 1, 4); /* mailbox 4 */ 
ixa_cmd_set_param(&cmd_chan, 1, 2, 0); /* not used */ 
ixa_cmd_set_next( &cmd_chan, 1, 0); 
 
You may notice that the source, destination, and size fields of the command headers do 
not appear to be explicitly set.  This is because the ixa_cmd_set_opcode function does 
this in addition to setting the opcode field. 

7-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
Once the command list has been created, the processing of the commands by the IOPlus 
can be initiated by calling the ixa_cmd_start function. 

 
stat = ixa_cmd_start(&cmd_chan, SYNC); 
 
In synchronous mode, the function will not return until the IOPlus has completed 
processing the commands.  When called in asynchronous mode, the function returns as 
soon as the command processing has been started. Upon completion of the command list 
processing or upon an error condition, the IOPlus updates the status of the command 
channel.  In the above case, the command channel structure was relocated to local 
memory when the channel was opened.  The status of a command channel can be 
determined by calling the ixa_cmd_status function.  Should an error condition exist, 
information about the error can be obtained from the response list packets by calling the 
ixa_cmd_error function. 

 
do  
  { 
    ixa_cmd_status(&cmd_chan, &status); 
  } while (status == CMD_STATUS_ACTIVE); 
 
if (status == CMD_STATUS_ERROR) 
  ixa_cmd_error(&cmd_chan, &cmd_err); 
 
Note that since the command channel structure was relocated to local memory when it 
was opened, the SPE does not have to go out on the PCI bus to monitor the channel 
status.  Likewise, since the response list was setup in local memory, the SPE does not 
have to access the PCI bus to get error information. 
 
Command processing for a given command channel can by stopped by calling the 
ixa_cmd_stop function.  If a command channel is no longer needed, you can close the 
channel and make it available to other processes using the ixa_cmd_close function: 
 
stat = ixa_cmd_close(&cmd_chan); 

 

7.6 Function Reference 
The following is a description of the functions provided in the IXAbsp and the IXAio. 
They are organized in alphabetical order.  In cases where several functions are grouped 
together into one description they too are organized alphabetically.  The naming 
convention of the functions will tend to group them together into related services, i.e. 
ixa_PCI_*** pulls all the PCI bus support functions together.  Utility functions are 
scattered throughout. 
 
 

7-22 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

getchar 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int getchar (void); 

 
DESCRIPTION: 
 

The function getchar reads the next character, c, from the serial port.   If no character is 
available then the caller is suspended. 
 
 

RETURN STATUS: 
 

Character value 

7-23 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_enable 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_enable (int type); 

 
DESCRIPTION: 
 

ixa_cache_enable enables L1 instruction cache, L1 data cache, L2 cache, or all as 
specified by type.  The parameter, type, may be one of the following: 
 

CACHE_DATA enable data cache 
CACHE_INSTR enable instruction cache 
CACHE_L2  enable the L2 cache 
CACHE_ALL  enable both instruction cache and data cache 
 

Please note that on power-up, the IXA board boots and then runs the Common Boot 
Code.  This leaves the board in a state with external interrupts disabled and all caches 
(instruction, data, and L2) enabled. 
 

RETURN STATUS: 
 

None 

7-24 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_disable 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_disable (int type); 

 
DESCRIPTION: 
 

ixa_cache_disable flushes, disables L1 instruction cache, L1 data cache, the L2 cache, or 
all caches as specified by type.  The parameter, type, may be one of the following: 
 

CACHE_DATA disable data cache 
CACHE_INSTR disable instruction cache 
CACHE_L2  disable the L2 cache 
CACHE_ALL  disable all caches 

 
After the data cache is disabled, it is flushed and then invalidated.  The instruction cache 
is invalidated but not flushed. 
 
 

RETURN STATUS: 
 

None 

7-25 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_flush 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_flush (void *addr, 
                      long  n); 

 
DESCRIPTION: 
 

ixa_cache_flush will flush n bytes of data cache beginning at address addr.   
 

RETURN STATUS: 
 

None 

7-26 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_invalidate 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_invalidate (void *addr, 
        long  n); 

 
DESCRIPTION: 
 

ixa_cache_invalidate will invalidate n bytes of data cache beginning at address addr.   
 

RETURN STATUS: 
 

None 
 

7-27 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_inv_all 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_inv_all (int type); 

 
DESCRIPTION: 

 
ixa_cache_inv_all invalidates the entire L1 instruction cache, L1 data cache, or both as 
specified by type.  If the L2 cache is enabled, it is invalidated also.  The parameter, type, 
may be one of the following: 
 

CACHE_DATA enable data cache 
CACHE_INSTR enable instruction cache 
CACHE_ALL  enable both instruction cache and data cache 
 

RETURN STATUS: 
 

None 

7-28 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_sync 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_cache_sync (void); 

 
DESCRIPTION: 
 

ixa_cache_sync will synchronize the data and instruction caches.  This function is 
required when loading executable data into a memory area.  Because data from this area 
may still live in the data cache, it must be forced to memory.  Then, the instruction cache 
is invalidated, forcing the instruction cache to pick up the new data from memory. 
 

RETURN STATUS: 
 

None 

7-29 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_throttle_read 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_cache_throttle_read ( void ); 

 
DESCRIPTION: 
 

The function, ixa_cache_throttle_read reads the delay interval (expressed in clock 
cycles) between consecutive instruction forwardings from the instruction cache to the 
instruction dispatcher.  
 

RETURN STATUS: 
 
 Number of clock cycles between consecutive instruction forwardings. 
 
 Returns –1 if the processor does not support cache throttling. 

 
SEE ALSO: 
 

ixa_cache_throttle_write,  ixa_temp_read.  
 

 

7-30 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cache_throttle_write 
 
 
  
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_cache_throttle_write ( int delay ); 

 
DESCRIPTION: 
 

The function, ixa_cache_throttle_write writes a new delay interval (expressed in clock 
cycles) between consecutive instruction forwardings from the instruction cache to the 
instruction dispatcher. This new delay value should be in a range 0 to 255.  If the new 
delay value is negative then ixa_cache_throttle_write writes 0. Also if the new value is 
greater than 255 then ixa_cache_throttle_write writes 255. A value of zero provides 
maximum processor performance. 
 
Nonzero values reduce processor performance and processor power requirements.  In 
some environments, it may be possible to control device power consumption and junction 
temperature by adjusting the cache throttle value. 

 
 
RETURN STATUS: 
 
 Number of clock cycles between consecutive instruction forwardings. 
 

Returns –1 if the processor does not support cache throttling  
 

SEE ALSO: 
 

ixa_cache_throttle_read,  ixa_temp_read.  

7-31 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_close 
 

DESCRIPTION: 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_close (CMD_CHANNEL *cmd_chan); 

 

 
ixa_cmd_close frees an IOPlus command channel opened with ixa_cmd_open. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 
 

7-32 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_error 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_error ( CMD_CHANNEL *cmd_chan, 

CMD_ERROR  *cmd_err); 
 
DESCRIPTION: 
 

The ixa_cmd_error function returns the error status of the command channel specified by 
cmd_chan.  The error status is stored in cmd_err, which is a structure defined as follows: 
 

typedef struct _cmd_error_struct 
{ 
  unsigned int cnt;      /* number of errors in response list */ 
  unsigned int op;       /* opcode of command causing error */ 
  unsigned int err_code; /* param 1 of response packet */ 
  unsigned int err_val1; /* param 2 of response packet */ 
  unsigned int err_val2; /* param 3 of response packet */ 
  unsigned int err_val3; /* param 4 of response packet */ 
} CMD_ERROR; 
 
The cnt structure element indicates how many error responses exist in the command 
channel response list.  The cmd_op parameter identifies the command operation that 
generated the first error in the response list.  The err_xxxx values are the parameters of 
the first error CMD_ACK response packet in the response list.  Possible values for 
err_code are as follows: 
 

CMD_ERR_NONE – no error or no response packet 
CMD_ERR_NOT_SUPPORTED – command not supported 
CMD_ERR_INVALID_PARAM – invalid parameter 
CMD_ERR_BUS_ERROR – bus error 
CMD_ERR_OPERATION_FAILED – operation failed 
CMD_ERR_NOT_OPENED – failed to open 
CMD_ERR_FULL – resource full 
CMD_ERR_DATA_MISMATCH – data mismatch 

 
For more detail on CMD_ACK packets, see section 5. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_CMD_CHANNEL_BUSY: command channel is active. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 

7-33 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_open 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_open ( CMD_CHANNEL  *cmd_chan, 
     unsigned int *cmd_addr, 
     unsigned int *response_addr, 
     unsigned int  options); 
 

DESCRIPTION: 
 
ixa_ cmd_open opens a command channel to the IOPlus.  The cmd_chan parameter is a 
pointer to a CMD_CHANNEL structure.  Once successfully opened, this 
CMD_CHANNEL structure pointer can be used to manage IOPlus command processing 
using the various ixa_cmd functions.  The cmd_addr parameter points to the start of the 
command list.  response_addr points to the response list.  By default, the cmd_addr and 
response_addr parameters are interpreted as PCI addresses.  The options parameter can 
be used to identify them as local memory addresses and/or to relocate the command 
channel to local memory.  The following options can be OR’d together: 
 
CMD_CHANNEL_OPTION_CMD_LOCAL – the cmd_addr is a local memory address 
CMD_CHANNEL_OPTION_RESP_LOCAL – the resp_addr is a local memory address 
CMD_CHANNEL_OPTION_RELOCATE – relocate the command channel to local 
memory 
 
The IOPlus has a fixed number of available command channels.  Once allocated by 
calling ixa_cmd_open, a command channel can be unallocated by calling ixa_cmd_close, 
thereby freeing the command channel for use by another processor. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_RESOURCE_UNAVAILABLE: no command channels are available. 
 

7-34 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_set_next,   
ixa_cmd_set_opcode,  
ixa_cmd_set_option,   
ixa_cmd_set_param 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_set_next ( CMD_CHANNEL *cmd_chan, 
      unsigned int cmd_idx, 
      unsigned int next_val); 
 
IXABSP_STATUS ixa_cmd_set_opcode ( CMD_CHANNEL *cmd_chan, 
      unsigned int cmd_idx, 
      unsigned int op_val); 
 
IXABSP_STATUS ixa_cmd_set_option ( CMD_CHANNEL *cmd_chan, 
      unsigned int cmd_idx, 
      unsigned int opt_val); 
 
IXABSP_STATUS ixa_cmd_set_param ( CMD_CHANNEL *cmd_chan, 
      unsigned int cmd_idx, 
      unsigned int param_idx, 

unsigned int param_val); 
    

DESCRIPTION: 
 

The ixa_cmd_set functions provide a convenient method for creating a command list for 
a command channel.  The cmd_chan parameter specifies the command channel for the 
command list, and must be a valid CMD_CHANNEL pointer returned by ixa_cmd_open.  
cmd_idx specifies which command in the list is being modified, with the first command 
in the list having the index of 0.  The val parameter specifies the value to which the 
command field is to be set.  The ixa_cmd_set_param function has an additional 
parameter, param_idx, which specifies a parameter index, starting with the index of 0.  
The specific command fields set by the various ixa_cmd_set functions are as follows: 
 
ixa_cmd_set_opcode – sets the opcode field of the command.  In addition, calling this 
function will also set the source, destination and size fields of the specified command 
packet. 
 
ixa_cmd_set_option – sets the option field of the command.  Valid values, which can be 
OR’d together, are as follows: 

 
CMD_OPTION_ACK – generate a CMD_ACK response packet 
CMD_OPTION_ATOMIC – immediately process next command in the command list 

 

7-35 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_set_next – sets the next field of the command.  The last command in a 
command list should have its next field set to 0.  Before setting fields for a given 
command, you must first set the next field of the previous command in the list. 
 
ixa_cmd_set_param – sets the specified parameter field of the command. Various macros 
are defined in ixa.h to assist in setting parameter fields for specific commands.  For 
example, CMD_MOVE_DATA_PCI_ADDR can be used to set the source and 
destination address option parameters of a CMD_MOVE_DATA packet, to identify that 
the address is a PCI address.  Please refer to the ixa.h header file for the full list of 
command parameter macros. 
 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 
 
  

7-36 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_start 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_start ( CMD_CHANNEL *cmd_chan, 

unsigned int mode); 
 
DESCRIPTION: 
 

ixa_cmd_start initiates IOPlus processing of the command channel indicated by 
cmd_chan.  The cmd_chan must be a valid CMD_CHANNEL pointer returned by the 
ixa_cmd_open function.  The mode parameter specifies whether the function waits for the 
IOPlus to complete command processing for the channel before returning (SYNC), or if it 
returns immediately after initiating the IOPlus request (ASYNC).  Prior to calling this 
function, a command list associated with the command channel should have been created 
using the ixa_cmd_set functions.  The status of a command channel can be determined by 
calling ixa_cmd_status. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 
 

7-37 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_status 
 

If an error status is indicated, more information regarding the error can be obtained by 
calling the ixa_cmd_error function. 

 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_status (CMD_CHANNEL  *cmd_chan, 

unsigned int *status); 
 
DESCRIPTION: 
 

The ixa_cmd_status function returns the status of the command channel specified by 
cmd_chan.  Upon return, the status pointer will be one of the following: 
 
CMD_STATUS_ACTIVE – if the request is still being processed by the IOPlus 
CMD_STATUS_DONE – if the transfer is complete 
CMD_STATUS_ERROR – if an error occurred during the transfer 
 

 
RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 
 

7-38 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_stop 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_stop (CMD_CHANNEL *cmd_chan); 

 
DESCRIPTION: 
 

ixa_cmd_stop halts IOPlus processing of the command channel indicated by cmd_chan.  
The cmd_chan must be a valid CMD_CHANNEL pointer returned by the ixa_cmd_open 
function. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPEN: command channel has not been opened. 

7-39 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_VME_error 
 
 

 

 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_VME_error (CMD_ERROR   *cmd_err); 

 
DESCRIPTION: 

The ixa_cmd_VME_error function returns the error status of an ixa_cmd_VME_read or 
ixa_cmd_VME_write operation.  For more details, see ixa_cmd_error. 

 
RETURN STATUS: 

 
IXABSP_SUCCESS: successful completion. 
IXABSP_CMD_CHANNEL_BUSY: command channel is active. 

 
NOTES: 
 

ixa_cmd_VME_error is meaningful only on IXA VME boards. 
 

7-40 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_VME_read,   
ixa_cmd_VME_write 

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_VME_read ( void        *vme_addr, 

       void        *brd_addr, 
       unsigned int brd_addr_opt, 
       unsigned int addr_space, 
       unsigned int addr_mod, 
       unsigned int data_size, 
       unsigned int count, 
       unsigned int mode); 
 
IXABSP_STATUS ixa_cmd_VME_write ( void        *vme_addr, 

        void        *brd_addr, 
        unsigned int brd_addr_opt, 
        unsigned int addr_space, 
        unsigned int addr_mod, 
        unsigned int data_size, 
        unsigned int count, 
        unsigned int mode); 

 
DESCRIPTION: 
 

ixa_cmd_VME_read and ixa_cmd_VME_write perform master VME transfers.  These 
functions send a command to the IOPlus to perform the transfer, in contrast to the 
ixa_VME_read and ixa_VME_write functions which processor access the VME interface 
chip directly. vme_addr is the starting VME address and brd_addr is the starting board 
address of the transfer.  The brd_addr is further defined by the brd_addr_opt  that 
specifies whether the address is a PCI address (PCI_ADDR)  or a SPE address 
(LOCAL_ADDR). The VME access characteristics are determined by the following 
parameters: 
 

addr_space – specifies address space.  Valid values are A16, A24, A32, A64, 
ACR_CSR, AUSER1, or AUSER2. 

addr_mod – specifies address modifier.  Valid values are SUPER_PRG_AM, 
SUPER_DATA_AM, USER_PRG_AM, USER_DATA_AM. 

data_size – specifies transfer size.  Valid values are D8, D16, D32, D32BLT or 
D64BLT. 

 
The number of data elements to transfer is specified by count.  mode indicates whether 
the function waits until the transfer is complete before returning (SYNC), or returns after 
passing the request on to the IOPlus (ASYNC).  In the ASYNC mode, the status of the 
VME transfer can be determined by calling the ixa_cmd_VME_status function. 

7-41 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_VME_INVALID_ADDR_SPACE: invalid addr_space parameter. 
IXABSP_VME_INVALID_AM: invalid addr_mod parameter. 
IXABSP_VME_INVALID_DATA_SIZE: invalid data_size parameter. 
IXABSP_CMD_ERROR: in SYNC mode, a command channel error occurred. 

 
NOTES: 
 

ixa_cmd_VME_read and ixa_cmd_VME_write are meaningful only on IXA VME boards. 
 

 

7-42 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_cmd_VME _status 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_cmd_VME_status (unsigned int *status); 

 
DESCRIPTION: 
 

The ixa_cmd_VME_status function returns the status of an asynchronous transfer 
initiated by the ixa_cmd_VME_read or ixa_cmd_VME_write function.  One of the 
following status values will be written to the status pointer: 
 
CMD_STATUS_ACTIVE – if the request is still being processed by the IOPlus 
CMD_STATUS_DONE – if the transfer is complete 
CMD_STATUS_ERROR – if an error occurred during the transfer 
 
If an error status is indicated, more information regarding the error can be obtained by 
calling the ixa_cmd_VME_error function 

 
RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 

NOTES: 
 

ixa_cmd_VME_status is meaningful only on IXA VME boards. 

7-43 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
ixa_CPCI_close 

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

IXABSP_STATUS ixa_CPCI_close (CPCI_DEVICE *dev); 
 
DESCRIPTION: 
 

ixa_CPCI_close closes a window to the compact PCI backplane.  If the window was 
opened as a shared window, then this function takes no action and returns a status 
indicating success.  If the window was not a shared window, the window is made 
available for reallocation, and a successful status is returned. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 

NOTES: 
 

ixa_CPCI_close is meaningful only on IXA Compact PCI boards. 

7-44 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
ixa_CPCI_open 

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

ixa_CPCI_open opens a window of memory mapped to the compact PCI backplane. The 
cPCI bridge is adjusted to map the desired address into the processor’s local address 
space.   The data structure at *dev is updated to reflect this mapping. 

 

ixa_CPCI_open is meaningful only on IXA Compact PCI boards. 

IXABSP_STATUS ixa_CPCI_open ( CPCI_DEVICE *dev, 
void *cpci_addr, 
unsigned char shared); 

 
DESCRIPTION: 
 

 
The bridge device on the IXA-4 supports two master windows.  ixa_CPCI_open allocates 
an available window.  If shared is zero, then the window is opened for exclusive use.  If 
shared is nonzero, then the window is opened for shared use.  Multiple processors 
opening the same window with a nonzero shared option will allocate only a single 
window.  The shared mode is strongly recommended in cases where all four processors 
have to access the same general region of cPCI backplane space.    
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 

NOTES: 
 

The window size is 32 megabytes (0x02000000 bytes). 
 
cpci_addr must be a multiple of the window size. 
 

 
 
 
 

7-45 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
ixa_CPCI_read 

 

 

 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

IXABSP_STATUS ixa_CPCI_read ( CPCI_DEVICE *dev, 
void *cpci_addr, 
void *local_addr, 
unsigned long count, 
int swap); 

 
DESCRIPTION: 

ixa_CPCI_read moves data from the compact PCI backplane at address cpci_addr to a 
local buffer at local_addr.  Count 32-bit words are moved.  If swap is nonzero, then bytes 
are reordered during the copy.  dev is a device structure initialized by ixa_CPCI_open. 
 
ixa_CPCI_read is meaningful only on IXA Compact PCI boards. 
 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 

NOTES: 
 

ixa_CPCI_read is meaningful only on IXA Compact PCI boards. 

7-46 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
ixa_CPCI_to_local, ixa_local_to_CPCI 

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void *ixa_CPCI_to_local (     CPCI_DEVICE *dev, 
void *cpci_addr); 
 

void *ixa_local_to_CPCI (     CPCI_DEVICE *dev, 
void *local_addr); 
 

 
DESCRIPTION: 
 

Given a device descriptor populated by ixa_CPCI_open, these functions translate a CPCI 
backplane address to a local address or visa-versa.   These functions return 0xffffffff if 
the translation cannot be performed. 

 
RETURN STATUS: 
 

Translated address, or 0xffffffff if error. 
 

NOTES: 
 
ixa_CPCI_to_local and ixa_local_to_CPCI are meaningful only on IXA Compact PCI 
boards. 

7-47 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
ixa_CPCI_write 

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

IXABSP_STATUS ixa_CPCI_write( CPCI_DEVICE *dev, 

 

void *cpci_addr, 
void *local_addr, 
unsigned long count, 
int swap); 

 
DESCRIPTION: 
 

ixa_CPCI_write moves data from the local buffer at local_addr to the compact PCI 
backplane at address cpci_addr.  count 32-bit words are moved.  If swap is nonzero, then 
bytes are reordered during the copy.  dev is a device structure initialized by 
ixa_CPCI_open. 
 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 

NOTES: 
 

ixa_CPCI_write  is meaningful only on IXA Compact PCI boards. 

7-48 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_delay 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 

void ixa_delay (unsigned long nticks); 
 

 
DESCRIPTION: 
 

ixa_delay can be used to delay operation until the specified number of clock ticks, nticks, 
has elapsed.  This function must not be called with interrupts disabled since this prevents 
the timer from advancing. 
 

RETURN STATUS 
 

None 

7-49 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_delay_msec, 
ixa_delay_sec, 
ixa_delay_usec 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_delay_msec (unsigned long msec); 
 
void ixa_delay_sec (unsigned long sec); 
 
void ixa_delay_usec (unsigned long usec); 
 

DESCRIPTION: 

These functions, ixa_delay_msec, ixa_delay_sec, and ixa_delay_usec can be used to 
delay operation until the specified time period has elapsed.  The time period should be 
specified in msec, sec, or usec respectively.  These functions must not be called with 
interrupts disabled since this will prevent the timer from advancing. 

 

 
RETURN STATUS: 
 

None 

7-50 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_dma_init 
 

 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 

 
int ixa_dma_init(int nq); 

 
DESCRIPTION: 
 

ixa_dma_init sets up the hardware and software for control of the DMA channels.  The 
DMAs are located within the bridges for each SPE.   The nq parameter determines the 
number of DMA requests that can be queued to the DMA. 

 
RETURN STATUS: 
 

0 = Success, else cannot allocate memory for queues. 

7-51 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_dma_start 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 

  long doneparam); 

int ixa_dma_start(  void *src,  
  void *dest,  
  int nbytes, 
                 unsigned long options,  
  void (*done)(long param, long status),  

 
DESCRIPTION: 
 

ixa_dma_start queues a request to a DMA controller.  If the DMA is not busy at the time 
the function is called, then ixa_dma_start starts the DMA. 
 
The request will transfer nbytes from src to dest using options.  src or dest values less 
than 0x08000000 (128 megabytes) are interpreted as references to local memory.  
Addresses beyond this range are treated as PCI references.  Any combination of local 
memory and PCI references may be used – for example, the source and address values 
may both be local memory addresses, resulting in a memory to memory move. 
 
src and dest must be physical addresses, such as those returned by ixa_mmu_map_addr. 
 
Options can be used to specify that the source address or destination address (but not 
both) be held during the transfer.  This is useful when reading from or writing to a FIFO.  
For a held address, options can also specify the width of the source or destination. 
Options may include none or one of the following values: 
 

DMA_MODE_SAHE:   The source address should be held during the transfer  
DMA_MODE_DAHE:  The destination address should be held during the transfer  
 

logically OR-ed with none or one of the following: 
 
DMA_MODE_SATS_1:  The held source is a byte  
DMA_MODE_SATS_2:  The held source is a 16-bit  
DMA_MODE_SATS_4:  The held source is a word  
DMA_MODE_SATS_8:  The held source is a double word  
 

            DMA_MODE_DATS_1:  The held destination is a byte  
            DMA_MODE_DATS_2:  The held destination is a 16-bit  
            DMA_MODE_DATS_4:  The held destination is a word  
            DMA_MODE_DATS_8:  The held destination is a double word 

7-52 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
An option value of zero is most often used, and specifies that both the src and dest should 
be incremented during the transfer. 
 

 DMA_STATUS_PE:  A PCI bus error occurred 

Normal DMA completion is indicated when 

When the transfer completes, the DMA interrupt service routine will call done passing 
doneparam and status.  The interrupt service function automatically starts the next 
queued requests when the DMA completes.  The done function may take any action that 
is legitimate from within an interrupt service routine, including calling ixa_dma_start to 
start another transaction.  Doneparam is a user-defined parameter that is remembered by 
ixa_dma_start function when the request is queued.  Status values passed to done are the 
logical OR of any of the following bits: 

 
 DMA_STATUS_EOCAI: end of transfer 
 DMA_STATUS_EOSI : end of segment 
 DMA_STATUS_CB:  channel is busy 

DMA_STATUS_LME: A local memory error occurred 
 

 

  
((status & (DMA_STATUS_PE | DMA_STATUS_LME)) == 0) 

 
 

 
RETURN STATUS: 
 

-1:    No free queue elements 
 0:   DMA has been started 
 1: DMA is busy, but request has been queued, and will be started in its turn 

  
NOTES: 
 

A return status of -1 indicates that requests are being queued faster than they are being 
serviced.  If ixa_dma_start returns –1, the request should be retried, except from within 
an ISR.  In order to avoid running out of queue space within an ISR, the DMA must be 
initialized with the proper number of queue elements.  A good rule of thumb is to have a 
queue entry for each I/O buffer in the system. 
 
Remember that src and dest are physical addresses, not logical addresses. 
 
When DMAing into memory, the target memory area should be cache inhibited.  
Alternately, the target memory area can have cache enabled and the application can 
invalidate cache prior to accessing the memory area. 

 

7-53 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

When DMAing from memory, the source memory area should be cache inhibited.  
Alternately, the source memory area can have cache enabled and the application can 
perform a cache flush operation before starting the output DMA operation. 
 

7-54 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_evt_disable 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_evt_disable ( void ); 

 
DESCRIPTION: 
 

ixa_evt_disable disables all external interrupts as well as the decrementor timer 
interrupts.  This is accomplished by clearing the EE bit of the MSR register.  See the 
PowerPC manual for a description of the MSR.   
 

RETURN STATUS: 
 

The original value of the MSR is returned.   The application should save this value and 
provide it as an input parameter for a subsequent call to ixa_evt_enable. 

7-55 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_evt_enable 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_evt_enable ( void ); 

 
DESCRIPTION: 
 

ixa_evt_enable enables all external interrupts.  This is accomplished by setting the EE bit 
of the MSR register.  See the PowerPC manual for a description of the MSR.  
 
Before an application first runs, external interrupts are disabled by the Common Boot 
Code.   An application should call this function during initialization if external interrupts 
are to be used. 
 

RETURN STATUS: 
 

The original value of the MSR is returned. 
 

7-56 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_evt_get 
 
 

CALLING SEQUENCE: 

DESCRIPTION: 

If vector is invalid, ixa_evt_get returns –1.  If an ISR has not been defined for the 
exception vector, vector, this function returns 0. 

 

 
#include <ixa.h> 
 
void *ixa_evt_get (int vector); 

 

 
ixa_evt_get returns the pointer to the exception (interrupt) handler which services the 
interrupt that vectors to location, vector.  Valid exception vectors are 0x100 thru 0x2F00, 
in multiples of 0x100, although some vectors may be reserved.  For a discussion of 
exception vectors, please see the PowerPC user manual for the specific processor that is 
being used. 
 

RETURN STATUS: 
 

7-57 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_evt_set 
 
 
 
CALLING SEQUENCE: 

 

DESCRIPTION: 

RETURN STATUS: 

If this function is successful, a zero is returned.  Otherwise, an invalid interrupt vector 
was passed and a non-zero value will be returned. 

#include <ixa.h> 
 
int ixa_evt_set (  int      vector, 

 void(*f) () ); 
 

 
ixa_ evt_set installs the exception (interrupt) handler, f, to exception vector, vector.  Valid 
exception vectors are 0x100 thru 0x2F00, in multiples of 0x100, although some vectors 
may be reserved.  For a discussion of exception vectors, please see the PowerPC user 
manual for the specific processor that is being used. 
 

 

7-58 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_evt_restore 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_evt_restore ( int oldstate ); 

 
DESCRIPTION: 
 

ixa_ evt_restore restores the MSR to the value contained in oldstate. An example of its 
use is provided below: 
 

void function(void) 
{ 

 

int evt_state; 
evt_state = ixa_evt_disable(); 
 
/* Critical Code running with interrupts disabled goes here 
*/ 
 
ixa_evt_restore(evt_state); 

} 

RETURN STATUS: 
 

The new value of the MSR is returned. 

7-59 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_flash_delete,   
ixa_flash_read,   
ixa_flash_write 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
 

 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 

IXABSP_STATUS ixa_flash_delete (char *name); 
 
 
IXABSP_STATUS ixa_flash_read ( char         *name, 
      void         *local_addr, 
      unsigned int  count); 

IXABSP_STATUS ixa_flash_write ( char        *name, 
       void        *local_addr, 
       unsigned int count); 

 
 

 
DESCRIPTION: 
 

The ixa_flash_write and ixa_flash_read functions write/read a block of user FLASH data.   
When calling ixa_flash_write, name specifies a unique character string that identifies the 
block of data.  The data can then be read by calling ixa_flash_read and passing the same 
character string.  The ixa_flash_delete function deletes from FLASH memory the data 
associated with name. 
 

IXABSP_DEVICE_NOT_OPEN: FLASH memory device was not initialized correctly. 
IXABSP_CMD_CHANNEL_BUSY: command channel already in use. 
IXABSP_CMD_ERROR: error occurred while processing the command. 
 

7-60 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_cluster_id 
 

Cluster ID 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_get_cluster_id ( void ); 
 

DESCRIPTION: 
 

The function, ixa_get_cluster_id will return the cluster ID of the calling processor.  
Processors A and B are located in cluster 0 while processors C and D are located in 
cluster 1.  If this function is called from the IOPlus processor, a cluster  ID of –1 is 
returned. 
 

RETURN STATUS: 
 

7-61 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_proc_id 
 
 
 
CALLING SEQUENCE: 

 

 
int ixa_get_proc_id ( void ); 
 

#include <ixa.h> 

DESCRIPTION: 
 

The function ixa_get_proc_id returns the ID of the calling processor.  The ID’s of the 
processors are defined below as well as the macros which can be used to reference these 
ID’s.: 
 

IOPlus Processor PROC_ID__IOP 0 
Processor A  PROC_ID_A  1 
Processor B  PROC_ID_B  2 
Processor C  PROC_ID_C  3 
Processor D  PROC_ID_D  4 
 

RETURN STATUS: 
 

Processor ID 

7-62 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_proc_info 
 

 

 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
PROC_INFO *ixa_get_procinfo ( void ); 
 

DESCRIPTION: 

The function, ixa_get_proc_info returns a pointer to a processor information structure.  
This structure is defined below: 

typedef struct 
{ 

unsigned int proc_id  /* Processor ID */ 
unsigned int proc_type  /* Processor type */ 
unsigned int proc_rev  /* Processor rev */ 
unsigned int proc_speed  /* Processor speed */ 
unsigned int board_type  /* Board type */ 
unsigned int board_rev  /* Board rev */ 
unsigned int vme_addr  /* Board VME address */ 
 

}  PROC_INFO 
 

 
RETURN STATUS: 
 

Processor Information 

7-63 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_proc_rev 
 

#include <ixa.h> 

 
 
CALLING SEQUENCE: 

 

 
unsigned long ixa_get_proc_rev ( void ); 
 

DESCRIPTION: 
 

The function, ixa_get_proc_rev reads processor special purpose register 287, to get the 
revision information for the calling processor.  

 
RETURN STATUS: 
 

Processor revision 
 

 

7-64 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_proc_type 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_get_proc_type ( ); 
 

DESCRIPTION: 
 

The function, ixa_get_proc_type reads processor special purpose register 287, to 
determine the processor type for the calling processor.  Possible values returned and the 
macros which may be used to define these values are shown below: 

PROCTYPE_MPC_8240 0x0081 

Please note that this list will expand as other processors are supported by the IXA board. 

RETURN STATUS: 

Processor type 

 

PROCTYPE_MPC_750 0x0008 
PROCTYPE_MPC_7400 0x000C 
PROCTYPE_MPC_7410 0x800C 

 

 

 

 
 

7-65 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_get_sysproc_id 
 
 
 

 

 

 

CALLING SEQUENCE: 
 
#include <ixa.h> 

int ixa_get_sysproc_id ( void ); 
 

DESCRIPTION: 
 

The function, ixa_get_sysproc_id will get the system processor ID of the calling 
processor.  This ID is unique across multiple IXA7 boards in the same system. 

RETURN STATUS: 

System processor ID of calling processor 

7-66 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_init 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_init (void); 

 
DESCRIPTION: 
 

ixa_init initializes the IXAbsp environment.  ixa_init establishes interrupt vectors, sets up 
the timer, and performs other housekeeping initialization functions. 
 
ixa_init must not be called from an application program that runs under an operating 
system.  If an application runs in stand-alone mode (i.e., with no operating system), then 
the application must call ixa_init.     
 
This must be the first IXAbsp function called in a stand-alone program. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: init completed successfully. 
IXABSP_IOPLUS_ERR: IOP Runtime code not running. 

 

7-67 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_ack 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_int_ack(int intid ); 

 
DESCRIPTION: 
 

ixa_int_ack  acknowledges the specified interrupt.  The action performed depends upon 
the interrupt type.  Acknowledging an inter-processor interrupt clears a register.  
Acknowledging a VME interrupt takes different actions.  Many interrupt ID values 
require no acknowledge action. 
 

RETURN STATUS: 
 

None 

7-68 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_disable 
 
 
 
CALLING SEQUENCE: 

 

 

#include <ixa.h> 
 
int ixa_int_disable( int int_id ); 

 
DESCRIPTION: 
 

ixa_int_disable disables the interrupt identified by int_id.   
 

RETURN STATUS: 
 

0 = success, else int_id was invalid 

7-69 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_enable 
 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
 int ixa_int_enable ( int int_id ); 

 
 
DESCRIPTION: 
 

ixa_int_enable  enables the interrupt  specified by int_id. 
  

RETURN STATUS: 
 
 Status:  0 means success, else int_id is invalid. 
  

7-70 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_getvect 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_int_getvect( int int_id, void **fp, void *param ); 

DESCRIPTION: 
 

 
The ixa_get_vector function gets the interrupt service routine entry point and parameter 
associated with int_id.  If no interrupt service routine was installed, then *fp will be zero. 
 
 

RETURN STATUS: 
 

Status:  0 = success, else invalid int_id. 

7-71 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_lock 
 
 
 

 

 

CALLING SEQUENCE: 
 

#include <ixa.h> 
 
unsigned long ixa_int_lock( void ); 

 
DESCRIPTION: 

The ixa_int_lock function locks out external interrupts by clearing the external interrupt 
enable bit in the calling processor’s machine state register (MSR).  The value returned by 
this function is that of the MSR before modification and can be passed to the 
ixa_int_unlock function to restore the original interrupt state.  The ixa_int_lock function 
provides the same functionality as ixa_evt_disable. 
 

RETURN STATUS: 

 The original value of the MSR is returned. 

7-72 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_setpri 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_int_setpri( unsigned int int_id, 
        unsigned int priority ); 

 
DESCRIPTION: 
 

The ixa_int_setpri function will set the priority of an interrupt, int_id, that is managed by 
the SPE-PCI bridge internal interrupt controller.  The priority of other interrupts can not 
be altered. Valid priority values are 0 through 15 with 15 indicating the highest priority.  
The interrupts whose priorities can be controlled are: 
 

Timer 0 Interrupt 
Timer 1 Interrupt 
Timer 2 Interrupt 
Timer 3 Interrupt 
DMA Channel 0 Interrupt 
DMA Channel 1 Interrupt 
 

RETURN STATUS: 
 

Status:  0 indicates success, else int_id or priority were invalid. 

7-73 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_setvect 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 

 
int ixa_int_setvect( int           int_id, 
        void(*f)      (), 
       unsigned long farg ); 

 
DESCRIPTION: 
 

ixa_ int_setvect installs the exception (interrupt) handler, f, for the interrupt specified by 
int_id.  When the interrupt handler is called, the argument, farg, is passed to it.   
 

RETURN STATUS: 
 

Status:  0 means success, else int_id is invalid. 

7-74 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_int_unlock 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 

 

/* Critical Code running with interrupts disabled goes here 
*/ 

unsigned long ixa_int_unlock( unsigned oldmask ); 
 
DESCRIPTION: 
 

The ixa_int_unlock function restores the state of the external interrupt enable bit of the 
MSR from that which is contained in oldmask, a value that reflects the contents of the 
MSR.  Therefore, if external interrupts are enabled in oldmask (BIT EE), then they will 
be enabled after calling this function.  Otherwise, if external interrupts are disabled in 
oldmask, they will also be disabled after calling this function.  An example of its use is 
shown below: 

void function(void) 
{ 

unsigned evt_state; 
evt_state = ixa_int_lock(); 
 

 
ixa_int_unlock(evt_state); 

} 
 

 
RETURN STATUS: 
 

The original value of the MSR is returned as an interesting but marginally useful side 
effect. 

7-75 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_ipi_ack 
 
 
 

 

CALLING SEQUENCE: 
 
#include <ixa.h> 
 
int ixa_ipi_ack ( int target_proc ); 

DESCRIPTION: 
 

The function ixa_ipi_ack will acknowledge (clear) an inter-processor interrupt asserted 
by processor target_proc where target_proc is the board processor ID (as opposed to the 
system processor ID) of the interrupting processor. 

 
RETURN STATUS: 
 

A non-zero value will be returned if an invalid target processor ID is passed.  Otherwise, 
the function will return a zero.  
 

NOTES: 
 

User applications should not call this function.  The interrupt service shell within IXA 
tools automatically acknowledges inter-processor interrupts before calling the user-
specified interrupt handler.  

 
 

7-76 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_ipi_disable 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_ipi_disable ( void ); 
 

DESCRIPTION: 
 

The function ixa_ipi_disable disables all inter-processor interrupts (IPI).   
 
RETURN STATUS: 
 

None 
 

NOTES: 
 

Before responding to inter-processor interrupts, an application must first trap the interrupt 
(by calling ixa_int_setvect and a vector number of INT_VECTOR_IPI0 + procNum,), and 
then enable the interrupt (by calling ixa_ipi_enable).    
 
The vector number for ixa_int_setvect is always INT_VECTOR_IPI0 + procNum, where 
procNum is the number of the processor receiving interrupts  (0 for the IOP, 1 for the A 
processor, etc.) 
 
The library provides no way for the processor receiving an interrupt to tell which 
processor generated the interrupt.  Normally, applications convey such information using 
shared memory along with the inter-processor interrupts. 
  
 

7-77 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_ipi_enable 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_ipi_enable ( void ); 
 

DESCRIPTION: 
 

The function ixa_ipi_enable enables all inter-processor interrupts (IPI).   
 
RETURN STATUS: 
 

None 
 

NOTES: 
 

Before responding to inter-processor interrupts, an application must first trap the interrupt 
(by calling ixa_int_setvect and a vector number of INT_VECTOR_IPI0 + procNum,), and 
then enable the interrupt (by calling ixa_ipi_enable).    
 
The vector number for ixa_int_setvect is always INT_VECTOR_IPI0 + procNum, where 
procNum is the number of the processor receiving interrupts  (0 for the IOP, 1 for the A 
processor, etc.) 
 
The library provides no way for the processor receiving an interrupt to tell which 
processor generated the interrupt.  Normally, applications convey such information using 
shared memory along with the inter-processor interrupts. 
  
 

7-78 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_ipi_interrupt 
 

User inter-processor interrupts are available with version number 0x10 and later of the 
interrupt multiplexer FPGA.  Prior versions cause this function to return an error status. 

 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_ipi_interrupt (int target_proc, int id); 
 

DESCRIPTION: 
 

The function ixa_ipi_interrupt generates interrupt id on processor target_proc.  
Target_proc must be one of PROC_ID_IOP, PROC_ID_A, PROC_ID_B, PROC_ID_C, 
or PROC_ID_D.  The interrupt id must be one of the user inter-processor interrupts.  
These interrupts are defined as INT_VECTOR_IPIU0 through INT_VECTOR_IPIU3. 
 
A processor can interrupt itself. 

 
RETURN STATUS: 
 

This function returns 0 if all input parameters were within range.  Otherwise, this 
function returns a nonzero value. 
 

 
 

7-79 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_led_blink 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_led_blink ( unsigned  num_blinks, 

   unsigned  blink_time ); 
 

DESCRIPTION: 
 

The function, ixa_led_blink will blink the LED of the calling processor num_blinks times, 
for a duration of blink_time cycles.  

 
RETURN STATUS: 
 

None 
 

 

7-80 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_led_blink2 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_led_blink2 (  unsigned  num_blinks, 

  unsigned  ontime, 
                       unsigned  offtime ); 
 

DESCRIPTION: 
 

The function, ixa_led_blink2 will blink the LED of the calling processor num_blinks 
times.  For each blink, the LED will remain on for ontime ticks and off for offtime ticks.  

 
RETURN STATUS: 
 

None 
 

 

7-81 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_led_off 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_led_off ( void ); 
 

DESCRIPTION: 
 
 The function, ixa_led_off will turn off the LED of the calling processor.  

 
RETURN STATUS: 
 

None 

7-82 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_led_on 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_led_on ( void ); 
 

DESCRIPTION: 
 
 The function, ixa_led_on will turn on the LED of the calling processor.  
 
RETURN STATUS: 
 
 None 

7-83 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_get_page_size 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_mmu_get_page_size ( void ); 
 

DESCRIPTION: 
 

The function, ixa_mmu_get_page_size will return the size of a page of memory in bytes.  
For the PowerPC, a page size is 4096 bytes.   

 
RETURN STATUS: 
 

Page size 

7-84 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_map_addr 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_map_addr ( void  *ea, 

     void **paddr ); 
 

DESCRIPTION: 
 

The function, ixa_mmu_map_addr will translate the logical address, ea, to a physical 
address, paddr.  The resulting physical address is stored at *paddr. 
 
This function translates the address as the MMU would, even if the MMU is not enabled.  
Data BAT registers are checked first.  If they do not reflect a mapping for the logical 
address, then this function consults the page table.    

 

 
This function assumes that the address points to data (i.e. not the address of an 
instruction) which means that the IBAT registers are never checked. 

 
RETURN STATUS: 

A zero is returned if the function is successful.  Otherwise, a non-zero value is returned. 
 

7-85 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_map_block 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_map_block ( void    *ea, 

void    *phys, 
unsigned    attr,  

                        unsigned long nbytes); 
 
 

If the new entry conflicts with an existing entry, a non-zero value will be returned. If all 
data BAT registers are active, a nonzero error status is returned. 

DESCRIPTION: 
 

The function, ixa_mmu_map_block will update the data block address translation entries 
given a logical address, ea, the corresponding physical address, phys, and the page 
attributes attr.  
 
Please note the restriction for nbytes:  128 Kbytes < nbytes < 256 Mbytes.  Both the 
logical address, ea, and the physical address, phys, must be multiples of nbytes. 

 
RETURN STATUS: 
 

 
Otherwise, a zero will be returned to indicate success. 
 

SEE ALSO: 
 

ixa_mmu_set_page_attr for a list of valid attr values. 
 

 

7-86 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_map_page, 
ixa_mmu_map_pages 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_map_page (  void   *ea, 

void   *phys, 
unsigned   attr ); 

 
int ixa_mmu_map_pages ( void   *ea, 

void   *phys, 
unsigned   attr, 

                        int    npages ); 
 
DESCRIPTION: 
 

The function, ixa_mmu_map_page will create a new page table entry given a logical 
address, ea, the corresponding physical address, phys, and the page attribute attr. 
Likewise, ixa_mmu_map_pages, will create npages page table entries. 
 
Please note that the logical address, ea, and physical address, phys, must be multiples of 
the page size. 

 
RETURN STATUS: 
 

If the page table is too small or the logical address is already mapped to a physical 
address, a non-zero value will be returned.  Otherwise, a zero will be returned to indicate 
success. 
 

SEE ALSO: 
 

ixa_mmu_set_page_attr for a list of valid attr values. 
 

 

7-87 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_peek_l, 
ixa_mmu_poke_l 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 

RETURN STATUS: 

unsigned long ixa_mmu_peek_l ( void  *addr); 
 
void ixa_mmu_poke_l ( void   *addr, 

    unsigned  value ); 
 
 

DESCRIPTION: 
 

The function, ixa_mmu_peek_l will read a logical address, addr, using the MMU while 
function ixa_mmu_poke_l will write value to a logical address, addr, using the MMU.  
 

 

 
None 

7-88 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_peek_p, 
ixa_mmu_poke_p 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_mmu_peek_p ( void *addr ); 
 

ixa_mmu_peek returns the value read from physical memory. 

void ixa_mmu_poke_p ( void   *addr, 
    unsigned  value ) 

 
DESCRIPTION: 
 

The function ixa_mmu_peek_p will read a physical address, addr, bypassing the MMU 
while function ixa_mmu_poke_p will write value to a physical address, addr, bypassing 
the MMU.  
 
Use these functions with caution since they temporarily disable interrupts and the data 
MMU.  Once the physical location is read, the interrupt and MMU states are restored. 

 
RETURN STATUS: 
 

 

7-89 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_remap_block 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_remap_block ( void    *ea, 

  void    *phys, 
  unsigned          attr,  

                          unsigned long     nbytes); 
 
 

If the new entry conflicts with an existing entry, a non-zero value will be returned. 
Otherwise, a zero will be returned to indicate success. 

DESCRIPTION: 
 

The function, ixa_mmu_remap_block will update or replace the data block address 
translation entries given a logical address, ea, the corresponding physical address, phys, 
and the page attributes attr.  
 
Please note the restriction for nbytes:  128 Kbytes < nbytes < 256 Mbytes.  Both the 
logical address, ea, and the physical address, phys, must be multiples of nbytes. 

 
RETURN STATUS: 
 

 
SEE ALSO: 
 

ixa_mmu_set_page_attr for a list of valid attr values. 
 

7-90 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_remap_page, 
ixa_mmu_remap_pages 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 

int ixa_mmu_remap_pages ( void  *log, 

The function ixa_mmu_remap_page will create or replace a page table entry given a 
logical address, log, and the corresponding physical address, phys along with the page 
attributes, attr.  The function ixa_mmu_remap_pages will create or replace npages page 
table entries.  Unlike ixa_mmu_map_pages, these functions first remove any conflicting 
entries from the page table.  

 
int ixa_mmu_remap_page ( void  *log, 

 void  *phys, 
 unsigned   attr ); 

 

  void  *phys, 
  unsigned   attr, 

                          int   npages ); 
 

DESCRIPTION: 
 

 
 
RETURN STATUS: 
 

If the page table is full, a non-zero value will be returned.  Otherwise, a zero will be 
returned to indicate success. 
 

SEE ALSO: 
 

ixa_mmu_set_page_attr for a list of valid attr values. 
 

7-91 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_set_block_attr 
 

CALLING SEQUENCE: 

 
 

 
#include <ixa.h> 
 
int ixa_mmu_set_block_attr ( void    *log, 
          unsigned attr ); 
 

DESCRIPTION: 
 

The function, ixa_mmu_set_block_attr sets the attributes for the block of memory that 
contains the logical address, log.   

 
RETURN STATUS: 
 

0 indicates successful completion 
 

SEE ALSO: 
 

ixa_mmu_set_page_attr for a list of valid attr values. 
 

 
 

 

7-92 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_set_page_attr 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_set_page_attr ( void *log, unsigned mask, unsigned attr ); 
 

DESCRIPTION: 
 

The function, ixa_mmu_set_page_attr sets the attributes for the page of memory that 
contains the logical address, log.  Only attribute bits within mask that are set to one will 
be altered.   The new attribute value is computed according to the following formula: 
 
 new_attr = (old _attr & ~mask) | (attr & mask) 
 
After altering the attribute bits within the page table, the function alters the state of the 
memory management unit hardware so that the new attributes become effective 
immediately. 
 
Calling the function with a mask value of zero leaves the page attributes unchanged.   
Since the function returns the modified attribute value, calling the function with a mask 
of zero leaves the page attributes unchanged and returns their current state. 
 
The mask and attribute values must be a logical OR of one or more of the following bits: 
 
 ATTR_R 0x0100 /* this page has been referenced */ 
 ATTR_C 0x0080 /* this page has been changed   */ 
 ATTR_W 0x0040 /* write-through caching mode */ 
 ATTR_I 0x0020 /* cache inhibited   */ 
 ATTR_M 0x0010 /* memory coherency required */ 
 ATTR_G 0x0008 /* guarded access   */ 
 ATTR_PP 0x0003 /* page protection: see PPC manual */ 
 
Not all combinations are valid.  Further information on the page attribute bits can be 
found in PowerPC Microprocessor Family:  The Programming Environments for 32-Bit 
Microprocessors, chapters 5 and 7.  
 

 
RETURN STATUS: 
 

This function returns the new state of attribute bits for the given page.  If the page is not 
mapped, then this function returns –1, which is never a valid combination of attribute 
bits. 

7-93 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_unmap_block 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_mmu_unmap_block ( void      *ea, 

 
DESCRIPTION: 
 

The function, ixa_mmu_unmap_block will disable the data block address translation 
register given a logical address, ea,  and the number of bytes, nbytes. 

Please note the restriction for nbytes:  128 Kbytes < nbytes < 256 Mbytes.  The logical 
address must be a multiple of nbytes. 

 
RETURN STATUS: 
 

 

  unsigned long  nbytes ); 

 

If an error occurs,  a non-zero value will be returned. Otherwise, a zero will be returned 
to indicate success. 

7-94 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_mmu_unmap_page, 
ixa_mmu_unmap_pages 

 
 

CALLING SEQUENCE: 
 
#include <ixa.h> 
 

 
int ixa_mmu_unmap_pages( void *log, 
            int   npages ); 

 

 
Given a logical address, log, function, ixa_mmu_unmap_page will invalidate the page 
table entry for that address.  Function ixa_mmu_unmap_pages will invalidate npages 
page entries. 

 
RETURN STATUS: 

If one of more of the pages specified are not mapped, no pages will be unmapped and  a 
non-zero value will be returned.  Otherwise, a zero will be returned to indicate success. 
 

 

 

int ixa_mmu_unmap_page ( void *log ); 

DESCRIPTION: 

 

7-95 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_PCI_config_read, 
ixa_PCI_config_write 

 
 
CALLING SEQUENCE: 

 

 

#include <ixa.h> 
 
IXABSP_STATUS ixa_PCI_config_read ( unsigned int bus,  
      unsigned int device, 

unsigned int function, 
unsigned int address, 
unsigned int byte_size, 

 
IXABSP_STATUS ixa_PCI_config_write( unsigned int bus,  

unsigned int device, 
unsigned int function, 

unsigned int byte_size 
void        *data); 

 
 

 
The ixa_PCI_config_read and ixa_PCI_config_write functions command the IOPlus to 
perform configuration cycles on the PCI bus.  The results are returned to the SPE.  The 
bus, device, function, and address specify the target of the configuration cycle.  The 
byte_size parameter can be set to 1, 2, or 4 in order to perform byte, word, or long 
transfers. *data points to the value to be written (or read). 
 

 

 
IXABSP_SUCCESS: completed successfully. 
IXABSP_ERROR: did not complete successfully; invalid address or width. 

 

void        *data); 

unsigned int address, 

DESCRIPTION: 

RETURN STATUS: 

 

7-96 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_PCI_io_read, 
ixa_PCI_io_write 

 
 
 

 
#include <ixa.h> 
 
void ixa_PCI_io_read (void *addr, 

                      void *data); 
 
void ixa_PCI_io_write(void *addr, 
                      int   width, 

 
DESCRIPTION: 
 

These functions perform I/O space accesses on the PCI bus.  Addr is the I/O address.  
Addresses between 0 and 32767 select the left PMC module; addresses between 32768 
and 65535 select the right PMC module.  All other addresses are invalid. 

 
RETURN STATUS: 
 

IXABSP_ERROR: did not complete successfully; invalid address or width. 
 

 

CALLING SEQUENCE: 

                      int   width, 

                      void  data); 

 
Width specifies the width of the transfer: 1 for byte transfers, 2 for 16-bit integer 
transfers, and 4 for 32-bit transfers.   The read function places data read from the PCI I/O 
address at *data;  the write function writes data from *data to the I/O address. 

IXABSP_SUCCESS: completed successfully. 

7-97 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pci_to_local, 
ixa_local_to_pci 

 

 

 

 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void *ixa_pci_to_local (void *local_adrs); 
void *ixa_local_to_pci (void *pci_adrs); 

 
DESCRIPTION: 
 

The function, ixa_pci_to_local converts a PCI address to a local address while 
ixa_local_to_pci converts a local address to a PCI address.  Please note that zero always 
converts to zero. 

 
RETURN STATUS: 
 

ixa_pci_to_local returns a pointer to a local address while ixa_local_to_pci returns a 
pointer to a PCI address. 

7-98 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_PCI_read,   
ixa_PCI_write  

 
 

     void        *local_addr, 

CALLING SEQUENCE: 
 
#include <ixa.h> 
 
IXABSP_STATUS ixa_PCI_read ( void        *pci_addr, 

     unsigned int count, 
     unsigned int byte_size, 
     BOOLEAN  swap); 
 
IXABSP_STATUS ixa_PCI_write( void        *pci_addr, 
        void        *local_addr, 
     unsigned int count, 
     unsigned int byte_size, 
     BOOLEAN  swap); 
 

 
DESCRIPTION: 

 
The ixa_PCI_read transfers data from the PCI bus to local memory while the 
ixa_PCI_write function transfers data from memory local to the calling processor to the 
PCI bus.  The PCI address in the transfer is specified by pci_addr and the local memory 
address is specified by local_addr.  The number of data elements to transfer is specified 
by count and the byte size of a data element is specified by byte_size.  Accepted byte 
sizes are 1, 2, or 4 bytes.  The swap parameter specifies whether 4-byte PCI transfers are 
byte-swapped (SWAP), or not byte-swapped (NO_SWAP).  The PCI transfer is 
performed by mapping the PCI window and performing CPU core read/writes to the PCI 
window.  Note that local_addr may be an internal or external memory address. 
  

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 

 
 
 
 

7-99 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_init 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void * ixa_pm_init( unsigned long number_of_events,  
  unsigned long trace_buffer_entries,  
  unsigned long mode ); 

 
DESCRIPTION: 

ixa_pm_init allocates and initializes data structures required for performance monitoring. 
Events are points in the source code where the execution performance data is sampled 
and recorded.  The function ixa_pm_start denotes the start of a segment of code to be 
instrumented, while ixa_pm_stop indicates the end of the code segment.   Execution data 
are collected by bracketing a segment of code with these functions and a unique event_id. 
 
For each event ID, the performance monitoring functions collect data from the 
processor’s internal performance monitoring facility, placing the data in an event table 
and a trace buffer.  The event table tracks performance data by event ID, computing 
averages and maximums.  The trace buffer collects a circular log of execution trace data. 
 
Event Ids are numbered zero through number_of_events – 1.  When an event is started 
(by calling ixa_pm_start), the performance monitoring functions record certain 
performance information in the event table, and place an entry in the trace buffer.  When 
the corresponding event is stopped (by calling ixa_pm_stop), the event table entry is 
updated to reflect elapsed time and counter values, maximums, and averages.  Stop 
events are also recorded in the trace buffer.  The trace buffer contains 
trace_buffer_entries entries. 
 
The mode parameter determines the performance data collected.  The PowerPC allows up 
to four processor-internal measurements to be tracked concurrently.  The following 
macros define specific modes: 
 

  MODE_1:  the PM registers are configured to count processor cycles, instructions 
completed, L1 cache data hits and L1 cache data misses. 

 
  MODE_2 the PM registers are configured to count processor cycles, instructions 

completed, L2 cache data hits and L2 cache data misses. 
 

  MODE_3 the PM registers are configured to count processor cycles, instructions 
completed, DTLB misses and DTLB walks. 

 
  MODE_X is a generic macro allowing the caller to select any items the processor 

can count: 

7-100 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

MODE_X( pm1, pm2, pm3, pm4 ) 
 

Where pm1, pm2, pm3, and pm4 are values meaningful to the PowerPC. 
 

When using MODE_X, it is the caller’s responsibility to make sure that the individual 
values are valid for the target processor.  More detailed information on PM register 
initialization can be found in chapter 11 of MPC7400 or MPC7410 RISC Microprocessor 
User’s Manuals. 
 
 

RETURN STATUS: 
 

This function returns a void pointer.  This value becomes a handle for subsequent 
function calls.  A NULL pointer is returned if memory cannot be allocated. 
 
 

NOTES:  
 
Calling ixa_pm_init  more than once in an application overwrites the previous modes, 
tables, and data. 

 
 
SEE ALSO: 
 

ixa_pm_start, ixa_pm_stop, ixa_pm_display_stats, ixa_pm_display_trace, ixa_pm_reset, 
ixa_pm_term 

 
 

7-101 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 

ixa_pm_reset 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

RETURN STATUS: 

void ixa_pm_reset ( void* handle ); 
 
 
DESCRIPTION: 
 

ixa_pm_reset  clears all statistics collected by the performance monitoring functions.  
handle is the value returned by a call to ixa_pm_init. 
 
 

 
None. 

7-102 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_term 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void ixa_pm_term ( void* handle ); 
 
 
DESCRIPTION: 
 

ixa_pm_term  terminates performance monitoring.  This function frees all memory 
allocated by ixa_pm_init and freezes all counters.  handle is the value returned by a call 
to ixa_pm_init. 
 
 

RETURN STATUS: 
 

None. 

7-103 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_display_stats 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void ixa_pm_display_stats( void* handle ); 
 
 
DESCRIPTION: 
 

ixa_pm_display_stats  displays statistical performance data collected since calling 
ixa_pm_init.  For each event ID, this function displays the number of times the event was 
started and stopped, the average and maximum times for the event, and the maximum and 
average processor performance statistics (cache hits, etc.)  for each event as determined 
by the mode parameter passed to ixa_pm_init.  handle is the value returned by 
ixa_pm_init. 
 
 

RETURN STATUS: 
 

None. 

7-104 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_display_trace 
 
 
 
CALLING SEQUENCE: 

 

 
#include <ixa.h> 

 
void ixa_pm_display_trace( void* handle,  

   unsigned long count ); 
 
 
DESCRIPTION: 

ixa_pm_display_trace  displays the count last entries in the trace buffer.  If count is zero 
or if it exceeds the number of entries in the trace buffer, the entire trace buffer is 
displayed.  Trace buffer entries are always displayed in chronological order.  handle is a 
void pointer returned by a call to ixa_pm_init. 
 
 

RETURN STATUS: 
 

None. 

7-105 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_start 
 
 

 

 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void ixa_pm_start( void* handle,  
 unsigned long eventID ); 

 

DESCRIPTION: 
 

ixa_pm_start  starts an event, enters it into the table and logs it into the trace buffer. The 
PM registers begin to count.  EventID must be between 0 and number_of_events – 1 as 
provided to the ixa_pm_init function.  Handle is the value returned by ixa_pm_init.  
 
 

RETURN STATUS: 
 

None. 
 
 

NOTES:  
 

An attempt to start an event which is already started, results in an entry in the trace buffer 
only.  

7-106 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_pm_stop 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 

void ixa_pm_stop( void* handle,  
unsigned long eventID ); 

 
DESCRIPTION: 
 

ixa_pm_stop  marks the end of an event started by ixa_pm_start.  This function computes 
the elapsed time and performance monitor count values, and updates the internal tables.  
This function also logs the stop event into the circular trace buffer.  
 

RETURN STATUS: 
 

None. 
 

NOTES:  
An attempt to stop an event, which is already stopped or to stop an event that has not 
been started results in the entry in the trace buffer only.  
 
 

7-107 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_proc_is_iop 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_proc_is_iop ( void ); 
 

DESCRIPTION: 
 

The macro, ixa_proc_is_iop, can be used to determine if the calling processor is the 
IOPlus processor.  A one is returned if the processor is the IOPlus.  Otherwise, zero is 
returned. 

 
RETURN STATUS: 
 

A nonzero value indicates the function was executed on the IOP. 
 

7-108 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_proc_is_750 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_proc_is_750 ( void ); 
 

DESCRIPTION: 
 

The macro, ixa_proc_is_750, can be used to determine if the calling processor is a 750 
processor.  A one is returned if the processor is a 750.  Otherwise, zero is returned.  
 

 
RETURN STATUS: 
 

A nonzero value indicates the function was called on a PPC750. 
 

7-109 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_proc_is_7400 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 

 

int ixa_proc_is_7400 ( void ); 
 

DESCRIPTION: 
 

The macro, ixa_proc_is_7400, can be used to determine if the calling processor is a 7400 
processor.  A one is returned if the processor is a 7400.  Otherwise, zero is returned.  

 
RETURN STATUS: 
 

A nonzero value indicates the function was executed on a PPC 7400. 

7-110 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_proc_is_7410 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_proc_is_7410 ( void ); 
 

DESCRIPTION: 
 

The macro, ixa_proc_is_7410, can be used to determine if the calling processor is a 7410 
processor.  A one is returned if the processor is a 7410.  Otherwise, zero is returned.  

 
RETURN STATUS: 
 

A nonzero value indicates the function was executed on a PPC 7410. 
 

7-111 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 

ixa_sem_release 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_sem_release ( unsigned int sem ); 

 
DESCRIPTION: 
 

The function ixa_sem_release releases exclusive access to semaphore sem.  Sem is an 
integer between 0 and 7 (inclusive), specifying a semaphore that was acquired by 
ixa_sem_request.   
 

RETURN STATUS: 
 

None 
 
NOTES: 
 

Releasing a semaphore that was not first acquired through ixa_sem_request can cause 
serious confusion in the software.   

7-112 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 

ixa_sem_request 
 
 

 

 

 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_sem_request ( unsigned int sem ); 

 
DESCRIPTION: 
 

The function ixa_sem_request requests exclusive access to semaphore sem.  Sem is an 
integer between 0 and 7 (inclusive), specifying the semaphore requested.  If the 
semaphore is available at the time of the request, it is marked busy, and a status value of 
0 is returned.  Otherwise, a nonzero status is returned. 
 

RETURN STATUS: 
 

A zero is returned if the semaphore was successfully acquired.  A nonzero value indicates 
a busy semaphore, or an invalid semaphore number. 
 
 

NOTES: 
 

Interrupt service is temporarily disabled during the semaphore request operation. 

Because semaphores are few in number, they should be used to control access to 
resources versus allocation of resources.  For example, a semaphore can be used to 
serialize access to a table of buffers, where the table contains allocation status for each 
buffer.  If the semaphore is busy, then a processor is accessing or updating the table.  
Once the table is accessed or updated, the semaphore should be released.  Alternately, an 
approach that uses a semaphore to indicate that a buffer is free requires one semaphore 
per buffer, and the semaphores would be busy as long as the buffers are allocated, using 
too many resources. 
 
Semaphores 0 and 1 are reserved for use by IXAtools, and should not be used by 
applications. 
 
A good approach for maximizing semaphore availability is to disable interrupts and avoid 
I/O while a semaphore is owned.  The following example illustrates using a semaphore in 
conjunction with disabling interrupts to access a shared resource.  Note that the loop re-
enables interrupts while retrying to acquire the semaphore. 
 

7-113 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
   
 /* 
      * Access a shared resource using semaphores 
      * With interrupt disabled. 

   */ 
 

#define SEM 2  /* semaphore to use  */ 
 

     unsigned long istate; /* int enable state  */ 
     unsigned int status; /* sem req status  */ 

 
 
 for (;;)    /* do forever   */ 

  { 
  istate = ixa_int_disable (); /* int disable */ 
  status = ixa_sem_request (SEM); /* get sem */ 
  if (status == 0)   /* got it? */ 
   break;    /* y: break */ 
 
  /*  

 * Request failed, so we need to retry.   
       * Briefly enable interrupts during retry. 
    */ 

 
  ixa_int_enable (istate); 
 } 
   
 
 /* 

ixa_sem_release (SEM);  /* free up sem */ 

 * At this point we have the semaphore, and interrupts  
 * are disabled.  We can access the data structure,  
 * then free the semaphore, and restore the interrupt 
 * enable state. 

  */ 
 
 access_shared_resource ();  
 

ixa_int_enable (istate);  /* restore ints */ 
 

 
 
 
 

7-114 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

  

ixa_tas_cluster 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_tas_cluster ( unsigned short *addr ); 

 
DESCRIPTION: 
 

The function, ixa_tas_cluster performs a test-and-set (TAS) operation on the 16 bit value 
at address, addr.  Interrupts are temporarily disabled during this operation.  This 
operation is faster than other forms of TAS since it does not involve the PCI bus.  
However, because the PCI bus is not used, this operation is limited to TAS arbitration 
functions between processors within a cluster. 
 
The target address must be located within a cache inhibited space. 
 

RETURN STATUS: 
 

A zero is returned if the value was already set.  Otherwise, a non-zero value is returned. 

7-115 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_tas_local 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_tas_local ( unsigned char *addr ); 

 
DESCRIPTION: 
 

The function, ixa_tas_local performs a test-and-set (TAS) operation on the byte value at 
address, addr.  The byte can be located in local memory or any PCI addressable location.  
Interrupts are temporarily disabled during this operation. 
 
This function uses an on-board shared memory semaphore residing in global memory  
semaphore to serialize access to the TAS location.  All other processor and functions 
arbitrating for an on-board TAS location must use this same function. 
 
The target address must be within a cache-inhibited space on all processors. 
 

RETURN STATUS: 
 

A zero is returned if the value was already set or if the underlying semaphore is busy.  
Otherwise, a non-zero value is returned. 

 
 
 

7-116 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
 

ixa_temp_read 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_temp_read ( void ); 

 
DESCRIPTION: 
 

The function, ixa_temp_read reads the junction temperature of the microprocessor. 
This function uses the processor’s on-chip Thermal Assist Unit (TAU).  The Thermal 
Assist Unit measures temperatures in range 0°C to 127°C. The error/tolerance of the on-
chip TAU without calibration is (+/-2)°C. Temperatures below 0°C are reported as zero.    
Because behavior of the TAU is unknown for temperatures over 127°C, the returned 
value of ixa_temp_read for temperatures over 127°C is unknown. 
 

RETURN STATUS: 
 Junction temperature, in degrees Centigrade, in range from 0°C to 127°C. 
 
 Returns –1 if the processor does not have a TAU. 

 
 

7-117 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_cancel 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
int ixa_timer_cancel ( unsigned long timer_id); 

 
DESCRIPTION: 
 

ixa_ timer_cancel will cancel the active timer, timer_id. 
 

RETURN STATUS: 
 

If the timer was never created, or if it has already expired or was previously cancelled,  
this function returns a nonzero value.  Otherwise, a zero is returned. 
 
 

7-118 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_create 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_create ( int           when, 
      void (*what)  (),  
                                 unsigned long param ); 

 
DESCRIPTION: 
 

The ixa_timer_create  function creates a timer element with an expiration time of when.  
At the time of expiration, the function, what, with parameter param, will be executed.  
The newly created timer is assigned a unique ID that can be used by the timer cancel 
function. 
 
The timer element is added to a linked list of active timer elements.  The list is 
maintained in order by expiration time.  When the timer expires and the function is 
called, the function will execute within the context of the timer interrupt service routine. 
  
 

RETURN STATUS: 
 

If a timer element can be allocated, the ID of the timer created will be returned.  
Otherwise, if a timer element can not be allocated, a zero will be returned. 

 

7-119 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_get_ticks_per_second 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_get_ticks_per_second( void ); 

 
DESCRIPTION: 
 

The ixa_timer_get_ticks_per_second will return the number of ticks per second for the 
calling processor. 
  
 

RETURN STATUS: 
 

Returns ticks per second. 

7-120 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_get_TBL 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_get_TBL( void ); 

 
DESCRIPTION: 
 

The ixa_timer_get_TBL function returns the current value of the Time Base Register 
lower 32 bits (TBL). TBL is incremented at the rate returned by ixa_timer_get_timebase, 
25,000,000 Hz on CHAMP-AV products.  This corresponds to a frequency of 1/4th the 
processor’s bus clock frequency.  
  

RETURN STATUS: 
 

Returns the value stored currently in TBL 
 

NOTES: 
 

This is a low-latency function facilitating precision time measurements.  Call this 
function before entering the code to be measured, and again after the code, and compute 
the difference.   
 

7-121 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_get_time 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_get_time( void ); 

 
DESCRIPTION: 
 

The ixa_timer_get_time function will return the elapsed time in processor ticks since the 
timer was started. 
  

RETURN STATUS: 
 

Returns the time in processor ticks. 

7-122 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_get_usec 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_get_usec( void ); 

 
DESCRIPTION: 
 

The ixa_timer_get_usec function will return the elapsed time in microseconds since the 
timer was started.   The return value is truncated to 32 bits. 
 
Because the return value is truncated, it is not useful as an absolute measure of time.  
Instead, this function is intended to support precise measurements of elapsed time.  By 
calling this function before and after executing the code to be timed, and computing the 
difference, an accurate execution time is computed. 
  

RETURN STATUS: 
 

Returns the time in processor microseconds. 

7-123 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_get_timebase 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timer_get_timebase( void ); 

 
DESCRIPTION: 
 

The ixa_timer_get_timebase will return the frequency, in Hz, of the clock used for the 
timer.  
  

RETURN STATUS: 
 

Returns the frequency, in Hz, of the timer. 
 

7-124 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_init 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_timer_init( int ticks, int ntimers ); 

 
DESCRIPTION: 
 

The ixa_timer_init function sets up the decrementor timer to interrupt every ticks clock 
ticks and creates ntimers timer data structures for the operation of the software timer.  
The data structures are placed in the free list.  If timers were previously created, these 
timers will be de-allocated before creating the new ones. 
 
This function is automatically called by ixa_init.  However, the application may call this 
function during initialization in order to increase the number of timers or to adjust the 
number of ticks per second. 
 

RETURN STATUS: 
 

None 

7-125 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_msec_to_ticks, 
ixa_timer_usec_to_ticks, 
ixa_timer_sec_to_ticks 

 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
unsigned long ixa_timer_msec_to_ticks( unsigned long msec ); 
unsigned long ixa_timer_usec_to_ticks( unsigned long usec ); 
unsigned long ixa_timer_sec_to_ticks ( unsigned long sec  ); 

 
DESCRIPTION: 
 

These functions, ixa_timer_msec_to_ticks, ixa_timer_usec_to_ticks, and 
ixa_timer_sec_to_ticks, can be used to convert the number of msec, usec, or sec,  
respectively, to processor ticks and return this value. 
 

RETURN STATUS: 
 

Processor ticks 

7-126 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timer_set 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
void ixa_timer_set( int ticks ); 

 
DESCRIPTION: 
 

The ixa_timer_set  function sets the decrementor timer expiration frequency to the 
specified number of ticks per second.  
 

RETURN STATUS: 
 

None 

7-127 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_enable, 
ixa_timern_disable 

 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_timern_enable (int n); 
void ixa_timern_disable (int n); 

 
DESCRIPTION: 
 

ixa_timern_enable and ixa_timern_disable enable control the interrupt enable state for 
the specified timer.  Before enabling interrupts, an interrupt service routine must be 
specified (by calling ixa_timern_trap).  The timer may be started, stopped, or set before 
or after interrupts are enabled.  The recommended sequence for initialization is to set the 
interrupt service routine (ixa_timern_trap), set the timer (ixa_timern_set), and then 
enable interrupts (ixa_timern_enable).  Note that while any processor may configure the 
timers,  the A and C processors are the only processors that can service timer interrupts. 
 

7-128 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_get_ticks_per_second, 
ixa_timern_get_timebase 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timern_get_ticks_per_second (int n); 
unsigned long ixa_timern_get_timbase (int n); 
 

 
DESCRIPTION: 
 

ixa_timern_get_ticks_per_second  returns the timer period, in ticks per second, where n is 
an integer between TIMER_N_MIN and TIMER_N_MAX, inclusive.  If the time was 
never initialized (by ixa_timern_set), then this function returns 0. 
 
ixa_timern_get_time  returns the time base, in Hz, where n is an integer between 
TIMER_N_MIN and TIMER_N_MAX, inclusive.  The timebase for all n timers is the 
same, and is one-fourth the bus clock frequency, 25,000,000 for most implementations.   
 
The timern timers reside within the MPC107 bridge device, and should not be confused 
with the decrementor timer resident within each processor.  There are four timers per 
bridge device.  Only the A and C processors can service interrupts generated by the 
timers.  
 

7-129 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_msec_to_ticks, 
ixa_timern_sec_to_ticks, 
ixa_timern_usec_to_ticks 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timern_msec_to_ticks (unsigned long s, int n); 
unsigned long ixa_timern_sec_to_ticks (unsigned long ms, int n); 
unsigned long ixa_timern_usec_to_ticks (unsigned long us, int n); 
 
 

DESCRIPTION: 
 

ixa_ timern_msec_to_ticks converts the input parameter ms into timer ticks, using the 
time base and ticks per second of timer n.  The function variants  msec, sec, and usec 
convert milliseconds, seconds, and microseconds to clock ticks.  All functions return the 
smallest number of clock ticks which would be >= the requested time, so 0 usec = 0 ticks, 
but 1 usec = 1 tick, no matter how large a tick may be. 
 
The timern timers reside within the MPC107 bridge device, and should not be confused 
with the decrementor timer resident within each processor.  There are four timers per 
bridge device.  Only the A and C processors can service interrupts generated by the 
timers.  
 

7-130 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_read 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
unsigned long ixa_timern_read (int n); 

 
DESCRIPTION: 
 

ixa_timern_read reads the current count for the timer, in bus clock cycles.  The count 
counts down from (time base)/(ticks per second) to zero, at the rate of (time base) Hertz.  
The high bit, which corresponds to the count enable bit within the EPIC, is always set to 
zero in the result. 
 
If n is invalid, this function returns zero. 
 
The timern timers reside within the MPC107 bridge device, and should not be confused 
with the decrementor timer resident within each processor.  There are four timers per 
bridge device.  Only the A and C processors can service interrupts generated by the 
timers.  
 
 

7-131 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_set 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_timern_set (int ticks, int n); 

 
DESCRIPTION: 
 

Ixa_timern_set sets timern to count down at a rate of ticks times per second. The count is 
enabled when the time is set.  The interrupt enable state of the timer remains unchanged.  
This function converts ticks into an appropriate countdown value by dividing the time 
base value by ticks. 
 
The timern timers reside within the MPC107 bridge device, and should not be confused 
with the decrementor timer resident within each processor.  There are four timers per 
bridge device.  Only the A and C processors can service interrupts generated by the 
timers.  
 
 

7-132 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_start, 
ixa_timern_stop 

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_timern_start (int n); 
void ixa_timern_stop (int n); 

 
DESCRIPTION: 
 

Ixa_timern_start enables counter n to begin counting.  Note that a processor is 
automatically started by the set function.   This function is provided to restart timing after 
it has been suspended by ixa_timern_stop. 
 
ixa_timern_stop suspends counting for timer n.   

7-133 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_timern_trap 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void ixa_timern_trap (int n, void (*f)(), int param); 

 
DESCRIPTION: 
 

ixa_timern_trap installs function f as the interrupt handler for timer n.  When timer n 
interrupts are enabled and timer n counts down to zero, function f will be called passing 
parameter p.  The hardware automatically reloads the countdown register after the 
counter reaches zero. 

 
The timern timers reside within the MPC107 bridge device, and should not be confused 
with the decrementor timer resident within each processor.  There are four timers per 
bridge device.  Only the A and C processors can service interrupts generated by the 
timers.  Calling this function on the B and C processors is meaningless. 
 
 
   
 

7-134 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_close,  
ixa_VME_open  

 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_open ( VME_DEVICE  *vme_dev, 
 unsigned int   addr_space, 
 unsigned int   addr_mod, 
 unsigned int   data_size); 
    
 
IXABSP_STATUS ixa_VME_close( VME_DEVICE  *vme_dev); 

 
DESCRIPTION: 
 

ixa_VME_open allocates a PCI-to-VME image from the VME interface chip and 
initializes the VME access characteristics based on the following parameters: 
 

vme_dev - pointer to a VME_DEVICE structure. 
addr_space – specifies address space.  Valid values are A16, A24, A32, A64, 

ACR_CSR, AUSER1, or AUSER2. 
addr_mod – specifies address modifier.  Valid values are SUPER_PRG_AM, 

SUPER_DATA_AM, USER_PRG_AM, USER_DATA_AM. 
data_size – specifies transfer size.  Valid values are D8, D16, D32, D32BLT or 

D64BLT. 
 

Upon successful return from ixa_VME_open, the vme_dev parameter can then be passed 
as a parameter to the ixa_VME_read and ixa_VME_write functions.  Eight images are 
available on the board.  A single processor can perform multiple opens, each with 
different VME access characteristics.  Note, however, that all the SPE processors and the 
IOPlus share these PCI-to-VME images.  ixa_VME_close releases the PCI-to-VME 
image associated with vme_dev and make it available for reallocation. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_VME_INVALID_ADDR_SPACE: invalid addr_space parameter. 
IXABSP_VME_INVALID_AM: invalid addr_mod parameter. 
IXABSP_VME_INVALID_DATA_SIZE: invalid data_size parameter. 
IXABSP_RESOURCE_UNAVAILABLE: no PCI-to-VME images available. 
  

 
 

7-135 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

NOTES: 
 

ixa_VME_close and ixa_VME_open are meaningful only on IXA VME boards. 
 

7-136 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_dma 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_dma ( VME_DEVICE *vme_dev, 
  void   *vme_addr, 
  void   *local_addr, 
  unsigned int   direction, 
  unsigned int   count, 
  unsigned int   flags); 

 
DESCRIPTION: 
 

The ixa_VME_dma_init function initializes the PCI DMA engine of the Board Resource 
Manager to transfer data between the VME address vme_addr and local_addr.  
local_addr  must be located in SDRAM memory.  Prior to calling ixa_VME_dma_init, 
ixa_VME_open must be called to setup a PCI-to-VME image within vme_dev.  The VME 
access characteristics of the DMA operation are determined by the open call.  The 
direction of the DMA is specified by direction (PCI_DMA_PCI_TO_LOCAL, 
PCI_DMA_LOCAL_TO_PCI), and the number of 4-byte values to transfer is specified 
by count.  The flag parameter specifies the following additional DMA options which can 
be OR’d together: 
 
PCI_DMA_INTR_ENABLE – a DMA done interrupt will occur at the completion of the 

transfer on the ISN_EXT_INT6 source.  If this option is not specified, a DMA 
done interrupt will not occur. 

 
Once a PCI DMA has been initialized, the application must call ixa_VME_dma_start for 
the DMA to commence. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPENED: vme_dev not opened. 
IXABSP_RESOURCE_NOT_AVAILABLE: Board Resource Manager DMA channel is 
in use. 
IXABSP_ADDRESS_OUT_OF_RANGE: the starting or ending local_address of the 
DMA is not a valid SDRAM address. 
 

NOTES: 
 

ixa_VME_dma is meaningful only on IXA VME boards. 
 

7-137 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_dma_start  
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_dma_start (void); 

 
DESCRIPTION: 
 

This function starts a Board Resource Manager PCI DMA that has been initialized 
previously by the ixa_VME_dma_init function. 

 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 

NOTES: 
 

ixa_VME_dma_start is meaningful only on IXA VME boards. 

7-138 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_dma_status  
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_dma_status (*dma_status); 

 
DESCRIPTION: 
 

The ixa_VME_dma_status function returns in dma_status the status of the Board 
Resource Manager PCI DMA engine.  Possible values are PCI_DMA_DONE, 
PCI_DMA_IN_PROGRESS, and PCI_DMA_ERROR. 

 
RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 
NOTES: 
 

ixa_VME_dma_status is meaningful only on IXA VME boards. 

7-139 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_int_clear  
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
ixa_VME_int_clear ( unsigned int vme_intr); 

 
 

 

DESCRIPTION: 
 

ixa_VME_intr_clear function clears the pending VME interrupt specified by vme_intr.  
Valid values for vme_intr are as follows: 
 

VERR – VME error interrupt 
VIRQ1 – VME level 1 interrupt 
VIRQ2 – VME level 2 interrupt 
VIRQ3 – VME level 3 interrupt 
VIRQ4 – VME level 4 interrupt 
VIRQ5 – VME level 5 interrupt 
VIRQ6 – VME level 6 interrupt 
VIRQ7 – VME level 7 interrupt 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
 
NOTES: 
 

ixa_VME_intr_clear is meaningful only on IXA VME boards. 

7-140 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_int_disable,   
ixa_VME_int_enable  

 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
ixa_VME_int_enable ( unsigned int vme_intr, 

  unsigned int lintr_src, 
  unsigned int SPE_intr_src); 

 
ixa_VME_int_disable ( unsigned int vme_intr, 

  unsigned int lintr_src, 
  unsigned int SPE_intr_src); 
 
 

ixa_VME_intr_enable function enables the Universe VME bridge to monitor the VME 
interrupt specified by vme_intr.  Valid values for vme_intr are as follows: 

VIRQ7 – VME level 7 interrupt 

DESCRIPTION: 
 

 
VERR – VME error interrupt 
VIRQ1 – VME level 1 interrupt 
VIRQ2 – VME level 2 interrupt 
VIRQ3 – VME level 3 interrupt 
VIRQ4 – VME level 4 interrupt 
VIRQ5 – VME level 5 interrupt 
VIRQ6 – VME level 6 interrupt 

 
lintr_src specifies which LINT# the VME bridge asserts when the VME interrupt occurs.  
Valid values for lintr_src are INT_L0, INT_L1, INT_L2, INT_L3, INT_L4, INT_L5, 
INT_L6, or INT_L7.  As a convenience, this function calls ixa_intr_map to map the 
lintr_src to the specified SPE_intr_src in the interrupt mux. 
 
The user application must call ixa_int_setvect to setup the interrupt service routine for the 
interrupt vector in initialization. 
 
The ixa_VME_intr_disable function disables monitoring of the specified vmd_intr.  As a 
convenience, ixa_intr_unmap is called to unmap lintr_src from the specified 
SPE_intr_src in the interrupt mux. 
 
 
 

RETURN STATUS: 

7-141 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

 
IXABSP_SUCCESS: successful completion. 

 
NOTES: 
 

ixa_VME_int_disable and ixa_VME_int_enable  are meaningful only on IXA VME 
boards. 

7-142 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_int_gen  
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_int_gen(unsigned int level,  
   
 unsigned int vector); 

 
DESCRIPTION: 
 

ixa_VME_intr_gen generates a VME interrupt signal.  The level of the signal is 
determined by level.  Valid values for level are 1 through 7.  vector is the vector 
associated with the interrupt which may be 0 through 255. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_VME_INVALID_INTR: invalid level parameter. 
 

NOTES: 
 

ixa_VME_int_generate is meaningful only on IXA VME boards. 

7-143 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_read,   
ixa_VME_write 

 
 
 
CALLING SEQUENCE: 

 

DESCRIPTION: 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_read ( VME_DEVICE  *vme_dev, 
  void  *vme_addr, 
  void  *local_addr, 
  unsigned int   count, 
  unsigned int   mode, 
  int  swap); 
        
 
IXABSP_STATUS ixa_VME_write( VME_DEVICE  *vme_dev, 
  void  *vme_addr, 
  void  *local_addr, 
  unsigned int   count, 
  unsigned int   mode, 
  int  swap); 

 

 
ixa_VME_read and ixa_VME_write perform master VME transfers by directly accessing 
the board VME interface chip via the PCI bus.  Prior to calling ixa_VME_vme_read and 
ixa_VME_write, the ixa_VME_open function must be called to open the VME device and 
set up the address modifier and data size of the transfer.  The vme_dev parameter must be 
a valid VME_DEVICE pointer returned by ixa_VME_open.  vme_addr is the starting 
VME address of the transfer and local_addr is an address local to the calling processor.  
The count parameter specifies the number of data elements to be transferred.  The size of 
the data elements is determined by the data_size parameter used in the ixa_VME_open 
call to open the vme_dev.  When swap is set to 1, data is byte-swapped before being 
written (or after being read).  If swap is set to 0, data is not byte-swapped. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPENED: vme_dev not opened. 

 
NOTES: 
 

ixa_VME_read and ixa_VME_write are meaningful only on IXA VME boards. 
 

7-144 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

ixa_VME_rmw 
 
 
 
CALLING SEQUENCE: 
 

#include <ixa.h> 
 
IXABSP_STATUS ixa_VME_rmw ( VME_DEVICE *vme_dev, 
   void  *vme_addr, 
   unsigned int   mask, 

   unsigned int   comp_val, 
   unsigned int   swap_val, 
   unsigned int  *return_val); 

 
DESCRIPTION: 
 

The ixa_VME_rmw function performs a VME read-modify-write (RMW) operation. 
RMW cycles on the VMEbus consist of a single read followed by a single write 
operation. The vme_dev parameter must be a valid VME_DEVICE pointer returned by 
ixa_VME_open.  The VME attributes of the RMW operation are those specified when 
opening vme_dev.  The vme_addr parameter specifies the VME address at which the 
RMW operation will occur. The mask, comp_val and swap_val parameters specify which 
bits in the read data are compared and modified in the RMW cycle. During a RMW, the 
VMEbus read data is bitwise compared with the comp_val and mask parameters.  The 
valid compared and masked bits are then swapped using the comp_val parameter.  Each 
masked bit that compares true is swapped with the corresponding bit in swap_val.  A 
false comparison results in the original bit being written back.  The data from the read 
portion of the RMW on the VMEbus is returned in return_val. 
 

RETURN STATUS: 
 

IXABSP_SUCCESS: successful completion. 
IXABSP_DEVICE_NOT_OPENED: vme_dev not opened. 
 

NOTES: 
 

ixa_VME_rmw is meaningful only on IXA VME boards. 

7-145 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

printf 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void printf ( char *format, ...); 

 
DESCRIPTION: 
 

printf will print the string, format, to the serial terminal.  Function printf adheres to the 
standard ANSI C printf function and therefore allows multiple args. 
 
Please note that the IOPlus processor must be monitoring the processor that is 
transmitting the formatted output string in order for the string to appear on the serial port.  
The IOPlus processor can only monitor one processor at a time. 
 

RETURN STATUS: 
 

None 

7-146 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

putchar 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void putchar ( char c ); 

 
DESCRIPTION: 
 

Function putchar will transmit the character, c, to the serial port. This function should not 
be called with interrupts disabled. 
 
Please note that the IOPlus processor must be monitoring the processor that is 
transmitting the character in order for the character to appear on the serial port.  The 
IOPlus processor can only monitor one processor at a time. 
 

RETURN STATUS: 
 

None 

7-147 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

puts 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void puts ( char *s ); 

 
DESCRIPTION: 
 

Function puts will output the null terminated string, s, to the serial port. This function 
should not be called with interrupts disabled. 
 
Please note that the IOPlus processor must be monitoring the processor that is 
transmitting the output string in order for the string to appear on the serial port.  The 
IOPlus processor can only monitor one processor at a time. 
 

RETURN STATUS: 
 

None 

7-148 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 7: Programming the SPEs 
 

sprintf 
 
 
 
CALLING SEQUENCE: 

 
#include <ixa.h> 
 
void sprintf ( char *result, char *format, ...); 

 
DESCRIPTION: 
 

sprintf will print the formatted string, format, to the address pointed to by result.  
Multiple args can be supported by this function since it adheres to standard ANSI C for 
I/O. 
 

RETURN STATUS: 
 

None 
 
  

 
 
  

7-149 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 8:  Programming the FLASH 
Memory 

 
 

 

8.1 Introduction 
The FLASH memory on the IXA7 is connected to the IOPlus. It is used to store 
initialization code, configuration data, the run-time IOPlus software, and user 
applications.  Only the IOPlus can write to the FLASH memory, but it can be read by 
anyone.  Functions exist in HostAPI (Chapter 8), IOPlusAPI (Chapter 5) and IXAbsp 
(Chapter 6) that can command the IOPlus to write sections of FLASH memory.  
However, all these approaches require an application to be created before they are useful. 
 
This chapter presents a utility installed with IXAtools that permits the viewing of the 
board configuration information and the modification of the FLASH memory contents.  
This software runs on Windows 95/98/2000, Windows NT, or Windows “Me”.  It 
requires an Ethernet connection to both the PC running the software and the IXA board.  
Finally, it requires VxWorks to be running in the IOPlus. 
 
If VxWorks is not operable, a second utility is presented at the end of this chapter 
(section 7.8).  This utility requires a supported Windows based host, and the HostAPI.dll 
for the device that is installable with IXAtools. 

 

8.2 The IXA Board Configuration Utility 
The IXA Board Configuration Utility (also known as the Ethernet Burn Utility) permits 
the board configuration settings that are programmed into FLASH memory to be viewed 
and modified.  With this utility, both application programs and board firmware may be 
installed or upgraded.  Flags located in the FLASH memory can be set to allow user 
programs to be loaded into both the SPEs and the IOPlus upon board power up or reset. 
 
To start the utility, simply select “Burn Utility” from the IXATools folder under the 
Programs folder in the Windows Start menu.   A screen similar to Figure 8.1 should 
appear.  Note that the screen consists of a single tabbed dialog box.  Each page of the 
dialog box contains related information, and can be accessed by clicking on the tab name. 
 

8-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.1 - Initial Screen (before connecting to board) 

 
You must establish a connection to the CHAMP board using TCP/IP, before you can use 
the utility to reburn FLASH.  To begin, type the IP address of the IOPlus on the IXA 
board whose settings you wish to view/modify (the IP address for the IOPlus is set using 
VxWorks configuration utilities).   

 
To establish a connection to the board, press the “Connect” button.  The message window 
shown in Figure 8.2 should briefly appear, and then the Product Information screen 
should update with information read from the CHAMP board (as shown in Figure 8.5). 

 

 
Figure 8.2 – “Connecting” message window 

8-2 

~ CHAMP Ethernet Burn Utility 1ii!!I~ [Cj

Eile .!::!elp

a CHAMP Board Non-Volatile Memory Configuration a

l//t'f,n't-n Soflitio//s!orAd",m""d D P

a~v~ omp fly

TCP/IP Address:

~ IOPlus Configuralion T Firmware Configuralion T Flash T Heallh and Slalus

Production Information T VME Configuralion II PCI Configuralion I SPE Configuralion

;=Board Informalion

Serial Number ? MAC Address ?

Board Revision ? Inilial Build Dale ?

Global Memory Size ?MB Inilial Build Configuralion ?

SPE Memory Size ?MB Currenl Build Dale ?

Number of SPEs ? Currenl Build Configuralion ?

SPE Type ? L2 Cache Size ?

SPE Clock Speed ? L2 Cache Speed ?

You must connect to a CHAMP board before Production Information can be displayed

Release 24.1

[Ready

Status
--------------------

Connecting to CHAM P board... \

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
 

If the dialog box shown in Figure 8.3 appears, the program is having difficulty 
connecting to the board with the specified IP address.  Verify that the correct IP address 
for the IOPlus has been entered, and that the CHAMP board is running VxWorks in the 
IOPlus.  To retry the connection attempt, press the “Retry” button.  To cancel the 
connection attempt, press the “Cancel” button. 

 

 
Figure 8.3 – Connection Timeout Dialog Box 

 
 

If the dialog box shown in Figure 8.4 appears when you are attempting to connect to the 
CHAMP board, then the version of the VxWorks BSP running on the IOPlus needs to be 
updated by installing the latest IXATools release.  Note that the Ethernet Burn Utility 
will still function when older VxWorks BSPs are running on the IOPlus, but certain Burn 
Utility functions will be disabled. 

 

 
Figure 8.4 – Old Burn Task 

 
After the Burn Utility has successfully connected to the CHAMP board, the Product 
Information dialog box will display information about the CHAMP board, as shown in 
Figure 8.5. 

 
 
 

8-3 

Connechon T,meoul EI

Trned cU "'* Ir""'" 10 cco:JeCllo the CHAMP bo.>rd

V«ly Ih.>i: the CHAMP bo.>rd isr~ Vx\>Iork ond Ih.>i:
lhe CHAMP bo.>rd IP odde" is se! correcl~

Do}'OU ..MIllo Iry ....".,?

W'ammg Old Bum Task E'f

W'or......: An aide< v«soo allhe CHAMP Vx\>Iorh SSP isr~ 0f1 the CHAMP bo.>rd

PIe"e rL.<1 the ~esl v«soo CHAMP Vx\>Iorh SSP 0f1 the CHAMP bo.>rd,
J1 orde< 10 loke ILJ odvMll_ aI .. Elheme! Scm Ulility leol"es

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.5 – Product Information Page (after successful connection) 

 
     
A number of buttons are located in the upper right corner of the dialog box.  After 
successfully connecting to the CHAMP board, the “Burn Settings” and “Load Settings” 
buttons will be enabled.  The “Connect” button will be disabled, because you are already 
connected to the CHAMP board.  
 
Clicking the “Burn Settings” button causes the Burn Utility to burn the current 
configuration into the CHAMP board with the specified IP address.  This button should 
be clicked after configuration changes have been made.  When this button is clicked, 
changed parameters are written to the IXA board, and stored in non-volatile FLASH 
memory.   
 
Clicking the “Load Settings” button causes the Burn Utility to read the current board 
configuration from the CHAMP.  Clicking this button will cause any that you have made 

8-4 

~CHAMP Ethernet Burn Utlhty 1lll1iIEl'

:a CHAMP Board Non Volatile Memory Conlrguratlon El'

I.",.""" s."""., ft< NI.....,j II
,,&yA"cr>Jnp""y

ITCP~PAddress :::J 11921582203

IDPlJs Coohpotrn F,mwore CooI.....oloo FklSh Heolh ond Siolus

Production In/Of_ion lIME CooI.....otrn PO CooI.....otrn SPE CooI.....otrn

80ard Informaloo

Se<"I NL.mbe< A5AfA7A8 MAC Address CWJ7F&l8EEF

80ard Re,;soo " Init"l8ui1d Dole 0010511961

GObailoIemory S~e "'" Init"l8ui1d CooI.....oloo NatAvoiabIe

SPE loIemory S~e "'" C"renl8ui1d Dole 1210111963

NL.mbe< 01 SPEs • C"renl8ui1d CooI.....oloo NatAvoiabIe

SPE Twe "00 L2 Coche S~e ""
SPE Cock Speed 350 101Hz L2 Coche Speed 1(0 101Hz

RoIe"e 2.4.1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

to the displayed configuration to be overwritten.  Note that this button changes the Burn 
Utility dialog boxes, but does not update any settings stored in non-volatile memory on 
the CHAMP board. 

 

Product Information 
Figure 8.5 shows the Product Information screen.  This screen displays various read-only 
board configuration parameters.  This information will be useful primarily to Dy 4 
Systems customer support. 

 

8.3 VME Configuration 
VME configuration is not applicable for IXA4 board. 
 

8.4 PCI Configuration 
The PCI Configuration page, shown in Figure 8.7, allows you to configure PCI bus related 
parameters on the Champ board.  The following PCI bus parameters can be configured: 
 

Latency Timer 
The Latency Timer represents a minimum guaranteed number of clocks that the device can 
act as a master on the PCI bus.  A master’s latency timer is cleared and suspended 
whenever it is not asserting FRAME#.  Whenever a master asserts FRAME#, the latency 
timer is enabled to count.  If another device has requested to be master when the current 
master’s latency timer expires, the current master will suspend its transfer and relinquish 
bus mastership.  In effect, the Latency Timer controls the tradeoff between high throughput 
(higher Latency Timer values) and low latency (lower Latency Timer values).  The latency 
can be set for the following PCI devices: PMC 1, MPC107 A/B, PCI Bridge 1, IOPlus, PCI 
Bridge 2, MPC107 C/D, and PMC 2. 
 
 

8-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 

Figure 8.7 - PCI Configuration Page 

 

Enable Built-In-Self Test 
This option is used to enable the Built-In-Self Test function of a PMC if the PMC 
supports this feature.  When this option is enabled, the CHAMP board firmware will 
command the PMC to perform its BIST.  If the BIST fails, the red LED on the CHAMP 
board front panel will be enabled.  

 

Number of Functions 
Specifies number of functions on a given PMC that are initialized (maximum of 8).  This 
option may be useful if your PMC has multiple functions, but you only wish to use a 
subset of these functions. 

 

8-6 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:a CHAMP Board Non Volatile Memory Conlrguratlon EI

1o",.,"" Sol.,,,., IffNI..offll I)

"Dry.oll' comp""y

IOPIJs Cmhpoloo F,mwore Ccrl.....oloo
~'"

Heolh ond Siolus

Prcd.ctOO I"'or_ lIME Ccrl.....olOO II>l:Il:C>i>I~;;;t"", SPE Ccrl.....olOO

PMC 1 CooI.....oloo PMC 2 CooI.....oloo

Lolency 1rne.(c}'Clesj ~ Lolency Trne.(c}'Clesj ~
Enable 8u1-ln Sol Tesl P Enable 8u1-ln Sol Tesl p

# FLnCloo' I' :oJ # FLnCloos I' :oJ
IoIPC107 AlB CooI.....oloo IOPIJs CooI.....oloo IoIPC107 CID CooI.....oloo

Lolency Trne.(c}'Clesj V- Lolency Trne.(c}'Clesj ~ Lolency Trne.(c}'Clesj ro----
PCI 8us 1 8r~ CooI.....oloo PCI 8us 2 8r~ CooI.....oloo

8us 0 Lolency Trne.(c}'Clesj IFF 8us 0 Lolency Trne.(c}'Clesj~

8us 1 Lolency Trne.(c}'Clesj Ie 8us 2 Lolency Trne.(c}'Clesj~

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

8.5 SPE Configuration 
The SPE Configuration page, shown in Figure 8.4, allows you to configure the SPEs on the 
Champ board.  The following parameters can be configured: 

 

 
Figure 8.8 - SPE Configuration Page 

 

Load from FLASH on Reset 
When checked, this option will enable the FLASH loading of the respective SPE 
processor upon board reset if jumper JM7 is also installed.  Removing jumper JM7 
disables all SPE FLASH loading. 

 

Program to Load on Reset 
This field specifies an S-Record format SPE program file to load into the given SPE on 
board reset.  The button to the right of the field can be used to launch a file browser to 

8-7 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:'II CHAMP Board Non Volatile Memory Conlrguratlon EI

I.",.."" s./or"'., ft< NI...<WI n
~ &yA comp~ny

-~
IOPIJs [",hpoloo

Prcd.cloo lricnnaloo

SPE FkIShL~

FklSh

PCI [",hpoloo

Heolh ond Siolus

Load from FklSh '" PrC9i>m 10 Load '" Reset
Reset

SPE A r;;
SPE 8 r;;
SPE [ r;;
SPE 0 r;;

Syslem Processor 10 'I'~---

Powe<-l4' Sol Tesl

SIOfI Address Offset

:=J l- Ie
~ 1- I1ClXWJ

~ l- Ie
~ 1- I1ClXWJ

:=J 1- 1=

r
SPE A-[

SPE 8-0

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

select the S-Record file. A different program can be specified for each processor.  The 
SPE program download and execution will occur upon board reset if the “Load from 
FLASH on Reset” option is checked and if a jumper is installed on JM7.  Removing the 
jumper from JM7 disables FLASH load. 

Note 1:  We recommend burning a single SPE program image into all SPEs, in order 
to conserve CHAMP board non-volatile memory space.  To load the same 
program into all SPEs, use the “SPE A,B,C,D” field, rather than the 
individual fields.  As you begin entering a filename into the “SPE A,B,C,D” 
field, the individual fields will disable. 

Note 2:  The SPE version of VxWorks should always be burned as “SPE A,B,C,D” 
on a four processor CHAMP board, since four separate copies do not fit in 
the CHAMP board non-volatile memory. 

Note 3: The SPE version of VxWorks should be burned as “SPE A” and “SPE C” on 
a dual processor CHAMP board. 

Note 4: When you burn new SPE program(s) into FLASH, any existing SPE 
program(s) will be deleted.  Existing programs are deleted to avoid conflicts 
with the new programs that you are burning.  Note that you must therefore 
burn all SPE program(s) into FLASH during the same burn.  You can not 
burn a file into SPE A during this burn, then burn another file into SPE B 
during a subsequent burn.  If you attempt to do this, the SPE A program will 
be deleted when you burn the program for SPE B.  If you want to burn 
programs into FLASH for both SPE A and SPE B, they must be burned at 
the same time. 

 

Start Address 
The “Start Address” field specifies the address of the entry point for the program loaded 
into the given SPE.  Note that the value entered here is the logical address (i.e. the 
address as seen by that SPE when its MMU is enabled). 

 

Offset 
The “Offset” field specifies the logical to physical address mapping for the given SPE.  
The value entered here is the offset between logical address 0x00000000 on the given 
SPE, and address 0x00000000 in the physical memory in which the program is to be 
loaded.  For instance, the common boot code configures SPE A’s MMU so that the 
logical and physical addresses are the same, resulting in an offset of 0x00000000.  The 
common boot code configures SPE B’s MMU so that logical address 0x00000000 maps 
to physical address 0x01000000 in the memory shared by SPE A/B.  A similar mapping 
is performed by the common boot code for SPE C and D 
. 
If you alter the common boot code address mapping, then this field should be changed 
from its default values.  If you do not alter the common boot code, then the default values 
do not need to be changed. 

 

8-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

System Processor ID 
The “System Processor ID” field is used by VxWorks MP when multiple CHAMP boards 
are installed in a single chassis, all of which run VxWorks MP.  If you are not using 
VxWorks MP, you do not need to change this field. 

 

Enable POST 
When clicked, this parameter will enable the Power-Up Self Test code that runs in the 
SPEs on board reset or power-up. 

 

POST A-C, B-D 
The “POST A-C” and “POST B-D” fields allow updated versions of the CHAMP board 
Power-up Self Test software to be loaded in the board non-volatile memory. 

 

8.6 IOPlus Configuration 
The IOPlus Configuration page, as shown in Figure 8.9, allows you to configure the 
IOPlus processor on the Champ board.  The following IOPlus parameters can be 
configured: 

8-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.9 - IOPlus Configuration Page 

 

Host Channels 
This parameter specifies the number of Command Channels to be allocated for use by 
host processes.  The SmartDMA software running in the IOPlus uses this field. 

 

Unallocated Channels 
This parameter specifies the number of Command Channels to be created for use by user 
applications running on the SPEs.  These Command Channels are placed in an 
unallocated pool, and may be acquired by an SPE application by calling the 
ixa_cmd_open function in the IXA board support library.  See Chapter 6 for more 
information on using Command Channels.    The SmartDMA software running in the 
IOPlus uses this field. 

 

8-10 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:a CHAMP Board Non Volatile Memory Conlrguratlon EI

I.",.""" s."""., ft< NI.....,j II
,,&yA"cr>Jnp""y

ITCP~PAddre" :::J 11921582(7

Prcd.ctrn 100or_ lIME C""hpol"" PO C""hpol"" SPE C""hpol""

Heolh ond Siolu,

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

Global Heap Address 
This parameter specifies the address in global memory of the global shared memory heap.  
User applications running on the SPE processors can allocate memory from the global 
heap using the ixa_malloc, ixa_calloc, or ixa_realloc functions.  You must ensure that the 
address range allocated to the global heap does not conflict with memory managed by 
other programs, such as VxWorks. 
 

Global Heap Size 
This parameter specifies the size of the heap in global memory.  User applications 
running on the SPE processors can allocate memory from the global heap using the 
ixa_malloc, ixa_calloc, or ixa_realloc functions. 

 

Host Command Buf Size 
Host applications using the HostAPI library send commands to the IOPlus via the Host 
Command Buffer located in global memory.  This parameter determines the size of the 
Host Command Buffer.  Increasing the size of the buffer allows the host to send larger 
command blocks, thus possibly increasing the performance of host-IOPlus 
communications. 

  
 

 

Host Response Buf Size 
Host applications using the HostAPI library receive command responses from the IOPlus 
via the Host Response Buffer located in global memory.  This parameter determines the 
size of the Host Response Buffer.  Increasing the size of the buffer allows the host to 
receive larger response blocks, thus possibly increasing the performance of host-IOPlus 
communications. 

 

VxWorks Boot ROM 
This field specifies a VxWorks boot ROM file in S-Record format that will be burned 
into FLASH. The button to the right of the field can be used to launch a file browser to 
select the VxWorks Boot ROM file. The VxWorks boot ROM program will be loaded 
and executed by the IOPlus upon board reset if the Enable VxWorks Boot option is 
checked. 

Note 1:  Reburning the VxWorks Boot ROM is a potentially dangerous operation.  If 
a bad Boot ROM file is burned into FLASH, then VxWorks might be 
unbootable, rendering the Ethernet Burn Utility unusable, since it relies on 
VxWorks running in the IOPlus.  The Boot ROM should only be reburned 
when upgrading to a new Dy 4 Systems software release, or when burning 
the final, deployable version of your program into FLASH (i.e. when you no 
longer wish to boot VxWorks over Ethernet). 

8-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

Load VxWorks on Reset 

 

 

When checked, this parameter will cause the VxWorks Boot ROM to be loaded from 
FLASH and executed on the IOPlus, if jumper JM8 is installed.   

Note 1:  For the VxWorks Boot ROM to execute, this option must be enabled, and 
JM8 must be installed. 

Note 2:  Disabling VxWorks booting is an irreversible process, since it renders the 
Ethernet Burn Utility, which relies on VxWorks, unusable.  You should be 
really, really certain that you want to permanently disable VxWorks booting 
before selecting this option. 

 

IOPlus Run-Time File 
This field is used to upgrade the Run-Time firmware for the IOPlus.  The button to the 
right of the field can be used to launch a file browser to select the file.  Upgrading the 
Run-Time program should only be performed only when upgrading to a new Dy 4 
Systems software release, or at the direction of Dy 4 Systems customer support. 

IOPlus Start-Up File 
This field is used to upgrade the Startup firmware for the IOPlus.  The button to the right 
of the field can be used to launch a file browser to select the file.  Upgrading the Startup 
firmware should only be performed only when upgrading to a new Dy 4 Systems 
software release, or at the direction of Dy 4 Systems customer support. 

Note 1:  Reburning the Startup firmware is a potentially dangerous operation.  If bad 
Startup firmware is burned into FLASH, then the CHAMP board may be 
unbootable, rendering the Ethernet Burn Utility unusable. 

 

IOPlus User Program 
This field specifies a program file in S-Record format that the IOPlus can load from 
FLASH memory and execute after completing the board startup. The button to the right 
of the field can be used to launch a file browser to select the S-Record file. The FLASH 
load will occur if the Enable FLASH Load option is checked and if a jumper is installed 
on JM7.  Removing the jumper from JM7 disables FLASH load. 

IOPlus Start Address 
This field specifies the start address of the IOPlus program that is entered in the IOPlus 
FLASH Program field.  Once the program has been loaded after board reset, the IOPlus 
begins program execution at this address. 

 

Enable FLASH Load 
When checked, this parameter will enable the FLASH loading of the IOPlus upon board 
reset if jumper JM7 is installed.  Removing jumper JM7 disables FLASH load.  The 
IOPlus program to be loaded from FLASH is specified in the IOPlus FLASH Program 
field. 

 

8-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 

8.7 Firmware Configuration 
The Firmware Configuration page, shown in Figure 8.10, will be primarily used to update 
the board’s firmware to newer releases.  You may also need to use this page to restore the 
board’s firmware if the FLASH gets corrupted.  The IXAtools release notes will direct 
you as to what files need to be used for updates and what files to use for restoring the 
board’s firmware to the current revision. 

 
Figure 8.10 - Firmware Configuration Page 

 
 

Xilinx Firmware 
This field allows the Xilinx firmware to be upgraded.  The Xilinx firmware implements 
the Board Resource Manager.  This firmware should only be altered when updating to a 
new Dy 4 Systems software release. 

8-13 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:a CHAMP Board Non Volatile Memory Conlrguratlon EI

I.",.""" s."""., ft< NI.....,j II
,,&yA"cr>Jnp""y

ITCP~PAddre" :::J 11921582(7

Prcd.ctrn Inlormaloo

IOPIJ,

F,mwore File,

e .ion

PO C""hpoloo SPE C""hpoloo

Heolh ond Siolu,

EPlO F,mwore

Recove<y Mode Siondard Mode New File

,------lD
Not FieO:J U>9odab1e

Commor18ool Code

Enable Commor18ool Code r;;

Recove<y Code

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

   

Enable Common Boot Code 
Enabling this option causes the CHAMP board common boot code to be run on each SPE 
as part of the board reset sequence.  The common boot code performs various 
initialization functions on the SPEs, such as enabling the MMU.  In most cases, this 
option should be enabled. 

  Note 1:  The SPE version of VxWorks requires this option to be enabled. 
 

Common Boot Code File Field 
This field allows the common boot code to be upgraded. 
   

Recovery Code 
This field allows the board recovery firmware to be reburned.  The recovery code is used 
to boot the CHAMP board into a minimal state, so that its FLASH can be reburned over 
the back plane. 

 

8.8 FLASH Page 
The FLASH page, shown in Figure 8.11, displays information about the non-volatile 
memory on the CHAMP board. 

 

FLASH Free / Used Space 
This field displays the following information about the state of the CHAMP board non-
volatile memory: 

  Total Space:  The total size (in bytes) of the CHAMP board FLASH memory 
  Used Space:  The total FLASH memory space (in bytes) currently in use. 
  Free Space:  The total free FLASH memory space (in bytes). 
  Maximum contiguous block: The largest free block in FLASH (in bytes).  This is 

the size of the largest program/data file which can be burned into FLASH. 
 

8-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.11 - FLASH Page 

8.9 Health and Status Page 
The Health and Status page, shown in Figure 8.12, is not currently implemented.  It will 
eventually display information describing the health and status of the CHAMP board. 

 

8-15 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:a CHAMP Board Non Volatile Memory Conlrguratlon EI

I.",.""" s."""., ft< NI.....,j II
,,&yA"cr>Jnp""y

Load Sell.....' I

Prcd.ctrn Inlormaloo

IOPIJ,

FklSh Free I U,ed Space

Talol 'pace

U,ed 'pace

Free Space

Iotaxrr-....n c""hpou,-,

F,_ore C

(130)( ""21):1527 ""21Ji3777 ""1))(6,(( ""

SPE C""hpoloo

Heolh ond Siolu,

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.12 – Health and Status Page 

 

8.10 Burning FLASH using the Ethernet Burn Utility 
After specifying the changes that you wish to make to the CHAMP board non-volatile 
memory configuration, you must burn these changes into FLASH.  Changes made to the 
board configuration are burned into the FLASH by clicking the “Burn Settings” button, 
located in the upper right corner of the Burn Utility dialog box. 
 
Depending on the changes that you are attempting to make to the CHAMP board, one or 
more of the following dialog boxes may appear. 
 
If you are reburning SPE programs, you will see the dialog box shown in Figure 8.13.   
 

8-16 

nCHAMP Ethernet Burn Utlhty IlllIiIEI

:a CHAMP Board Non Volatile Memory Conlrguratlon EI

I.",.""" s."""., ft< NI.....,j II
,,&yA"cr>Jnp""y

ITCP~PAddre" :::J 11921582(7

Prcd.ctrn Inlormaloo

IOPIJ,

lIME C""hpoloo

F,_ore C

PO C""hpoloo SPE C""hpolOO

n" v""oo allhe Elhemel81.<n Ulility
doe, not 'L«'OfI di,~ CHAMP
board heolh ond ,Iolu,

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



C
hapter 8: Program

m
ing the Flash M

em
ory 

 

 
Figure 8.13 – D

eleting E
xisting SPE

 Program
s 

This dialog box inform
s you that any SPE program

s already in FLA
SH

 w
ill be deleted 

before the new
 SPE files are burned.  Existing SPE program

s are deleted to avoid 
conflicts w

ith the new
 program

s.  N
ote that this m

eans that you m
ust burn all SPE 

program
(s) into FLA

SH
 during the sam

e burn, since subsequent burns w
ill erase any SPE 

program
s already stored in FLA

SH
. 

 If you attem
pt to change the C

H
A

M
P board Startup firm

w
are, you w

ill see the dialog box 
show

n in Figure 8.14. 
 

 
Figure 8.14 – C

hanging Startup C
ode 

This w
arning rem

inds you of the danger of reburning the startup code.  Please verify that 
you are burning the correct startup code file into the board. 
 If you attem

pt to change the V
xW

orks B
oot R

O
M

, you w
ill see the dialog box show

n in 
Figure 8.15. 

 
Figure 8.15 – C

hanging V
xW

orks B
oot R

O
M

 

8-17 

b
5' H;: -g
~ ~ i~ ~

I}P !H :l
~I ~ n~ I
81 1

[ ~l, ~jZ: ~ ~'~ 'E:
Q'>i-.0~

"- ~ 0 0
~0g",

.• C , • ,
"''!l2..:J:Ja 0 ' 0

:J:J" '"
~ s

[

b
o ~ '" '" -<o ';'0'- 2
~ ", .. ~ ~
- ~~i ~

I] • 'I' :l
61! Wi

I PI 'd-_ 0

~ g, .
o ,

!
o
1 ~

i j
"

.e
~~
»
!l~,,
0,

G
'<

:c> ~ ~
, 11

"0" il~
,~

l'2..J
"10

H

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

This warning reminds you of the danger of reburning the VxWorks Boot ROM.  Please 
verify that you are burning the correct VxWorks Boot ROM file into the board. 
 
If you attempt to disable VxWorks booting, you will see the dialog box shown in Figure 
8.16. 

 
Figure 8.16 – Changing VxWorks Boot ROM 

This warning reminds you that this is an irreversible process, and asks you to verify that 
you really want to do this. 
 
If you attempt to burn a corrupted S-Record file, you may see the dialog box shown in 
Figure 8.17. 

 
Figure 8.17 – Invalid Checksum 

If you see this message, the file you are trying to burn is corrupted, and should be 
replaced.  Contact Dy 4 Systems customer support for assistance. 
 
While the board is being reburned, the Ethernet Burn Utility will display the status 
window shown in Figure 8.18. 
 

 
Figure 8.18 – Burning Program 

While burning, the status window will display which information in FLASH is currently 
being burned.  The “spinner” on the right side of the status window will update, to 
indicate that the program is working.  Note that patience is sometimes required; burning 
large SPE files can be slow (i.e. can take up to five minutes per file on a slow 
computer/network). 

8-18 

Warning!

You ore Ir~ 10 "soble W"';orh boot.... 0f1 lhe IOP\J,

II}'OU do Iris, Vx\>Iorh'" no b:ro}e< boot,
ond}'OU ... no b:ro}e< be obIe 10 use Iris bun Llility
FLI"e chano}es 10 lhe IklSh ... requre rel"...... }'OU board 10 l>:tho,

II I

Invahd S Record F~e E'f

File ... not be buned

OK

8"...... SPE A Use< PrC90m

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Figure 8.19 shows the burn utility screen while a burn is in progress.  Note that both the 
status window, and the status bar at the bottom of the screen update to indicate the state 
of the burn operation.  Note that the status bar conveys additional information (i.e. 
“loading” or “burning” file). 
 

 
Figure 8.19 – Screen During Burn Operation 

 
 
 
During a burn, you may see the dialog box shown in Figure 8.20, which indicates that an 
error occurred while burning FLASH. 
 

 
Figure 8.20 – Error Writing to FLASH 

8-19 

: I. X

JTCPIIPAdd,ess: iJ 11921682.47

IlIttgmtd Soln(iollS fOr Ad/'Il/utt! D:lR

al!l~A'com pany

IOPlus Configulation Firmwale Configuration Flash Health and Status

Ploduction InfOlmalion VME Configuration PCI Configuration SPE Configuration

SPE FlashLoading=======================~~9

Offset

Jl:\SWRNO\burn\ixa\lim\Spwolks5.s

Burning SPE ABCD User PlOgram...

Enable Powel-up Self Test r

Load flom Flasl!lllll!ll•••••••••••••••!,
Reset

SPEA P
SPE 8 P
SPEC P
SPED r

System Processor 10

SPE A.8.C,D P

Powel-up SelfTest=========~':''':'::='';=========='-7"''
SPE A,C:

SPE 8·D:

Loading dspabcd..

-------------------------------------

Error wriling lo flash D

An error occurred while burning file "K:\S'w'RND\burn\ixa\tim\Spworks5,s"
probably because the CHAMP board flash is full,

File will not be burned,

IL::::::::::P.:~::::::::::::JI

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

This dialog box typically indicates that the FLASH is full, although another type of error 
might have occurred.  The FLASH can become full when burning large individual SPE 
files.  If this occurs, consider loading a single executable into all SPEs, rather than 
individual executables into each SPE. 
 
After a burn completes with errors, the dialog box shown in Figure 8.21 will be 
displayed. 

 
Figure 8.21 – Burn Completed with Errors 

If this dialog box is displayed, then one or more errors occurred during the burn 
operation.  Most likely, some of the changes that you requested were made, while others 
were not.  We recommend not resetting the CHAMP board in this situation.  Instead, 
click “OK” to dismiss the dialog, then fix the problems that caused the errors, and then 
repeat the burn by clicking the “Burn Settings” button. 
 
After a burn completes successfully, the dialog box shown in Figure 8.22 will be 
displayed. 

 
Figure 8.22 – Burn Completed Successfully 

For the changes to take effect, you must first close the Ethernet Burn Utility program, and 
then reset the CHAMP board.  If you reset without closing the burn utility, the utility will 
think that it is still connected to the CHAMP board, even though the connection was 
broken by the reset.  Unexpected behavior will result from this situation. 

8.11 The IXA FLASH Burn Utility 
The IXA FLASH Burn Utility ldflash may be used to reburn FLASH on a board only in 
the following circumstances: 

  The Ethernet Burn Utility will not operate on your board. 
  You have a host computer in your CPCI bus chassis, with a working HOSTAPI 

port. 

8-20 

Burn Complele El

Bem has c~od ...h «rors

You rM'I resellhe CHAMP bo.>rd lor sl.CcesslLJ ch.>o}es 10 loke ellecl
You rM'I .Iso Iry ret«.........hcU resell.... lhe CHAMP bo.>rd

Burn Complele El

In orde< lor the ch.>o}es}'OU have rMde 10 loke ellecl,}'OU roosl
1) C~se Iris prC9i>m
2) Resellhe CHAMP bo.>rd

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

  You have placed the CHAMP board into recovery mode by removing jumper JM5 
and resetting the board (the red LED on the front panel will flash rapidly for a 
brief period after reset, indicating the board is in recovery mode). 

 
The ldflash utility processes commands that are contained in a command file (which can 
be created or edited using any ASCII text editor).  The syntax of the commands that can 
be placed in this file is described in Table 8.1. Note that command keywords are printed 
in bold, while parameters are printed in italics. 

8-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

Table 8.1 - ldflash Commands 

Command Description 
Attach base_address This should be the first command in your command file.  It 

directs ldflash to target all subsequent commands to the 
board with the specified base_address. 

Erase Erases all user-modifiable portions of the FLASH memory.  
Warning!  This is a dangerous command, and should only be 
used at the direction of Dy 4 Systems customer support. 

file  filename  section_type The file command burns the specified S-Record format file 
named filename into FLASH.  The section_type tells the 
board firmware how to use the file.  A list of section_types 
that have special meaning to the IOPlus firmware is provided 
below. 
The load command loads the specified S-Record format file 
directly into the SPEs (bypassing the FLASH); the SPEs 
immediately begin executing the loaded code.  The 
section_type tells the board firmware where to load the file.  
The following section_types are valid for this command: 
dspa, dspb, dspc, dspd, dspab, dspac, dspad, dspbc, dspbd, 
dspcd, dspabc, dspabd, dspbcd, dspabcd, iopprog. 

Config param_number value This command allows board configuration parameters to be 
set or altered.  A list of configuration parameters is provided 
in a table below. 

prod param_number value This command is reserved for use by Dy 4 Systems.  It 
allows production parameters to be set or altered.  Note that 
production parameters are placed in the FLASH only when 
the board is initially built or when it is returned to Dy 4 
Systems for service. 

vxworks_nvram  config_string This command loads a VxWorks boot configuration string into 
FLASH memory.  Note that the configuration string can 
contain spaces, but must be on a single line.  Note also that 
the configuration string is typically changed using the 
VxWorks tools boot monitor, rather than with the ldflash 
utility. 

; comment text Comments can be placed after a command, or on a separate 
line.  All text on the remainder of the line following a 
semicolon “;” character is interpreted as a comment and 
therefore ignored.   

load  filename  section_type 

 
 

FLASH Section Types with Special Meanings 
Tables 8.2 - 8.4 list all FLASH section types that have special meaning.  Note that there 
are three different classes of section: those that can be freely modified by the user, 
sections that should be modified by the user only at the direction of Dy 4 Systems 
customer support, and sections which can not be modified by the user (i.e. they can only 
be modified by Dy 4 Systems). 

 

8-22 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

Table 8.2 - FLASH Sections that can be Modified by Users 

Section Type Name Description 
vxworks_bootrom The “VxWorks Boot ROM” is executed after the startup code 

when the board is configured to boot VxWorks (i.e. when 
configuration parameter 24 is set to 1). 

Vxworks_nvram Contains the VxWorks boot string.  This section is typically 
modified using the VxWorks boot monitor. 

Gmemdata The contents of this section are loaded into global memory on 
board reset.  If a program was loaded into global memory, it 
can be optionally executed by setting configuration parameter 
30. 

Common_boot_code The common boot code was designed to establish separate 
environments for each processor before the processors boot 
and run the main application. 

Iopprog This section type name can be used only with the load 
command, not with the file command.  It loads a program into 
global memory (bypassing the FLASH), and immediately 
begins executing it. 

Dspa or spea Loads the program into SPE A and executes it. 
Dspb or speb Loads the program into SPE Band executes it. 
Dspc or spec Loads the program into SPE Cand executes it. 
Dspd or spcd Loads the program into SPE Dand executes it. 
Dspab or speab Loads the program into SPEs  A and B and executes it. 
Dspac or speac Loads the program into SPEs A and C and executes it. 
Dspad or spead Loads the program into SPEs A and D and executes it. 
Dspbc or spebc Loads the program into SPEs B and C and executes it. 
Dspbd or spebd Loads the program into SPEs B and D and executes it. 
Dspcd or specd Loads the program into SPEs C and D and executes it. 
Dspabc or speabc Loads the program into SPEs A, B and C and executes it. 
Dspabd or speabd Loads the program into SPEs A, B and D and executes it. 
Dspbcd or spebcd Loads the program into SPEs B, C and D and executes it. 
Dspabcd or spebcd Loads the program into SPEs A, B, C and D and executes it. 

 

8-23 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 

Table 8.3 - FLASH Sections that can be Modified by Users at the Direction of Dy 4 Systems 

Section Type Name Description 
Xilinx Xilinx firmware used when board is in normal operating 

mode. 
Orca Only used on IXC boards.  Orca firmware used when board 

is in normal operating mode. 
startup Board initialization firmware that configures board on power 

up or reset when board is in normal operating mode.   
runtime Board firmware that implements IOPlus “SmartDMA” when 

VxWorks is not loaded into IOPlus. 

 
 

Table 8.4 - FLASH Sections not Modifiable by Users 

Section Type Name Description 
recovery_xilinx Xilinx firmware used when board is in recovery mode. 
recovery_orca Only used on IXC boards.  Orca firmware used when board 

is in recovery mode. 
iop_copy Initial boot program which copies board startup firmware 

into FLASH and begins executing it. 
Recovery Board initialization firmware that configures board on power 

up or reset when board is operating in recovery mode. 
 

Configuration Parameters 
Table 8.5 lists all configuration parameters that can be modified by the user.  The first 
column contains the parameter_number, while the second column describes the 
parameter. 

8-24 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

Table 8.5 - FLASH Configuration Parameters 

Configuration 
Parameter 
 Number 

 
Description 

0 Unused 
1 Unused 
6 Maximum command channels used by IOPlus for processing commands 

(defaults to 6) 
7 Maximum number of host processes that can be attached to IOPlus 

simultaneously (defaults to 4) 
Enables loading of SPEs (using dspxxxx or spexxxx section type) and/or 
IOPlus/Global memory (using gmemdata section type).  A 1 in the 
proper bit location enables loading while a 0 disables the load. 

Bit 0: Enables FLASH loading of IOPlus global memory 
Bit 1: Enables FLASH loading of SPE A 
Bit 2: Enables FLASH loading of SPE B 
Bit 3: Enables FLASH loading of SPE C 
Bit 4: Enables FLASH loading of SPE D 

9 Unused 
12 

8 

 

 

Unused 
 

8-25 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
Table 8.5 - FLASH configuration parameters (cont.) 

Configuration 
Parameter 
 Number 

 
Description 

13 Unused 
17 Unused 

19 Unused 
20 Unused 
21 Size (in bytes) of host command buffer (defaults to 0x2000) 
22 Size (in bytes) of host response buffer (defaults to 0x2000) 
24 Controls whether the VxWorks boot ROM, or the IOP Runtime code is 

loaded into the IOPlus and executed. 
0:  Load and execute Runtime code 
1:  Load and execute VxWorks boot ROM 

25 Controls whether POST is loaded into SPEs and executed (not currently 
implemented). 

0:  POST is not loaded and executed 
1:  POST is loaded and executed 

26 Unused 
27 Starting address in global memory of shared heap managed by IOP 

Runtime code 
28 Ending address in global memory of shared heap managed by IOP 

Runtime code 
29 Controls PMC latency timer settings, enabling of PMC BIST, and 

enabling of PMC bus mastering.  The bits are defined as follows: 
31-24:  PMC 2 latency timer 
23-16:  PMC 1 latency timer 
3:          enable PMC 2 BIST 
2:          enable PMC 1 BIST 
1:          enable PMC 2 bus master 
0:          enable PMC 1 bus master 

18 Unused 

 
 

Table 8.5 - FLASH configuration parameters(cont.) 
Configuration 

Parameter 
 Number 

 
Description 

30 If a gmemdata section is loaded into global memory (note that parameter 
8 must be set to FFFFFFFF) and if this parameter is set to an address 
other than FFFFFFFF, then the IOPlus will begin executing code from 
global memory at the specified address upon power up or reboot. 

31 
This parameter sets the AB PCI-PCI Bridge latency timer using the 
following bits: 

15-8:  Secondary side latency timer 
7-0:    Primary side latency timer 

33 This parameter sets the CD PCI-PCI Bridge latency timer using the 
following bits: 

15-8:  Secondary side latency timer 
7-0:    Primary side latency timer 

Unused 
32 

8-26 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

34 This parameter sets the IOPlus PCI-PCI Bridge latency timer using the 
following bits: 

7-0:    Primary side latency timer 
36 Unique system processor ID for assignment to IOPlus processor 
40 Specifies starting offset in local SDRAM for SPE A application load from 

FLASH 
41 Specifies starting offset in local SDRAM for SPE B application load from 

FLASH 
42 Specifies starting offset in local SDRAM for SPE C application load from 

FLASH 
43 

45 Start address of SPE B application code as seen by CBC 
46 Start address of SPE C application code as seen by CBC 
47 Start address of SPE D application code as seen by CBC 
64 Unused 
65 Unused 
66 Unused 
67 Unused 
.                         … 

Specifies starting offset in local SDRAM for SPE D application load from 
FLASH 

44 Start address of SPE A application code as seen by CBC 

95 Unused 
 
 

8-27 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 

Sample ldflash Command File 
The sample ldflash command file shown below performs the following common tasks: 
  Attaches to a board at base address 0x80000000 
  Burns an SPE program named progac.hex (stored in s-record format) into FLASH.  The 

program will be loaded into SPEs A and C and begin executing upon board power up or 
reset. 

  Burns an SPE program named progbd.hex (stored in s-record format) into FLASH.  The 
program will be loaded into SPEs B and D and begin executing upon board power up or 
reset. 

  Burns an IOPlus program named iop.hex (stored in s-record format) into FLASH.  The 
program will be loaded into global memory upon board power up or reset. 

  Sets configuration parameter 8 to FFFFFFFF, which enables loading of the SPEs and 
global memory from FLASH (set this parameter to 0 to disable loading). 

  Sets configuration parameter 30 to global memory address 0x50000.  After loading the 
global memory with the program stored in iop.hex, the IOPlus firmware will begin 
executing at global memory address 0x50000 (which is assumed to be the entry point for 
the program stored in iop.hex). 

 
attach  80000000   ; Attach to board at address 0x80000000 
file progac.hex dspac  ; “progac.hex” will be loaded into SPE A & C 
file progbd.hex dspbd  ; “progbd.hex” will be loaded into SPE B & D 
file iop.hex gmemdata ; “iop.hex” loaded into global memory 
config 8 FFFFFFFF ;  Enable loading of SPEs and global memory 
config 30 50000  ;  Run IOPlus program at global memory 50000 
 
 

 

 
 

 
 

8.12 FLASH Validation 
Under certain circumstances, the FLASH memory on your CHAMP board may become 
corrupted.  This could occur, for instance, if the board is accidentally reset or if the power 
is turned off while FLASH is being reburned.  If your CHAMP board FLASH becomes 
corrupted, the board may not boot properly.  CHAMP board FLASH memory contains 
redundant directory information as well as redundant boot code.  This redundancy 
minimizes the cases where the CHAMP board becomes unbootable due to FLASH 
corruption.  CRCs are calculated on each file in FLASH, and stored in the FLASH 
directories.  These CRCs allow corrupted files to be detected. 
 

8-28 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

When VxWorks loads on the IOPlus, the integrity of CHAMP board FLASH memory is 
validated.  This check is performed immediately after the VxWorks banner is displayed.  
The following message should appear on the VxWorks console: 
 

 ]     ]]]]]]]]]  ]]]]]]     ]]]]]]]]       ]]               ]]]] 
 ]]     ]]]]]]]  ]]]]]]]]     ]]]]]] ]     ]]                ]]]] 
 ]]]     ]]]]] ]    ]]]  ]     ]]]] ]]]   ]]]]]]]]]  ]]]] ]] ]]]]  ]]   ]]]]] 
 ]]]]     ]]]  ]]    ]  ]]]     ]] ]]]]] ]]]]]]   ]] ]]]]]]] ]]]] ]]   ]]]] 
 ]]]]]     ]  ]]]]     ]]]]]      ]]]]]]]] ]]]]   ]] ]]]]    ]]]]]]]    ]]]] 
 ]]]]]]      ]]]]]     ]]]]]]    ]  ]]]]]  ]]]]   ]] ]]]]    ]]]]]]]]    ]]]] 
 ]]]]]]]    ]]]]]  ]    ]]]]]]  ]    ]]]   ]]]]   ]] ]]]]    ]]]] ]]]]    ]]]] 
 ]]]]]]]]  ]]]]]  ]]]    ]]]]]]]      ]     ]]]]]]]  ]]]]    ]]]]  ]]]] ]]]]] 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]       Development System 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]] 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]       VxWorks version 5.4 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]       KERNEL: WIND version 2.5 
 ]]]]]]]]]]]]]]]]]]]]]]]]]       Copyright Wind River Systems, Inc., 1984-1999 
 
                               CPU: Dy 4 Systems IOP.  Processor #0. 
                              Memory Size: 0x1000000.  BSP version 1.2/9. 
 

  Validating FLASH...        passed. 

 
 ]]     ]]]]]]]  ]]]]]]]]     ]]]]]] ]     ]]                ]]]] 

 ]]]]     ]]]  ]]    ]  ]]]     ]] ]]]]] ]]]]]]   ]] ]]]]]]] ]]]] ]]   ]]]] 

 ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]       Development System 

 ]]]]]]]]]]]]]]]]]]]]]]]]]       Copyright Wind River Systems, Inc., 1984-1999 

Validating FLASH...        failed! 

 

-> 

 
  Burntask() version 5 accepting connections on port 1001... 

 
If FLASH validation passes, then no further action is required.  However, if FLASH 
corruption is detected, a message similar to the following will be displayed: 

 ]     ]]]]]]]]]  ]]]]]]     ]]]]]]]]       ]]               ]]]] 

 ]]]     ]]]]] ]    ]]]  ]     ]]]] ]]]   ]]]]]]]]]  ]]]] ]] ]]]]  ]]   ]]]]] 

 ]]]]]     ]  ]]]]     ]]]]]      ]]]]]]]] ]]]]   ]] ]]]]    ]]]]]]]    ]]]] 
 ]]]]]]      ]]]]]     ]]]]]]    ]  ]]]]]  ]]]]   ]] ]]]]    ]]]]]]]]    ]]]] 
 ]]]]]]]    ]]]]]  ]    ]]]]]]  ]    ]]]   ]]]]   ]] ]]]]    ]]]] ]]]]    ]]]] 
 ]]]]]]]]  ]]]]]  ]]]    ]]]]]]]      ]     ]]]]]]]  ]]]]    ]]]]  ]]]] ]]]]] 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] 

 ]]]]]]]]]]]]]]]]]]]]]]]]]]]] 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]]       VxWorks version 5.4 
 ]]]]]]]]]]]]]]]]]]]]]]]]]]       KERNEL: WIND version 2.5 

 
                               CPU: Dy 4 Systems IOP.  Processor #0. 
                              Memory Size: 0x1000000.  BSP version 1.2/9. 
 
-> 

 

 
  +------------------------------------------------------+ 
  |                                                      | 
  | !!!  WARNING  WARNING  WARNING  WARNING  WARNING !!! | 
  |                                                      | 
  |      Your CHAMP board FLASH memory is corrupted.     | 
  |        Please contact Dy 4 Systems customer support        | 
  |                for further assistance.               | 
  |                                                      | 
  | !!!  WARNING  WARNING  WARNING  WARNING  WARNING !!! | 
  |                                                      | 
  +------------------------------------------------------+ 
 
 
 
 
 -------------------------------------------------- 
     The primary FLASH directory has the following error(s): 
         Directory checksum failed. 

8-29 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

 
 
 -------------------------------------------------- 
 
  Please contact Dy 4 Systems customer support for 

  |      Your CHAMP board FLASH memory is corrupted.     | 

     The primary FLASH directory has the following error(s): 

     The secondary FLASH directory has the following error(s): 

  further assistance. 
 
 
 
  Burntask() version 5 accepting connections on port 1001... 

 
If a FLASH corruption warning is displayed, please contact Dy 4 Systems customer 
support for assistance in repairing the damage.  Note that even though the board might 
appear to boot and operate properly, FLASH corruption should not be ignored.  If further 
damage were to occur to a corrupted FLASH, the CHAMP board might be rendered 
unbootable.  In most cases, FLASH recovery is quick and relatively painless.  For 
instance, the CHAMP board in the example shown above has a corrupted primary 
directory.  No errors are detected in the backup FLASH directory, indicating that it is 
valid.  To repair the FLASH corruption, the secondary directory can simply be copied 
over the primary directory. 
 
Several new commands have been added to the VxWorks BSP for the IOPlus to support 
FLASH corruption diagnosis and recovery.  Two of these commands are described 
below. 
 
The validateFlash command causes integrity checks to be performed on CHAMP board 
FLASH memory.  Any detected errors are reported.  The checks performed by this 
command are identical to the validation performed when VxWorks boots.  Below is the 
output of the valiateFlash command on a CHAMP board that was accidentally reset 
during the burning of the SPE Boot ROM. 
 

-> validateFlash 
 
  Validating FLASH...        failed! 
 
 
 
  +------------------------------------------------------+ 
  |                                                      | 
  | !!!  WARNING  WARNING  WARNING  WARNING  WARNING !!! | 
  |                                                      | 

  |        Please contact Dy 4 Systems customer support        | 
  |                for further assistance.               | 
  |                                                      | 
  | !!!  WARNING  WARNING  WARNING  WARNING  WARNING !!! | 
  |                                                      | 
  +------------------------------------------------------+ 
 
 
 
 
 -------------------------------------------------- 

 
         The following files had a checksum error in the primary directory: 
          dspabcd 
 
 -------------------------------------------------- 

 

8-30 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 8: Programming the Flash Memory 
 

         The following files had a checksum error in the secondary directory: 
          dspabcd 
 
 -------------------------------------------------- 
 
  Please contact Dy 4 Systems customer support for 
  further assistance. 
 
 
 
value = 131074 = 0x20002 
-> 

 
To repair the corrupted SPE Boot ROM, simply reburn it (no resets this time, please!). 
 
The printFlashDir command displays the contents of the primary FLASH directory.  
This command shows where individual files are stored in FLASH, as well as their sizes 
and checksums.  The output of this command assists Dy 4 Systems customer support in 
advising you on the best procedure for recovering a corrupted FLASH.  The output of a 
typical printFlashDir is shown below (note the BAADBAAD checksum on the “dspabcd” 
file). 
 

-> printFlashDir 
  Checksum    Offset        Size    Name 
  --------    ------        ----  --------- 
  45cb0846    00000000         0  null 

  154803cc    00010000     20000  orca 

  75d13c04    0010f000      1000  prodparams 

  ffffffff    007ff000      1000  directory 

  Total free space:   7020068 (0x6b1e24) bytes 

  3e459461    00000000     10000  xilinx 

  5c342ecd    00030000      2000  config 
  3f5277fb    00032000       400  vxworks_nvram 
  54d36e0c    00032400      2758  common_boot_code 
  ab951b56    00034fac      afa0  runtime 
  baadbaad    0003ff4c     32538  dspabcd 
  --------   1 empty entries ----- 
  0f17ef70    0007ffc8      d3ac  startup 
  --------   22 empty entries ----- 
  b0fb310d    00100100      4000  iop_copy 
  7d2d201c    00105000      a000  recovery 

  3e459461    00110000     10000  recovery_xilinx 
  154803cc    00120000     20000  recovery_orca 
  171beebc    00140100     3ff00  vxworks_bootrom 
  15372ac6    00180100     3ef00  recovery_bootrom 
  ffffffff    001c0000      1000  bkup_directory 
  ffffffff    001c1000      f000  bkup_dir_buffer 
  --------   22 empty entries ----- 

 
  Total space:        8388608 (0x800000) bytes 
  Total used space:   1368540 (0x14e1dc) bytes 

  Maximum free block: 6483968 (0x62f000) bytes 

 
 

8-31 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 

Chapter 9:   Host Software 
 
 

9.1 Introduction 
The IXAtools software includes a collection of functions, HostAPI, that permit an 
application to load, start, stop, and exchange data with SPEs on the IXA4.  These 
functions are provided as “C” source code permitting this capability to be obtained over a 
broad range of host environments.  Figure 9.1 shows the relationship of the HostAPI 
library to the application and the cPCI bus.  To use HostAPI requires a cPCI bus interface 
driver that conforms to an Dy 4 Systems convention, shown in the Figure 9.1 as VMElib.  
Dy 4 Systems has implemented VMElibs for a number of systems and may be able to 
provide one for your configuration.  Contact Dy 4 Systems to determine if a VMElib for 
your configuration already exists. 

text

text

text

cPCI Interface

VMElib

HostAPI

Host Application

cPCI bus

Global Memory

IOPlus SPEs

IXA4
Host Computer

Figure 9.1 - HostAPI Relationship Diagram 
 
 
 

9-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

If a VMElib doesn’t exist you will need to develop one for your host.  This chapter will 
detail what needs to be done.  The effort is not that major but it will require you to 
research the documentation that came with your host to find out what software driver 
capability is already available. 
 
The name VMElib may look a little out of place in context with a cPCI board, but by 
maintaining the naming conventions used in the VME product base, Dy 4 Systems can 
extend the HostAPI library across its entire product base.  The process of doing this does 
cause the VMElib to filter application request from a VME frame of reference to a PCI 
frame of reference.  This will become more apparent in the function definitions that 
follow.  

9.2 Porting HostAPI 
HostAPI, communicates with the IXA4 using the cPCI bus. Dy 4 Systems has ported 
HostAPI to a number of cPCI based hosts. These ports are not only hardware dependent, 
as to the manufacturer and model number of host processor board, but also dependent on 
the version of operating system used by the host. Since hardware and software products 
change at a rapid rate, your system design may require a configuration of cPCI host for 
which Dy 4 Systems has not implemented a port. The following paragraphs address 
porting to a new host system. 

 
Porting HostAPI consists of three basic steps: 

1. Developing a cPCI bus interface driver. 
2. Constructing a set of functions (VMElib) to interface the cPCI bus interface driver 

to the HostAPI software. 
3. Compiling, linking, and testing the HostAPI software with the VMElib and cPCI 

bus interface driver software. 
First contact Dy 4 Systems to determine if the configuration needed by your application 
is currently available. One of the existing configurations may be suitable to your 
application, or can be easily modified.  
 
If you must port to a new configuration, you must consider the following: 

  Does the hardware come with a cPCI bus interface driver for the required 
operating system? 

  Does the operating system come with a cPCI bus interface driver for the required 
hardware? 

If the answer to either of these questions is yes, then you may have been spared the task 
of developing a cPCI bus interface driver for your application. You should still review 
the next section to determine if the cPCI bus interface driver is capable of satisfying the 
requirements of a HostAPI port. 

 
cPCI bus Interface Driver Requirements 

A cPCI bus interface driver for HostAPI needs only support basic cPCI bus read/write 
capabilities. The host software does not require that interrupts be issued or serviced by 
the driver.  

9-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
The driver should support any required byte swapping between the host and SPE word 
formats. If not, you must implement byte swapping as part of the development of the 
VMElib routines. Likewise, if the driver does not support more than one open device at a 
time, the VMElib routines will have to handle that aspect. 
 

VMElib Interface Routines 
For software portability and maintainability, Dy 4 Systems has separated the cPCI bus 
interface driver software from the HostAPI software. The interface between the HostAPI 
and the cPCI bus interface driver is a small collection of functions grouped together and 
referred to in this document as VMElib. This library is implementation specific and 
“glues” the host software calls to the driver specific calls. Therefore, you must develop a 
VMElib library for all HostAPI ports. 
 
VMElib consists of five function calls. Four of these functions, vme_open, vme_write, 
vme_read, and vme_close, are used to adapt the cPCI bus interface driver specific calls to 
the rest of the host software. An additional function, hostlib_get_info, is an optional 
convenience function to permit driver identification for your application. ANSI C 
function prototypes and constants defining these functions can be found in the file 
ixhost.h. The definitions of these functions must therefore be maintained to simplify any 
port. The operation of these functions and their required arguments are detailed in the 
following sections. Please consult your distribution diskette to obtain the latest copy of 
this source file, ixhost.h. 
 

VME_IO Data Structure  
The primary data structure used by VMElib is the VME_IO structure. This structure is 
allocated and initialized by vme_open, and referenced by address by all other function 
calls. The host software does not reference any fields within this data structure. The use 
of fields inside this data structure is optional; your device driver port may not require the 
use of all fields.  

 
typedef struct vme_io 
{ 
 int      unix_fd;   /* handle from “open” call  */ 
 char     addr_mode;   /* address mode requested   */ 
 char     transfer_mode;  /* byte, word, or longword  */ 
 char     swap_mode;   /* big_endian or little_endian  */ 
 unsigned long   start_addr;  /* starting VME address        */ 
 unsigned long   size;   /* size (bytes) of VME window  */ 
 unsigned long   mapstart;   /* address of  window    */ 

The unix_fd field is provided for those implementations that must make an “open” 
system call and remember a file handle. 

 int     maplen;         /* length of window  */ 
 unsigned long   virtual_ptr;     /* virtual addr of vme window */ 
 char      mem_seg_name[16]; /* memory segment name   */ 
} VME_IO; 

 

addr_mode, transfer_mode, swap_mode, start_addr, and size correspond to input 
parameters for the vme_open function call. These fields are set by vme_open for 
subsequent reference. Definitions for setting these fields are contained in ixhost.h.  

9-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

The mapstart, maplen, and virtual_ptr fields are provided for those implementations 
that must map cPCI address space into a logical address space within the process.  
mem_seg_name is provided for those systems that manage VME address space using 
named, shared memory segments. 
 
A VMElib implementation may not require all fields within this data structure. Unused 
fields need not be initialized or referenced. 
 

Inputs:  

 

Initialization Function (vme_open) 
The initialization function is called vme_open. It sets fields within the VME_IO data 
structure and performs any device driver initialization required by the host operating 
system. In UNIX operating systems, this function consults the environment variables to 
obtain the name of the device driver, opens the device driver, and verifies that the 
addressing mode is valid. This function saves the file handle returned by the open call in 
the VME_IO data structure. 
 
Calling Sequence: 

 
   void *vme_open(char   admod, 
   char   mode, 
   char   swap, 
   unsigned long start, 
   unsigned long size, 
   int    *status ); 

admod is for a VME address modifier. It is not applicable to cPCI implementations an 
can be ignored.  

mode indicates whether subsequent transfers will take place as byte, word, or longword 
transfers. Mode must have one of the following values: byte_mode, word_mode, or 
long_word_mode as defined  in ixhost.h. The HostAPI software uses long_word_mode 
as its primary transfer format. 

swap sets the ordering of bytes within words and longwords for the address region being 
initiated. The value of swap can be either big_endian or little_endian as defined in 
ixhost.h.  

start_addr is the starting cPCI bus address requested by the host software. 

size is the length, in bytes, of the window requested by the host software. 

Processing: 
The vme_open function should validate the input parameters, confirming that the 
addressing mode, starting address, size, and mode are supported by your system. 

The vme_open call allocates and initializes the VME_IO structure vme_io as follows: 
 
vme_io-> unix_fd  = (set to what driver requires  
     to id device open); 
vme_io->addr_mode   = admod; 

9-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

vme_io->transfer_mode = mode; 
vme_io->size    = size; 
vme_io->swap_mode   = swap; 
vme_io->start_addr  = start_addr; 
vme_io->virtual_ptr   = ( driver definable ) ; 
vme_io->mapstart   = ( driver definable ); 
vme_io->maplen   = ( driver definable ); 
 

Outputs: 
The vme_open function returns a pointer to the VME_IO structure that is used when 
calling the other VMElib functions. The vme_open function also returns a status through 
the *status parameter. Zero indicates success. Other return values are defined in ixhost.h: 

 
1 = unsupported_transfer_mode 
2 = invalid_addressing_mode 
3 = addressing_mode_not_supported 
4 = invalid_transfer_mode 
5 = invalid_swap_mode 

 

Notes:   
Host software will call vme_open for each board command issued. The starting address 
will correspond to the base address of the board, plus an offset corresponding to root 
controller memory. 

Some systems may require no processing within vme_open. For example, a single board 
computer that provides full time, consistently mapped access to cPCI address space need 
not perform any special initialization in the vme_open function. 

 
Read Function (vme_read) 

The read function is called vme_read. It copies data from the specified address into local 
memory. The copy is performed using the address mode, transfer type, and byte-
swapping options obtained from the VME_IO structure.  

Calling Sequence:  
 
void vme_read( void    *vme_io, 
   void    *dest_data, 
   unsigned long   count,   
   unsigned long   vme_get_addr, 
   int   *status); 

 

Inputs: 
*vme_io is a pointer to the VME_IO structure that was previously initialized by 
vme_open. 

*dest_data is the address where data is to be copied. 

count is the number of bytes, words, or longwords to be transferred. The selection of 
byte, word, or longword is based upon vme_io->transfer_mode. 

vme_get_addr is the cPCI address from which data is to be copied. 

9-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 

Processing: 
Using parameters stored in vme_io, this function copies data from vme_get_addr to 
dest_data. This function may validate the starting address and length, and may detect bus 
errors. The starting address and length fields can be checked for validity, although such 
error checking is completely optional. 

 

Outputs: 
This function returns status through the *status parameter. Zero indicates success. Other 
return values are as defined in ixhost.h: 

 
12 = buserr_detected 
13 = address_out_of_range 
14 = transfer_too_large 
 

Notes: 

Many UNIX systems report bus errors through signals (such as segmentation violation). 
In these systems, the vme_read and vem_write functions need not detect bus errors.  

Many systems do not support unaligned transfers. In such systems, transferring long word 
data to or from an address that is not a multiple of 4 will cause a bus error. Similarly, 
transferring word data to or from an address will cause a bus error. Your driver software 
may detect this condition and return an error status. 

 
Write Function (vme_write) 

The write function is called vme_write. It copies data from local memory to the specified 
VME address. The copy is performed using the address mode, transfer type, and byte-
swapping options obtained from the VME_IO structure. 

 

Calling Sequence: 
 
void vme_write( void    *vme_io, 
   void    *src_data, 
   unsigned long  count, 
   unsigned long  vme_put_addr, 
   int    *status); 

 

Inputs: 
vme_io is a pointer to the VME_IO structure that was previously initialized by 
vme_open.  

*src_data is the address from which data will be copied. 

count is the number of bytes, words, or longwords to be transferred. The selection of 
byte, word, or longword is based upon vme_io->transfer_mode. 

vme_put_addr is the cPCI address to which data are to be copied. 
 

9-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

Processing: 

Using parameters stored in vme_io, this function copies data from src_data to 
vme_put_addr. This function may validate the starting address and length, and may 
detect for bus errors. The starting address and length fields can be checked for 
reasonableness, although such error checking is completely optional. 

Outputs: 
This function returns status through the *status parameter. Zero indicates success. Other 
return values are as defined in ixhost.h: 

 
12 = buserr_detected 
13 = address_out_of_range 
14 = transfer_too_large 
 

Notes: 

See notes for vme_read regarding bus error detection and unaligned transfers. 
 
Close Function (vme_close) 

The close function is called vme_close. This restores whatever resources were allocated 
by vme_open. 

Calling Sequence: 
 
void vme_close ( void  *vme_io); 
 

Inputs: 
vme_io is a pointer to the VME_IO structure that was previously initialized by 
vme_open.  

Processing: 
Using parameters stored in vme_io, this function frees up resources that were allocated 
by vme_open. Depending upon the requirements of your system’s VME device driver 
interface, this function may have to unmap memory, deallocate shared memory segments, 
close the device driver file vme_io->unix_fd, or perhaps do nothing at all. 

Outputs: 

None. 

 
Identify Driver (hostlib_get_info). 

The identify driver function is called hostlib_get_info. This function is available for host 
software to identify the VMElib implementation. This function is not required by 
HostAPI. 

 

Calling Sequence: 
    
   void hostlib_get_info(char **driver_name, 
     char **driver_version ); 

 

9-7 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

Inputs: 

**driver_name location for the address of the driver_name character string 

**driver_version location for the address of the driver_version character string 
 

Processing: 
This function defines the two character strings and returns the addresses to them. The 
contents of the character strings are for informational use only, no computations are 
based upon the contents of this field. These strings can be of any length, and must be null 
terminated. For the string contents to remain in memory upon return, the strings must be 
declared as static.  

You should update these strings as you update your driver software.  This will make it 
much easier to confirm that your version of host software has been linked with the most 
recent device driver library. 

 

Outputs: 

**driver_name location of the address of the driver_name character string 

**driver_version location of the address of the driver_version character string 

 

Testing 
Before linking a cPCI device driver with the HostAPI library software, the cPCI device 
driver should be thoroughly tested. You can test by using a driver program which calls 
the open, close, read and write routines, writing and reading known patterns to specified 
addresses. A cPCI bus analyzer can be used to confirm proper address modifier and 
address mode values. 
 

Test Equipment. 
Testing will require a host chassis, the cPCI host computer, the test software, test driver 
software, and a slave cPCI card. 
 
A software test harness should be written that accesses the slave card from the host. The 
test harness should perform a vme_open, and transfer data words to and from the slave 
memory card. The following test algorithm is suggested: 
 

begin 
 

call vme_open 
 

initialize a test array of 32 bit values containing 
 vme_address, vme_address+1, etc 
 
call vme_write to copy the array to the slave board 
 
call vme_read to read the slave board into a different array 
 
verify that the array contains vme_address, vme_address+1, etc. 
 

9-8 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

call vme_close 
 
end 

 

This algorithm tests basic input and output. Array lengths of at least 8k long words make 
a sufficient test. A cPCI bus analyzer can be used to confirm the address, length, and 
address modifier bits for all read and write operations. If no cPCI bus analyzer is 
available, then you should have a means for dumping the contents of the slave board to 
make sure that the test pattern was successfully written to the slave board. 

The following test algorithm is recommended to test the ability for the driver to have 
several cPCI regions opened concurrently. This capability is important; this is the way 
that the host library will manage more than one board at the same time: 

 
#define NVME 8 
 
define an array of VME_IO vmes[NVMES] 
 
begin 
 
 for n = 0;  while n < NVME 
 Call vme_open, using vmes[n, and a vme base address plus 8k * n 
  n = n + 1 
 end_for 
 

 
 for n = 0; while n < NVME 
  Initialize a test array of 2k longwords to have values of  
   base address + 8k*n + 0, +1, +2... 
  call vme_write using vmes[n] 
 end_for 
 
 
 for n = 0; while n < NVME 
  call vme_read using vmes[n], reading from  
   base_address + 8k*n +0, +1, +2... 
 
  Verify the contents of the array 
 
  call vme_close using vmes[n] 
 end_ for 
 
end_begin 

9.3 HostAPI Functions 
The following are the function definitions for the HostAPI library.  These functions are 
provided in both source code and link-able object format.  Note: link-able object format 
is supplied for supported host platforms, for other platforms you must build the HostAPI 
library from source code.  Source code for HostAPI is always provided with IXAtools to 
accommodate potential differences with C compilers and to allow flexibility with 
developer’s applications.  Where as the modification of the HostAPI source code is 
permitted, it is not recommended.  Changing the HostAPI library will make the adoption 
of future updates of IXAtools difficult and also complicate the customer support activity.  
 

9-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

Using the HostAPI library in an application is relatively straightforward. Each IXA4 
board is opened by calling host_board_open, has programs loaded and started with 
host_load_program, exchanges information using host_memory_read and 
host_memory_write, and at the conclusion each board gets closed with host_board_close. 
A number of useful utility functions are also provided.  The main goal of HostAPI is to 
provide a very simple effective mechanism for the host and IXA4 to interact.  Elaborate 
abstractions have been purposely avoided. 

9-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_board_close 
 
 

 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

HOST_API_STATUS host_board_close( void *board_pointer ); 
 

 
DESCRIPTION: 

 
host_board_close detaches from an IXA which was previously opened by 
host_board_open.  If the board was not previously opened, an error is returned. 

  
 
RETURN STATUS: 

 
HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

 
 
NOTES: 

 
An opened board should be closed using host_board_close in order to free any resources 
that may have been allocated by host_board_open. 

 

9-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_board_open 
 
 
CALLING SEQUENCE: 
  

#include <host_api.h> 
 
HOST_API_STATUS  host_board_open( unsigned long   cpci_address, 

    void        **board_pointer ); 
 
DESCRIPTION: 

 
host_board_open attaches to an IXA board with the specified cPCI address.  It returns a 
board pointer, which must be passed to all other functions that access the board (the 
board pointer is similar to a file pointer).  If no board is found at this address, an error is 
returned and the board pointer is set to NULL.  A board must be opened using this 
function before it can be accessed by any other HostAPI functions. 

  
RETURN STATUS: 

 
HOST_NO_ERROR: board opened successfully. 
HOST_ERROR_OPENING_BOARD: no board was found at the specified cPCI address. 

 
NOTES: 

 
A board must be opened using this function before it can be accessed by any other 
HostAPI functions. 

 

9-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_board_reset 

 
 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_board_reset( void            *board_pointer , 

     HOST_RESET_TYPE  type ); 
 
 

DESCRIPTION: 
 

host_board_reset performs a hardware reset on a board.  It is equivalent to pressing the 
front panel reset button. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

 
 
NOTES: 
  

HOST_RESET_TYPE can be: HOST_RESET_BOARD, 
HOST_RESET_PCI_BUS, 
HOST_RESET_CLUSTER_A,  
HOST_RESET_CLUSTER_B, 

 HOST_RESET_SPE_A, 
  HOST_RESET_SPE_B, 
 HOST_RESET_SPE_C, 
 HOST_RESET_SPE_D. 
 HOST_RELEASE_SPE_A, 
  HOST_RELEASE_SPE_B, 
 HOST_RELEASE_SPE_C, 
 HOST_RELEASE_SPE_D 

9-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_board_status 

 

 

  

HOST_ERR_CD_BRIDGE 

 

 

CALLING SEQUENCE: 
 
#include <host_api.h> 

 
HOST_API_STATUS  host_board_status( void              *board_pointer, 

      HOST_BOARD_STATUS *status ); 
 

 
DESCRIPTION: 
 

host_board_status returns the status of the IXA4.  The board determines its status by 
performing a power-up self-test (POST) whenever the board is reset. 

 
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

 HOST_DEVICE_ERROR: Check contents of status 
 
NOTES: 
 

HOST_BOARD_STATUS return codes:  
HOST_ERR_PROGRAMMING_XILINX 

HOST_ERR_AB_BRIDGE 
HOST_ERR_TOP_BRIDGE 
HOST_ERR_CD_CLUSTER_MEMORY 
HOST_ERR_FLASH_MEMORY 
HOST_ERR_GLOBAL_MEMORY 
HOST_ERR_AB_CLUSTER_MEMORY 
HOST_ERR_PCI_BUS  

9-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_close_flash_params 
 

 

 
CALLING SEQUENCE: 

 
#include “_host_api.h” 

 
HOST_API_STATUS  host_close_flash_params( void *param_ptr ); 

       
 

 
DESCRIPTION: 

This function should only be called when the FLASH utility can not be used to update 
FLASH parameters.  host_close_flash_params flushes the parameter changes which have 
been made by calls to host_write_config_param to non-volatile FLASH memory.  Note 
that FLASH memory parameters are used by Dy 4 Systems firmware (startup and 
runtime code).  The user should exercise caution when modifying these parameters. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: FLASH parameter channel opened successfully. 
 
NOTES: 
 

Caution should be used when modifying FLASH parameters.  
param_ptr must have been previously allocated by host_open_flash_params. 
 

9-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_free 
 
 

CALLING SEQUENCE: 

 

 

 

 
#include <host_api.h> 

  
HOST_API_STATUS  host_free( void    *board_pointer, 

void    *ptr, ); 
 

DESCRIPTION: 
 

host_free releases memory which has previously been allocated by host_malloc.  The 
pointer ptr refers to the local PCI memory address returned by host_malloc. 

 
 
RETURN STATUS: 
 

HOST_NO_ERROR:     board opened successfully. 
HOST_INVALID_BOARD_POINTER:  board pointer is invalid. 

 
NOTES: 

Be sure to pass this function the local PCI address of the allocated memory, not the cPCI 
address of the allocated memory. 

 

9-16 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_get_board_type 
 
 

RETURN STATUS: 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

  
HOST_API_STATUS  host_get_board_type( void        *board_pointer, 

          HOST_BOARD_TYPE *board_type ); 
 
 
DESCRIPTION: 
 

host_get_board_type returns an identifier which specifies the type of CHAMP board on 
which the code is running.  Currently, the response types are: 
 HOST_IXC_BOARD, 
 HOST_IXA_BOARD 

 
 

 
HOST_NO_ERROR:     success. 
HOST_INVALID_BOARD_POINTER:  board pointer is invalid. 

 
NOTES: 
 

 This function is useful only when mixing IXC and IXA boards. 

9-17 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_load_flash 

 
 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

  
HOST_API_STATUS  host_load_flash( unsigned long  cpci_address, 

    char   *filename, 
    char          *section_name ); 

 
 
DESCRIPTION: 
 

host_load_flash burns a program or file in s-record format into the IXA4 board non-
volatile FLASH memory.  This routine can be used when burning files into FLASH using 
the FLASH utility is not desired. 
 
The following section_names have special meaning to the IOPlus software, and should be 
used with caution: 

 

HOSTAPI name Text name Description Dy 4 
Systems 
Reserved

HOST_NAME_VXWORKS_
BOOTROM 

vxworks_bootrom VxWorks boot ROM code, 
which is executed after the 
startup code when vxWorks 
booting is enabled 

No 

HOST_NAME_SPE_A spea Program loaded into SPE A 
on board reset 

No 

HOST_NAME_SPE_B speb Program loaded into SPE B 
on board reset 

No 

HOST_NAME_SPE_C spec Program loaded into SPE C 
on board reset 

No 

HOST_NAME_SPE_D sped Program loaded into SPE D 
on board reset 

No 

HOST_NAME_SPE_AB speab Program loaded into SPEs 
A & B on board reset 

No 

HOST_NAME_SPE_AC speac Program loaded into SPEs 
A & C on board reset 

No 

HOST_NAME_SPE_AD spead Program loaded into SPEs 
A & D on board reset 

No 

HOST_NAME_SPE_BC spebc Program loaded into SPEs 
B & C on board reset 

No 

HOST_NAME_SPE_BD spebd Program loaded into SPEs 
B & D on board reset 

No 

9-18 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
 

HOSTAPI name Text name Description Dy 4 
Systems 
Reserved

HOST_NAME_SPE_CD specd Program loaded into SPEs 
C and D on board reset 

No 

HOST_NAME_SPE_ABC speabc Program loaded into SPEs 
A, B and C on board reset 

No 

HOST_NAME_SPE_ABD speabd Program loaded into SPEs 
A, B, and D on board reset 

No 

HOST_NAME_SPE_BCD spebcd Program loaded into SPEs 
B, C, and D on board reset 

No 

HOST_NAME_SPE_ABCD speabcd Program loaded into SPEs 
A, B, C, and D on board 
reset 

No 

HOST_NAME_XILINX xilinx File used to program on-
board Xilinx hardware 

Yes 

HOST_NAME_COPY iop_copy Initial boot code which 
loads startup program from 
FLASH into memory 

Yes 

HOST_NAME_STARTUP startup Startup code which 
initializes board resources 

Yes 

HOST_NAME_RECOVERY recovery Recovery code which 
allows FLASH to be 
reburned 

Yes 

HOST_NAME_RUNTIME runtime I0Plus runtime code  
 

Yes 

 
 
 
RETURN STATUS: 
 

HOST_NO_ERROR: burn completed successfully. 
HOST_BURN_ERROR: Error writing to FLASH. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

4. Different programs can be loaded into SPEs from FLASH in different 
combinations (i.e. both “spead” and “spebc” can be in FLASH simultaneously); 
however, two programs cannot be loaded into the same SPE (i.e. “spead” and “specd” 
is not valid). 

HOST_INVALID_FILE_FORMAT: Specified file is not a valid S-record file. 
HOST_WRONG_MODE: board must be in recovery mode to burn the FLASH. 

 
NOTES: 
 

1. S-Record format is used to simplify loading various processor types. 
2. A list of valid section names is located in host_api.h. 
3. This routine requires the board to be in recovery mode. 

9-19 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_load_program 
 
 

 

 
CALLING SEQUENCE: 

#include <host_api.h> 
  

HOST_API_STATUS  host_load_program( void    *board_pointer, 
char    *filename, 
HOST_PROCESSOR_ID  processor_id ); 

 
 
DESCRIPTION: 
 

host_load_program loads a program in s-record format into the specified processor.  The 
program starts executing immediately after it has been loaded. 
Where: 
 HOST_SPE_A:  8 
 HOST_SPE_B:  12 
 HOST_SPE_C:  16 
 HOST_SPE_D:  20 

  
 
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_FILE_NOT_FOUND: problem with filename. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 
HOST_INVALID_FILE_FORMAT: Specified file is not a valid S-record file. 

 
NOTES: 
 

1. S-Record format is used to simplify loading various processor types. 
2. A list of valid processor Ids is located in host_api.h 
3. Processor Ids can be OR-ed together to load multiple processors with the same 

executable. 
4. This routine requires the IOPlus Runtime code to be executing. 

9-20 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_malloc 
 
 

 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

  
HOST_API_STATUS  host_malloc( void    *board_pointer, 

       void    **ptr, 
unsigned long  num_bytes ); 

 
DESCRIPTION: 
 

host_malloc allocates the specified number of bytes from the shared global memory heap, 
and returns the PCI address of the allocated global memory.  This local PCI address must 
be converted to the cPCI address of the allocated region before accessing the memory 
through the cPCI bus.  The  local PCI address can be converted to a cPCI address using 
the following formula: 
 

cPCI_Address = cPCI_base_address + 0x01000000 – 0x40000 + PCI_Address 
 
 
RETURN STATUS: 
 

HOST_NO_ERROR:     success. 
HOST_INVALID_BOARD_POINTER:  board pointer is invalid. 
HOST_NO_RESOURCES_AVAILABLE:  Insufficient memory. 

 
NOTES: 
 

This function can be used to allocate memory which is shared between a cPCI host and 
the DSPs. 

 

9-21 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_map_resource 

 

DESCRIPTION: 

HOST_INVALID_BOARD_POINTER:  board pointer is invalid. 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_map_resource( void               *board_pointer, 
      HOST_RESOURCE_TYPE resource, 
      unsigned long      cpci_address, 

unsigned long      length_in_bytes, 
HOST_ADDRESS_SPACE address_space, 
void               **resource_ptr 
); 

 
 

 
host_map_resource maps an IXA4 board resource onto the cPCI bus, so that the board 
resource can be accessed from other boards on the cPCI bus.  The type of resource, cPCI 
address at which the resource should be mapped, and the length (in bytes) of the cPCI 
address window to map, must be specified.  The function returns a resource pointer, 
which is used in calls to host_unmap_resource (which unmaps the resource when the 
mapping is no longer needed).  A maximum of four resource mappings per IXA4 board 
can be created. 

 
 address_space is not needed for the IXA4. 
  
RETURN STATUS: 
 

HOST_NO_ERROR:     success. 

HOST_NO_RESOURCES_AVAILABLE:  More than four resource mappings are active 
 
NOTES: 
 

Valid resources are: 
 HOST_RES_GLOBAL_MEMORY       = 2 
    HOST_RES_GLOBAL_USER_MEMORY  = 3 

HOST_RES_PMC_AB               = 4 
HOST_RES_PMC_CD               = 5 
HOST_RES_SPE_MEMORY          = 8 
HOST_RES_SPEA_SDRAM           = 10 
HOST_RES_SPEB_MEMORY          = 12 
HOST_RES_SPEB_SDRAM           = 14 
HOST_RES_SPEC_MEMORY          = 16 

9-22 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

HOST_RES_SPEC_SDRAM           = 18 
HOST_RES_SPED_MEMORY          = 20 
HOST_RES_SPED_SDRAM           = 22 
HOST_RES_SPEAB_SDRAM          = 37 
HOST_RES_SPECD_SDRAM          = 38 
 
 

9-23 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_memory_read 

 
 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_memory_read( void          *board_pointer, 

     void          *buffer, 
     HOST_RESOURCE_TYPE   res_type, 
     unsigned long    offset, 
     unsigned long    num_words ); 

 
 
DESCRIPTION: 
 

host_memory_read copies memory from the specified on-board resource to a memory 
buffer on the host.  An offset within the on-board resource may be specified.  The number 
of 32-bit words to read must also be specified. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

    HOST_RES_SPEA_MEMORY   

    HOST_RES_SPECD_SDRAM   

HOST_INVALID_RESOURCE: invalid resource type. 
 
NOTES: 

 The following HOST_RESOURCE_TYPEs are available: 
    HOST_RES_GLOBAL_MEMORY       
    HOST_RES_GLOBAL_USER_MEMORY 
    HOST_RES_PMC_AB              
    HOST_RES_PMC_CD              

    HOST_RES_SPEA_SDRAM       
    HOST_RES_SPEB_MEMORY  
    HOST_RES_SPEB_SDRAM      
    HOST_RES_SPEC_MEMORY  
    HOST_RES_SPEC_SDRAM      
    HOST_RES_SPED_MEMORY  
    HOST_RES_SPED_SDRAM      
    HOST_RES_SPEAB_SDRAM   

9-24 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_memory_write 
 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_memory_write( void    *board_pointer, 

void    *buffer, 
HOST_RESOURCE_TYPE res_type, 
unsigned long   offset, 
unsigned long   num_words ); 

 
 
DESCRIPTION: 

 
host_memory_write copies from a memory buffer on the host to the specified on-board 
resource.  An offset within the on-board resource may be specified.  The number of 32-
bit words to write must also be specified. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 
HOST_INVALID_RESOURCE: invalid resource type 

 
NOTES: 
 

 See host_memory_read for a list of HOST_RESOURCE_TYPEs. 
 
 

9-25 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_open_flash_params 
 
 
CALLING SEQUENCE: 

 
#include “_host_api.h” 

 
HOST_API_STATUS  host_open_flash_params( unsigned long cpci_address, 
                                         void          **param_ptr ); 

       
 

 
DESCRIPTION: 
 

This function should only be called when the FLASH utility cannot be used to update 
FLASH parameters.  host_open_flash_params opens a channel which is used to add or 
update parameters in the non-volatile FLASH memory.  Note that FLASH memory 
parameters are used by Dy 4 Systems firmware (startup and runtime code).  The user 
should exercise caution when modifying these parameters. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: FLASH parameter channel opened successfully. 
HOST_WRONG_MODE: board must be in recovery mode to use this function. 
HOST_DEVICE_ERROR: FLASH parameter area could not be accessed. 

 
NOTES: 

Caution should be used when modifying FLASH parameters.  

9-26 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_read_board_info 

 
 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_read_board_info( unsigned long cpci_address, 

                   void          *ptr, 
         unsigned long max_words ); 

 
 
DESCRIPTION: 
 

host_read_board_info reads the specified data item from the IXA4 board information 
structure.  The function requires the cPCI base address of the IXA4 board and a pointer to 
a memory buffer of max_words 32-bit words.  The function fills this structure with the 
board information structure from the specified IXA4 board.  

  
 
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 
HOST_INVALID_ITEM: item not valid. 

 
 
NOTES: 

 
A definition of BOARD_INFO_ITEM_TYPE is provided in iop_board_info.h. 
 

 

9-27 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_read_error_log 

 

  unsigned long *num_items ); 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_read_error_log( void      *board_pointer, 

  unsigned long *log_ptr, 

 
 
DESCRIPTION: 
 

host_read_error_log reads a log of errors that were detected during board start up from 
the IOPlus board information structure.  This log is created by the power-on self-test, and 
can be used to list and diagnose multiple errors found during board testing.  The caller 
must allocate memory for the log_ptr, and pass the address of this memory buffer to the 
function.  A maximum size of 16 32-bit words should be allocated.  Num_items is 
returned by the function to indicate the number of 32-bit error codes contained in the 
board error log and copied into the log_ptr. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 
HOST_INVALID_BOARD_POINTER: board pointer is invalid. 

 
NOTES: 
 

The error log consists of a series of 32-bit error values, as defined in host_api.h. 

9-28 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_set_start_address 

 

 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_set_start_address( void       *board_pointer, 

HOST_PROCESSOR_ID proc_id, 
      void       *start_address ); 

 
DESCRIPTION: 
 

host_set_start_address sets the address at which code loaded by host_load_program 
begins executing.  This function is not implemented on the IXC board, although it is 
provided for compatibility with the IXA board family.  On an IXC board, code always 
starts executing from DSP address 0x00000000. 

  
RETURN STATUS: 
 

HOST_NO_ERROR:     success. 
HOST_INVALID_BOARD_POINTER:  board pointer is invalid. 

 
NOTES: 
 

This function performs no action on an IXC board (although you can call it and link with 
it when developing IXC code). 

9-29 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_unmap_resource 

 

 

 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_unmap_resource( void  **resource_ptr ); 

       
 

DESCRIPTION: 
 

host_unmap_resource destroys a mapping that was created with host_map_resource.  
This function should be called when a cPCI-to-board-resource mapping created by 
host_map_resource is no longer required. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: board opened successfully. 

NOTES: 
Only pass a resource_ptr to this function that was created by host_map_resource.  
 

9-30 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

 
host_vme_read 

 
 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_vme_read( unsigned long address, 
        unsigned long num_words, 
       void          *ptr ); 

       
 

 
DESCRIPTION: 
 

host_vme_read reads the specified number of 32-bit words from the cPCI bus, starting at 
the specified cPCI address.  The data read from the cPCI bus is placed into a buffer 
pointed to by ptr.   

 
  
RETURN STATUS: 
 

HOST_NO_ERROR:    completed successfully. 
HOST_VME_READ_ERROR: bus error occurred while reading 

 
NOTES: 

It is the responsibility of the caller to allocate the memory pointed to by ptr. 
Note that a board does not need to be opened using host_board_open in order to call 
host_vme_read. 

9-31 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_vme_write 
 

 

 
CALLING SEQUENCE: 

 
#include <host_api.h> 

 
HOST_API_STATUS  host_vme_write( unsigned long address, 
         unsigned long num_words, 
        void          *ptr ); 

       

 
DESCRIPTION: 
 

host_vme_write writes the specified number of 32-bit words to the cPCI bus, starting at 
the specified cPCI address.  The data written to the cPCI bus is placed into a buffer 
pointed to by ptr.   

 
  
RETURN STATUS: 
 

HOST_NO_ERROR:    completed successfully. 
HOST_VME_WRITE_ERROR: cPCI bus error occurred while writing 

 
NOTES: 

It is the responsibility of the caller to allocate the memory pointed to by ptr. 
Note that a board does not need to be opened using host_board_open in order to call 
host_vme_write. 

9-32 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Chapter 9:  Host Software 
 

host_write_config_param 
 
 
CALLING SEQUENCE: 

 
#include “_host_api.h” 

 
HOST_API_STATUS  host_write_config_param( void          *param_ptr, 
                                          unsigned long  offset, 
                                          unsigned long  value ); 

       
 

 
DESCRIPTION: 
 

This function should only be called when the FLASH utility can not be used to update 
FLASH parameters.  host_write_config_param updates a parameter located in the non-
volatile FLASH memory.  Note that FLASH memory parameters are used by Dy 4 
Systems firmware (startup and runtime code).  The user should exercise caution when 
modifying these parameters. 

 
  
RETURN STATUS: 
 

HOST_NO_ERROR: FLASH parameter channel opened successfully. 
 
NOTES: 

Caution should be used when modifying FLASH parameters.  
param_ptr must have been previously allocated by host_open_flash_params. 
 

9-33 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

 
 

Appendix A:  SmartDMA Implementation 
 
 
The IOPlus implements a feature called “SmartDMA”.  This feature allows the IOPlus to 
act as a smart DMA controller, asynchronously moving data between board resources, 
generating interrupts, and handling interrupts.  The SPEs control the IOPlus SmartDMA 
by creating linked lists (or chains) of commands, which the IOPlus then processes upon 
command.  This chapter will first present an overview of how the IOPlus SmartDMA 
works, and then describe how to use this feature of the IOPlus. 
 

A.1 Command / Response Packet Format 
All commands and responses are formatted into standard data packets.  These packets 
consist of a packet header and packet data.  The packet header consists of five 32-bit 
words.  The packet data is variable-length.  The format of a packet is shown in the figure 
below. 

 
Opcode 

Source Processor ID 
Destination Processor ID 

Size of entire packet 
Options 

Data Word 1 
Data Word 2 

… 
… 
 

Data Word N 
Figure A.1 - Command Packet 

 
The packet header fields are defined as follows: 
Opcode: Defines the command to be performed (or identifies the 

response) 
Source Processor ID: Identifies the processor (SPE, IOPlus,or host process) 

which initiated the command. 
Destination Processor ID: Identifies the processor (SPE, IOPlus, or host process) 

which should receive and process the command 
Size of entire packet: Specifies the number of 32-bit data words in the entire 

packet, including both the packet header and any attached 
data.  The meaning of the data words appended to the 
packet header depends on the Opcode. 

A-1 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

Options: Specifies options that modify how the command should be 
processed. 

Bit 0: 1 means respond to this command with a 
CMD_ACK 
0 means do not respond to this command. 

Bit 1: 1 (atomic operation) means that after the 
command is processed, the next command in 
this list will be processed 

 0 (fair operation) means that other in-
progress lists will be processed after this 
command has been processed. 

Bit 2-31: reserved (must be set to zero). 
Data words: Zero or more data words are attached to the packet, which 

provide additional information necessary for processing the 
command.  The meaning of the data words is command-
specific.  Refer to the list of commands processed by the 
IOPlus (provided later in this chapter) for more 
information. 

 
A.2 Packet Routing and Processor IDs 

The term “packet routing”, as used in this manual, is defined simply as the process of 
getting a packet where it needs to be, so that it can be processed.  Packet routing can be 
either direct or indirect. When the initiating software component places the command 
packet in a place where it can be accessed and processed by the destination software 
component, this is referred to as direct packet routing.  When the initiating software 
component places the command packet in a place that cannot be accessed directly by the 
destination software component, this is referred to as indirect packet routing.  In this 
situation, one or more intermediate software components must transfer the packet from 
where the initiator placed it to a location that can be accessed by the destination software 
component. 

The IOPlus software supports direct packet routing only.  Indirect packet routing is not 
supported.  This implies that software components initiating command packets will place 
these packets where they can be processed directly by the destination software 
component. 

Supporting only direct packet routing greatly simplifies the assignment of processor IDs.  
Processor IDs need to be unique only on a specific board, rather than within an entire 
system.  This type of processor ID is sometimes referred to as a relative processor ID or 
board processor ID.  The IOPlus assigns the processor IDs to the processors on an IXA7 
board as shown in Table A.1.  

A-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

 

Table A.1 - Assignment of Processor IDs 

Relative 
Processor ID 

Processor Name 

0 IOPlus 

1 SPE A 

2 SPE B 

3 SPE C 

. . . . . . . . 

N SPE N – last SPE on board as defined by 
FLASH parameter 

N+1 Host process 1 

N+2 Host process 2 

. . . . . . . . 

N+M Host process M – last host process that can 
access board simultaneously as defined by 
FLASH parameter 

 

There are situations where a processor ID that is unique within an entire system is 
required (this type of processor ID is referred to as an absolute processor ID or system 
processor ID).  For this reason, the IOPlus only examines the lower 16-bits of processor 
ID fields; the upper 16-bits are ignored.  Thus, an absolute processor ID can be placed in 
the upper 16 bits of any processor ID fields, when this information is required by the 
application.  The format of the source and destination processor ID fields in the packet 
header is provided in Figure A.2. 

Absolute processor IDs could be used to discriminate a multi-board IXA7 system. In such 
a system the first board (board #0) would use an absolute processor ID of 0x0000 for its 
IOPlus, and the second board (board #1) would use an absolute processor ID of 0x0100 
for its IOPlus. 

Source Processor ID field: 

 
Bit 

32 ……….. 16 15 ………. 0 
Ignored by IOP Board processor ID 

Destination Processor ID field: 

A-3 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

 
Bit 

32 ……… 16 15 ………. 0 
Ignored by IOP Board processor ID 

Figure A.2 - Source and Destination Command Packet Fields 
 

Host processes also are assigned “processor IDs”.  This ID is used for generating 
response packets, as well as for generating interrupts and using semaphores.  Each host 
process accessing the board must have a unique “processor ID”  (how these IDs are 
assigned is described in the next paragraph).  The number of simultaneous host processes 
that can access the board is controlled by a parameter in FLASH, and thus is variable (the 
number of SPEs on the board is also variable).  As shown in Table A.1, the host 
processor IDs are assigned immediately after the last SPE processor ID. 

A.3 Assignment of IDs to Host Processes 
Each host process “attached” to a board must have a unique “processor ID” number for 
communicating with software components on that board.  Note that the “processor ID” 
which a host process uses to communicate with one board may differ from the “processor 
ID” that the same host process uses to communicate with a second board. 
 
Host Process “Processor IDs” are assigned on a first-come, first-served basis.  A host 
process must “attach” to a board before it communicates with any of the software 
components on the board.  After all communications with a board are completed, the host 
process should “detach” from the board.  Failure to detach from a board will result in 
board resources being wasted, since they will not be properly released for use by other 
host processes. 

 
Attaching to a board: 
6) Get address of host list table from board information structure (see section 5.5) 
7) Get maximum number of allowed host processes from board information structure 
8) Scan host list table for free entries (entries which are non-zero) 
9) When a non-zero entry is found, perform a read/modify/write cycle to set the zero-

value to a any non-zero value.  An atomic access must be used to test the zero-value 
and write the non-zero value; otherwise, it is possible for two host processes to be 
assigned the same ID. 

10) The “processor ID” for the host process is determined using the following equation: 
    “processor ID” = offset of non-zero entry  + “maximum # of SPEs on board” + 1 

 
Detaching from board: 
4) Get address of host list table from board information structure. 
5) Determine offset in “host list table” using the following formula: 
      Offset = “processor ID” – “maximum # of SPEs on board” - 1 
6) Write a zero to this offset in the “host list table” (note that this write does not need to 

be atomic). 
 

A-4 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

 
 

Board
Information
Structure

&Host List
Table

 Non-zero value
 Non-zero value

 0

…..

 0

 0

 0

 0

 0

Host List Table

 Host Process 0

 Host Process 1

 Host Process M

 Host Process 2

 

Figure A.3 - Host Process ID Assignment with Two Host Processes Already Attached 
 

A.4 Board Information Structure 
The board information structure is a global repository of information that describes the 
configuration of a board.  The structure is accessible from a host process (through the 
back plane), from the IOPlus (through its local bus), and from the SPEs (through the PCI 
bus).  See 4.3 for the memory mapping of the board information structure. 

A.5 Linked Command List Overview 
The interface supported by the IOPlus uses linked lists of commands and linked lists of 
responses.  Each processor can create multiple linked lists of commands, but the IOPlus 
can process only one linked list of commands at a time.  Linked command lists can point 
to other lists, and can be used to create complicated command sequences, which can be 
“played” by the IOPlus upon command.  Linked lists can be located either in global 
memory (the IOPlus’ SDRAM ) or local SPE memory.      

A linked list of commands or responses consists simply of a sequence of command / 
response packets.  The packets are encapsulated in a simple data structure, with a “next” 
pointer preceding the packet header.  The “next” pointer is used to “link” a command to 
the next command in the list (see Figure A.4 for an example of this structure). 

The link lists organizational structure used by the IOPlus consist of a “master list address 
table” and groups of “list address tables”.   

Master List Address Table 
The “master list address table” is a list of pointers to individual “list address tables”. A 
“list address table” contains pointers to linked lists of commands created by software 
components for processing by the software component that owns the “list address table”, 

A-5 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

as well as pointers to linked lists of responses created when the owning software 
component processes the command lists.  A single “list address table” is provided for 
sending commands to the IOPlus.  Slots for additional “list address tables” are provided 
for each SPE, and for the host processes.  Note that SPE and host linked list command 
support are for future expansion.  However, the IOPlus will create the “list address 
tables” for these software components. 

The address of the “master list address table” is located in the board information structure 
and is always located in global memory.  The “list address table” associated with each 
software component is also located in global memory, although individual entries in a 
“list address table” may be relocated into SPE local memory.  Linked command lists may 
be located in either global or local memory, but a single command list must reside 
entirely in either local or global memory.  Figure A.4 illustrates a “list address table” with 
all the linked command list entries in global memory.  Figure A.5 illustrates a “list 
address table” that has the entry for SPE 2 linked command list relocated into SPE 2’s 
local memory so that the table can be accessed without using the PCI bus.   

 

A-6 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

A-7 

Figure A.4 - All List Address Table Entries in Global Memory 

 Board 
Information 
Structure 

&Master List 
Address Table 

Command Data 

Command Header 
NEXT pointer 

IOPlus List Address 
Table

SPE N

IOPlus
SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Cmd List Addr Rspnse List Addr Command Status

Master  List Address
Table

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

&List Address Table for IOPlus

&List Address Table for SPE 1

&List Address Table for SPE 2

&List Address Table for ….

&List Address Table for SPE N

&List Address Table for Host 1

&List Address Table for Host 2

&List Address Table for …..

&List Address Table for Host M

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Global Memory Global Memory 

Global Memory

Global or Local Memory 

List Address Tables for Host 
processes are provided in case the 
host implements a commanding 
scheme using linked lists

List Address Tables for the SPEs 
are provided in case the SPEs 
implement a command scheme 
using linked lists 

This command list was created by 
SPE 2 in either global or local 
SPE memory, for processing by 
the IOPlus 

This response list was created  for
SPE 2 by the IOPlus as the IOPlus
processed the commands in the
command list

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

A-8 

Figure A.5 - List Address Table Entry Relocated to Local Memory 

 Board 
Information 
Structure 

&Master List 
Address Table 

Command Data 

Command Header 
NEXT pointer 

IOPlus List Address 
Table 

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Entry Address Rspnse List  Addr  00000004 Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Cmd List Addr Rspnse List  Addr Command Status

Master List Address
Table

SPE N

IOPlus

SPE 1

SPE 2

…..

HOST 1

HOST 2

. . . .

HOST M

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

&Master List Address Table

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

Command Data

Command Header

NEXT pointer

SPE 2 Cmd List Addr Rspnse List Addr Command Status

Global Memory Global Memory 

Global Memory

Local Memory 

Global or Local Memory 

SPE 2 has relocated its list address 
table entry to its local memory, so 
that the table can be accessed 
without using the PCI bus.  The 
LAT entry in global memory 
points to the relocated LAT entry 
in local SPE memory 

SPE  2 commands the IOPlus to 
perform a command list by writing 
the address of the command list to 
the LAT entry 

Command list created by SPE 2 in
global or local memory for
processing by IOPlus

Response list created by 
IOPlus as it processes the 
SPE 2 command list

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

List Address Table 
The “list address table” for the IOPlus, located in global memory, is a list of pointers to 
linked command lists created by other software components, and linked response lists 
created by the IOPlus as it processes command lists, as shown in Figure A.4. The “list 
address table” also contains command modifiers and status indicators for each 
command/response list.  When a software component wishes to send a command to the 
IOPlus, it creates a linked list of commands in either global or local memory.  It places 
the address of the linked command list into the IOPlus’s “list address table” using its 
relative processor ID as an index into the table (e.g. SPE 2 will write into the table entry 
reserved for SPE 2).  After writing the command list address into the table, it generates an 
interrupt to the IOPlus. 

 

  
 After writing the command list address into the table, an interrupt to the 

IOPlus must be generated to start the command processing. 

A “list address table” entry for a software component can be relocated from global 
memory to SPE local memory by setting the “relocate” bit in the “command option” field 
of the “list address table” entry being relocated.  When an entry is relocated, the 
“command list address” field in the global memory “list address table” entry must contain 
the address in SPE local memory of the relocated “list address table” entry.  The 
relocated “list address table” entry contains pointers to the actual linked command and 
response lists, which can be located in either global or local SPE memory.  Figure A.5 
illustrates SPE 2 relocating its “list address table” entry to its local memory. 

 

Why relocate a “list address table” entry from global into local memory?  Depending on 
the application, it may be valuable to locate the commands “closer” to the IOPlus (i.e. in 
global memory), or “closer” to the SPE (i.e. in SPE local memory).  For instance, to 
minimize PCI traffic used for IOPlus commanding, pre-configure the IOPlus command 
lists in global memory.  The command lists can then be started (and restarted) by doing a 
single PCI write.  

A.6 Linked List Management Protocol 
The linked list interface has been designed to provide a simple, low latency mechanism 
for commanding the IOPlus.  The protocol for using the linked list interface is 
straightforward.  A description of the process of initiating a command sequence using a 
linked command list and responding to a linked command list is provided below. 
 

A-9 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

 
Relocate the “List Address Table” entry if necessary:  
8) Determine whether the “list address table” entry should be located in global or local 

memory.  If the table entry does not need to be relocated, then skip to the “Initiating” 
portion of this sequence.  To relocate the table entry from global to local memory, 
perform the following steps: 

9) Allocate 16 bytes of local memory to hold the relocated “list address table” entry. 
10) Locate the “list address table” using the pointer contained in the “master list address 

table”. 
11) Locate the appropriate “list address table” entry using the software component’s 

relative processor ID as an index into the “list address table”. 
12) Relocate the “list address table” entry from global to local memory by writing the 

SPE local address of the 16 byte region allocated in step 2 into the “command list 
address” field of the “list address table” entry in global memory. 

13) Set the relocation bit in the “command option” field of the “list address table” entry in 
global memory. 

14) The table entry is now relocated from global to local memory. 
 
Initiating:  
7) To initiate a command sequence, a linked list of commands must be created in 

memory that belongs to the initiating software component.  This list can be located 
either in local memory, in the user portion of global memory, or in a reserved area of 
global memory that is dedicated to the linked lists belonging to each software 
component.  The address of this reserved area of global memory is found in the board 
information structure. The “command list address” field of the “list address table” 
entry is used to indicate whether the linked lists are located in local(1) or global(0) 
memory. 

8) Verify that the IOPlus has finished the previous command sequence by checking that 
the active bit in the “status” field of the “list address table” entry is zero.  If it is non-
zero, then try again later. 

9) Write the address of the first packet of the command sequence to the appropriate 
“command list address” field in the “list address table” entry belonging to the 
software component generating the command.  Note that if the “list address table” 
entry was relocated into local SPE memory, then the address of the first packet should 
be written to “command list address” field in the local “list address table” entry, 
rather than in the global memory “list address table” entry. 

10) If you wish to specify where the IOPlus should place responses, write the address of 
the response area to the “response list address” field in the “list address table” entry.  
If you want the IOPlus to manage the memory for response packets, write a zero to 
this location. 

11) Generate an interrupt to the IOPlus. 
12) The IOPlus will clear the “active” bit of the status word in the “list address table” 

entry when the command sequence has been processed. 
 

A-10 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

Responses:  
3) The IOPlus will respond to all commands with a CMD_ACK packet (see the 

description of this packet below).  If the address in the appropriate “response list 
address” is zero, then the IOPlus will place responses in a reserved area of global 
memory.  If the address is non-zero, then the IOPlus will place responses at the 
specified address.  The address can be either in global or local SPE memory, as 
specified by a bit in the command option field of the “list address table” entry. 

4) A list of responses will be created at the “response list address” as the IOPlus 
performs the command sequence.  This list will grow as the command sequence is 
processed.  Upon successful completion of the command sequence, the IOPlus will 
clear the “active” bit of the appropriate status word in the “list address table”.  If an 
error is encountered while processing the command sequence, the IOPlus will set the 
“error” bit of the appropriate status word in the “list address table”.  The initiating 
software component can determine the type of error by examining the linked list of 
responses (if it doesn’t care, it can simply ignore the response list). 

A-11 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

A.7 Command Option and Status Register Definition 
The command option register associated with each software component in the “list 
address table” is used to specify how linked command lists are processed.  Each bit in the 
register is defined in the following table.  

 

Table A.2 - Command Option Register 

Bits Name Function 
0 Command 

List 
Address 
Location 

0  the address in the “command list address” field 
refers to global memory 
1  the address in the “command list address” field 
refers to local memory 

1 Response 
List 
Address 
Location 

0  the address in the “response list address” field 
refers to global memory 
1  the address in the “response list address” field 
refers to global memory 

2 Relocation 
flag 

0  this entry is not relocated; the addresses in the 
“command list address / response list address” fields 
point to linked command list packets 
1  this entry is relocated; the address in the 
“command list address” field points to the address of 
the relocated entry in local SPE memory; the 
“response list address” field is unused. 

3 Halt on 
Error flag 

0  IOPlus should continue processing subsequent 
commands when an error occurs in one command 
1  IOPlus should not process subsequent commands 
when an error occurs in a command 

4 Only save 
errors flag 

0  Save all response packets 
1  Only save response packets when they contain an 
error 

5-12 SPE ID Indicates which SPE the command list belongs to.  
SPE Ids are: 
     SPE A: 0x00 
     SPE B: 0x40 
     SPE C: 0x80 
     SPE D: 0xC0 

13-30 3-30 Reserved. 
31 Stop Commands the software component to stop processing 

the chain. 
1  Stop chain processing 
0  Do not stop chain processing 

 

A-12 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

The status register (see Table 5.3) associated with each software component in the “list 
address table”, is used by the IOPlus to report summary status information to each 
software component.  

 

   Table A.3 - Status Register 

Bits Name Function 
0 Active bit 0  IOPlus is not currently processing the command list 

pointed to by this table entry 
1  IOPlus is currently processing the command list pointed 
to by this table entry 

1 Error bit 0  no error occurred during the processing of the command 
list pointed to by this table entry 
1  an error occurred during the processing of the command 
list pointed to by this table entry 
Note: The contents of this bit are only valid when the “Active 
bit” is zero 

2 Done bit 0  IOPlus has not completed this command chain 
1  IOPlus has finished processing this command chain 

3 Blocked bit 0  This command channel is not blocked 
1  This command channel is blocked on a shared resource 

4 Halted bit 0  This command channel has not been halted 
1  This command channel has been halted 

5 Waiting for 
Interrupt bit 

0  Command channel is not blocked on an interrupt 
1  Command channel is blocked waiting for an interrupt 

6 Interrupt 
found 

0  No interrupt found 
1  The interrupt that this command channel was waiting for 
(if any) has occurred. 

7-31 reserved Reserved for future use 
 
A.8 Interrupt Protocol 

The SPEs interrupt the IOPlus when they want the IOPlus to begin processing a 
command list.  When the SPEs are running VxWorks, interrupts are generated by calling 
ixa_ipi_gen.  It the host wishes to interrupt the IOPlus, it writes to the attention flag in the 
board information structure. 

 
A.9 FLASH Memory Management Protocol 

The IXA7 provides from 4 MB to 16 MB of on-board non-volatile FLASH memory.  
This memory needs to store a variety of different data types as defined in Table A.5. 

SPEs should not access the FLASH memory directly (even though it is possible to do this 
through the PCI bus); rather, they should use the commands in IXAtools to access 
FLASH memory.  This section is provided as support information for using those 
commands. 

 

A-13 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

Table A.5 - FLASH Memory Data Types 

Single 
or 

Multiple 

Data type Name Directory Entry Name Description 

S Directory directory Specifies all items stored in 
FLASH memory.  The format of 
the directory is provided below 

S Initial boot iop_copy Executes from FLASH; copies 
startup code to memory 

S Minimal 
boot/recovery code 

iop_recovery This item is located at the IOPlus 
boot address.  It either jumps to 
the initialization code, or performs 
minimal initialization and then 
waits for the FLASH to be 
reburned.   This sector is 
electrically write-protected. 

S Initialization/startup 
code 

iop_startup This code initializes the hardware 
attached to the IOPlus, including 
the Xilinx, MPC-107s, Universe II, 
and PCI bridge chips.  After 
completing, it jumps to the run-
time code 

S Run-time code iop_runtime The run-time code for the IOPlus 
command servicing.   

S Production 
parameters 

prod_params These parameters are set when 
the board is initially built, or when 
it is returned for a RMA.  This 
sector should be electrically write-
protected. 

S Configuration 
parameters 

config_params Various parameters which control 
the operation of the board, 
including VME parameters and 
PCI parameters 

S FPGA 1 program xilinx Data stream used to program the 
Xilinx 

S User programs spea, speb, spec, sped, 
speab, speac, spead, 
spebc, spebd, speabc, 

speabd, spebcd, speabcd 

User programs can be 
automatically loaded into the 
SPEs by the IOPlus upon startup 

S 

 

User global memory 
load 

Gmemdata This may be code or data that will 
be loaded into global memory on 
startup 

M User data  This is data that the user wants to 
store in non-volatile memory 

 

A-14 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

A directory is stored in FLASH, which describes the location, size, and type of all items 
currently stored in FLASH.  The directory is located at the FLASH base address, and 
shall contain 64 entries.  An example directory is shown in Table A.6. 

 

Table A.6 - Example FLASH Directory 

Entry Offset 
(4 bytes) 

Entry Size 
(4 bytes) 

Entry Name 
(32 bytes) 

00000000 768 directory 

00100100 1000 iop_copy 

00101100 5000 iop_startup 

00200000 2000 prod_params 

00202000 2000 config_params 

 

6) Note that data does not need to be stored contiguously in FLASH.  Data is segmented 
so that maximum usage is made of the available FLASH memory space. 

7) Entry names must be unique. 

8) Reserved entry names (as shown above) have special meaning to the IOPlus software, 
and should not be used by application software. 

9) User programs, which are intended to run on the SPEs, must be in S-Record format 
before they are written into FLASH memory.  The name spe[a][b][c][d] you give to 
the file when writing it determines what SPE(s) it gets loaded to upon board reset.  
For instance, if you want the program to automatically load into SPEs A, C and D 
upon board reset, when writing the program into FLASH, name it speacd.   Chapter 8 
has more information on the procedure for writing programs into FLASH memory.  

10) User global memory load, can be a program or data that will be automatically written 
to global memory at board reset.  The contents must be burned into FLASH memory 
from an S record file so that address information is obtainable.  The contents can be 
written to any location in global memory with the exception of the addresses between 
0x4000 – 0x40000. A configuration flag can be set to start execution of the contents 
at the completion of the copy to global memory.  See Chapter 8 for more information 
on using this option.    

 
 
 
 

A-15 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



 

Index 
packet routing ............................................... 5-2, 2 B processor IDs ................................................ 5-3, 2 

IOPlusAPI.............................................................. 6-9 board configuration utility ..................................... 8-1 
IXA4 board information structure ........................4-5, 5-5, 4 

board architecture ............................................. 3-1 board layout ........................................................... 2-1 
Overview........................................................... 1-1 Board Resource Manager ...................................... 3-4 

IXAbsp .................................................................. 7-1 board switches ....................................................... 2-2 
IXAtools ................................................................ 1-3 

C host software..................................................... 9-1 
installing ......................................................... 2-19 command channels .............................................. 7-20 
porting............................................................... 2-3 Common Boot Code .............................................. 7-1 
programming with............................................. 7-1 conventions used in this manual ............................ 1-1 
uninstalling ..................................................... 2-20 COP interface ...................................................... 2-14 

cPCI bus ................................................................ 1-3 J  3-11 
JTAG ..................................................................... 2-1 data moves ...................................................... 5-26 

connectors ....................................................... 2-14 CPE........................................................................ 1-2 

L D 

LEDs......................................................2-1, 2-9, 5-30 diagnostics ............................................................. 2-9 

M E 

master list address table Emulator .............................................................. 2-14 
address of .......................................................... 4-5 Ethernet 

boot parameters............................................... 2-16 P 
F PCI bus 

configuration..................................................... 8-5 flash memory ..........................................3-6, 5-14, 13 
data moves ...................................................... 5-26 updating .......................................................... 2-20 
snooping............................................................ 3-5 writing to..................................................5-34, 8-1 

PCI buses ............................................................... 3-3 flash parameters..................................................... 2-3 
PMC....................................................................... 1-3 

G PMC sites............................................................... 3-6 
installing ........................................................... 2-4 global memory....................................................... 4-1 
power specs..............................................2-6, 3-10 

H PPMC support ....................................................... 3-9 
host list table...................................................... 5-4, 4 R 
I Rear Panel Module ................................................ 2-4 

reset command..................................................... 5-28 interrupt mask registers ......................................... 4-9 
interrupt protocol ........................................... 5-13, 13 S 
interrupts 

SBSRAM............................................................... 3-5 generating ....................................................... 5-23 
SDRAM................................................................. 3-5 status registers................................................. 4-12 
semaphore protocol.............................................. 5-13 waiting for....................................................... 5-32 
SPE-PCI Bridge..................................................... 3-3 IOPlus.................................................................... 3-2 
SPEs....................................................................... 3-2 command format ........................................... 5-1, 1 

memory map ..................................................... 4-3 commands ..............................................5-16–6-22 
commands from SPEs..................................... 7-18 V host process IDs ............................................ 5-4, 4 

VMElib linked command list...................................... 5-5, 5 
porting............................................................... 2-3 memory map ..................................................... 4-1 

VxWorks Overview........................................................... 1-1 

 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Appendix A:SmartDMA Implementation 
 

boot parameters............................................... 2-16 
on IOPlus .......................................................... 6-1 

on SPEs........................................................... 2-21 

 
 
 

A-9-2 

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Artisan Technology Group is an independent supplier of quality pre-owned equipment 

Gold-standard solutions 
Extend the life of your critical industrial, 

commercial, and military systems with our 

superior service and support. 

We buy equipment 
Planning to upgrade your current 

equipment? Have surplus equipment taking 

up shelf space? We'll give it a new home. 

Learn more! 
Visit us at artisantg.com for more info 

on price quotes, drivers, technical 

specifications, manuals, and documentation. 

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein. 

We're here to make your life easier. How can we help you today? 
(217) 352-9330 I sales@artisantg.com I artisantg.com 


