
All trademarks, brandnames, and brands appearing herein are the property of their respective owners.

• Critical and expedited services
• In stock / Ready-to-ship

• We buy your excess, underutilized, and idle equipment
• Full-service, independent repair center

Motorola MVME 143S-2

CPU Controller

In Stock

Used and in Excellent Condition

Open Web Page

https://www.artisantg.com/97359-15

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/97359-15/Emerson-MVME-143S-2?pdf=97359-15
https://www.artisantg.com/97359-15?pdf=97359-15

MVME143BUG

143Bug DEBUGGING PACKAGE

USER'S MANUAL

(MVME143BUG/D1)

The information in this document has been carefully checked and is believed to be
entirely reliable . However, no responsibility is assumed for inaccuracies . Furthermore,
Motorola reserves the right to make changes to any products herein to improve reliabil­
ity, function, or design. Motorola does not assume any liability arising out of the appli­
cation or use of any product or circuit described herein; neither does it convey any
license under its patent rights or the rights of the others.

PREFACE

This manual provides general information and operating instructions for the 143Bug
firmware provided on the MVME143 MPU Module.

This manual is intended for anyone who wants to design OEM systems, supply addi­
tional capability to an existing compatible system, or in a lab environment for experi­
mental purposes.

The MVME143Bug package is a powerful evaluation and debugging tool for systems
built around the MVME143 MPU VMEmodule. Facilities are available for loading and
executing user programs under complete operator control for system evaluation. The
143Bug includes commands for display and modification of memory, breakpoint capa­
bilities, a powerful assembler/disassembler useful for patching programs, and a self
test on power-up feature which verifies the integrity of the system. Various 143Bug
routines that handle I/0, data conversion, and string functions are available to user
programs through the TRAP #15 handler. In addition, 143Bug provides as an option a
"system" mode that allows autoboot on power up or reset, and a menu interface to
several system commands used in VME Delta Series systems.

A basic knowledge of computers and digital logic is assumed.

To use this manual, you should be familiar with the publications listed in the related

documentation paragraph in Chapter 1 of this manual.

Throughout this manual the paragraph headings conform to the following convention:

Entering Debugger Command Lines

Syntactic Variables

Address as a Parameter

Address Formats

(this is a main topic heading)

(this is a subordinate topic heading
under a main topic)

(this is a subordinate topic heading
under the subordinate topic)

(this is a subordinate topic heading
under the subordinate topic)

The computer programs stored in the programmed array logic chips of this device contain
material copyrighted by Motorola Inc., first published 1985, and may be used only under
a license such as the License for Computer Programs (Article 14) contained in Motorola's
Terms and Conditions of Sale, Rev. 1/79.

Delta Series, EXORmacs, HDS-300, HDS-400, SYSTEM V/68, VERSAdos, VMEmodule,
and 143Bug are trademarks of Motorola, Inc.

Ehternet is a registered trademark of the Xerox Corporation.

First Edition April 1989

Copyright 1989 by Motorola, Inc.

TABLE OF CONTENTS

CHAPTER 1 - GENERAL INFORMATION

Description of MVME143Bug 1- 1
How To Use This Manual 1-4
Installation and Startup 1-4

Autoboot . 1- 7
ROMboot 1-8

Restarting The System 1- 12
Reset 1-12
Abort 1-12
Reset and Abort - Restore Battery Backed Up RAM . 1-13
Break 1- 13

Memory Requirements . 1-13
Disk 110 Support . 1-17

Blocks Versus Sectors 1-17
Disk 1/0 Via 143Bug Commands . 1-1 7

lOP (Physical 1/0 To Disk) 1-17
lOT (1/0 Teach) 1-18
IOC (1/0 Control) 1-18
BO (Bootstrap Operating System) 1-1 8
BH (Bootstrap And Halt) 1-18

Disk 1/0 Via 143Bug System Calls 1-18
Default 143Bug Controller And Device Parameters . 1-19
Disk 1/0 Error Codes . 1-19

Multiprocessor Support 1-20
Diagnostic Facilities 1-21

CHAPTER 2 - USING THE 143Bug DEBUGGER

Entering Debugger Command Lines . 2-1
Syntactic Variables 2- 3

Expression As A Parameter 2- 3
Address As A Parameter 2- 5

Port Numbers . 2- 8
Entering And Debugging Programs . 2- 9
Calling System Utilities From User Programs . 2- 9
Preserving the Debugger Operating Environment . 2- 9

143Bug Vector Table And Wordspace 2-10
Exception Vectors Used By 143Bug . 2-10

Using 143Bug Target Vector Table 2-11

v

Creating A New Vector Table 2-12
143Bug Generalized Exception Handler . 2-13

Memory Management Unit Support 2-14
Function Code Support 2-15

CHAPTER 3- THE 143Bug DEBUGGER COMMAND SET

VI

Introduction . 3-1
Autoboot Enable/Disable . 3-4
Block Of Memory Compare 3-5
Block Of Memory Fill . 3-7
Bootstrap Operating System And Halt . 3-10
Block Of Memory Initialize . 3-11
Block Of Memory Move 3-12
Bootstrap Operating System . 3-14
Breakpoint Insert/Delete . 3-17
Block Of Memory Search . 3-18
Block Of Memory Verify 3-21
Checksum 3-23
Data Conversion 3-26
Dump S-Records . 3-28
EEPROM Programming . 3-32
Set Environment To Bug/Operating System 3-34
Go Direct (Ignore Breakpoints) 3-36
Go To Next Instruction 3-38
Go Execute User Program . 3-40
Go To Temporary Breakpoint 3-43
Help 3-45
1/0 Control For Disk . 3-46
1/0 Physical (Direct Disk Access) 3-47
1/0 "Teach" For Configuring Disk Controller 3-51
Load S-Records From Host 3-58
Macro Define/Display/Delete 3-62
Macro Edit . 3-65
Enable/Disable Macro Expansion Listing 3-67
Save/Load Macros . 3-68
Memory Display . 3-70
Menu 3-72
Memory Modify . 3-73
Memory Set 3-76
Set Memory Address From VMEbus . 3-77
Offset Registers Display/Modify 3-78
Printer Attach/Detach 3-81
Port Format/Detach . 3-82

Listing Current Port Assignments . 3-82

Configuring A Port . 3-82
Parameters Configurable By Port Format . 3-84
Assigning A New Port . 3-85
NOPF Port Detach . 3-86

Put RTC Into Power Save Mode For Storage 3-87
ROMboot Enable/Disable . 3-88
Register Display . 3-89
Remote 3-95
Cold/Warm Reset . 3-96
Register Modify . 3-98
Register Set 3-101
Switch Directories . 3-102
Set Time And Date 3-103
Trace 3-104
Terminal Attach 3-107
Trace On Change Of Control Flow 3-108
Display Time And Date . 3-110
Transparent Mode . 3-111
Trace To Temporary Breakpoint 3-112
Verify S-Records Against Memory . 3-114

CHAPTER 4 - USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

Introduction . 4-1
MC68030 Assembly Language . 4-1

Machine-Instruction Operation Codes . 4-1
Directives 4-2

Comparison With MC68030 Resident Structured Assembler 4-2
Source Program Coding 4-3

Source Line Format 4-3
Operation Field 4-3
Operand Field . 4-4
Disassembled Source Line . 4-4
Mnemonics And Delimiters 4-5
Character Set . 4-7

Addressing Modes . 4-7
DC.W Define Constant Directive 4-11
SYSCALL System Call Directive 4-12

Entering And Modifying Source Programs 4-12
Invoking The Assembler/Disassembler 4-12
Entering A Source Line 4-13
Entering Branch And Jump Addresses . 4-14
Assembler Output/Program Listings . 4-14

vii

CHAPTER 5 - SYSTEM CALLS

Introduction 5-1
Invoking System Calls Through TRAP #15 5-1
String Formats For 1/0 5-2
.INCHR Function 5-4
.INSTAT Function 5-5 \......_/
.INLN Function 5-6
.READSTR Function 5-7
.READLN Function 5-9
.CHKBRK Function 5-10
.DSKRD, .DSKWR Functions 5-11
.DSKCFIG Function 5-14
.DSKFMT Function 5-20
.DSKCTRL Function 5-23
.OUTCHR Function 5-25
.OUTSTR, .OUTLN Functions 5-26
.WRITE, .WRITELN Functions 5-27
.PCRLF Function 5-29
.ERASLN Function 5-30
.WRITD, .WRITDLN Functions 5-31
.SNDBRK Function 5-33
.DELAY Function 5-34
.RTC TM Function 5-35
.RTC DT Function 5-36
.RTC DSP Function 5-37
.RTC RD Function 5-38
.REDIA Function 5-39
.REDIR_I, .REDIR_O Functions 5-40
.RETURN Function 5-41
.BINDEC Function 5-42
.CHANGEV Function 5-43
.STRCMP Function 5-45
.MULU32 Function 5-46
.DIVU32 Function 5-47
.CHK SUM Function 5-48
.BRD ID Function 5-49

viii

CHAPTER 6- 143Bug DIAGNOSTIC FIRMWARE GUIDE

Scope 0 6-1
Overview of Diagnostic Firmware 0 6-1
System Start-Up 0 . 0 0 . 0 0. 0 6-1
Diagnostic Monitor 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-3

Monitor Start-Up 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 6-4
Command Entry and Directories 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 6-4
Help -Command HE 0 •• 0 0 . 0 . 0 0 0 • • 0. 0 0 0 0 6-5
Self Test - Prefix/Command ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 •• 0. 0 0. 0 0. 0 0 0 0 6-5
Switch Directories - Command SO 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 6-6
Loop-On-Error Mode - Prefix LE 0 0 0 0 0 0 0 • 0 6-6
Stop-On-Error Mode - Prefix SE 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 6-6
Loop-Continue Mode - Prefix LC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 6-6
Non-Verbose Mode - Prefix NV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 6-6
Display Error Counters - Command DE 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 6-7
Clear (Zero) Error Counters - Command ZE 0 • 0 0 0 0 0 0 6-7
Display Pass Count - Command DP 0 •• 0 0 • 0 0 6-7
Zero Pass Count - Command ZP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 6-7

Utilities 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 • • 0 • 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 6-7
Write Loop - Command WLosize 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 6-7
Read Loop - Command RLosize 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 6-8
Write/Read Loop - Command WRosize 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0. 0 0 0 . 0. 0 0 . 0 0. 0 0 0 0 6-8

MPU Tests For The MC68030- Command MPU 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 . 0 0 0 0 6-9
MPU A - Register Test 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-10
MPU B - Instruction Test . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 6-11
MPU C - Address Mode Test 0 ••• 0 0 0. 0 0 . 0 0 0 0 6-12
MPU D - Exception Processing Test 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0. 0 0 0 0 •• 0 0 0. 0 0 0 6-13

MC68030 Onchip Cache Tests - Command CA30 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 0 6-14
CA30 A - Basic Data Caching Test 0 . 0 0. 0 0 . 0 0. 0 0 6-15
CA30 B- Data Cache Tag RAM Test 0 0 0 0 0 0. 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 •• 0 0. 6-16
CA30 C - Data Cache Data RAM Test 0 0 0 0 0 0. 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-18
CA30 D - Data Cache Valid Flags Test 0 0 0 0 0. 0 0. 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-19
CA30 E - Data Cache Burst Fill Test 0 0 0 0 0 0 •• 0 0 . 0 0 0 0 0 0 0 0. 0 0 . 0 0 0 0 0 0 0 0 0 6-20
CA30 F - Basic Instruction Caching Test 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 6-21
CA30 G - Unlike Instruction Function Codes Test . 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0. 0 0 0 6-22
CA30 H - Disable Test 0. 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-23
CA30 1 - Clear Test 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0. 0 0 0 0 0 0 0 0. 0 0 . 0 0 • 0 6-24

Memory Tests- Command MT 0 . 0 0 . 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 ° • • 0 0 0 ° 0 0 6-25
MT A - Set Function Code 0 0 0 0 0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 . 0 0 0 0 0 . 0 ° 0 ° 6-27
MT B - Set Start Address 0 0 0 0 0 ••• 0 ••• 0 0 0 • 0 0 0 0 0 0 0 6-28
MT C - Set Stop Address 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 • 0 ••• 0 0 0 0 0 6-30
MT D - Set Bus Data Width 0 0 0 0 0 ••• • • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 • 0 0 6-32
MT E - March Address Test. 0 0 0 0. 0 0 0 0 0 0 0 0 0. 0 •• 0 0 0 0 0 0 0 0 0 . 0 0. 0 0. 0 0 0 0 0 6-33

ix

X

MT F - Walk a Bit Test 6-34
MT G - Refresh Test 6-35
MT H - Random Byte Test 6-37
MT I - Program Test 6-39
MT J - TAS Test 6-41
MT K - Brief Parity Test 6-42
MT L - Extended Parity Test 6-44
MT M - Nibble Mode Test 6-46
Description of Memory Error Display Format 6-47

Memory Management Unit Tests - Command MMU 6-48
MMU A - RP Register 6-50
MMU B - TC Register 6-51
MMU C - Super_Prog Space 6-52
MMU D - Super_Data Space 6-53
MMU E - Write/Mapped-Read Pages 6-54
MMU F-Read Mapped ROM 6-55
MMU G -Fully Filled ATC 6-57
MMU H - User_Data Space 6-59
MMU I - User _Prog Space . 6-60
MMU J - Indirect Page 6-61
MMU K - Page-Desc Used-Bit . 6-63
MMU L - Page-Desc Modify-Bit . 6-64
MMU M - Segment- Desc Used-Bit . 6-65
MMU P - Invalid Page . 6-66
MMU Q- Invalid Segment 6-67
MMU R - Write-Protect Page . 6-68
MMU S - Write-Protect Segment . 6-69
MMU V - Upper-Limit Violation 6-70
MMU W - Lower-Limit Violation 6-71
MMU X - Prefetch on Invalid-Page Boundary . 6-72
MMU Y - Modify-Bit and Index 6-74
MMU Z - Sixteen-Bit Bus 6-75
MMU Z 0 - User-Program Space 6-76
MMU Z 1 - Page-Desc Modify-Bit . 6-77
MMU Z 2 - Indirect Page . 6-78
MMU 0 - Read/Modify/Write Cycle 6-79
Table Walk Display Format 6-81

Real-Time Clock Test - Command RTC 6-82
Bus Error Test - Command BERR 6-84
Floating Point Coprocessor (MC68882) TEST - Command FPC 6-85
MC68030 Functionality Test - Command PIT 6-87
Z8530 Functionality Test - Command SCC 6-88

APPENDIX A- MVME143BUG SYSTEM MODE OPERATION

General Description A-1
Menu Details A-3

Continue System Start Up A- 3
Select Alternate Boot Device A-3
Go To System Debugger A-4
Initiate Service Call A-4
Display System Test Errors A- 10
Dump Memory To Tape A- 10

APPENDIX B- DEBUGGING PACKAGE MESSAGES B-1

APPENDIX C - S-RECORD OUTPUT FORMAT C-1

APPENDIX D- INFORMATION USED BY BO AND BH COMMANDS D-1

APPENDIX E - DISK CONTROLLER OAT A

Disk Controller Modules Supported E-1
Disk Controller Default Configurations E-2

APPENDIX F- DISK COMMUNICATION STATUS CODES F-1

INDEX . IN'-1

LIST OF ILLUSTRA TJONS

FIGURE 1-1. Flow Diagram of 143Bug (Normal) Operational Mode 1- 2
FIGURE 1-2. Flow Diagram of 143Bug (System) Operational Mode 1- 3
FIGURE 6-1. Sample Table Walk Display 6- 81
FIGURE A-1. Flow Diagram of 143Bug System Operational Mode A- 2

TABLE 2-1.
TABLE 2-2.
TABLE 3-1.
TABLE 4- 1.
TABLE 5- l.
TABLE 6-1.
TABLE 6-2.
TABLE 6-3.
TABLE 6-4.
TABLE 6-5.

LIST OF TABLES

Formats for Debugger Address Parameters 2-5
Exception Vectors Used by 143Bug 2- 10
Debugger Commands 3- 1
143Bug Assembler Addressing Modes 4-8
143Bug System Call Routines 5-3
MC68030 MPU Diagnostic Tests 6-9
MC68030 Cache Diagnostic Tests 6-14
Memory Diagnostic Tests . 6-25
Memory Management Unit Diagnostic Tests 6-48
Sample Table Walk Display 6-81

XI

xii

CHAPTER 1
GENERAL INFORMATION

Description of MVME143Bug
The MVME143Bug package is a powerful evaluation and debugging tool for systems built
around the MVME143 monoboard microcomputer. Facilities are available for loading and
executing user programs under complete operator control for system evaluation. 143Bug
includes commands for display and modification of memory, breakpoint capabilities, a
powerful assembler/disassembler useful for patching programs, and a self test on power­
up feature which verifies the integrity of the system. Various 143Bug routines that handle
I/0, data conversion, and string functions are available to user programs through the
TRAP #15 handler. In addition, 143Bug provides as an option a "system" mode that
allows autoboot on power up or reset, and a menu interface to several system commands
used in Delta Series systems.

143Bug consists of three parts: a command-driven user-interactive software debugger,
described in Chapter 2 and hereafter referred to as the debugger, a command-driven
diagnostic package for the MVME143 hardware, described in Chapter 6 and hereafter
referred to as the diagnostics, and a user interface which accepts commands from the
system console terminal.

When using 143Bug, the user operates out of either the debugger directory or the diagnos­
tic directory. If the user is in the debugger directory, then the debugger prompt
"143-Bug>" is displayed and the user has all of the debugger commands at his disposal.
If in the diagnostic directory, then the diagnostic prompt "143-Diag>" is displayed and
the user has all of the diagnostic commands at his disposal as well as all of the debugger
commands. The user may switch between directories by using the Switch Directories (SD)
command or may examine the commands in the particular directory that the user is
currently in by using the Help (HE) command (refer to Chapter 3).

Because 143Bug is command-driven, it performs its various operations in response to
user commands entered at the keyboard. The flow of control in normal 143Bug operation
is illustrated in Figure 1-1. The flow of control in system 143Bug operation is illustrated
in Figure 1-2. When a command is entered, 143Bug executes the command and the
prompt reappears. However, if a command is entered which causes execution of user
target code (for example, "GO"), then control may or may not return to 143Bug, depend­
ing on the outcome of the user program.

1-1

I

I
GENERAL INFORMATION

POWER-UP/RESET

YES

YES

RUN CONFIDENCE TEST

NO

DISPLAY CONFIDENCE TEST
FAILURES IF ANY.

DISPLAY DEBUGGER'S
NAME AND VERSION.
DISPLAY PMMU AND
FPC TEST RESULTS.

DISPLAY COLD START
MESSAGE

SYSTEM

NO

FIGURE 1-1. Flow Diagram of 143Bug (Normal) Operational Mode

1-2

EAAOA

ERROR

HALT

DIS~Y SERVICE M!.NU

SYSTEM
DEBUGGER

GENERAL INFORMATION

NO HALT

FIGURE 1-2. Flow Diagram of 143Bug (System) Operational Mode

1-3

I

I
GENERAL INFORMATION

The commands are more flexible and powerful than previous debuggers . Also, the
debugger in general is more "user-friendly", with more detailed error messages (refer to
Appendix B) and an expanded online help facility.

How To Use This Manual
Users who have never used a debugging package before should read all of Chapter 1
before attempting to use 143Bug. This gives an idea of 143Bug structure and capabilities.

The Installation and Startup paragraph in this chapter describes a step-by-step procedure
to power up the module and obtain the 143Bug prompt on the terminal screen.

For a question about syntax or operation of a particular 143Bug command, the user may
turn to the entry for that particular command in the chapter describing the command set
(refer to Chapter 3).

Some debugger commands take advantage of the built-in one-line assembler/
disassembler. The command descriptions in Chapter 3 assume that the user already
understands how the assembler/disassembler works. Refer to Using the One-Line
Assembler/Disassembler in Chapter 4 for details on its use.

NOTE

In the examples shown, all user input is in BOLD. This is done for clarity in
understanding the examples (to distinguish between characters input by the
user and characters output by 143Bug). The symbol <CR> represents the
carriage return key on the terminal keyboard. Whenever this symbol ap­
pears, it means a carriage return entered by the user.

Installation and Startup
Even though the MVME143Bug EPROMs are installed on the MVME143 module, for
143Bug to operate properly with the MVME143, follow this set-up procedure.

1-4

CAUTION

Inserting or removing modules while power is applied could damage
module components.

GENERAL INFORMATION

1. Turn all equipment power OFF. Refer to the MVME143 MPU VMEmodule User's

Manual and configure the header jumpers on the module as required for the user's
particular application. The only jumper configurations specifically dictated by
143Bug are those on J5 . Header J5 must be configured with jumpers positioned
between pins 1-3 and 4-6. This sets EPROM sockets XU3, XU12, XU21, and
XU28 for 64K x 8 devices. This is the factory configuration of the MVME143 as
shipped.

2. Refer to the MVME143 MPU VMEmodule User's Manual and configure header J1

for the user 's particular application. Jl enables or disables the system controller
function of the MVME143.

3. Be sure that the two 64K x 8 143Bug EPROMs are installed in sockets XU3 (odd
bytes, odd BXX label) and XU12 (even bytes, even BXX label) on the MVME143
module.

4. Refer to the set-up procedure for the user's particular chassis or system for de­
tails concerning the installation of the MVME143.

5. Connect the terminal which is to be used as the 143Bug system console to connec­
tor J9 (port 1) on the front panel. Set up the terminal as follows:

• eight bits per character

• one stop bit per character

• parity disabled (no parity)

• 9600 baud to agree with default baud rate of the MVME143 ports at power­
up.

After power-up, the baud rate of the J9 port (port 1) can be reconfigured by using
the Port Format (PF) command of the 143Bug debugger.

NOTE

In order for high-baud rate serial communication between 143Bug and the
terminal to work, the terminal must do some handshaking. If the terminal
being used does not do hardware handshaking via the CTS line, then it must
do XON/XOFF handshaking. If the user gets garbled messages and missing
characters, then he should check the terminal to make sure XON/XOFF
handshaking is enabled.

1-5

I

I
GENERAL INFORMATION

1-6

6. If it is desired to connect device(s) (such as a host computer system or a serial
printer) to port 2 and/or port 3 on the MVME143, connect the appropriate cables
and configure the port(s) as detailed in the MVME143 MPU VMEmodule User's
Manual. After power-up, these ports can be reconfigured by using the PF com­
mand of the 143Bug debugger.

7. Power up the system. 143Bug executes self-checks and displays the debugger
prompt "143- Bug>".

If after a delay, the 143Bug begins to display test result messages on the bottom
line of the screen in rapid succession, the MVME143 is in the Bug "system"
mode. If this is not the desired mode of operation, then press the ABORT switch
on the front panel of the MVME143. When the MENU is displayed, enter a 3 to
go to the system debugger. The environment may be changed by using the set
environment (ENV) command. Refer to the Set Environment To Bug/Operating Sys­
tem paragraph in Chapter 3.

When power is applied to the MVME143, bit 2 at location $FFF80001 (Multi­
Functional Peripheral (MFP) general purpose I/0 register) is set to 1 indicating
that power was just applied. (Refer to MVME143 MPU VMEmodule User's Manual
for a description of the MFP.) This bit is tested within the "Reset" logic path to
see if the power-up confidence test needs to be executed.

If the power-up confidence test is successful and no failures are detected, the
firmware monitor comes up normally, with the FAll., LED off.

If the confidence test fails, the test is aborted when the first fault is encountered,
and the FAll., LED remains on. If possible, one of the following messages is dis­
played:

'CPU Register test failed'
'CPU Instruction test failed'
'ROM test failed'
'RAM test fai led'
'CPU Addressing Modes test failed'
'Exception Processing test failed'
'Battery low (data may be corrupted)'
' Non-volatile RAM access error'

The firmware monitor comes up with the FAll., LED on.

GENERAL INFORMATION

Autoboot

Autoboot is a software routine that can be enabled by a flag in the battery backed-up
RAM to provide an independent mechanism for booting an operating system. When en­
abled by the Autoboot (AB) command, this autoboot routine automatically starts a boot
from the controller and device specified. It also passes on the specified default string.
This normally occurs at power-up only, but the user may change it to boot up at any
board reset. NOAB disables the routine but does not change the specified parameters.
The Autoboot enable/disable command details are described in Chapter 3. The default
(factory-delivered) condition is with autoboot disabled.

If, at power-up, Autoboot is enabled and the drive and controller numbers provided are
valid, the following message is displayed upon the system console:

"Autoboot in progress .. . To Abort hit <BREAK>"

Following this message there is a delay while the debug firmware waits for the various
controllers and drives to come up to speed. Then the actual VO is begun: the program
pointed to within the volume ID of the media specified is loaded into RAM and control
passed to it. If, however, during this time, the user wants to gain control without
Autoboot, hit the <BREAK> key.

CAUTION

This information applies to the MVME350 module but not the MVME143.
Although streaming tape can be used to Autoboot, the same power supply
must be connected to the streaming tape drive, controller, and the
MVME143. At power-up, the tape controller positions the streaming tape
to load point where the volume ID can correctly be read and used.

If, however, the MVME143 loses power but the controller does not, and
the tape happen not to be at the load point, the sequences of commands
required (attach and rewind) cannot be given to the controller and

Autoboot is not successful.

1-7

I

I
GENERAL INFORMATION

ROMboot

This function is enabled by the ROMboot (RB) command and executed at power-up (op­
tionally also at reset) , assuming there is valid code in the ROMs (or optionally elsewhere
on the module or VMEbus) to support it. If ROMboot code is installed, a user-written
routine is given control (if the routine meets the format requirements). One use of ROM­
boot might be resetting SYSFAIL * on an unintelligent controller module. The NORB com­
mand disables the function.

For a user's module to gain control through the ROMboot linkage, four requirements
must be met:

a . Power must have just been applied (but the RB command can change this to also
respond to any reset).

b . The user's routine must be located within the MVME143 ROM memory map (but
the RB command can change this to any other portion of the onboard memory, or
even offboard VMEbus memory).

c. The ASCII string "BOOT" must be located within the specified memory range.

d. The user's routine must pass a checksum test, which ensures that this routine was
really intended to receive control at power-up .

To prepare a module for ROMboot, the Checksum (CS) command must be used . When
the module is ready it can be loaded into RAM, and the checksum generated, installed,
and verified with the CS command. (Refer to the CS Command paragraph and examples
in Chapter 3.)

The format of the beginning of the routine is as follows:

MODULE OFFSET LENGTH

1-8

$00

$04

$08

$0C

4 bytes

4 bytes

4 bytes

?

CONTENTS

BOOT

DESCRlPTION

ASCII string indicating possible
routine; checksum must be zero,
too.

Entry Address Longword offset from "BOOT" .

Routine Length Longword, includes length from
"BOOT" to and including
checksum.

Routine Name ASCII string containing routine
name.

GENERAL INFORMATION

By convention within Motorola, the last three bytes of ROM contain the firmware version
number, checksum, and socket number. In this environment, the length would contain the
ASCII string "BOOT", through and including the socket number; however, the user wish­
ing to make use of ROMboot does not have to fill a complete ROM. Any partial amount is
acceptable, as long as the length reflects where the checksum is correct.

ROMboot searches for possible routines starting at the start of the memory map first and
checks for the "BOOT" indicator. Two events are of interest for any location being tested:

a. The map is searched for the ASCII string "BOOT".

b. If the ASCII string "BOOT" is found, it is still undetermined whether the routine
is meant to gain control at power-up or reset. To verify that this is the case, the
bytes starting from "BOOT" through the end of the routine (as defined by the
4-byte length at offset $8) are run through the self-test checksum routine. If both
the even and odd bytes are zero, it is established that the routine was meant to be
used for ROMboot.

Under control of the RB command, the sequence of searches is as follows :

a. Search direct address for "BOOT".

b. Search user non-volatile RAM (first 1Kb of battery back-up RAM) .

c. Search complete ROM map.

d. Search local RAM (if RB command has selected to operate on any reset), at all
8Kb boundaries starting at $00004000.

e. Search the VMEbus map (if so selected by the RB command) on all 8Kb bounda­
ries starting at the end of the onboard RAM.

The following example performs the following:

a . Outputs a (CR)(LF) sequence to the default output port.

b. Displays the date and time from the current cursor position.

c. Outputs two more (CR) (LF) sequences to the default output port.

d. Returns control to 143Bug.

1-9

I

I
GENERAL INFORMATION

NOTE

This example assumes that the target code is temporarily loaded into the
MVME143 RAM. However, an emulator such as the Motorola IIDS- 300 or
IIDS- 400 could easily be used to load and modify the target code in its
actual execution location.

SA11PLE ROMboot ROUTINE - Module preparation including calculation of checksum

143 - Bug>mds 6000

00006000 424F 4F54 0000
00006010 2052 4F4D 424F
00006020 4E4F 0026 4E4F
00006030 0000 0000 0000
00006040 0000 0000 0000
00006050 0000 0000 0000
00006060 0000 0000 0000
00006070 0000 0000 0000
00006080 0000 0000 0000
00006090 0000 0000 0000
000060AO 0000 0000 0000
000060BO 0000 0000 0000
000060CO 0000 0000 0000
000060DO 0000 0000 0000
000060EO 0000 0000 0000
000060FO 0000 0000 0000

1-10

0018
4F54
0026
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000 002E 5465 7374
4E4F 0026 4E4F 0052
4E4F 0063 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

The target code is first assembled
and linked, leaving $00 in the
even and odd locations destined to
contain the checksum.

Load the routine into RAM (with
S- records via the LO command,
or from a VERSAdos disk using
lOP).

Display entire module (zero
checksums at $0000602C and
$0000602D).

BOOT Te st
ROMbootNO. &NO.R

NO.&NO.&NO.c

143-Bug>md 6018;di

00006018 4E4F0026
0000601C 4E4F0052
00006020 4E4F0026
00006024 4E4F0026
00006028 4E4F0063
0000602C 00000000
00006030 00000000
00006034 00000000

143-BupCS 6000 602E

SYSCALL
SYSCALL
SYSCALL
SYSCALL
SYSCALL
OR! .B
ORI.B
ORI.B

. PCRLF ·

.RTC_OSP

.PCRLF

. PCRLF

.RETURN
#$0,00
#$0,00
#$0,00

Physical Address=00006000 00006020 through 602E

(Even Odd)=F99F

143-Bug>M 602C;B

0000602C 00 ?F9
00006020 00 ?9F.
143-Bug>CS 6000 602E

Physical Address=00006000 00006020

(Even Odd)=OOOO

143-Bug>m d s 6000

00006000 424F 4F54 0000 0018 0000 002E 5465 7374
00006010 2052 4F40 424F 4F54 4E4F 0026 4E4F 0052
00006020 4E4F 0026 4E4F 0026 4E4F 0063 F99F 0000
00006030 0000 0000 0000 0000 0000 0000 0000 0000
00006040 0000 0000 0000 0000 0000 0000 0000 0000
00006050 0000 0000 0000 0000 0000 0000 0000 0000
00006060 0000 0000 0000 0000 0000 0000 0000 0000
00006070 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
00006090 0000 0000 0000 0000 0000 0000 0000 0000
000060AO 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
000060CO 0000 0000 0000 0000 0000 0000 0000 0000
00006000 0000 0000 0000 0000 0000 0000 0000 0000
000060EO 0000 0000 0000 0000 0000 0000 0000 0000
000060FO 0000 0000 0000 0000 0000 0000 0000 0000
143-Bug>

GENERAL INFORMATION

Disassemble executable
instructions.

Perform checksum on locations
6000 (refer to the CS Command
paragraph in Chapter 3).

Insert checksum into bytes
$602C,$602D.

verify that the checksum is
correct.

Again display entire module (now
with checksums) .

BOOT Test
ROMbootNO.&NO.R

NO.&NO.&NO.cy . ..
........
• •• 0 •• 0 • • •••• • ••

•••• 0 • ••• •••• • • •

........

.
•• • • 0 0 •••• •• • ' ••

.

.
• ••• • 0 ••• •• • • •••

• • • • • • •• • 0. 0 • • '.

•••••••• • • 0 0 • • • •

..
••••••• • 0 . 0 0 0 • ••

The EPROMs can now be
programmed and inserted .

1-11

I

I
GENERAL INFORMATION

COLD Start

143-Bug> Searching for ROM Boot

Restarting The System

Now power can be removed, and
when it is reapplied the module
receives control and displays the
expected message.

The user can initialize the system to a known state in three different ways. Each has
characteristics which make it more appropriate than the others in certain situations.

Reset

Pressing and releasing the MVME143 front panel RESET switch initiates a system reset.
COLD and WARM reset modes are available. By default, 143Bug is in COLD mode (refer
to the RESET Command paragraph in Chapter 3). During COLD reset, a total system
initialization takes place, as if the MVME143 had just been powered up . The breakpoint
table and offset registers are cleared . The target registers are invalidated. Input and out­
put character queues are cleared. Onboard devices (timer, serial ports, etc.) are reset. All
static variables (including disk device and controller parameters) are restored to their
default states. Serial ports are reconfigured to their default state .

During WARM reset, the 143Bug variables and tables are preserved, as well as the target
state registers and breakpoints. If the particular MVME143 is the system controller, then a
system reset is issued to the VMEbus and other modules in the system are reset as well.

Reset must be used if the processor ever halts (as evidenced by the MVME143 illumi­
nated STATUS LED), for example after a double bus fault; or if the 143Bug environment
is ever lost (vector table is destroyed, etc.).

Abort

Abort is invoked by pressing and releasing the ABORT switch on the MVME143 front
panel. Whenever abort is invoked when executing a user program (running target code) , a
"snapshot" of the processor state is captured and stored in the target registers. (When
working in the debugger, abort captures and stores only the program counter, status regis­
ter, and format/vector information.) For this reason, abort is most appropriate when
terminating a user program that is being debugged. Abort should be used to regain con­
trol if the program gets caught in a loop, etc . The target PC, stack pointers, etc., help to
pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target registers, reflecting
the machine state at the time the ABORT switch was pushed, are displayed to the screen.

1-12

GENERAL INFORMATION

Any breakpoints installed in the user code are removed and the breakpoint table remains
intact. Control is returned to the debugger.

Reset and Abort - Restore Battery Backed Up RAM

Pressing both the RESET and ABORT switches at the same time and releasing the RESET
switch before the ABORT switch initiates an onboard reset and a restore of Key Bug
dependent BBRAM variables .

During the start of the reset sequence, if abort is invoked, then the following conditions
are set in BBRAM:

• Memory sized flag is cleared (on board memory is sized on this reset) .

• AUTOBOOT (Bug "normal") is turned off.

• ROMboot (Bug "normal") is turned off.

• Environment set for Bug "normal" mode.

• Operating system set for SYSTEM V/68.

Break

A "Break" is generated by pressing and releasing the BREAK key on the terminal key­
board. Break does not generate an interrupt. The only time break is recognized is when
characters are sent or received by the console port. Break removes any breakpoints in the
user code and keeps the breakpoint table intact. Break does not, however, take a snap­
shot of the machine state nor does it display the target registers.

Many times it is desired to terminate a debugger command prior to its completion, for
example, the display of a large block of memory. Break allows the user to terminate the
command without overwriting the contents of the target registers, as would be done if
abort were used.

Memory Requirements
The program portion of 143Bug is approximately 128Kb of code. These EPROM sockets
on the MVME143 are mapped at locations $FFFOOOOO through $FFF1FFFF. However,
143Bug code is position-independent and executes anywhere in memory.

143Bug requires a minimum of 16Kb of read/write memory to operate. This memory is
usually the MVME143 onboard read/write memory, requiring stand-alone operation of
the MVME143. The user selects the address at which onboard shared DRAM appears

1-13

I

I
GENERAL INFORMATION

from the VMEbus, by programming the PUT port A data register (refer to the MVM£143
MPU VMEmodule User's Manual) as shown below.

The onboard shared DRAM address is controlled by U52 and by control bits
SLYA3-SLYAO. U52 selects one 64Mb block within the 4Gb range for the MVME143.
The default factory program for U52 puts the base address of this 64Mb block at
$00000000. Control bits SLY A3-SLY AO then select one of the 16 possible positions
within this 64Mb block for the 4Mb of onboard shared DRAM. Note that SLY A3-SLY AO
also define the mailbox interrupt address.

Shared DRAM Address Map on VMEbus

===
SLVA3 SLVA2 SLVAl SLVAO OFFBOARD ADDRESS MAILBOX ADDRESS

Short I /0 Space
0 0 0 0 $00000000 $XXXXFFOO
0 0 0 1 $00400000 $XXXXFF10
0 0 1 0 $00800000 . $XXXXFF20
0 0 1 1 $00COOOOO $XXXXFF30

0 1 0 0 $01000000 $XXXXFF40
0 1 0 1 $01400000 $XXXXFF50
0 1 1 0 $01800000 $XXXXFF60
0 1 1 1 $01COOOOO $XXXXFF70
1 0 0 0 $02000000 $XXXXFF80
1 0 0 1 $02400000 $XXXXFF90
1 0 1 0 $02800000 $XXXXFFAO
1 0 1 1 $02COOOOO $XXXXFFBO
1 1 0 0 $03000000 $XXXXFFCO
1 1 0 1 $03400000 $XXXXFFDO
1 1 1 0 $03800000 $XXXXFFEO
1 1 1 1 $03COOOOO $XXXXFFFO

=~===

SLY A3 *- SLY A3 *-SLY AO * define the offboard address of the on board shared
SLYAO* DRAM for accesses from the VMEbus. They also define the mail-box

interrupt address in the short UO space for the MVME143 . Refer to
shared DRAM address map on VMEbus for more details .

After reset, SLYA3-SLYAO = %1111. Therefore, software must initialize them if a differ­
ent value is desired for proper system operation.

Moreover, the user may select the onboard DRAM to respond to either 32-bit address
accesses only or 24-bit and 32- bit address accesses by the VMEbus. Control bit

1-14

GENERAL INFORMATION

VMEA24* defines the address size for the VMEbus slave interface. The MVME143 on­
board DRAM responds to the VMEbus accesses only when the addresses match and the
address modifiers (AMO-AMS) indicate privileged or non-privileged, data or program
space. Also, an MVME143 may not access its own onboard memory via the VMEbus.

The first 16Kb is used for 143Bug stack and static variable space and the rest is reserved
as user space. Whenever the MVME143 is reset, the target PC is initialized to the address
corresponding to the beginning of the user space and the target stack pointers are initial­
ized to addresses within the user space, with the target ISP set to the top of the user
space.

The following abbreviated memory map for the MVME143 highlights addresses that
might be of particular interest to the firmware monitor user. Note that addresses are
assumed to be hexadecimal throughout this manual. In text, numbers may be preceded
with a dollar sign ($) for identification as hexadecimal.

DRAM LOCATIONS

00000000-000003FF

00000400-000007FF

00000800-00000803

00000804-00000807

00000808-000037FF

EPROM LOCATIONS

FF800000-FFF00003

FF800004-FFF00007

FF800008-FFFOOOOB

FF80000C-FFFOOOOF

FF83FFFA-FFF1FFFB

FF83FFFC-FFF1FFFD

FF83FFFE-FFF1FFFF

FFF20000-FFF3FFFF

FUNCTION

Target vector area
Bug vector area
Multi-Processor Control Register (MPCR)
Multi-Processor Address Register (MPAR)
Work area and stack for MVME143 debug

FUNCTION

Supervisor stack address used when RESET switch is
pressed
Program Counter (PC) used when RESET switch is
pressed
Size of code
Reserved

Even/odd revision number of the two monitor EPROMs
Even/odd socket number where monitor EPROMs reside

Even/odd checksum of the two monitor EPROMs
$FF830000 - $FFF1FFFF in sockets XU3 (odd), XU12
(even)
Reserved for user
$FFF20000 - $FFF3FFFF in sockets XU21 (odd), XU28
(even)

1-15

I

I
GENERAL INFORMATION

BATTERY BACKED- UP
RAM LOCATIONS

FFFEOOOO-FFFE03FF

FFFE0400-FFFE05FF

FFFE0600-FFFE07F7

FFFE0774-FFFE0777

FFFE0778-FFFE077A

FFFE077B

FFFE077C-FFFE07C5

FFFE07C6

FFFE07C7

FFFE07C8-FFFE07E3

FFFE07E4-FFFE07E9

FFFE07EA-FFFE07EF

FFFE07FO

FFFE07Fl

FFFE07F2

FFFE07F3

FFFE07F4

FFFE07F5

FFFE07F6

FFFE07F7

FFFE07F8-FFFE07FF

I/0 HARDWARE
ADDRESSES

FFF80026-FFF8002F

FFFAOOOO-FFFAOOOl

FFFA0002-FFFA0003

FFF80000- FFF8FFFF

FFF90000-FFF9FFFF

FFFAOOOO-FFFBFFFF

1-16

FUNCTION

Reserved for user
Reserved for operating system use
Reserved for bug use
End of memory + 1, set via memory sizing routine
Reserved
Memory sizing flag
Reserved
AUTOBOOT controller number, set via the AB command
AUTOBOOT device number, set via the AB command
AUTOBOOT string, set via the AB command
Offboard address, set via the OBA command
ROMboot direct address, set via the RB command
AUTOBOOT enable switch, set via the [NO] AB
command (YIN)
AUTOBOOT at power- up switch, set via the AB
command (YIN)
ROMboot enable switch, set via the [NO] RB command
(YIN)
ROMboot from VMEbus switch, set via the RB command
(YIN)
ROMboot at power-up switch, set via the RB command
(YIN)
Reserved
Bug/System switch, set via the ENV command (B/S)
SYSTEM V/68 or VERSAdos switch, set via ENV command
(SlY)
Time-of-day clock

FUNCTION

Serial port 1
Serial port 2
Serial port 3
MFP registers
PI/T registers
sec registers

GENERAL INFORMATION

Disk 1/0 Support
143Bug can initiate disk input/output by communicating with intelligent disk controller
modules over the VMEbus. Disk support facilities built into 143Bug consist of command­
level disk operations, disk 110 system calls (only via the TRAP #15 instruction) for use by
user programs, and defined data structures for disk parameters.

Parameters such as the address where the module is mapped and the type and number of
devices attached to the controller module are kept in tables by 143Bug. Default values for
these parameters are assigned at power-up and cold-start reset, but may be altered as
described in the Default 143Bug Controller And Device Parameters paragraph in this
chapter.

Appendix E contains a list of the controllers presently supported, as well as a list of the
default configurations for each controller.

Blocks Versus Sectors
The logical block defines the unit of information for disk devices. A disk is viewed by
143Bug as a storage area divided into logical blocks. By default, the logical block size is
set to 256 bytes for every block device in the system. The block size can be changed on a
per device basis with the lOT command.

The sector defines the unit of information for the media itself, as viewed by the control­
ler. The sector size varies for different controllers, and the value for a specific device can
be displayed and changed with the lOT command.

When a disk transfer is requested, the start and size of the transfer is specified in blocks.
143Bug translates this into an equivalent sector specification, which is then passed on to
the controller to initiate the transfer. If the conversion from blocks to sectors yields a
fractional sector count, an error is returned and no data is transferred .

Disk 1/0 Via 143Bug Commands
These following 143Bug commands are provided for disk 1/0. Detailed instructions for
their use are found in Chapter 3. When a command is issued to a particular controller
LUN and device LUN, these LUNs are remembered by 143Bug so that the next disk
command defaults to use the same controller and device.

lOP (Physical 1/0 To Disk)

lOP allows the user to read or write blocks of data, or to format the specified device in a
certain way. lOP creates a command packet from the arguments specified by the user,
and then invokes the proper system call function to carry out the operation.

1-17

I

I
GENERAL INFORMATION

lOT (1/0 Teach)

lOT allows the user to change any configurable parameters and attributes of the device. In
addition, it allows the user to see the controllers available in the system.

IOC (1/0 Control)

IOC allows the user to send command packets as defined by the particular controller
directly. IOC can also be used to look at the resultant device packet after using the IOP
command.

BO (Bootstrap Operating System)

BO reads an operating system or control program from the specified device into memory,
and then transfers control to it.

BH (Bootstrap And Halt)

BH reads an operating system or control program from a specified device into memory,
and then returns control to 143Bug. It is used as a debugging tool.

Disk 1/0 Via 143Bug System Calls

All operations that actually access the disk are done directly or indirectly by 143Bug
TRAP #15 system calls . (The command-level disk operations provide a convenient way of
using these calls without writing and executing a program.)

The following system calls are provided to allow user programs to do disk I/0:

.DSKRD - Disk read. System call to read blocks from a disk into memory .

. DSKWR - Disk write . System call to write blocks from memory onto a disk .

. DSKCFIG - Disk configure. This function allows the user to change the configu­
ration of the specified device .

. DSKFMr - Disk format . This function allows the user to send a format com­
mand to the specified device .

. DSKCTRL - Disk control. This function is used to implement any special device
control functions that cannot be accommodated easily with any of
the other disk functions.

Refer to Chapter 5 for information on using these and other system calls.

1-18

GENERAL INFORMATION

To perform a disk operation, 143Bug must eventually present a particular disk controller
module with a controller command packet which has been especially prepared for that
type of controller module. (This is accomplished in the respective controller driver mod­
ule.) A command packet for one type of controller module usually does not have the
same format as a command packet for a different type of module. The system call facili­
ties which do disk I/0 accept a generalized (controller- independent) packet format as an
argument, and translate it into a controller-specific packet, which is then sent to the
specified device. Refer to the Invoking System Calls Through TRAP # 15 paragraph in Chap­
ter 5 for details on the format and construction of these standardized "user" packets.

The packets which a controller module expects to be given vary from controller to control­
ler. The disk driver module for the particular hardware module (board) must take the
standardized packet given to a trap function and create a new packet which is specifically
tailored for the disk drive controller it is sent to. Refer to documentation on the particular
controller module for the format of its packets, and for using the IOC command.

Default 143Bug Controller And Device Parameters

143Bug initializes the parameter tables for a default configuration of controllers and de­
vices (refer to Appendix E). If the system needs to be configured differently than this
default configuration (for example, to use a 70Mb Winchester drive where the default is a
40Mb Winchester drive), then these tables must be changed .

There are two ways to change the parameter tables. If BO or BH is invoked, the configu­
ration area of the disk is read and the parameters corresponding to that device are rewrit­
ten according to the parameter information contained in the configuration area. (Appen­
dix D has more information on the disk con- figuration area.) This is a temporary
change. If a cold- start reset occurs, then the default parameter information is written
back into the tables.

Alternately, the lOT command may be used to manually reconfigure the parameter table
for any controller and/or device that is different from the default. This is also a temporary
change and is overwritten if a cold- start reset occurs.

Disk 1/0 Error Codes

143Bug returns an error code if an attempted disk operation is unsuccessful. Refer to
Appendix F for an explanation of disk I/0 error codes.

1-19

I

I
GENERAL INFORMATION

Multiprocessor Support
The MVME143 dual-port RAM feature makes the shared RAM available to remote proc­
essors as well as to the local processor.

A remote processor can initiate program execution in the local MVME143 dual-port RAM
by issuing a remote GO command using the Multiprocessor Control Register (MPCR).
The MPCR, located at shared RAM location $800, contains one of two longwords used to
control communication between processors. The MPCR contents are organized as follows:

$800 .. N/A N/A N/A (MPCR)

The status codes stored in the MPCR are of two types:

• Status returned (from the monitor)

• Status set (by the bus master)

The status codes that may be returned from the monitor are:

HEX 0 (HEX 00) -- Wait. Initialization not yet complete.
ASCll R (HEX 52) -- Ready. The firmware monitor is watching for a change.
ASCll E (HEX 45) -- Code pointed to by the MPAR address is executing.

The status codes that may be set by the bus master are:

ASCll G (HEX 47) --Use Go Direct (GD) logic specifying the MPAR address .
ASCll B (HEX 42) -- Install breakpoints using the Go (G) logic.

The Multiprocessor Address Register (MPAR), located in shared RAM location $804,
contains the second of two longwords used to control communication between processors .
The MPAR contents specify the address at which execution for the remote processor is to
begin if the MPCR contains a G or B. The MPAR is organized as follows:

$804 (MPAR)

At power-up, the debug monitor self-test routines initialize RAM, including the memory
locations used for multi-processor support ($800 through $807).

1-20

GENERAL INFORMATION

The MPCR contains $00 at power-up, indicating that initialization is not yet complete. As
the initialization proceeds, the execution path comes to the "prompt" routine. Before
sending the prompt, this routine places an R in the MPCR to indicate that initialization is
complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to see whether an external
processor requires control to be passed to the dual-port RAM. If a terminal does respond,
the MPCR is polled for the same purpose while the serial port is being polled for user
input.

An ASCII G placed in the MPCR by a remote processor indicates that the Go Direct type
of transfer is requested . An ASCII B in the MPCR indicates that breakpoints are to be
armed before control is transferred (as with the Go Command).

In either sequence, an E is placed in the MPCR to indicate that execution is underway just
before control is passed to RAM. (Any remote processor could examine the MPCR con­
tents.)

If the code being executed in dual- port RAM is to reenter the debug monitor, a TRAP #15
call using function $0063 (SYSCALL .RETIJRN) returns control to the monitor with a
new display prompt. Note that every time the debug monitor returns to the prompt, an R
is moved into the MPCR to indicate that control can be transferred once again to a speci­
fied RAM location.

Diagnostic Facilities
Included in the 143Bug package is a complete set of hardware diagnostics intended for
testing and troubleshooting of the MVME143 (refer to Chapter 6). In order to use the
diagnostics, the user must switch directories to the diagnostic directory. If in the debugger
directory, the user can switch to the diagnostic directory by entering the debugger com­
mand Switch Directories (SD). The diagnostic prompt ("143- Diag>") should appear. Re­
fer to Chapter 6 for complete descriptions of the diagnostic routines available and instruc­
tions on how to invoke them. Note that some diagnostics depend on restart defaults that
are set up only in a particular restart mode. Refer to the documentation on a particular
diagnostic for the correct mode.

The following publications provide additional information. If not shipped with this prod­
uct, they may be purchased from Motorola's Literature Distribution Center, 616 West
24th Street, Tempe, Arizona 85282; phone (602) 994-6561. Non- Motorola documents
may be obtained from the sources listed.

1-21

I

I
GENERAL INFORMATION

===

DOCUMENT TITLE
MOTOROLA

PUBLICATION NUMBER
=== ~_/
MVME050 System Controller Module and
MVME701/MVME701A I/0 Transition Module User's Manual

MVME143 :MPU VMEmodule User's Manual

MVME319 Intelligent Disk/Tape Controller User's Manual

MVME320 VMEbus Disk Controller Module User's Manual

MVME320A VMEbus Disk Controller Module User's Manual

MVME320B VMEbus Disk Controller Module User's Manual

MVME321 Intelligent Disk Controller User's Manual

MVME321 lPC Firmware User's Guide

MVME350 Streaming Tape Controller VMEmodule
User's Manual

MVME350 lPC Firmware User's Guide

MVME360 SMD Disk Controller User's Manual

VERSAdos to VME Hardware and Software Configuration
User's Manual

MC68030 32-Bit Microprocessor User's Manual

MC68882 Floating-Point Coprocessor User's Manual

M68000 Family VERSAdos System Facilities Reference Manual

MVME050

MVME143

MVME319

MVME320

MVME320A

MVME320B

MVME321

MVME321FW

MVME350

MVME350FW

MVME360

MVMEVDOS

MC68030UM

MC68882UM

M68KVSF

===

MK48T02 2K x 8 Zeropower/Timekeeper RAM Data Sheet, Thompson Components
Mostek, 1310 Electronics Drive, Carrollton, TX 75606

Z8530A Serial Communications Controller data sheet; Zilog, Inc., Corporate Communi­
cations, Building A, 1315 Dell Ave, Campbell, California 95008

1-22

CHAPTER 2
USING THE 143Bug DEBUGGER

Entering Debugger Command Lines
143Bug is command-driven and performs its various operations in response to user
commands entered at the keyboard. When the debugger prompt ("143-Bug>") appears on
the terminal screen, then the debugger is ready to accept commands .

As the command line is entered, it is stored in an internal buffer. Execution begins only
after the carriage return is entered, thus allowing the user to correct entry errors.

When a command is entered, the debugger executes the command and the prompt reap­
pears. However, if the command entered causes execution of user target code, for exam­
ple "GO" , then control may or may not return to the debugger, depending on what the
user program does. For example, if a breakpoint has been specified, then control returns
to the debugger when the breakpoint is encountered during execution of the user pro­
gram. Alternately, the user program could return to the debugger by means of the TRAP
#15 function ".RETURN" (described in Chapter 5). Refer to the GD and GO Command
paragraphs in Chapter 3.

In general, a debugger command is made up of the following parts:

a. The command identifier (i.e., "MD" or "md" for the Memory Display command).
Note that either uppercase or lowercase is allowed.

b. A port number if the command is set up to work with more than one port.

c. At least one intervening space before the first argument.

d. Any required arguments, as specified by command.

e . An option field, set off by a semicolon (;) to specify conditions other than the
default conditions of the command.

When entering a command at the prompt, the following control codes may be entered for
limited command line editing, if necessary, using the control characters described below.

2-1

I

I

USING THE 143Bug DEBUGGER

NOTE

The presence of the upward caret, "'", before a character indicates that the
Control, "CTRL" key must be held down while striking the character key.

(cancel line) The cursor is backspaced to the beginning of the line . If the
terminal port is configured with the hardcopy or TTY option
(refer to the PF Command paragraph in Chapter 3), then a car­
riage return and line feed is issued along with another prompt.

'H (backspace) The cursor is moved back one position. The character at the new

 (delete or
rubout)

'D (redisplay)

cursor position is erased. If the hardcopy option is selected, a
"/" character is typed along with the deleted character.

Performs the same function as ' H.

The entire command line as entered so far is redisplayed on the
following line.

When observing output from any 143Bug command, the XON and XOFF characters
which are in effect for the terminal port may be entered to control the output, if the
XON/XOFF protocol is enabled (default). These characters are initialized to ' S and ' Q

respectively by 143Bug but may be changed by the user using the PF command. In the
initialized (default) mode, operation is as follows:

(wait)

(resume)

Console output is halted.

Console output is resumed.

The following conventions are used in the command syntax, examples, and text in this
manual.

boldface strings

italic strings

2--2

A boldface string is a literal such as a command or a program
name , and is to be typed just as it appears.

An italic string is a "syntactic variable" and is to be replaced
by one of a class of items it represents.

A vertical bar separating two or more items indicates that a
choice is to be made; one or more of the items separated by
this symbol may be selected.

] . . .

USING THE 143Bug DEBUGGER

Square brackets enclose an item that is optional. The item may
appear zero or one time.

Square brackets followed by an ellipsis (three dots) enclose an
item that is optional/repetitive. The item may appear zero or
more times.

Boldface brackets are required characters .

Operator inputs are to be followed by a carriage return. The carriage return is shown, as
(CR), only if it is the only input required.

Syntactic Variables

The following syntactic variables are encountered in the command descriptions which
follow. In addition, other syntactic variables may be used and are defined in the particular
command description in which they occur.

del Delimiter; either a comma or a space .

exp Expression (described in detail below) .

addr Address (described in detail below).

count Count; the syntax is the same as for <EXP>.

range A range of memory addresses which may be specified either by addr del
addr or by addr : count.

text An ASCJI string of up to 255 characters, delimited at each end by the
single quote mark (').

Expression As A Parameter

An expression can be one or more numeric values separated by the arithmetic operators:
plus (+) , minus (-) , multiplied by(*), divided by (/) , logical AND (&), shift left («) , or
shift right (»).

Numeric values may be expressed in either hexadecimal, decimal , octal, or binary by
immediately preceding them with the proper base identifier.

2-3

I

I

USING THE 143Bug DEBUGGER

==
BASE

Hexadecimal
Decimal
Octal
Binary

IDENTIFIER

$

&
@

%

EXAMPLES

$FFFFFFFF
&1974, &10-&4
@456
%1000110

==

If no base identifier is specified, then the numeric value is assumed to be hexadecimal.

A numeric value may also be expressed as a string literal of up to four characters. The
string literal must begin and end with the single quote mark (') . The numeric value is
interpreted as the concatenation of the ASCIT values of the characters. This value is right­
justified, as any other numeric value would be .

STRING
LITERAL

'A'

'ABC'
'TEST'

NUMERIC VALUE
(IN HEXADECIMAL)

41
414243
54455354

Evaluation of an expression is always from left to right unless parentheses are used to
group part of the expression. There is no operator precedence. Subexpressions within
parentheses are evaluated first. Nested parenthetical subexpressions are evaluated from
the inside out.

2-4

USING THE 143Bug DEBUGGER

Valid expression examples:

==
EXPRESSION RESULT (IN HEX) NOTES

==
FFOOll FFOOll
45+99 DE
&45+&99 90
@35+@67+@10 sc
~10011110+~1001 A7
88«4 880 shift left
AA&FO AO logical AND

==

The total value of the expression must be between 0 and $FFFFFFFF.

Address As A Parameter

Many commands use addr as a parameter. The syntax accepted by 143Bug is similar to
the one accepted by the MC68030 one-line assembler. All control addressing modes are
allowed. An "address + offset register" mode is also provided .

Address Formats

The address formats which are acceptable for address parameters in debugger command
lines are summarized in Table 2-1.

FORMAT

N

(An)

(d,An) or
d(An)

TABLE 2-1. Formats for Debugger Address Parameters

EXAMPLE

140

130+R5

(A1)

(120,A1)
120(A1)

DESCRIPTION

Absolute address + contents of automatic
offset register.

Absolute address + contents of the
specified offset register (not an
assembler-accepted syntax).

Address register indirect.

Address register indirect with
displacement (two formats accepted).

2- 5

I

I

USING THE 143Bug DEBUGGER

TABLE 2-1. Formats for Debugger Address Parameters (cont'd)
==

FORMAT EXAMPLE DESCRIPTION

(d,An,Xn) or
d(An,Xn)

(&120,Al,D2)
&120(Al,D2)

Address register indirect with index &
displacement (two formats accepted).

([bd,An,Xn],od)

([bd,An],Xn,od)

([C,A2,A3] ,&100)

([12,A3],D2,&10)

Memory indirect pre-indexed.

Memory indirect postindexed.

For the memory indirect modes, fields can be omitted. For example, three of many per­
mutations are as follows:

([,An],od)
([bd])
([bd,Xn])

([,Al],4)
([FClE])
([8,D2])

===
NOTES: N - Absolute address (any valid expression)

An - Address register n
Xn - Index register n (An or Dn)
d - Displacement (any valid expression)
bd - Base displacement (any valid expression)
od - Outer displacement (any valid expression)
n - Register number (0 through 7)
Rn - Offset register n

Offset Registers

Eight pseudo-registers (RO-R7) called offset registers are used to simplify the debugging
of relocatable and position-independent modules. The listing files in these types of pro­
grams usually start at an address (normally 0) that is not the one in which they are
loaded , so it is harder to correlate addresses in the listing with addresses in the loaded
program. The offset registers solve this problem by taking into account this difference and
forcing the display of addresses in a relative address+offset format. Offset registers have
adjustable ranges and may even have overlapping ranges. The range for each offset regis­
ter is set by two addresses: base and top. Specifying the base and top addresses for an
offset register sets its range.

In the event that an address falls in two or more offset registers' ranges, the one that
yields the least offset is chosen.

2-6

USING THE 143Bug DEBUGGER

NOTE

Relative addresses are limited to 1Mb (5 digits), regardless of the range of
the closest offset register.

Example: A portion of the listing file of a relocatable module assembled with the
MC68030 VERSAdos Resident Assembler is shown below:

1

2

3
4
5 0 00000000 48E78080

6 0 00000004 4280
7 0 00000006 1018

8 0 00000008 5340

9 0 OOOOOOOA 12D8

10 0 oooooooc 51C8FFFC

11 0 00000010 4CDF0101

12 0 00000014 4E75
13
14

****** TOTAL ERRORS 0--

****** TOTAL WARNINGS 0--

*
* MOVE STRING SUBROUTINE

*
MOVESTR

LOOP
MOVS

MOVEM.L
CLR.L
MOVE.B
SUBQ.W
MOVE.B
DBRA

MOVEM.L
RTS

END

DO/A0,-(A7)
DO
(AO)+,DO
#1,DO
(AO)+, (A1)+
DO,LOOP
(A7)+,DO/ AO

The above program was loaded at address 0001327C. The disassembled code is shown
next:

143-Bug>MD 1327C;DI
0001327C 48E78080 MOVEM.L DO / AO,-(A7)

00013280 4280 CLR.L DO

00013282 1018 MOVE.B (AO)+,DO

00013284 5340 SUBQ.W #1,DO

00013286 12D8 MOVE.B (AO)+, (A1)+

00013288 51C8FFFC DBF D0,$13286

0001328C 4CDF0101 MOVEM.L (A7)+,DO/AO

00013290 4E75 RTS

143-Bug>

2-7

I

I

USING THE 143Bug DEBUGGER

By using one of the offset registers, the disassembled code addresses can be made to
match the listing file addresses as follows:

143 - Bug>OF RO

RO =00000000 00000000? 1327C:16.
143-Bug>MD O+RO;DI

OOOOO+RO 48E78080

00004+RO 4280
00006+RO 1018

00008+RO 5340

OOOOA+RO 12D8
OOOOC+RO 51C8FFFC
00010+RO 4CDF0101
00014+RO 4E75

143-Bug>

MOVEM.L DO/AO,-(A7)
CLR.L DO
MOVE.B (AO)+,DO
SUBQ.W #1, DO
MOVE .B (AO)+, (A1)+
DBF DO,$A+RO
MOVEM.L (A7)+,D0/AO
RTS

For additional information about the offset registers, refer to the OF Command paragraph
in Chapter 3.

Port Numbers

Some 143Bug commands give the user the option of choosing the port which is to be used
to input or output. The valid port numbers which may be used for these commands are:

2-8

0 - MVME143 RS-232C serial port 1
1 - MVME143 RS- 232C serial port 2
2 - MVME143 RS-232C serial port 3

NOTE

These logical port numbers (0, 1, and 2) are referred to as "Serial Port 1" ,
"Serial Port 2", and "Serial Port 3", respectively, by the MVME143 hard­
ware documentation.

For example, the command DUl (Dump S-records to Port 1) would actu­
ally output data to the device connected to the serial port labeled SERIAL
PORT 2 on the P2 connector.

USING THE 143Bug DEBUGGER

Entering And Debugging Programs
There are various ways to enter a user program into system memory for execution . One
way is to create the program using the Memory Modify (MM) command with the assem­
bler/disassembler option. The program is entered by the user one source line at a time.
After each source line is entered, it is assembled and the object code is loaded to mem­
ory . Refer to Chapter 4 for complete details of the 143Bug Assembler/Disassembler.

Another way to enter a program is to download an object file from a host system. The
program must be in S-record format (described in Appendix C) and may have been
assembled or compiled on the host system. Alternately, the program may have been previ­
ously created using the 143Bug MM command as outlined above and stored to the host
using the Dump (DU) command. A communication link must exist between the host
system and the MVME143 port B. (Refer to hardware configuration details in the Installa­
tion And Startup paragraph in Chapter 1.) The file is downloaded from the host into
MVME143 memory via the debugger Load (LO) command.

Another way is by reading in the program from disk, using one of the disk commands
(EO, BH, lOP) . Once the object code has been loaded into memory, the user can set
breakpoints if desired and run the code or trace through it.

Calling System Utilities From User Programs
A convenient way of doing character input/output and many other useful operations has
been provided so that the user does not have to write these routines into the target code .
The user has access to various 143Bug routines via the MC68030 TRAP #15 instruction.
Refer to Chapter 5 for details on the various TRAP #15 utilities available and how to
invoke them from within a user program.

Preserving the Debugger Operating Environment
This paragraph explains how to avoid contaminating the operating environment of the
debugger. 143Bug uses certain of the MVME143 onboard resources and may also use
offboard system memory to contain temporary variables, exception vectors, etc. If the
user disturbs resources upon which 143Bug depends, then the debugger may function
unreliably or not at all.

2- 9

I

I

USING THE 143Bug DEBUGGER

143Bug Vector Table And Wordspace

As described in the Memory Requirements paragraph in Chapter 1, 143Bug needs 12Kb of
read/write memory to operate and also allocates another 4Kb as user space for a total of
16Kb allocated. 143Bug reserves a 1024-byte area for a user program vector table area
and then allocates another 1024-byte area and builds an exception vector table for the
debugger itself to use. Next, 143Bug reserves space for static variables and initializes
these static variables to predefined default values. After the static variables, 143Bug allo­
cates space for the system stack and then initializes the system stack pointer to the top of
this area.

With the exception of the first 1024-byte vector table area, the user must be extremely
careful not to use the above-mentioned areas for other purposes. The user should refer to
the Memory Requirements paragraph in Chapter 1 and to Appendix A to determine how to
dictate the location of the reserved memory areas. If, for example, a user program inad­
vertently wrote over the static variable area containing the serial communication parame­
ters, these parameters would be lost, resulting in a loss of communication with the system
console terminal. If a user program corrupts the system stack, then an incorrect value
may be loaded into the processor PC, causing a system crash.

Exception Vectors Used By 143Bug

The exception vectors used by the debugger are listed in Table 2-2 . They must reside at
the specified offsets in the target program vector table for the associated debugger facili­
ties (breakpoints , trace mode, etc.) to operate.

TABLE 2-2 . Exception Vectors Used by 143Bug
===
VECTOR OFFSET

$10
$24
$BC
$158

EXCEPTION

Illegal instruction
Trace
TRAP #15
Level 7 interrupt

143Bug FACILITY

Breakpoints (used by BR, GO, GN, GT)
T, TC, TT
System calls (refer to Chapter 5)

ABORT switch

===:==

When the debugger handles one of the exceptions listed above, the target stack pointer is
left pointing past the bottom of the exception stack frame created; that is , it reflects the
system stack pointer values just before the exception occurred . In this way, the operation

2-10

USING THE 143Bug DEBUGGER

of the debugger facility (through an exception) is transparent to the user. Example: Trace
one instruction using the debugger.

143-Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_ VBR =00000000
USP =0000F830 MSP =00005C18 ISP* =00006000 SFC =O=FO
CACR =O=D: _I:... CAAR =00000000 DFC =O=FO
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 4AFC ILLEGAL
143-Bug>T
PC =00004000 SR =2700=TR : OFF S . 7 VBR =00000000
USP =0000F830 MSP =00005C18 ISP* =00006000 SFC =O=FO
CACR =O=D: _I:. .. CAAR =00000000 DFC =O=FO
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 4AFC
143-Bug>

ILLEGAL

Notice that the value of the target stack pointer register (A 7) has not changed even though
a trace exception has taken place. The user program may either use the exception vector
table provided by 143Bug or it may create a separate exception vector table of its own.
The two following paragraphs detail these two methods.

Using 143Bug Target Vector Table

143Bug initializes and maintains a vector table area for target programs. A target pro­
gram is any user program started by the bug, either manually with GO or Trace type
commands or automatically with the BOot command. The start address of this target
vector table area is the base address of the MVME143, determined as described in the
Memory Requirements paragraph in Chapter 1. This address is loaded into the target-state
Vector Base Register (VBR) at power-up and cold-start reset and can be observed by
using the RD command to display the target-state registers immediately after power-up.

143Bug initializes the target vector table with the debugger vectors listed in Table 2-3 and
fills the other vector locations with the address of a generalized exception handler (refer
to the 143Bug Generalized Exception Handler paragraph in this chapter). The target pro­
gram may take over as many vectors as desired by simply writing its own exception
vectors into the table. If the vector locations listed in Table 2-3 are overwritten, then the
accompanying debugger functions are lost.

2-11

I

I

USING THE 143Bug DEBUGGER

143Bug maintains a separate vector table for its own use in a 1Kb space elsewhere in the
reserved memory space. In general, the user does not have to be aware of the existence of
the debugger vector table. It is completely transparent to the user and the user should
never make any modifications to the vectors contained in it.

Creating A New Vector Table

A user program may create a separate vector table in memory to contain its exception
vectors. If this is done, then the user program must change the value of the VBR to point
at the new vector table. In order to use the debugger facilities , the user can copy the
proper vectors from the 143Bug vector table into the corresponding vector locations in the
user vector table .

The vector for the 143Bug generalized exception handler (described in detail in the
143Bug Generalized Exception Handler paragraph in this chapter) may be copied from
offset $08 (Bus Error vector) in the target vector table to all locations in the user vector
table where a separate exception handler is not used. This provides diagnostic support in
the event that the user program is stopped by an unexpected exception. The generalized
exception handler gives a formatted display of the target registers and identifies the type
of exception. Example: a user routine which builds a separate vector table and then
moves the VBR to point at it:

*
**** BUILDX - Build exception vector table ****
*
BUILD X MOVEC.L VBR,AO Get copy of VBR.

LEA $10000,Al New vectors at $10000.
MOVE.L $8 (AO), DO Get generalized exception vector.
MOVE .W $3FC,D1 Load count (all vectors).

LOOP MOVE . L DO , (A1,Dl) Store generalized exception vector.
SUBQ.W #4 , D1

BNE.B LOOP Initialize entire vector table .
MOVE .L $10 (AO) , $10 (Al) Copy breakpoints vector.
MOVE.L $24(A0) ,$24(A1) Copy trace vector.
MOVE.L $BC(A0) ,$BC(A1) Copy system call vector.
LEA . L COPROCC(PC) ,A2 Get user exception vector.
MOVE.L A2,$2C(A1) Install as F-Line handler.
MOVEC . L A1,VBR Change VBR to new table .
RTS
END

2-12

USING THE 143Bug DEBUGGER

It may turn out that the user program uses one or more of the exception vectors that are
required for debugger operation. Debugger facilities may still be used, however, if the
user exception handler can determine when to handle the exception itself and when to
pass the exception to the debugger.

When an exception occurs which the user wants to pass on to the debugger (ABORT, for
example), the user exception handler must read the vector offset from the format word of
the exception stack frame. This offset is added to the address of the 143Bug target pro­
gram vector table (which the user program saved), yielding the address of the 143Bug
exception vector. The user program then jumps to the address stored at this vector loca­
tion, which is the address of the 143Bug exception handler.

The user program must make sure that there is an exception stack frame in the stack and
that it is exactly the same as the processor would have created it for the particular excep­
tion before jumping to the address of the exception handler.

The following is an example of a user exception handler which can pass an exception
along to the debugger:

*
**** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7

LINK A6, #0

MOVEM.L AO- A5/DO-D7,-(SP)

Save space in stack for a PC value.
Frame pointer for accessing PC space.
Save registers.

: decide here if user code will handle exception, if so, branch ...

MOVE.L BUGVBR,AO

MOVE.W 14(A6),DO

AND.W #$0FFF,DO

MOVE.L (AO,DO.W) ,4(A6)

MOVEM.L (SP)+,A0-A5/DO-D7

UNLK A6

Pass exception to debugger; get VBR.
Get the vector offset from stack frame.
Mask off the format information.
Store address of debugger exc handler.
Restore registers .

RTS Put addr of exc handler into PC and go.

143Bug Generalized Exception Handler

143Bug has a generalized exception handler which it uses to handle all of the exceptions
not listed in Table For all these exceptions, the target stack pointer is left pointing to the
top of the exception stack frame created. Thus, if an unexpected exception occurs during
execution of a user code segment, the user is presented with the exception stack frame to
help determine the cause of the exception. The following example illustrates this:

2-13

I

I

USING THE 143Bug DEBUGGER

Example: Bus error at address $FOOOOO. It is assumed for this example that an access of
memory location $FOOOOO will initiate Bus Error exception processing.

143-Bug>RD
PC =00004000 SR =2700=TR:OFF_S. _7_ VBR =00000000
USP =0000F830 MSP =0000SC18 ISP* =00006000 SFC =O=FO
CACR =O=D: I: ... CAAR =00000000 DFC =O=FO -
DO =00000000 Dl =00000000 D2 =00000000 D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00006000
00004000 4AFC ILLEGAL
143-Bug>T
PC =00004000 SR =2700=TR:OFF_S. _7_ VBR =00000000
USP =0000F830 MSP =0000SC18 ISP* =00006000 SFC =O=FO
CACR =O=D : I: . , CAAR =00000000 DFC =O=FO
DO =00000000 Dl =00000000 D2 =00000000 D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00006000
00004000 4AFC ILLEGAL
143-Bug>

Notice that the target stack pointer is different. The target stack pointer now points to the
last value of the exception stack frame that was stacked . The exception stack frame may
now be examined using the MD command:

143- Bug>MD (A7):&44
00003FA4 A700 0000 2000 BOOB 3E2C 014S 0000 0027 .0. >, .E . .. '

00003FB4 OOFO 0000 OOFO 0000 0000 lBCC 2039 0000 .p ... p L 9 . .

00003FC4 0000 200A 0000 2008 0000 2006 0000 0000 . . '.' . . '
00003FD4 OOFO 0000 lOOF 0487 0000 A700 4003 0000 .p.' .. ' ' .. ' .@, '.

00003FE4 0000 7FFF 0000 0000 COlO 0000 0000 4000 . ' @ .. ' •• @ .

00003FF4 0000 0000 FFF8 086C x.l
143-Bug>

Memory Management Unit Support
The Memory Management Unit (MMU) is supported in the 143Bug. An MMU confidence
check is run at reset time to verify that registers can be accessed . It also insures that a
context switch can be done successfully. Also, the commands RD, RM, MD, and MM
have been extended to allow display and modification of MMU data in registers and in
memory. MMU instructions can be assembled/disassembled with the DI option of the
MD/MM commands. In addition, the MMU target state is saved and restored along with

2-14

USING THE 143Bug DEBUGGER

the processor state as required when switching between the target program and 143Bug.
Finally, there is a set of diagnostics to test functionality of the MMU.

At power-up/reset a MMU confidence check is executed. If an error is detected, the test is
aborted and the message "MMU failed test" is displayed . If the test runs without errors,
then the message "MMU passed test" is displayed and an internal flag is set. This flag is
later checked by the bug when doing a task switch. The MMU state is saved and restored
only if this flag is set.

The MMU defines the Double Longword (DL) data type , which is used when accessing
the root pointers. All other registers are either byte, word, or longword registers .

The MMU registers are shown below, along with their data types in parentheses:

Address Translation Control (ATC) registers:
CRP CPU Root Pointer Register
SRP
TC
TTO
TTl

Supervisor Root Pointer
Translation Control Register
Transparent Translation 0
Transparent Translation 1

Status Information registers:
MMUSR :rvnvfU Status Register

(DL)
(DL)
(L)
(L)
(L)

(W)

For more information about the MMU, refer to the MC68030 Enhanced 32-bit Microproces­
sor User's Manual.

Function Code Support
The function codes identify the address space being accessed on any given bus cycle, and,
in general, they are an extension of the address. (This becomes more obvious when using a
MMU, because two identical logical addresses can be made to map to two different physi­
cal addresses. In this case, the function codes provide the additional information required

to find the proper memory location.)

For this reason, the following debugger commands were changed to allow the specifica­
tion of function codes:

2-15

I

I

USING THE 143Bug DEBUGGER

MD Memory display
MM Memory modify
MS Memory set
GO Go to target program
GD Go direct (no breakpoints)
GT Go and set temporary breakpoint
GN Go to next instruction
BR Set breakpoint

The symbol ,., (up arrow or caret) following the address field indicates that a function
code specification follows. The function code can be entered by specifying a valid func­
tion code mnemonic or by specifying a number between 0 and 7. The syntax for an
address and function code specification is:

addr'fc

The valid function code mnemonics are:

FUNCTION CODE MNEMONIC DESCRIPTION
===

0 FO Unassigned, reserved
1 UD User Data
2 UP User Program
3 F3 Unassigned, reserved
4 F4 Unassigned , reserved

5 SD Supervisor Data

6 SP Supervisor Program
7 cs CPU Space Cycle

===
NOTE: Using an unassigned or reserved function code or mnemonic

results in a Long Bus Error message.

Example: To change data at location $5000 in the user data space.

143-Bug>m 5000'ud
00005000 ' UD 0000 ? 1234.
143-Bug>

2-16

CHAPTER 3
THE 143Bug DEBUGGER COMMAND SET

Introduction
This chapter contains descriptions of each debugger command, with one or more exam­
ples of each. 143Bug debugger commands are summarized in Table 3-1.

TABLE 3-1. Debugger Commands

COMMAND MNEMONIC

AB/NOAB
BC
BF
BH
BI
BM
BO
BRINOBR
BS
BV
cs
DC
DU
EEP
ENV
GD
GN
GO
GT
HE
IOC
lOP
lOT
LO

TITLE

Autoboot Enable/Disable
Block Compare
Block of Memory Fill
Bootstrap Operating System and Halt
Block of Memory Initialize
Block of Memory Move
Bootstrap Operating System
Breakpoint Insert/Delete
Block of Memory Search
Block of Memory Verify
Checksum
Data Conversion
Dump S-records
EEPROM Programming
Set Environment to Bug or Operating System
Go Direct (Ignore Breakpoints)
Go to Next Instruction
Go Execute User Program
Go to Temporary Breakpoint
Help
I/0 Control for Disk
I/0 Physical (Direct Disk Access)
I/0 "TEACH" for Configuring Disk Controller
Load S-records from Host

3-1

I

I

DEBUGGER COMMAND SET

TABLE 3-1. Debugger Commands (cont'd)

COMMAND MNEMONIC TITLE

===
MA/NOMA
MAE
MAL/NO MAL
MAR/MAW
MD
MENU
MM
MS
OBA
OF
PA/NOPA
PF/NOPF
PS
RB/NORB
RD
REMOTE
RESET
RM
RS
SD
SET
T
TA
TC
TIME
TM
TT
VE

Macro Define/Display/Delete
Macro Edit
Enable/Disable Macro Expansion Listing
Save/Load Macros
Memory Display
System Menu
Memory Modify
Memory Set
Set Memory Address from VMEbus
Offset Registers Display/Modify
Printer Attach/Detach
Port Format/Detach
Put RTC into Power Save Mode for Storage
ROMboot Enable/Disable
Register Display
Connect the Remote Modem to CSO
Cold/Warm Reset
Register Modify
Register Set
Switch Directories
Set Time and Date
Trace
Terminal Attach
Trace on Change of Control Flow
Display Time and Date
Transparent Mode
Trace to Temporary Breakpoint
Verify S-records Against Memory

===

3-2

DEBUGGER COMMAND SET

Each of the individual commands is described in the following pages. The command
syntax is shown using the symbols explained in Chapter 2.

In the examples shown, all user input is in bold. This is done for clarity in understanding
the examples (to distinguish between characters input by the user and characters output
by 143Bug). The symbol (CR) represents the carriage return key on the user's terminal
keyboard. The (CR) is shown only if the carriage return is the only user input.

3-3

I

I

DEBUGGER COMMAND SET

Autoboot Enable/Disable

AB
NOAB

AB
NOAB

The AB command lets the user select the Logical Unit Number (LUN) for the controller
and device, and the default string that may be used for an automatic boot function . (Refer
to the BO Command in this chapter.) Appendix E lists all the possible LUNs.) The user
also can select whether this occurs only at power-up, or at any board reset. These selec­
tions are stored in the battery backed- up RAM that is part of the MK48T02 RTC. The
automatic boot function transfers control to the controller and device specified by the AB
command.

The NOAB command disables the automatic boot function. (Refer to Chapter 1 for details
on Autoboot.)

The as-delivered default condition is with the autoboot function not enabled.

Example:

143-Bug>ab

Controller LUN = 00 ? (CR)
Device LUN = 00 ? (CR)
Default string = VME143 . . ? (CR)
Boot at power- up only [Y,N] ? Y (CR)

At power- up only:
Auto Boot from Controller 0, Device 0, VME143 ..

143-Bug>noab
No Auto Boot from Controller 0, Device 0, VME143 ..

143-Bug>

3-4

Enable the autoboot function .
Select controller for boot.
Select device to boot from .
Select string to pass on.
If the user selects N, the
MVME143 boots at any board
reset.

NOAB disables the autoboot
function, but does not
change the parameters .

Block Of Memory Compare

BC range del addr [;BjWjL]

options:

B - Byte
W- Word
L - Longword

DEBUGGER COMMAND SET

BC

The BC command compares the contents of the memory addresses defined by range to
another place in memory, beginning at addr.

The option field is only allowed when range is specified using a count. In this case, the B,
W, or L defines the size of data that the count is referring to. For example, a count of 4
with an option of L would mean to compare 4 long words (or 16 bytes) to the addr
location. If the range beginning address is greater than the end address, an error results.
An error also results if an option field is specified without a count in the range.

For the following examples, assume the following data is in memory.

143-Bug>MD 20000:20,6
00020000 54 48 49 53 20 49 53
00020010 00 00 00 00 00 00 00

143-Bug>MD 21000:20,8
00021000 54 48 49 53 20 49 53
00021010 00 00 00 00 00 00 00

Example 1:

143-Bug>BC 20000 2001F 21000
Effective address : 00020000
Effective address: 0002001F
Effective address : 00021000

143-Bug>

20 41 20
00 00 00

20 41 20
00 00 00

54 45 53 54 21 21 THIS IS A TEST!!

00 00 00 00 00 00

54 45 53 54 21 21 THIS IS A TEST!!

00 00 00 00 00 00 0 ••• • •••••

(memory compares, nothing printed)

3-5

•

•

DEBUGGER COMMAND SET

Example 2:

143- Bug>BC 20000:20 21000;8
Effective address : 00020000
Effective count &32
Ef f ective address: 00021000

143-Bug>

Example 3:

143-Bug>MM 2100F;B
0002100F 21? 0.

143-Bug>

143-Bug>BC 20000:20 21 000; B
Effective address: 00020000
Effective count : &32
Effective address: 00021000
0002000F: 21 0002100F: 00

143-Bug>

3-6

BC

(memory compares, nothing printed)

(create a mismatch)

(mismatches are printed out)

DEBUGGER COMMAND SET

Block Of Memory Fill
BF

BF range del data [increment] [;BIWIL]

where:

data and increment are both expression parameters

options (length of data field):

B - Byte
W- Word
L - Longword

The BF command fills the specified range of memory with a data pattern. If an increment
is specified, then data is incremented by this value following each write, otherwise data
remains a constant value. A decrementing pattern may be accomplished by entering a
negative increment. The data entered by the user is right-justified in either a byte, word,
or longword field (as specified by the option selected). The default field length is W
(word).

If the user-entered data does not fit into the data field size, then leading bits are trun­
cated to make it fit. If truncation occurs, then a message is printed stating the data pattern
which was actually written (or initially written if an increment was specified) .

If the user-entered increment does not fit into the data field size, then leading bits are
truncated to make it fit. If truncation occurs, then a message is printed stating the incre­
ment which was actually used.

If the upper address of the range is not on the correct boundary for an integer multiple of
the data to be stored, then data is stored to the last boundary before the upper address.
No address outside of the specified range is ever disturbed in any case. The "Effective
address" messages displayed by the command show exactly where data was stored.

3-7

•

I

DEBUGGER COMMAND SET

BF

Example 1: (Assume memory from $20000 through $2002F is clear.)

143-Bug>8F 20000,2001 F 4E71
Effective address: 00020000
Effective address: 0002001F
143-Bug>MD 20000:30;8
00020000 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqNq
00020010 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqNq
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ' •••••••••••• 0 ••

Because no option was specified, the length of the data field defaulted to word.

Example 2: (Assume memory from $20000 through $2002F is clear.)

143-Bug>8F 20000:10 4E71 ;8
Effective address: 00020000
Effective count : &16
Data = $71
143-Bug>MD 20000:30;8
00020000 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 qqqqqqqqqqqqqqqq

00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The specified data did not fit into the specified data field size . The data was truncated
and the "Data = " message was output.

Example 3: (Assume memory from $20000 through $2002F is clear.)

143-Bug>8F 20000,20006 12345678 ;L
Effective address: 00020000
Effective address: 00020003
143-·Bug>MD 20000:30;8
00020000 12 34 56 78 00 00 00 00 00 00 00 00 00 00 00 00 .4Vx . • • • • • • • 0 •• •

00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••••••••• 0 .

00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The longword pattern would not fit evenly in the given range. Only one longword was
written and the "Effective address" messages reflect the fact that data was not written all
the way up to the specified address.

3-8

DEBUGGER COMMAND SET

Example 4: (Assume memory from $20000 through $2002F is clear.)

143-Bug>BF 20000:18 0 1
Effective address : 00020000
Effective count : &24
143-Bug>MD 20000:18
00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 0009 OOOA OOOB OOOC OOOD OOOE OOOF
00020020 0010 0011 0012 0013 0014 0015 0016 0017

(default size is word)

BF

3-9

I

I

DEBUGGER COMMAND SET

Bootstrap Operating System And Halt
BH

BH [controller LUN] [del device LUN] [del string]

where:

controller LUN

device LUN

del

string

is the LUN of the controller to which the above device is at­
tached. Defaults to LUN 0.

is the LUN of the device to boot from. Defaults to LUN 0.

is a field delimiter: comma (;) or spaces () .

is a string that is passed to the operating system or control pro­
gram loaded. Its syntax and use is completely defined by the
loaded program.

BH is used to load an operating system or control program from disk into memory. This
command works in exactly the same way as the BO command, except that control is not
given to the loaded program. After the registers are initialized, control is returned to the
143Bug debugger and the prompt reappears on the terminal screen. Because control is
retained by 143Bug, all the 143Bug facilities are available for debugging the loaded pro­
gram if necessary.

Examples:

143-Bupbh 0,1
143-Bug>

143-Bupbh 3,a, test2;d

143-Bug>

Boot and halt from controller 0, device LUN 1.

Boot and halt from controller 3, device LUN $A,
and pass the string "test2;d" to the loaded
program.

Refer to the BO Command paragraph in the chapter for more detailed information about
what happens during bootstrap loading.

3-10

DEBUGGER COMMAND SET

Block Of Memory Initialize

BI range [;BIWIL]

options:

B - Byte

W- Word
L - Longword

81

The BI command may be used to initialize parity for a block of memory. The BI command
is non-destructive; if the parity is correct for a memory location, then the contents of that
memory location are not altered.

The limits of the block of memory to be initialized may be specified using a range. The
length option is valid only when a count is entered.

BI works through the memory block by reading from locations and checking parity. If the
parity is not correct, then the data read is written back to the memory location in an
attempt to correct the parity. If the parity is not correct after the write, then the message
"RAM FAIL" is output and the address is given.

This command may take several seconds to initialize a large block of memory.

Example 1:

143-Bug>BI 0 : 10000 ;8
Effective address: 00000000
Effective count : &65536
143-Bug>

Example 2: (Assume system memory from $0 to $000FFFFF.)

143-Bug>BI 0,1FFFFF
Effective address: 00000000
Effective address: 001FFFFF
RAM FAIL AT $00100000
143-Bug>

3-11

•

•

DEBUGGER COMMAND SET

Block Of Memory Move

BM range del addr [; BIWIL]

options:

B - Byte
W- Word
L - Longword

BM

The BM command copies the contents of the memory addresses defined by range to
another place in memory, beginning at addr.

The option field is only allowed when range was specified using a courit. In this case, the
B, W, or L defines the size of data that the count is referring to. For example, a count of
4 with an option of L would mean to move 4 longwords (or 16 bytes) to the new location.
If an option field is specified without a count in the range, an error results.

Example 1: (Assume memory from 20000 to 2000F is clear.)

143-Bug>MD 21000:20;8
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •• •• • •••••• 0 •• ••

143-Bug>BM 21000 2100F 20000
Effective address: 00021000
Effective address: 0002100F
Effe ctive address : 00020000

143-Bug>MD 20000:20;8
00020000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
143-Bug>

Example 2: This utility is very useful for patching assembly code in memory. Suppose
the user had a short program in memory at address 20000 ...

143-Bug>MD 20000 2000A;DI
00020000 0480
00020002 E2A2
00020004 2602
00020006 4E4F
00020008 0021
0002000A 4E71

3-12

ADD.L 00,02
ASR . L 01,02
MOVE.L 02,03
TRAP #15
OC .W $21
NOP

DEBUGGER COMMAND SET

BM

Now suppose the user would like to insert a NOP between the ADD.L in­
struction and the ASR.L instruction. The user should Block Move the object
code down two bytes to make room for the NOP.

143-Bug>BM 20002 20008 20004
Effective address: 00020002
Effective address: 0002000B

Effective address: 00020004

143-Bug>MD 20000 2000C;DI
00020000 D480 ADD.L DO,D2

00020002 E2A2 ASR.L D1 ,D2
00020004 E2A2 ASR.L D1 , D2
00020006 2602 MOVE.L D2,D3
00020008 4E4F TRAP #15
0002000A 0021 DC.W $21
0002000C 4E71 NOP

Now the user needs simply to enter the NOP at address 20002 .

143-Bug>MM 20002;01
00020002 E2A2

00020002 4E71
00020004 E2A2
143-Bug>

143- Bug>MD 20000 2000C;DI
00020000 D480
00020002 4E71

00020004 E2A2

00020006 2602
00020008 4E4F

0002000A 0021

0002000C 4E71
143-Bug>

ASR.L
NOP
ASR.L

ADD.L
NOP
ASR.L

MOVE.L
TRAP
DC.W
NOP

D1 , D2 ? NOP

D1, D2 ? .

DO,D2

D1 , D2

D2 ,D3
ltl5
$21

3-13

I

I

DEBUGGER COMMAND SET

Bootstrap Operating System
80

BO [controller LUN] [del device LUN] [del string]

where:

controller LUN is the LUN of the controller to which the above device is at­
tached. Defaults to LUN 0.

device LUN is the LUN of the device to boot from. Defaults to LUN 0.

del is a field delimiter: comma (,) or spaces () .

string is a string that is passed to the operating system or control pro­
gram loaded . Its syntax and use is completely defined by the
loaded program.

BO is used to load an operating system or control program from disk into memory and
give control to it. Where to find the program and where in memory to load it is contained
in block 0 of the device LUN specified. (Refer to Appendix D.) The device configuration
information is located in block 1 (Appendix D). The controller and device configurations
used when BO is initiated can be examined and changed via the VO Teach (lOT)
command.

The following sequence of events occurs when BO is invoked:

3-14

1. Block 0 of the controller LUN and device LUN specified is read into memory.

2. Locations $F8 (248) through $FF (255) of block 0 are checked to contain the
string "MOTOROLA" or "EXORMACS".

3. The following information is extracted from block 0:

$90 (144) - $93 (147) :
$94 (148)

Configuration area starting block.
Configuration area length in blocks.

If any of the above two fields is zero, the present controller configuration is re­
tained; otherwise the first block of the configuration area is read and the control­
ler reconfigured.

DEBUGGER COMMAND SET

80

4. The program is read from disk into memory. The following locations from block 0
contain the necessary information to initiate this transfer:

$14 (20) - $17 (23)
$18 (24) - $19 (2S)
$1E (30) - $21 (33)

Block number of first sector to load from disk.
Number of blocks to load from disk.
Starting memory location to load.

S. The first eight locations of the loaded program must contain a "pseudo reset vec­
tor", which is loaded into the target registers:

0-3: Initial value for target system stack pointer.

4-7: Initial value for target PC. If less than load address+8, then it represents
a displacement that, when added to the starting load address, yields the
initial value for the target PC.

6. Other target registers are initialized with certain arguments . The resultant target
state is shown below:

PC =Entry point of loaded program (loaded from "pseudo reset vector").
SR = $2700.
DO = Device LUN.
D1 = Controller LUN.
D4 = Flags for IPL; 'IPLx', with x = bits

Reserved
Firmware support for TRAP #1S
Firmware support IPL Disk 110
Firmware support for SCSI streaming tape
Firmware support for TRAP #1S ID Packet
Unused (Reserved)

AO = Address of disk controller.
A1 = Entry point of loaded program.

7654 3210

1

00

0

1

00
1

A2 = Address of media configuration block. Zero if no configuration loaded.
AS = Start of string (after command parameters) .
A6 = End of string + 1 (if no string was entered AS = A6).
A7 = Initial stack pointer (loaded from "pseudo reset vector").

7. Control is given to the loaded program. Note that the arguments passed to the
target program, as for example, the string pointers, may be used or ignored by the
target program.

3-1S

I

DEBUGGER COMMAND SET

Examples:

I
143-Bug>BO

143-Bug>B0,3

143-Bug>bo3

143-Bug>bo O,S,test

3-16

80

Boot from default controller LUN and device
LUNas defined by AB command.

Boot from default controller LUN, device
LUN 3.

Boot from controller LUN 3, default device
LUN.

Boot from controller LUN 0, device LUN 8,
and pass the string "test" to the booted
program.

DEBUGGER COMMAND SET

Breakpoint Insert/Delete

BR [addr[:count]]
NOBR [addr]

BR
NOBR

The BR command allows the user to set a target code instruction address as a "breakpoint
address" for debugging purposes. If, during target code execution, a breakpoint with 0
count is found, the target code state is saved in the target registers and control is returned
back to 143Bug. This allows the user to see the actual state of the processor at selected
instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in a table which is
displayed each time either BR or NOBR is used. If an address is specified with the BR
command, that address is added to the breakpoint table. The count field specifies how
many times the instruction at the breakpoint address must be fetched before a breakpoint
is taken. The count, if greater than zero, is decremented with each fetch. Every time that
a breakpoint with zero count is found, a breakpoint handler routine prints the CPU state
on the screen and control is returned to 143Bug.

Refer to Chapter 2 for use of a function code as part of the addr field.

NOBR is used for deleting breakpoints from the breakpoint table. If an address is speci­
fied, then that address is removed from the breakpoint table. If NOBR (CR) is entered,
then all entries are deleted from the breakpoint table and the empty table is displayed.

Example:

143-Bug>BR 14000,14200 14700:&12
BREAKPOINTS
00014000 00014200
00014700:C

(Set some breakpoints.)

143-Bug>NOBR 14200 (Delete one breakpoint.)
BREAKPOINTS
00014000 00014700:C

143-Bug>NOBR (Delete all breakpoints .)
BREAKPOINTS
143-Bug>

3-17

I

I

DEBUGGER COMMAND SET

Block Of Memory Search
BS

BS range del 'text' [;B IW IL]

or

BS range del data del [mask] [;BIWIL,N,V]

The BS command searches the specified range of memory for a match with a user- en­
tered data pattern. This command has three modes, as described below.

Mode 1 - LITERAL STRING SEARCH -- In this mode, a search is carried out for the
ASCII equivalent of the literal string entered by the user. This mode is assumed if the
single quote (') indicating the beginning of a text field is encountered following range. The
size as specified in the option field tells whether the count field of range refers to bytes,
words, or longwords. If range is not specified using a count, then no options are allowed.
If a match is found, then the address of the first byte of the match is output.

Mode 2 - DATA SEARCH-- In this mode, a data pattern is entered by the user as part
of the command line and a size is either entered by the user in the option field or is
assumed (the assumption is word). The size entered in the option field also dictates
whether the count field in range refers to bytes, words, or longwords . The following ac­
tions occur during a data search:

a. The user-entered data pattern is right-justified and leading bits are truncated or
leading zeros are added as necessary to make the data pattern the specified size.

b. A compare is made with successive bytes, words, or longwords (depending on the
size in effect) within the range for a match with the user-entered data. Compari­
son is made only on those bits at bit positions corresponding to a "1" in the mask.
If no mask is specified, then a default mask of all ones is used (all bits are com­
pared). The size of the mask is taken to be the same size as the data.

3-18

c. If the N (non-aligned) option has been selected, then the data is searched for on a
byte-by-byte basis , rather than by words or longwords, regardless of the size of
data. This is useful if a word (or longword) pattern is being searched for, but is
not expected to lie on a word (or longword) boundary. _..--

d. If a match is found, then the address of the first byte of the match is output along
with the memory contents. If a mask was in use, then the actual data at the mem­
ory location is displayed, rather than the data with the mask applied.

DEBUGGER COMMAND SET

BS

Mode 3 - DATA VERlFICATION -- If the V (verify) option has been selected, then
displaying of addresses and data is done only when the memory contents do NOT match
the user-specified pattern. Otherwise this mode is identical to Mode 2.

For all three modes, information on matches is output to the screen in a four-column
format. If more than 24 lines of matches are found, then output is inhibited to prevent the
first match from rolling off the screen. A message is printed at the bottom of the screen
indicating that there is more to display. To resume output, the user should simply press
any character key. To cancel the output and exit the command, the user should press the
BREAK key.

If a match is found (or, in the case of Mode 3, a mismatch) with a series of bytes of
memory whose beginning is within the range but whose end is outside of the range, then
that match is output and a message is output stating that the last match does not lie
entirely within the range. The user may search non-contiguous memory with this com­
mand without causing a Bus Error.

Examples: (Assume the following data is in memory.)

00030000 0000 0045 7272 6F72 2053
00030010 3446 2F2F 436F 6E66 6967
00030020 7461 7274 3AOO 0000 0000

143-Bug>BS 30000 3002F 'Task Status'

Effective address: 00030000

Effective address: 0003002F
-not found-

143-Bug>BS 30000 3002F 'Error Status'

Effective address: 00030000

Effective address: 0003002F

00030003

7461
5461
0000

143-Bug>BS 30000 3001 F 'ConfigTableStart'

Effective address: 00030000

Effective address: 0003001F

00030014

-last match extends over range boundary-

7475 733D
626C 6553
0000 0000

... Error Status=
4F//ConfigTableS
tart:

Mode 1: the string is not
found, so a message is output.

Mode 1: the string is found, and
the address of its first byte is
output.

Mode 1: the string is found, but
it ends outside of the range , so the
address of its first byte and a
message are output.

3- 19

I

•

DEBUGGER COMMAND SET

143-Bug>BS 30000:30 't' ;B

Effective address: 00030000

Effective count &48

0003000A 0003000C 00030020 00030023

143-Bug>BS 30000:18,2F2F

Effective address: 00030000

Ef fective count : &24

00030012 I 2F2F

143-Bug>bs 30000,3002F 3d34

Effective address: 00030000

Effective address: 0003002F

-not found-

143-Bug>bs 30000,3002F 3d34 ;n

Effective address: 00030000

Effective address: 0003002F

0003000FI3D34

143-Bug>BS 30000:30 60,FO ;B

Effective address: 00030000

Ef f ective count : &48

BS

Mode 1, using range with count
and size option: count is displayed
in decimal, and address of each
occurrence of the string is output.

Mode 2, using range with count:
count is displayed in decimal, and
the data pattern is found and
displayed.

Mode 2: the default size is word
and the data pattern is not found,
so a message is output.

Mode 2: the default size is word
and non-aligned option is used, so
the data pattern is found and

displayed .

00030006I6 F 0003000B I61 00030015 I6F ooo30016 I6E

Mode 2, using range with
count, mask option, and size
option: count is displayed in
decimal, and the actual un­
masked data patterns found
are displayed. 00030017166 00030018169 00030019167 0003001BI61

0003001C I62 0003001D I 6C 0003001EI65 00030021161

143-Bug>BS 3000 1FFFF 0000 OOOF;V

Effective address: 00003000

Effective address: 0001FFFE

OOOOCOOO IE501 0001E224IA30E
143-Bug>

3- 20

Mode 3, on a different block of
memory, mask option, scan for
words with low nibble nonzero:
two locations failed to verify.

DEBUGGER COMMAND SET

Block Of Memory Verify
BV

BV range del data [increment] [;BIWIL]

where:

data and increment are both expression parameters

options:

B - Byte
W- Word
L - Longword

The BV command compares the specified range of memory against a data pattern. If an
increment is specified, then data is incremented by this value following each comparison,
otherwise data remains a constant value. A decrementing pattern may be accomplished by
entering a negative increment. The data entered by the user is right-justified in either a
byte, word, or longword field (as specified by the option selected). The default field
length is W (word).

If the user-entered data or increment (if specified) do not fit into the data field size, then
leading bits are truncated to make them fit. If truncation occurs, then a message is printed
stating the data pattern and, if applicable, the increment value actually used .

If the range is specified using a count, then the count is assumed to be in terms of the
data size.

If the upper address of the range is not on the correct boundary for an integer multiple of
the data to be stored, then data is stored to the last boundary before the upper address.
No address outside of the specified range is read from in any case. The "Effective ad­
dress" messages displayed by the command show exactly the extent of the area read
from .

3-21

I

I

DEBUGGER COMMAND SET

BV

Example 1: (Assume memory from $20000 to $2002F is as indicated.)

143-Bug>MD 20000:30;8
00020000 4E 71 4E 71 4E 71 4E 71

00020010 4E 71 4E 71 4E 71 4E 71

00020020 4E 71 4E 71 4E 71 4E 71

143-Bug>8V 20000 2001 F 4E71
Effective address: 00020000
Effective address: 0002001F

143-Bug>

4E 71 4E 71 4E 71 4E 71

4E 71 4E 71 4E 71 4E 71
4E 71 4E 71 4E 71 4E 71

NqNqNqNqNqNqNqNq
NqNqNqNqNqNqNqNq

NqNqNqNqNqNqNqNq

(default size is word)

(verify successful, nothing printed)

Example 2: (Assume memory from $20000 to $2002F is as indicated .)

143-Bug>MD 20000:30;8
000 20000 00 00 00 00 00 00
00020010 00 00 00 00 00 00
00020020 00 00 00 00 00 00
143-Bug>8V 20000:30 0;8
Eff ective address: 00020000
Effective count : &48

00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00 00 00
00 00 00 00 00 00
4A FB 4A FB 4A FB J{J{J{

0002002Aj4A 0002002BjFB 0002002Cj4A 0002002DjFB

0002002Ej4A 0002002FjFB

(mismatches are
printed out)

143-Bug>

Example 3: (Assume memory from $20000 to $2002F is as indicated .)

143-Bug>MD 20000:18
00020000 0000 0001 0002 0003
00020010 0008 FFFF OOOA OOOB

00020020 0010 0011 0012 0013

143-Bug>8V 20000:18 0 1
Effective address: 00020000
Effective count : &24

00020012 jFFFF

143-Bug>

3- 22

0004 0005 0006 0007
OOOC OOOD OOOE OOOF
0014 0015 0016 0017

(default size is word)

(mismatches are printed out)

DEBUGGER COMMAND SET

Checksum
cs

CS address] address2

The CS command provides access to the same checksum routine used by the power-up
self-test firmware. This routine is used in two ways within the firmware monitor.

a. At power-up, the power-up confidence test is executed. One of the items verified
is the checksum contained in the firmware monitor EPROM. If for any reason the
contents of the EPROM were to change from the factory version, the checksum
test is designed to detect the change and inform the user of the failure.

b. Following a valid power-up test, 143Bug examines the ROM map space for code
that needs to be executed. This feature (ROMboot) makes use of the checksum
routine to verify that a routine in memory is really there to be executed at power­
up. For more information, refer to the ROMboot paragraph in Chapter 1 which
describes the format of the routine to be executed and the interface provided upon
entry.

This command is provided as an aid in preparing routines for the ROMboot feature .
Because ROMboot does checksum validation as part of its screening process, the user
needs access to the same routine in the preparation of EPROM/ROM routines .

The address parameters can be provided in two forms:

a. An absolute address (32- bit maximum).

b. An expression using a displacement + relative offset register.

When the CS command is used to calculate/verify the content and location of the new
checksum, the operands need to be entered. The even and odd byte result should be 0000,
verifying that the checksum bytes were calculated correctly and placed in the proper loca­
tions.

The algorithm used to calculate the checksum is as follows:

a. $FF is placed in each of two bytes within a register. These bytes represent the
even and odd bytes as the checksum is calculated.

b. Starting with address] the even and odd bytes are extracted from memory and
XORed with the bytes in the register.

3- 23

I

I

DEBUGGER COMMAND SET

cs
c. This process is repeated, word by word, until address2 is reached . This technique

allows use of even ending addresses ($D40000 as opposed to $D3FFFF).

Examples:

143-Bug>MD 20000:3F;B

00020000 42 4F 4F 54 00 00 00 14 00
00020010 41 F9 00 01 FO 00 20 3C 00
00020020 FF FC 4E 75 01 01 00 00 FF
00020030 FF FF FF FF FF FF FF FF FF

00
00
FF
FF

Display routine requiring a checksum. Start
at $20000; last byte is at $20027. Checksum
will be placed in bytes at $20026 and $20027,
so they are zero while calculating the
checksum.

00 A6 54 65 73 74 BOOT &Test
EF FF 11 00 51 CB Ay .. p. < . . o . . . QH
FF FF FF FF FF FF . fNu
FF FF FF FF FF

143-Bug>M 20010;01 Display executable code plus revision
number, checksum, socket ID, and a few
unused bytes following the routine.

00020010 41F90001 FOOO
00020016 203COOOO EFFF
0002001C 1100

0002001E 51C8FFFC
00020022 4E75
00020024 0101

00020026 0000

00020028 FFFF

0002002A FFFF

0002002C FFFF

0002002E FFFF

00020030 FFFF

3- 24

LEA.L ($1FOOO) .L,AO ?(CR)
MOVE.L #$EFFF,DO ?(CR)
MOVE . B DO,-(AO) ?(CR)
DBF . W D0,$2001C ?(CR)
RTS ? (CR)
BTST . L DO, Dl ? (CR)

0101 is revision.

DC . W $0 ? (CR)

0000 is where checksum

DC.W $FFFF ?(CR)
FFFF is unused memory .

DC.W $FFFF ?(CR)
FFFF is unused memo r y.

DC .W $FFFF ?(CR)
FFFF is unused memory .

DC .W $FFFF ?(CR)
FFFF is unused memory .

DC.W $FFFF ?.
FFFF is unused memory .

is to be p l aced.

EXAMPLE (Using Absolute Addresses)

143-Bug>CS 20000 20028

Effective address: 00020000

Effective address: 00020027

Even/Odd = $5B3C

143-Bug>M 20026;W

00020026 0000 ?5B3C.

143-Bug>CS 20000 20028

Effective address: 00020000

Effective address: 00020027

Even/Odd = $0000

EXAMPLE (Using Relative Offset)

143-Bug>OF R3

R3 =00000000 00000000? 20000 .

143-Bug>CS 0+R3 28+R3

Effective address: 00000+R3
Effective address: 00027+R3

Even/Odd = $5B3C

143- Bug>M 26+R3;W

00000026+R3 0000 ?5B3C.

143-Bug>CS 0+R3 28+R3
Effective address : 00000+R3
Effective address: 00027+R3

Even/Odd = $0000

143-Bug>

DEBUGGER COMMAND SET

COMMENT

Request checksum of area using
absolute addresses.

Checksum of even bytes is $5B.
Checksum of odd bytes is $3C.

Place these bytes in zeroed area
used while calculating checksum.

Verify checksum.

Result is 0000, good checksum.

COMMENT

Define value of relative offset
register 3.

Request checksum of area using
relative offset.

Checksum of even bytes is $5B.
Checksum of odd bytes is $3C.

cs

Place these bytes in zeroed area used
while checksum was calculated .

Verify checksum.

3-25

•

I

DEBUGGER COMMAND SET

Data Conversion
DC

DC exp I addr

The DC command is used to simplify an expression into a single numeric value. This equivalent value is

displayed in its hexadecimal and decimal representation. If the numeric value could be interpreted as a

signed negative number (i.e. , if the most significant bit of the 32-bit internal representation of the number

is set), then both the signed and unsigned interpretations are displayed.

DC can also be used to obtain the equivalent effective address of an MC68030 addressing
mode.

Examples:

143-Bug>DC 10
00000010

143-Bug>DC &10-&20
SIGNED FFFFFFF6

$10 &16

-$A = -&10
UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286

143-Bug>DC 123+&345+@67+%1100001
00000314 = $314 = &788

143-Bug>DC (2*3*8) /4
OOOOOOOC $C &12

143·-Bug>DC 55&F
00000005 $5 &5

143-Bug>DC 55»1
0000002A $2A &42

3-26

DEBUGGER COMMAND SET

DC

The subsequent examples assume A0=00030000 and the following data resides in
memory:

00030000 11111111 22222222 33333333 44444444 •••• II IIIII I 3 3 3 3DDDD

143-Bug>DC (AO)
00030000 $30000 = &196608

143-Bug>DC ([AO])
11111111 $11111111 = &286331153

143-Bug>DC (4,AO)
00030004 $30004 = &196612

143-Bug>DC ([4,AO])
22222222 $22222222 = &572662306

3-27

I

I

DEBUGGER COMMAND SET

Dump S-Records
DU

DU [port]del range del[text del] [addr] [offset] [;BIWIL]

The DU command outputs data from memory in the form of Motorola S-records to a port
specified by the user. If port is not specified, then the S-records are sent to the default
host port (port 1).

The option field is allowed only if a count was entered as part of the range, and defines
the units of the count (bytes , words, or longwords).

The optional text field is for text that will be incorporated into the header (SO) record of
the block of records that will be dumped.

The optional addr field is to allow the user to enter an entry address for code contained in
the block of records. This address is incorporated into the address field of the block
termination record. If no entry address is entered, then the address field of the termina­
tion record will consist of zeros . The termination record will be an S7, S8, or S9 record,
depending on the address entered . Refer to Appendix C for additional information on
S-records.

An optional offset may also be specified by the user in the offset field . The offset value is
added to the addresses of the memory locations being dumped, to come up with the
address which is written to the address field of the S-records . This allows the user to
create an S-record file which will load back into memory at a different location than the
location from which it was dumped. The default offset is zero.

NOTE

If an offset is to be specified but no entry address is to be specified, then
two commas (indicating a missing field) must precede the offset to keep it
from being interpreted as an entry address.

Example 1: Dump memory from $20000 to $2002F to port 1.

143-·Bug>DU 20000 2002F
Effective address: 00020000
Effec tive address: 0002002F

143- Bug>

3-28

DEBUGGER COMMAND SET

DU

Example 2: Dump 10 bytes of memory beginning at $30000 to the terminal screen (port
0).

143-Bug> DU 0 30000:&10
Effective address : 00030000
Effective count : &10
S0030000FC
S20E03000026025445535466084E4F7B
S9030000FC

Example 3: Dump memory from $20000 to $2002F to host (port 1). Specify a filename
of "TEST" in the header record and specify an entry point of $2000A.

143-Bug>DU 20000 2002F 'TEST' 2000A
Effective address: 00020000
Effective address: 0002002F

143-Bug>

The following example shows how to upload S-records to a host computer (in this case a
system running the VERSAdos operating system) , storing them in the file "Fll..,El.MX"
which the user creates with the VERSAdos utility UPLOADS.

143-Bug>TM

Escape character : $01='A

BREAK

login

=UPLOADS FILE1

(Go into transparent mode to establish
communication with the system.)

(Press BREAK key to get VERSAdos login
prompt.)

(User must log onto VERSAdos and enter the
catalog where Fll..,El.MX will reside .)

(At VERSAdos prompt, invoke the UPLOADS
utility and tell it to create a file named "Fll..,E1 "
for the S-records that will be uploaded .)

3-29

I

I

DEBUGGER COMMAND SET

The UPLOADS utility at this point displays some messages like the following:

vo lume=xxxx
catlg=xxxx

file=FILE1
ext=MX

UPLOAD "S" RECORDS
Version x.y

Copyrighted by MOTOROLA , INC .

UPLOADS Allocating new file

Ready for "S" records, . ..

=' A

143-Bug>

(When the VERSAdos prompt returns , enter
the escape character to return to 143Bug).

Now enter the command for 143Bug to dump the S-records to the port.

143-Bug>DU 20000 2000F 'FILE1'
Effective address: 00020000
Effective address: 0002000F
143-Bug>

143-Bug>TM
Escape character: $01= 'A

QUIT

(Go into transparent mode again.)

(Tell UPLOADS to quit looking for records.)

The UPLOADS utility now displays some more messages like this:

volume=xxxx
catlg=xxxx

f i le=FILE1
ext=MX

UPLOAD "S" RECORDS
Version x.y

Copyrighted by MOTOROLA, INC .

STATUS No error since start of program

Upload of S-Records complete.

3-30

DU

=OFF

' A

143-Bug

DEBUGGER COMMAND SET

(The VERSAdos prompt should return .
Log off of the system.)

(Enter the escape character to return to
143Bug.)

DU

3- 31

I

I

DEBUGGER COMMAND SET

EEPROM Programming
EEP

EEP range del addr [;W]

options:

W - Word (default)

The EEP command is similar to the BM command in that it copies the contents of the
memory addresses defined by range to EEPROM or another place in memory, beginning
at addr. However, the EEP command moves the data a word at a time with a 15 millisec­
ond delay between each data move. Also, addr must be a word-aligned address.

Example 1: (Assumes EEPROMs installed in XU21 and XU28 (bank 2), and J6 config­
ured for the right size EEPROMs. Refer to the MVME143 MPU VMEmodule
User's Manual for jumper details. XU21 and XU28 are at addresses starting
at $FFF20000 and ending at or below $FFF3FFFF in the main memory
map, with the odd- byte chip in XU21 and the even-byte chip in XU28.
Note that 143Bug is in the EPROMs in XU3 and XU12 (bank 1), at \,__./
$FFFOOOOO through $FFF1FFFF, with odd bytes in XU3 and even bytes in
XU12.)

143-Bug>MD 21000:20;8
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

143-Bug>EEP 21000 2101F FFAOOOOO
Effective address: 00021000
Effective address: 0002101F
Effective address: FFAOOOOO
Programming EEPROM -Done.

143-Bug>MD F20000:10;W
OOF20000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21
OOF20010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
143-Bug>

3-32

THIS IS A TEST!!

THIS IS A TEST!!

DEBUGGER COMMAND SET

Example 2:

143 - Bug>EEP 21000:8 F20000;W
Effective address: 00021000

Effective count : &8
Effective address: OOF20000
Programming EEPROM - Done.

143-Bug>MO F20000:10;W
OOF20000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21
OOF20010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

143-Bug>

EEP

THIS IS A TEST!!

3-33

I

I

DEBUGGER COMMAND SET

Set Environment To Bug/Operating System
ENV

ENV

The ENV command allows the user to select the environment that the Bug is to execute
in. When specified, the Bug remains in that environment until the ENV command is
invoked again to change it. The selections are saved in BBRAM and used whenever power
is lost.

Two Bug modes are available:

Bug

System

This is the standard mode of operation, and is the one defaulted to if
BBRAM should fail.

This is the mode for system operation and is defined in Appendix A.

Two operating system modes are available:

SYSTEM V/68 This is the standard system mode, and is the one defaulted to if
BBRAM should fail. In this mode the MVIv1E143 disk controller de­
fault configurations are for 512b sectors.

VERSAdos

Example 1:

143-Bug>env

In this mode, the MVIv1E143 disk controller default configurations
are for 256b sectors.

Bug or System environment [B ,S] = S? (CR) (no change)
SYSTEM V/ 68 or VERSAdos operating system [S,V] = S? ~

143- Bug>

3-34

(change to VERSAdos
operating system)

DEBUGGER COMMAND SET

ENV

Example 2:

143-Bug>ENV
Bug or System environment [B,S] = B? S

SYSTEM V/68 or VERSAdos operating system [S,V] = V? s

(change to system
mode of operation)
(change to SYSTEM
V/68 operating system)

Firmware now takes the reset path and initializes the MVME143 for the system mode
(refer to Appendix A for system mode operation details) .

Example 3:

143-Bug>ENV
Bug or System environment [B,S] = S? B

SYSTEM V/68 or VERSAdos operating system [S , V]

Copyright Motorola Inc. 1988, All Rights Reserved

VME143 Monitor/Debugger Release 1.0 - 4/8/88

FPC passed test
MMU passed test

Cold Start
143-Bug>

S? V

(change to Bug mode)

(change to VERSAdos
operating system)

3-35

I

I

DEBUGGER COMMAND SET

Go Direct (Ignore Breakpoints)
GO

GD [addr]

GD command is used to start target code execution . If an address is specified, it is placed
in the target PC. Execution starts at the target PC address. As opposed to GO, break­
points are not inserted.

Refer to Chapter 2 for use of a function code as part of the addr field.

Once execution of the target code has begun, control may be returned to 143Bug by
various conditions:

a. User pressed the ABORT or RESET switches on the MVME143 front panel.

b. An unexpected exception occurred.

c. By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000.)

143-Bug>MD 10000;01
00010000 2200
00010002 4282
00010004 D401
00010006 E289
00010008 66FA
0001000A E20A

0001000C 55C2
0001000E 60FE
143-Bug>RM DO

Initialize DO and start target program:

DO =00000000 ? 52A9C.
143-Bug>GD 10000
Effective address: 00010000

3-36

MOVE.L DO,D1

CLR.L D2
ADD.B D1,D2
LSR.L #$1 , D1

BNE . B $10004
LSR . B #$1,D2

SCS.B D2

BRA.B $1000E

DEBUGGER COMMAND SET

To exit target code, press ABORT switch.

Exception: Abort
Format Vector = 007C
PC =0001000E SR =2711=TR:OFF_S._7_X .. . C

USP =OOOOF830 MSP =0000FC18 ISP*=00010000 VBR =00000000
SFC. =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =00052A9C D1 =00000000 D2 =OOOOOOFF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00010000
0001000E 60FE BRA.B $1000E
143-Bug>

Set PC to start of program and restart target code:

143- Bug>RM PC
PC =0001000E ? 10000.
143-Bug>GD
Effec t ive address: 00010000

GO

3-37

I

I

DEBUGGER COMMAND SET

Go To Next Instruction
GN

GN

GN command sets a temporary breakpoint at the address of the next instruction, that is,
the one following the current instruction, and then starts target code execution. After
setting the temporary breakpoint, the sequence of events is similar to that of the GO
command.

Refer to Chapter 2 for use of a function code as part of the addr field.

GN is especially helpful when debugging modular code because it allows the user to

"trace" through a subroutine call as if it were a single instruction.

Example: The following section of code resides at address $6000.

143-Bug>MO 6000:4;01
00006000 7003 MOVEQ.L #$3,DO

00006002 7201 MOVEQ.L #$1,01

00006004 61000FFA BSR .W $7000
00006008 2600 MOVE.L DO , D3
143-Bug>

The following simple routine resides at address $7000.

143-Bug>MO 7000:2;01
00007000 D081
00007002 4E75
143-Bug>

Execute up to the BSR instruction.

143-Bug>RM PC
PC =00000000 ? 6000.

3-38

ADD.L D1 , DO
RTS

DEBUGGER COMMAND SET

143-Bug>GT 6004
Effective address: 00006004
Effective address: 00006000
At Breakpoint
PC =00006004 SR =2700=TR:OFF_S._7_
USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O= . . CAAR=OOOOOOOO

DO =00000003 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000

AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000

00006004 61000FFA BSR.W $7000

143-Bug>

GN

Use the GN command to "trace" through the subroutine call and display the results.

143-Bug>GN
Effective address: 00006004
At Breakpoint
PC =00006008 SR =2700=TR:OFF s. 7
USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =00000004 Dl =00000001 D2 =00000000 D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 ~oooooooo

AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000

00006008 2600 MOVE.L DO,D3

143-Bug>

3- 39

I

I

DEBUGGER COMMAND SET

Go Execute User Program
GO

GO [addr]

The GO command (alternate form "G") is used to initiate target code execution. All
previously set breakpoints are enabled. If an address is specified, it is placed in the target
PC. Execution starts at the target PC address. Refer to Chapter 2 for use of a function
code as part of the addr field.

The sequence of events is as follows:

a . First, if an address is specified, it is loaded in the target PC.

b . Then, if a breakpoint is set at the target PC address, the instruction at the target
PC is traced (executed in trace mode) .

c. Next, all breakpoints are inserted in the target code.

d. Finally, target code execution resumes at the target PC address.

At this point control may be returned to 143Bug by various conditions:

a. A breakpoint with 0 count was found.

b. User pressed the ABORT or RESET switches on the MVME143 front panel.

c. An unexpected exception occurred.

d. By execution of the .RETURN TRAP #15 function .

Example: (The following program resides at $10000.)

143-Bug>MD 10000;01
00010000 2200 MOVE.L 00,01
00010002 4282 CLR. L 02

00010004 0401 ADO . B 01, 0 2

00010006 E289 LSR.L #$1,01

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,02

0001000C 55C2 SCS.B 02

0001000E 60FE BRA.B $1000E

143-Bug>RM DO

3- 40

DEBUGGER COMMAND SET

Initialize DO, set some breakpoints, and start target program:

DO =00000000 ? 52A9C.
143-Bug>BR 10000, 1000E
BREAKPOINTS
00010000 0001000E

143-Bug>GO 10000
Effective address: 00010000
At Breakpoint
PC =0001000E SR =2011=TR:OFF s. _o_x ... c -
USP =0000F830 MSP =0000FC18 ISP*=00010000
SFC =O=XX DFC =O=XX CACR=O= ..
DO =OOOS2A9C D1 =00000000 D2 =OOOOOOFF
D4 =00000000 DS =00000000 D6 =00000000
AO =00000000 A1 =00000000 A2 =00000000
A4 =00000000 AS =00000000 A6 =00000000

VBR =00000000
CAAR=OOOOOOOO
D3 =00000000
D7 =00000000
A3 =00000000
A7 =00010000

0001000E 60FE BRA.B $1000E

GO

Note that in this case breakpoints are inserted after tracing the first instruction, therefore
the first breakpoint is not taken.

Continue target program execution.

143-Bug>G
Effective address: 0001000E
At Breakpoint
PC =0001000E SR =2011=TR:OFF_S._O_X ... C
USP =OOOOF830
SFC =O=XX

MSP
DFC

=0000FC18
=O=XX

ISP*=00010000 VBR =00000000
CACR=O= .. CAAR=OOOOOOOO

DO =000S2A9C
D4 =00000000
AO =00000000
A4 =00000000
0001000E 60FE

D1
D5
A1
AS

=00000000
=00000000
=00000000
=00000000

D2
D6
A2
A6

BRA.B

=OOOOOOFF D3
=00000000 D7
=00000000 A3
=00000000 A7

$1000E

Remove breakpoints and restart target code.

143-Bug>NOBR
BREAKPOINTS
143-Bug>GO 10000
Effective address: 00010000

=00000000
=00000000
=00000000
=00010000

3-41

•

DEBUGGER COMMAND SET

GO

To exit target code, press the ABORT switch.

Exception: Abort

•
Format Vector = 007C
PC =OOOlOOOE SR =20ll=TR : OFF - S . _o_x . . . c
USP =0000F830 MSP =0000FC18 I SP*=OOOlOOOO VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= . . CAAR=OOOOOOOO
DO =00052A9C Dl =00000000 D2 =OOOOOOFF D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00010000
OOOl OOOE 60FE BRA . B $1000E

~-42

DEBUGGER COMMAND SET

Go To Temporary Breakpoint
GT

GT addr

GT command allows the user to set a temporary breakpoint and then start target code
execution. A count may be specified with the temporary breakpoint. Control is given at
the target PC address . All previously set breakpoints are enabled. The temporary break­
point is removed when any breakpoint with 0 count is encountered.

Refer to Chapter 2 for use of a function code as part of the addr field.

After setting the temporary breakpoint, the sequence of events is similar to that of the GO
command. At this point control may be returned to 143Bug by various conditions:

a. A breakpoint with count 0 was found.

b. User pressed the ABORT or RESET switches on the MVME143 front panel.

c. An unexpected exception occurred.

d. By execution of the .RETURN TRAP #15 function .

Example: (The following program resides at $10000.)

143-Bug>MD 10000;01
00010000 2200
00010002 4282

00010004 D401

00010006 E289

00010008 66FA

0001000A E20A
0001000C 55C2
0001000E 60FE
143-Bug>RM DO

Initialize DO and set a breakpoint:

DO =00000000 ? 52A9C.

143- Bug>BR 1000E
BREAKPOINTS
OOOlOOOE

143-Bug>

MOVE.L
CLR.L
ADD.B
LSR.L

BNE.B

LSR . B
SCS.B
BRA . B

DO,D1
D2
D1,D2
#$1,D1

$10004
#$1,D2
D2
$1000E

3-43

•

•

DEBUGGER COMMAND SET

Set PC to start of program, set temporary breakpoint, and start target code:

143-Bug>RM PC
PC =0001000E ? 10000.
143-Bug>

143-Bug>GT 10006
Effective address: 00010006
Effective address: 00010000
At Breakpoint
PC =00010006 SR =27ll=TR:OFF_S. _7_X . . . C
USP =00003830 MSP =00003C18 ~SP*=00004000

SFC =O=XX DFC =O=XX CACR=O= ..
DO =000S2A9C D1 =00000029 D2 =00000009
D4 =00000000 DS =00000000 D6 =00000000
AO =00000000 A1 =00000000 A2 =00000000
A4 =00000000 AS =00000000 A6 =00000000

VBR =00000000
CAAR=OOOOOOOO
D3 =00000000
D7 =00000000
A3 =00000000
A7 =00004000

00010006 E289 LSR.L #$1,D1

143-Bug>

GT

Set another temporary breakpoint at $10002 and continue the target program execution.

143-Bug>GT 10002
Effective address: 00010006
At Breakpoint
PC =0001000E SR =2711 =TR:OFF_S. _7_X ... C

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO

DO =OOOS2A9C D1 =00000000 D2 =OOOOOOFF D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000

0001000E 60FE BRA . B $1000E
143-Bug>

Note that a breakpoint from the breakpoint table was encountered before the temporary
breakpoint.

3- 44

DEBUGGER COMMAND SET

Help
HE

HE [command]

HE command is the 143Bug help facility . HE (CR) displays the command names of all
available commands along with their appropriate titles. HE command displays only the
command name and title for that particular command.

3- 45

•

•

DEBUGGER COMMAND SET

1/0 Control For Disk
IOC

IOC

The lOC command allows a user to send command packets directly to a disk controller.
The packet to be sent must already reside in memory and must follow the packet protocol
of the particular disk controller. This packet protocol is outlined in the user's manual for
the disk controller module. (Refer to Chapter 1.)

This command may be used as a debugging tool to issue commands to the disk controller
to locate problems with either drives, media, or the controller itself.

When invoked, this command prompts for the controller and drive required. The default
controller LUN and device LUN when lOC is invoked are those most recently specified
for lOP, lOT, or a previous invocation of lOC. An address where the controller command
is located is also prompted for . The same special characters used by the Memory Modify
(MM) command to access a previous field C), reopen the same location (=), or exit (.),
can be used with lOC. The power- up default for the packet address is the area which is
also used by the BO and lOP commands for building packets. lOC displays the command
packet and, if instructed by the user, sends the packet to the disk controller, following the
proper protocol required by the particular controller.

Example: Send the packet at $10000 to an MVME319 controller module configured
as CLUN #0. Specify an operation to the hard disk which is at DLUN #1.

143-Bug>IOC

Controller LUN =00? (CR)
Dev i ce LUN =00? 1
Packet address =000012BC? 10000
00010000 0219 1500 1001 0002 0100 3DOO 3000 0000
00010010 0000 0000 0300 0000 0000 0200 03
Send Packet (Y/N)? Y
143-Bug>

3-46

.. =. 0 ...

DEBUGGER COMMAND SET

1/0 Physical (Direct Disk Access)
lOP

lOP

The lOP command allows the user to read, write, or format any of the supported disk or
tape devices. When invoked, this command goes into an interactive mode, prompting the
user for all the parameters necessary to carry out the command. The user may change the
displayed value by typing a new value followed by a carriage return (CR); or may simply
enter (CR) , which leaves the field unchanged.

The same special characters used by the Memory Modify (MM) command to access a
previous field C), reopen the same location (=), or exit (.), can be used with lOP. After
lOP has prompted the user for the last parameter, the selected function is executed. The
disk SYSCALL functions (trap routines), as described in Chapter 5, are used by lOP to
access the specified disk or tape.

Initially (after a cold reset), all the parameters used by lOP are set to certain default
values. However, any new values entered are saved and are displayed the next time that
the lOP command is invoked.

The information that the user is prompted for is as follows:

a. Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access is specified in this
field.

b. Device LUN =00?

The LUN of the device to access is specified in this field.

c. Read/Write/Format =R?

In this field the user specifies the desired function by entering a one-character
mnemonic as follows:

1. R for read. This reads blocks of data from the selected device into memory.

2. W for write. This writes blocks of data from memory to the selected device .

3. F for format. This formats the selected device. For disk devices, either a track
or the whole disk can be selected by a subsequent field. For tape devices,
either Retension or Erase can be selected by a subsequent field .

3-47

•

•

DEBUGGER COMMAND SET

lOP

d. Memory Address =00003000?

This field selects the starting address for the block to be accessed. For disk read "-
operations, data is written starting at this location. For disk write operations, data
is read starting at this location.

e. Starting Block =00000000?

This parameter specifies the starting disk block number to access . For disk read
operations, data is read starting at this block. For disk write operations, data is
written starting at this block. For disk track format operations, the track that con­
tains this block is formatted.

f. Number of Blocks =0002?

This field specifies the number of data blocks (logical) to be transferred on a read
or write operation.

g. Address Modifier =00?

This field contains the VMEbus address modifier to use for Direct Memory Access
(DMA) data transfers by the selected controller. If zero is specified, a valid de­
fault value is selected by the driver. If a nonzero value is specified, then it is used
by the driver for data transfers.

h. Track/Disk =T (TID)?

This field specifies whether a disk track or the entire disk is formatted when the
format operation is selected.

1. File Number =0000?

For streaming tape devices, this field specifies the starting file number to access.

j . Flag Byte =00?

The flag byte is used to specify variations of the same command, and to receive
special status information . Bits 0 through 3 are used as command bits; bits 4
through 7 are used as status bits . At the present, only streaming tape devices use
this field. The following bits are defined for streaming tape read and write opera­
tions .

3-48

Bit 7 File Mark flag . If 1, a file mark was detected at the end of the last
operation.

DEBUGGER COMMAND SET

MA
NOMA

The second argument would be used whenever the sequence "\1" occurred . Entering
ARGUE 3000 1 ;B on the debugger command line would invoke the macro named AR­
GUE with the text strings 3000, 1, and ;B replacing "\0", "\1" , and "\2", respectively,
within the body of the macro.

To delete a macro, invoke NOMA followed by the name of the macro. Invoking NOMA
without specifying a macro name deletes all macros. If NOMA is invoked with a valid
macro name that does not have a definition, an error message is printed.

Examples:

143-Bug>MA ABC

M=MD 3000

M=GO \ 0

M= (CR)

143-Bug>

143-Bug>MA DIS

M=MD \0:17;DI

M= (CR)

143-Bug>

143-Bug>MA

MACRO ABC
010 MD 3000

020 GO \0

MACRO DIS
010 MD \0:17;DI

143-Bug>

143-Bug>MA ABC

MACRO ABC
010 MD 3000

020 GO \0

143- Bug>

143-Bug>NOMA DIS

143-Bug>

143-Bug>MA ASM

M=MM \ O;DI

M= (CR)

143-Bug>

Define macro ABC.

Define macro DIS.

List macro definitions.

List definitions of macro ABC.

Delete macro DIS.

Define macro ASM.

3-63

I

I

DEBUGGER COMMAND SET

143-Bug>MA

MACRO ABC
010 MD 3000
020 co \0
MACRO ASM
010 MD \ O;DI
143-'Bug>

143-Bug>NOMA

143- Bug>

143-Bug>MA

NO MACROS DEFINED
143-Bug>

3-64

List all macros.

Delete all macros.

List all macros .

MA
NOMA

DEBUGGER COMMAND SET

LO

characters, that the first record transferred by the host system be a header record . The
header record is not used but the LF after the header record serves to break LO out of the
loop so that data records are processed.

The other options have the following effects:

-C option - Ignore checksum. A checksum for the data contained within an
S-record is calculated as the S-record is read in at the port. Normally, this calcu­
lated checksum is compared to the checksum contained within the S- record and if
the compare fails, an error message is sent to the screen on completion of the
download. If this option is selected, then the comparison is not made .

X option -Echo. This option echoes the S- records to the user's terminal as they
are read in at the host port.\

T option - TRAP #15 code. This option causes LO to set the target register D4 =
'LO 'x, with x = $0C ($4C4F200C) . The ASCII string 'LO ' indicates that this is
the LO command; the code $0C indicates TRAP #15 support with stack parame­
ter/result passing and TRAP #15 disk support. This code can be used by the
downloaded program to select the appropriate calling convention when invoking
debugger functions, because some Motorola debuggers use conventions different
from 143Bug, and they set a different code in D4.

The S-record format (refer to Appendix C) allows an entry point to be specified in the
address field of the termination record of an S- record block. The contents of the address
field of the termination record (plus the offset address, if any) are put into the target PC.
Thus, after a download, the user need only enter G addr or GO addr to execute the code
that was downloaded.

If a non-hex character is encountered within the data field of a data record, then the part
of the record which had been received up to that time is printed to the screen and the
143Bug error handler is invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not agree with the checksum
calculated by 143Bug AND if the checksum comparison has not been disabled via the
"-C" option, then an error condition exists. A message is output stating the address of the
record (as obtained from the address field of the record), the calculated checksum, and
the checksum read with the record. A copy of the record is also output. This is a fatal
error and causes the command to abort.

3-59

•

I

DEBUGGER COMMAND SET

LO

When a load is in progress, each data byte is written to memory and then the contents of
this memory location are compared to the data to determine if the data stored properly. If
for some reason the compare fails, then a message is output stating the address where the
data was to be stored, the data written, and the data read back during the compare . This
is also a fatal error and causes the command to abort.

Because processing of the S-records is done character-by-character, any data that was
deemed good will have already been stored to memory if the command aborts due to an
error.

Examples : Suppose a host system (using VERSAdos in this case) was used to create a
program that looks like this:

1 * Test Program.
2 *

3 65040000 ORG $65040000

4
5 65040000 7001 MOVEQ . L #l,DO

6 65040002 D088 ADD.L AO,DO

7 65040004 4AOO TST.B DO

8 65040006 4E75 RTS

9 END****** TOTAL ERRORS 0--

****** TOTAL WARNINGS 0--

Then the program was converted into an S- record file named TEST.MX as follows:

SOOF00005445535453335337202001015E
S30D650400007001D0884A004E75B3
S7056504000091

3-60

\,__./

DEBUGGER COMMAND SET

Load this file into MVME143 memory for execution at address $40000 as follows:

143-Bug>TM

Escape characte r: $01= "A

BREAK

(Go into transparent mode to establish
communication with the host system.)

(Press BREAK key to get VERSAdos login
prompt.)

LO

login (User must log on onto VERSAdos and enter the
proper catalog to access the file TEST.MX)

(143Bug prompt.)

143-Bug>LO -65000000 ;X=COPY TEXT.MX,#
COPY TEST.MX,#
SOOF0000544553545333 5337202001015E
S30D650400007001D0884A004E75B3
S7056504000091
143-Bug>

The S-records are echoed to the terminal because of the. "X" option.

The offset address of -65000000 was added to the addresses of the records in TEST.MX
and caused the program to be loaded to memory starting at $40000. The text "COPY
TEST.MX,#" is a VERSAdos command line that caused the file to be copied by
VERSAdos to the host system port which is connected with the MVME143 host port.

143 - Bug>MD 40000:4;01
00040000 7001
00040002 D088
00040004 4AOO
00040006 4E75
143- Bug>

MOVEQ . L #1,DO
ADD.L AO,DO
TST.B DO
RTS

The target PC now contains the entry point of the code in memory ($40000) .

3-61

•

I

DEBUGGER COMMAND SET

Macro Define/Display/Delete

MA [name)
NOMA [name]

The name can be any combination of 1-8 alphanumeric characters.

MA
NOMA

The MA command allows the user to define a complex command consisting of any num­
ber of Bug primitive commands with optional parameter specifications.

NOMA command is used to delete either a single macro or all macros.

Entering MA without specifying a macro name causes the Bug to list all currently defined
macros and their definitions.

When MA is invoked with the name of a currently defined macro, that macro definition is
displayed.

Line numbers are shown when displaying macro definitions to facilitate editing via the
MAE command. If MA is invoked with a valid name that does not currently have a defini­
tion, then the Bug enters the macro definition mode. In response to each macro definition
prompt "M=", enter a Bug command, including a carriage return. Commands entered are
not checked for syntax until the macro is invoked. To exit the macro definition mode,
enter only a carriage return (null line) in response to the prompt. If the macro contains
errors, it can either be deleted and redefined or it can be edited with the MAE command.
A macro containing no primitive Bug commands (i.e., no definition) are not accepted.

Macro definitions are stored in a string pool of fixed size. If the string pool becomes full
while in the definition mode, the offending string is discarded, a message STRING POOL
FULL, LAST LINE DISCARDED is printed and the user is returned to the Bug command
prompt. This also happens if the string entered would cause the string pool to overflow.
The string pool has a capacity of 511 characters . The only way to add or expand macros
when the string pool is full is to either edit or delete macro(s) .

Bug commands contained in macros may reference arguments supplied at invocation

\ _./

time. Arguments are denoted in macro definitions by embedding a back slash "\ " fol- '-----'
lowed by a numeral. Up to ten arguments are permitted . A definition containing a back
slash followed by a zero would cause the first argument to that macro to be inserted in
place of the "\0" characters.

3-62

DEBUGGER COMMAND SET

lOP

Bit 1 Ignore File Number (IFN) flag. If 0, the file number field is used to posi­
tion the tape before any reads or writes are done. If 1, the file number
field is ignored, and reads or writes start at the present tape position.

Bit 0 End of File flag. If 0, reads or writes are done until the specified block
count is exhausted. If 1, reads are done until the count is exhausted or
until a file mark is found. If 1, writes are terminated with a file mark.

k. Retension/Erase =R (RIB)?

For streaming tape devices, this field indicates whether a retension of the tape or
an erase should be done when a format operation is scheduled.

Retension: This rewinds the tape to BOT, advances the tape without interruptions
to BOT, and then rewinds it back to BOT. Tape retension is recommended by
cartridge tape suppliers before writing or reading data when a cartridge has been
subjected to a change in environment or a physical shock, has been stored for a
prolonged period of time or at extreme temperature, or has been previously used
in a start/stop mode.

Erase: This completely clears the tape of previous data and at the same time
retensions the tape.

After all the required parameters are entered, the disk access is initiated. If an error
occurs, an error status word is displayed. Refer to Appendix F for an explanation of
returned error status codes.

Example 1: Read 25 blocks starting at block 370 from device 2 of controller 0 into
memory beginning at address $50000.

143-Bug>IOP
Controller LUN =00? (CR)
Device LUN =00? 2
Read/Write/Format=R? (CR)
Memory Address =00003000? 50000
Starting Block =00000000? &370
Number of Blocks =0002? &25
Address Modifier =00? (CR)
143-Bug>

3-49

I

•

DEBUGGER COMMAND SET

lOP

Example 2: Write 14 blocks starting at memory location $7000 to file 6 of device 0,
controller 4. Append a file mark at the end of the file . \......::'

143- Bug>IOP
Controller LUN =00? 4
Device LUN =02? 0
Read/Write/Format=R? VV
Memory Address =00050000? 7000
File Number =00000172? 6
Number of Blocks =0019? e
Flag Byte =00? %01
Address Modifier =00? (CR)
143-Bug>

3-50

DEBUGGER COMMAND SET

1/0 "Teach" For Configuring Disk Controller
JOT

lOT [; [H][A]]

The lOT command allows the user to "teach" a new disk configuration to 143Bug for use
by the TRAP #15 disk functions. lOT lets the user modify the controller and device de­
scriptor tables used by the TRAP #15 functions for disk access. Note that because the
143Bug commands that access the disk use the TRAP #15 disk functions , changes in the
descriptor tables affect all those commands. These commands include lOP, BO, BH, and
also any user program that uses the TRAP #15 disk functions.

Before attempting to access the disks with the lOP command, the user should verify the
parameters and, if necessary, modify them for the specific media and drives used in the
system.

Note that during a boot, the configuration sector is normally read from the disk, and the
device descriptor table for the LUN used is modified accordingly. If the user desires to
read/write using lOP from a disk that has been booted, lOT will not be required, unless
the system is reset.

lOT may be invoked with a "H" (Help) option specified. This option instructs lOT to list
the disk controllers which are currently available to the system.

Example:

143- Bug>iot; h

Disk Controllers Available

Lun Type
0 VME320

143-Bug>

Address
$FFFBOOOO

dev
4

lOT may be invoked with an "A" (All) option specified. This option instructs lOT to list
all the disk controllers which are currently supported in 143Bug.

When invoked without options, the lOT command enters an interactive subcommand
mode where the descriptor table values currently in effect are displayed one-at-a-time on
the console for the operator to examine. The operator may change the displayed value by
entering a new value or may leave it unchanged by typing only a carriage return. The
same special characters used by the Memory Modify (MM) command to access a previous
field C), reopen the same location (=), or exit (.), can be used with lOT. All numerical

3-51

I

•

DEBUGGER COMMAND SET

lOT

values are interpreted as hexadecimal numbers. Decimal values may be entered by pre­
ceding the number with an "&" .

The first two items of information that the user is prompted for are the Controller LUN
and the Device LUN (LUN =Logical Unit Number). These two LUNs specify one particu­
lar drive out of many that may be present in the system.

If the Controller LUN and Device LUN selected do not correspond to a valid controller
and device, then lOT outputs the message "Invalid LUN" and the user is prompted for the
two LUNs again.

After the parameter table for one particular drive has been selected via a Controller LUN
and a Device LUN, lOT begins displaying the values in the attribute fields, allowing the
user to enter changes if desired.

The parameters and attributes that are associated with a particular device are determined
by a parameter and an attribute mask that is a part of the device definition.

The device that has been selected may have any combination of the following parameters
and attributes:

a . Sector Size:

0-128 1-256
2-512 3-1024 =01?

The physical sector size specifies the number of data bytes per sector.

b. Block Size:

0-128 1-256
2-512 3-1024 =01?

The block size defines the units in which a transfer count is specified when doing
a disk/tape block transfer. The block size can be smaller, equal to, or greater than
the physical sector size, as long as the following relationship holds true:

(Block Size)* (Number of Blocks)/(Physical Sector Size) must be an integer.

c. Sectors/Track =0020?

3-52

This field specifies the number of data sectors per track, and is a function of the
device being accessed and the sector size specified.

DEBUGGER COMMAND SET

lOT

d. Starting Head =10?

This field specifies the starting head number for the device. It is normally zero for
Winchester and floppy drives. It is nonzero for dual-volume SMD drives.

e . Number of Heads =05?

This field specifies the number of heads on the drive.

f. Number of Cylinders =0337?

This field specifies the number of cylinders on the device . For floppy disks , the
numbers of cylinders depends on the media size and the track density. General
values for 5-1/4 inch floppy disks are shown below:

48 TPI - 40 cylinders
96 TPI - 80 cylinders

g. Precomp. Cylinder =0000?

This field specifies the cylinder number at which precompensation should occur
for this drive. This parameter is normally specified by the drive manufacturer.

h. Reduced Write Current Cylinder =0000?

This field specifies the cylinder number at which the write current should be re­
duced when writing to the drive. This parameter is normally specified by the drive
manufacturer.

i. Interleave Factor =00?

This field specifies how the sectors are formatted on a track. Normally, consecu­
tive sectors in a track are numbered sequentially in increments of 1 (interleave
factor of 1). The interleave factor controls the physical separation of logically
sequential sectors . This physical separation gives the host time to prepare to read
the next logical sector without requiring the loss of an entire disk revolution.

j. Spiral Offset =00?

The spiral offset controls the number of sectors that the first sector of each track
is offset from the index pulse. This is used to reduce latency when crossing track
boundaries.

3-53

•

•

DEBUGGER COMMAND SET

lOT

k. ECC Data Burst Length =0000?

This field defines the number of bits to correct for an ECC error when supported
by the disk controller.

I. Step Rate Code =00?

The step rate is an encoded field used to specify the rate at which the read/write
heads can be moved when seeking a track on the disk.

The encoding is as follows :

==
STEP RATE WINCHESTER 5- 114 INCH 8- INCH
CODE (HEX) HARD DISKS FLOPPY FLOPPY

00 0 msec 12 msec 6 msec
01 6 msec 6 msec 3 msec
02 10 msec 12 msec 6 msec
03 15 msec 20 msec 10 msec
04 20 msec 30 msec 15 msec

m . Single/Double DATA Density =D (SID)?

Single (PM) or double (MFM) data density should be specified by typing S or D,
respectively.

n. Single/Double TRACK Density =D (SID)?

Used to define the density across a recording surface. This usually relates to the
number of tracks per inch as follows:

48 TPI = Single Track Density
96 TPI = Double Track Density

o. Single/Equal_in_all Track zero density =S (S/E)?

3- 54

This flag specifies whether the data density of track 0 is a single density or equal
to the density of the remaining tracks. For the "Equal_in_all" case, the Single/
Double data density flag indicates the density of track 0.

DEBUGGER COMMAND SET

p. Slow/Fast Data Rate =S (S/F)?

This flag selects the data rate for floppy disk devices as follows :

S = 250 kHz data rate
F = 500 kHz data rate

q. Gap 1 =07?

lOT

This field contains the number of words of zeros that are written before the
header field in each sector during format.

r. Gap 2 =08?

This field contains the number of words of zeros that are written between the
header and data fields during format and write commands.

s. Gap 3 =00?

This field contains the number of words of zeros that are written after the data
fields during format commands .

t. Gap 4 =00?

This field contains the number of words of zeros that are written after the last
sector of a track and before the index pulse.

u. Spare Sectors Count =00?

This field contains the number of sectors per track allocated as spare sectors.
These sectors are only used as replacements for bad sectors on the disk.

Example 1: Examining the default parameters of a 5-1/4 inch floppy disk.

143-Bug>IOT
Controller LUN
Device LUN
Sector Size:
0-128 1-256
2-512 3-1024
Block Size:
0-128 1-256

=00? 8
=00? 2

=01? (CR)

2-512 3-1024 =01? (CR)
Sectors/track =0010? (CR)
Number of heads =02? (CR)
Number of cylinders =0050? (CR)

3-55

I

I

DEBUGGER COMMAND SET

Precomp. Cylinder
St ep Rate Code

=0028? (CR)
=00? (CR)

Si ngle/Double TRACK density=D (S/D)? (CR)
Single/Double DATA density =D (S/D)? (CR)
Single/Equal_in_all Track zero density =S (S/E)? (CR)
Slow/Fast Data Rate =S (S/F)? (CR)
143- Bug>

JOT

Example 2: Changing from a 40Mb Winchester to a 70Mb Winchester. (Note that re­
configuration such as this is only necessary when a user wishes to read or
write a disk which is different than the default using the lOP command.
Reconfiguration is normally done automatically by the BO or BH command
when booting from a disk which is different from the default.)

143-Bug>IOT
Controller LUN
Device LUN
Sector Size:
0-128 1-256
2-512 3-1024
Block Size:
0-128 1- 256
2-512 3-1024

=00? 8
=00? 2

=01? (CR)

=01? (CR)
Sectors/track =0020? (CR)
Starting head =00? (CR)
Number of heads =06? 8
Number of cylinders =033E? 400
Precomp. Cylinder =0000? 401
Reduced Write Current Cylinder=OOOO? (CR)
Interleave factor =01? 08
Spiral Offset =00? (CR)
ECC Data Burst Length=OOOO? 0008
Reserved Area Units:Tracks/Cylinders =T (T/C)? (CR)
Tracks Reserved for Alternates=OOOO? (CR)
143-Bug>

3-56

DEBUGGER COMMAND SET

lOT

Example 3: Changing from Fujitsu drive to Fixed/Removable CDC drive. It is necessary
to reconfigure two devices , one corresponding to the fixed disk and one
corresponding to the removable disk of the CDC drive.

143- Bug>IOT
Controller LUN
Device LUN
Sector Size :
0- 128 1-256
2-512 3-1024
Block Size:
0-128 1-256
2-512 3-1024
Sectors/Track
Starting Head
Number of Heads
Number of Cylinders
Interleave Factor
Spiral Offset
Gap 1
Gap 2
Spare Sectors Count
143-Bug>

143-Bug>IQT
Controller LUN
Device LUN
Sector Size:
0-128 1-256
2-512 3-1024
Block Size:
0-128 1-256
2-512 3-1024
Sectors/Track
Starting Head
Number of Heads
Number of Cylinders
Interleave Factor
Spi r al Offset
Gap 1
Gap 2
Spare Sectors Count
143-Bug>

=00? 2
=00? (CR)

=02? 1

=01? (CR)
=0040? (CR)
=00? 10
=OA? 5
=0337? (CR)
=01? (CR)
=00? (CR)
=10? 7
=20? 8
=00? (CR)

=02? (CR)

=00? 1

=01? (CR)

=01? (CR)
=0040? (CR)
=00? (CR)
=00? 1
=0337? (CR)
=01? (CR)
=00? (CR)
=1? (CR)
=8? (CR)
=00? (CR)

(Fixed Disk)

(Removable Disk)

3-57

I

I

DEBUGGER COMMAND SET

Load S-Records From Host
LO

LO [n] [addr] [;Xj-CjT] [=text]

The LO command is used when data in the form of a file of Motorola S-records is to be
downloaded from a host system to the MVME143. The LO command accepts serial data
from the host and loads it into memory.

NOTE

The highest baud rate that can be used with the LO command (downloader)
is 9600 baud.

The optional port number n allows the user to specify which port is to be used for the
downloading. If this number is omitted, port 1 is assumed.

The optional addr field allows the user to enter an offset address which is to be added to
the address contained in the address field of each record. This causes the records to be ___...-
stored to memory at different locations that would normally occur. the contents of the
automatic offset register are not added to the S-record addresses. If the address is in the
range $0 to $1F and the port number is omitted, enter a comma before the address to
distinguish it from a port number.

The optional text field, entered after the equals sign (=), is sent to the host before 143Bug
begins to look for S-records at the host port. This allows the user to send a command to
the host device to initiate the download. This text should NOT be delimited by any kind
of quote marks. Text is understood to begin immediately following the equals sign and
terminate with the carriage return. If the host is operating full duplex, the string is also
echoed back to the host port by the host and appears on the user 's terminal screen.

In order to accommodate host systems that echo all received characters, the above-men­
tioned text string is sent to the host one character at a time and characters received from
the host are read one at a time. After the entire command has been sent to the host LO
keeps looking for a LF character from the host, signifying the end of the echoed com- 0
mand. No data records are processed until this LF is received . If the host system does not
echo characters, LO still keeps looking for a LF character before data records are proc-
essed. For this reason, it is required in situations where the host system does not echo

3-58

DEBUGGER COMMAND SET

Macro Edit
MAE

MAE name line # [string]

name any combination of 1-8 alphanumeric characters.

line # line number in range 1-999.

string replacement line to be inserted .

The MAE command permits modification of the macro named on the command line.
MAE is line oriented and supports the following actions : insertion, deletion, and replace­
ment.

To insert a line, specify a line number between the numbers of the lines that the new line
is to be inserted between. The text of the new line to be inserted must also be specified on
the command line following the line number.

To replace a line, specify its line number and enter the replacement text after the line
number on the command line.

A line is deleted if its line number is specified and the replacement line is omitted .

Attempting to delete a nonexistent line results in an error message being printed. MAE
does not permit deletion of a line if the macro consists of only that line. NOMA must be
used to remove a macro. To define new macros, use MA; the MAE command operates
only on previously defined macros.

Line numbers serve one purpose: specifying the location within a macro definition to
perform the editing function . After the editing is complete, the macro definition is dis­
played with a new set of line numbers.

Examples:

143-Bug>MA ABC
MACRO ABC
010 MD 3000

020 GO \0
143-Bug>

List definitions of macro ABC.

3-65

I

I

DEBUGGER COMMAND SET

143-Bug>MAE ABC 15 RD
MACRO ABC
010 MD 3000

020 RD

030 GO \0
143-Bug>

143-Bug>MAE ABC 10 MD 10+R0
MACRO ABC
010 MD 10+RO

020 RD
030 GO \0
143-Bug>

143-Bug>MAE ABC 30
MACRO ABC
010 MD 10+RO
020 RD
143-Bug>

3-66

MAE

Add a line to macro ABC.

This line was inserted.

Replace line 10.

This line was overwritten.

Delete line 30.

DEBUGGER COMMAND SET

Enable/Disable Macro Expansion Listing

MAL
NO MAL

MAL
NO MAL

The MAL command allows the user to view expanded macro lines as they are executed .
This is especially useful when errors result, as the line that caused the error appears on
the display.

The NOMAL command is used to suppress the listing of the macro lines during
execution.

The use of MAL and NOMAL is a convenience for the user and in no way interacts with
the function of the macros.

3-67

I

I

DEBUGGER COMMAND SET

Save/Load Macros

MAW [controller LUN][del[device LUN][del block #]]
MAR [controller LUN] [del[device LUN] [del block #]]

MAW
MAR

controller LUN - is the LUN of the controller to which the above device is
attached. Defaults to LUN 0.

device LUN

del

block #

is the LUN of the device to save/load macros to/from. Initially
defaults to LUN 0.

is a field delimiter: comma (,) or spaces () .

is the number of the block on the above device that is the first
block of the macro list. Initially defaults to block 2.

The MAW command allows the user to save the currently defined macros to disk/tape. A
message is printed listing the block number, controller LUN, and device LUN before any
writes are made . This message is followed by a prompt (OK to proceed (y/n)?). The user
may then decline to save the macros by typing the letter N (uppercase or lowercase) .
Typing the letter Y (uppercase or lowercase) permits MAW to proceed and write the
macros out to disk/tape. The list is saved as a series of strings and may take up to three
blocks . If no macros are currently defined, no writes are done to disk/tape and NO
MACRO DEFINED is printed.

The MAR command allows the user to load macros that are saved by MAW. Care should
be taken to avoid attempting to load macros from a location on the disk/tape other than
that written to by the MAW command. While MAR checks for invalid macro names and
other anomalies, the results of such a mistake are unpredictable.

NOTE

MAR discards all currently defined macros before loading from disk/tape.

Defaults change each time MAR and MAW are invoked. When either has been used, the
default controller, device, and block numbers are set to those used for that command. If
macros were loaded from controller 0, device 2, block 8 via command MAR, then the
defaults for a later invocation of MAW or MAR would be controller 0, device 2, and block
8.

3-68

DEBUGGER COMMAND SET

MAW
MAR

Errors encountered during 1/0 are reported along with the 16-bit status word returned by
the disk 110 routines.

Examples: (Assume that controller 0, device 2 are accessible .)

143-Bug>MAR 0,2,3
143-Bug>

143-Bug>MA
MACRO ABC
010 MD 3000
020 GO \0
143-Bug>

143-Bug>MA ASM
M=MM \ 0;01
M=(CR)
143-Bug>

143-Bug>MA

MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 MD \O;DI
143-Bug>

Load macros from block 3.

List macros.

Define macro ASM.

List all macros .

143-Bug>MAW ,8 Save macros to block 8, previous device.
WRITING TO BLOCK $8 ON CONTROLLER $0, DEVICE $2
OK to proceed (y / n)? Y Carriage return not needed.
143-Bug>

3-69

I

I

DEBUGGER COMMAND SET

Memory Display
MD

MD[S] addr[:count I addr] [;[BIWILISIDIXIPIDI]]

The MD[S] command is used to display the contents of multiple memory locations all at
once. MD accepts the following data types:

Integer Data Type

B - Byte
W - Word
L - Longword

Floating Point Data Types

S - Single Precision
D - Double Precision
X - Extended Precision
P - Packed Decimal

The default data type is word. Also, for the integer data types, the data is always dis­
played in hex along with its ASCII representation. The DI option enables the Resident
MC68030 disassembler. No other option is allowed if DI is selected .

Refer to Chapter 2 for use of a function code as part of the addr field.

The optional count argument in the MD command specifies the number of data items to
be displayed (or the number of disassembled instructions to display if the disassembly
option is selected) defaulting to 8 if none is entered. The default count is changed to 128
if the S (sector) modifier is used. Entering only CR at the prompt immediately after the
command has completed causes the command to re- execute, displaying an equal number
of data items or lines beginning at the next address.

Example 1:

143-Bug>md 12000
0001 2000 2800 1942 2900 1942 2800 1 842 2900 2846 (.. B) . . B(. . B) . (F

143-Bug>(CR)
00012010 FC20 0050 ED07 9F61 FFOO OOOA E860 F060 I .Pm .. a h'p'

Example 2: Assume the following processor state: A2=00013500,D5=53F00127

143- Bug>md (a2,d5):&19;b
0001 3627 4F 82 00 C5 9B 10 33 7A DF 01 6C 3D 4B 50 OF OF

00013637 31 AB 80
143-Bug>

MD

3-70

0 .. E .. 3z_ . l=KP . .

1 + .

DEBUGGER COMMAND SET

Example 3:

143-Bug>md 50008;di
00050008 46FC2700 MOVE.W #9984,SR

0005000C 61FF0000023E BSR.L #5024C

00050012 4E7AD801 MOVEC.L VBR,A5

00050016 41ED7FFC LEA.L 32764(A5) , AO

0005001A 5888 ADDQ.L #4,AO

0005001C 2E48 MOVE.L AO,A7

0005001E 2C48 MOVE.L AO,A6

00050020 13C7FFFB003A MOVE . B D7, ($FFFB003A) .L

143- Bug>

Example 4:

143 - Bug>md 5000;d
00005000 0_3F6_44C1DOF047FC2= 2.4777000000000002_E-0003
00005008 0_423_DAEFF04800000= 1.2749000000000000_E+0011
00005010 0_000_0000000000000= 0 . 0000000000000000 E+OOOO
00005018 0_403_0000000000000= 1.6000000000000000_E+0001
00005020 l_3FF_0000000000000=-1.0000000000000000_E+0000
00005028 O_OOO_OOOOOFFFFFFFF= 2.1219957904712067_E+0314
00005030 0_ 44D_FDE9F10A8D361= 6.0200000000000000_E+0023
00005038 0_3C0_79CA10C924223= 1 . 5999999999999999_E+0019
143- Bug>

MD

3-71

I

I

DEBUGGER COMMAND SET

Menu
MENU

MENU

The MENU command works only if the 143Bug is in the "system" mode (refer to the ENV
Command in this chapter). When invoked in the "system" mode, it provides a way to exit
143Bug and return to the menu.

The following is an example of command line entries and their definitions .

143-Bug>MENU

1 Continue System Start Up
2 Select Alternate Boot Device
3 Go to Sys tem Debugger
4 Initiate Service Call
5 Display System Test Errors
6 Dump Memory to Tape
Enter Menu #:

When the 143Bug IS m "system" mode, a user can toggle back and forth between the
menu and Bug by typing a 3 in response to the Enter Menu #: prompt when the menu is
displayed. Entering the Bug and then typing MENU in response to the 143-Bug (or
143--Diag) prompt returns you to the system menu.

For details on use of the menu features, refer to Appendix A, System Mode Operation.

3-72

DEBUGGER COMMAND SET

Memory Modify
MM

MM addr [;[[BjWjLjSjDjXjP][A][N]]j[DI]]

The MM command is used to examine and change memory locations. MM accepts the
following data types:

Integer Data Type

B -Byte
W - Word
L - Longword

Floating Point Data Types

S - Single Precision
D - Double Precision
X - Extended Precision
P - Packed Decimal

The default data type is word. The MM command (alternate form "M") reads and dis­
plays the contents of memory at the specified address and prompts the user with a ques­
tion mark ("?"). The user may enter new data for the memory location, followed by
<CR>, or may simply enter <CR>, which leaves the contents unaltered. That memory
location is closed and the next location is opened.

Refer to Chapter 2 for use of a function code as part of the addr field .

The user may also enter one of several special characters, either at the prompt or after
writing new data, which change what happens when the carriage return is entered. These
special characters are as follows:

V or v The next successive memory location is opened. (This is the default. It is
in effect whenever MM is invoked and remains in effect until changed by
entering one of the other special characters.)

MM backs up and opens the previous memory location.

MM re-opens the same memory location (this is useful for examining I/0
registers or memory locations that are changing over time).

Terminates MM command. Control returns to 143Bug.

The N option of the MM command disables the read portion of the command. The A
option forces alternate location accesses only.

3-73

I

I

DEBUGGER COMMAND SET

Example 1:

143-Bug>mm 10000

00010000 1234? (CR)

00010002 5678? 4321

00010004 9ABC? 8765'

00010002 4321? (CR)

00010000 1234? abed.

Example 2:

143-Bug>mm 10001; Ia

00010001 CD432187? (CR)

00010009 00068010? 68010+10=
00010009 00068020? (CR)

00010009 00068020?

MM

Access location 10000.

Modify memory.
Modify memory and backup.

Modify memory and exit.

Longword access to location 10001
(alternate location accesses).
Modify and reopen location.

Exit MM.

The DI option enables the one-line assembler/disassembler. All other options are invalid
if DI is selected. The contents of the specified memory location are disassembled and
displayed and the user is prompted with a question mark ("?") for input. At this point the
user has three options:

a. Enter (CR) . This closes the present location and continues with disassembly of
next instruction.

b. Enter a new source instruction followed by (CR). This invokes the assembler,
which assembles the instruction and generates a "listing file" of one instruction.

c. Enter .(CR) . This closes the present location and exits the MM command.

If a new source line is entered (choice 2 above), the present line is erased and replaced by
the new source line entered. In the hardcopy mode, a line feed is done instead of erasing
the line.

If an error is found during assembly, the symbol ,., appears below the field suspected of
the error, followed by an error message. The location being accessed is redisplayed . \._..,

For additional information about the assembler, refer to Chapter 4.

The examples below were made in the hardcopy mode.

3-74

DEBUGGER COMMAND SET

Example 3: Assemble a new source line.

143-Bug>mm 10000;di
00010000 46FC2400
00010000 85E2
00010002 2400

MOVE.W #9216,SR ? divs.w -(a2),d2
DIVS.W -(A2) ,D2
MOVE.L DO,D2 ?

Example 4: New source line with error.

00010008 4E7AD801
00010008

*** Unknown Field ***

MOVEC . L VBR,A5 ? bchg #$12,9(a5,d6))
BCHG #12,9(A5,D6))

00010008 4E7 AD801 MOVEC. L VBR, AS ?

Example 5: Step to next location and exit MM.

143-Bug>m 1000c;di
OOOlOOOC OOOOOOFF
00010010 20C9
143-Bug>

Example 6:

143-Bug>m 7000;x

OR.B #255,DO? (CR)
MOVE.L A1, (AO)+ ? .

00007000 O_OOOO_FFFFFFFFOOOOOOOO? 1_3C10_84782
0000700C 1_7FFF_OOOOOOOOFFFFFFFF? 0_001A_F
00007018 O_OOOO_FFFFFFFFOOOOOOOO? 6.02E23=
00007018 0_404D_FEF4F885469B0880? '
0000700C O_OOlA_FOOOOOOOOOOOOOOO? (CR)
00007000 1_3Cl0_8478200000000000?
143-Bug>

MM

3-75

I

I

DEBUGGER COMMAND SET

Memory Set
MS

MS addr [hexadecimal number] . . . I ['string'] . ..

MS command is used to write data to memory starting at the specified address . Hex
numbers are not assumed to be of a particular size, so they can contain any number of
digits (as allowed by command line buffer size). If an odd number of digits are entered,
the least significant nibble of the last byte accessed is be unchanged.

Refer to Chapter 2 for use of a function code as part of the addr field.

ASCII strings can be entered by enclosing them in single quotes ('). To include a quote as
part of a string, two consecutive quotes should be entered.

Example: Assume that memory is initially cleared:

143-Bug>ms 25000 0123456789abcDEF 'This is "143Bug'" 23456
143-Bug>md 25000:20;b
00025000 0123 4567 89AB CDEF 5468 6973 2069 7320
00025010 2731 3433 4275 6727 2345 6000 0000 0000
143-Bug>

3-76

.#Eg.+MoThis is
'143Bug ' #E'

DEBUGGER COMMAND SET

Set Memory Address From VMEbus
OBA

OBA

The OBA (Off- Board Address) command allows the user to set the base address of the
MVME143 onboard RAM, as seen from the VMEbus. (Refer to Chapter 1.) Therefore,
the user should enter the hex number corresponding to the actual base address, so that
the offboard external devices on the VMEbus will know where it is. The default (factory­
delivered) condition is with the offboard address set to $0.

Example:

143-Bug>oba

RAM address from VMEbus = $0 400000
143-Bug>oba
RAM address from VMEbus = $400000 (CR)
143-Bug

Change $0 to $400000 .

3-77

•

•

DEBUGGER COMMAND SET

Offset Registers Display/Modify
OF

OF [Rn[;A]]

OF allows the user to access and change pseudo-registers called offset registers . These
registers are used to simplify the debugging of relocatable and position-independent mod­
ules (refer to Chapter 2) .

There are eight offset registers RO-R7, but only RO-R6 can be changed. R7 always has
both base and top addresses set to 0. This allows the automatic register function to be
effectively disabled by setting R7 as the automatic register.

Each offset register has two values: base and top. The base is the absolute least address
that will be used for the range declared by the offset register. The top address is the
absolute greatest address that will be used. When entering the base and top, the user may
use either an address/address format or an address/count format. If a count is specified, it
refers to bytes . If the top address is omitted from the range, then a count of 1Mb is
assumed. The top address must equal or exceed the base address . Wraparound is not
permitted.

Command usage:

OF - To display all offset registers. An asterisk indicates which register is the

OF Rn

automatic register.

- To display/modify Rn. The user can scroll through the registers in a way
similar to that used by the MM command.

OF Rn;A - To display/modify Rn and set it as the automatic register. The automatic
register is one that is automatically added to each absolute address argu­
ment of every command except if an offset register is explicitly added. An
asterisk indicates which register is the automatic register.

Range entry: Ranges may be entered in three formats: base address alone, base and top
as a pair of addresses, and base address followed by byte count. Control
characters"'", "v", "V" , "=",and"." may be used. Their function is
identical to that in Register Modify (RM) and Memory Modify (MM) com­
mands.

Range syntax:

3-78

[base address [del top address]] ['lvi=I .J
or

[base address [':' byte count]] ['lvl=l·l

DEBUGGER COMMAND SET

OF

Offset register rules:

a. At power up and cold-start reset, R7 is the automatic register.

b. At power-up and cold-start reset, all offset registers have both base and top ad­
dresses preset to 0. This effectively disables them.

c. R7 always has both base and top addresses set to 0; cannot be changed.

d. Any offset register can be set as the automatic register.

e. The automatic register is always added to every absolute address argument of
every 143Bug command where there is not an offset register explicitly called out.

f. There is always an automatic register. A convenient way to disable the effect of
the automatic register is by setting R7 as the automatic register. Note that this is
the default condition.

Examples:

Display offset registers.

143-Bug>OF
RO ~oooooooo 00000000 R1 ~ 00000000
R2 ~oooooooo 00000000 R3 = 00000000
R4 =00000000 00000000 R5 = 00000000
R6 =00000000 00000000 R7*= 00000000

Modify some offset registers.

143-Bug>OF RO
Ro ~oooooooo oooooooo? 20000 200FF
R1 =00000000 00000000? 25000:200'
RO ~00020000 000200FF?

Look at location $20000.

143-Bug>M 20000;01
OOOOO+RO 41F95445 5354
143-Bug>M RO;DI
OOOOO+RO 41F95445 5354
143-Bug>

00000000
00000000
00000000
00000000

LEA.L ($54455354) .L,AO

LEA.L ($54455354) .L , AO

3-79

•

I

DEBUGGER COMMAND SET

Set RO as the automatic register.

143 -Bug>OF RO;A
R0*=00020000 000200FF?

To look at location $20000.

143-Bug>M O;DI
OOOOO+RO 41F95445 5354
143-Bug>

LEA.L ($54455354) .L,AO .

To look at location 0, override the automatic offset.

143-Bug>M 0+R7;DI

00000000 FFF8

3-80

DC.W $FFF8 .

OF

DEBUGGER COMMAND SET

Printer Attach/Detach

PA [n]
NOPA [n)

PA
NOPA

These two commands "attach" or "detach" a printer to the user-specified port. Multiple
printers may be attached. When the printer is attached, everything that appears on the
system console terminal is also echoed to the "attached" port. PA is used to attach,
NOPA is used to detach. If no port is specified, PA does not attach any port, but NOPA
detaches all attached ports.

If the port number specified is not currently assigned, PA displays a message. If NOPA is
attempted on a port that is not currently attached, a message is displayed.

The port being attached must already be configured . This is done using the Port Format
(PF) command. This is done by executing the following sequence prior to "PAn".

143-Bug>PF4
Logical unit $04 unassigned
Name of board? VME143
Name of port? PTR
Port base address = $FFFE2800? (CR)

Auto Line Feed protocol [Y,N] = N? Y.
OK to proceed (y/n)? Y
143-Bug>

For further details, refer to the PF command.

Examples:

CONSOLE DISPLAY:
143-Bug>PA4
(attaching port 4)
143-Bug>HE NOPA
NOPA Printer detach
143-Bug>NQPA
(detach all attached printers)
143-Bug>NOPA
No printer attached
143-Bug>

PRINTER OUTPUT:

(printer now attached)
143-Bug>HE NOPA
NOPA Printer detach
143-Bug>NOPA
(printer now detached)

3-81

I

I

DEBUGGER COMMAND SET

Port Format/Detach

PF[n]
NOPFn

PF
NOPF

Port Format (PF) allows the user to examine and change the serial input/output environ­
ment. PF may be used to display a list of the current port assignments, configure a port
that is already assigned, or assign and configure a new port. Configuration is done inter­
actively, much like modifying registers or memory (RM and MM commands). An inter­
lock is provided prior to configuring the hardware -- the user must explicitly direct PF to
proceed.

ONLY NlNE PORTS :MAY BE ASSIGNED AT ANY GNEN TIME. PORT NU1v1BERS
MUST BE lN THE RANGE 0 TO $1F.

Listing Current Port Assignments

Port Format lists the names of the module (board) and port for each assigned port num­
ber (LUN) when the command is invoked with the port number omitted.

Example:

143-Bug>pf

Current port assignments: (Port #: Board name, Port name)
[00 : VME143- 11 1 11

) [01: VME143- " 2") [02 : VME143- "3"]

143-Bug>

Configuring A Port

The primary use of Port Format is changing baud rates, stop bits, etc. This may be ac­
complished for assigned ports by invoking the command with the desired port number.
Assigning and configuring may be accomplished consecutively . Refer to Assigning A New
Port under the PF Command paragraph in this chapter.

When Port Format is invoked with the number of a previously assigned port, the interac­
tive mode is entered immediately. To exit from the interactive mode, enter a period by
itself or following a new value/setting. While in the interactive mode, the following rules
apply:

3- 82

DEBUGGER COMMAND SET

PF
NOPF

Only listed values are accepted when a list is shown. The sole exception is
that upper- or lowercase may be interchangeably used when a list is
shown. Case takes on meaning when the letter itself is used, such as XON
character value.

Control characters are accepted by hexadecimal value or by a letter pre­
ceded by a caret (i.e., Control-A would be "'A").

The caret, when entered by itself or following a value, causes Port Format
to issue the previous prompt after each entry.

v Either uppercase or lowercase "v" causes Port Format to resume or
prompting in the original order (i.e., Baud Rates, then Parity Type, V ...) .

Entering an equal sign by itself or when following a value causes PF to
issue the same prompt again. This is supported to be consistent with the
operation of other debugger commands. To resume prompting in either
normal or reverse order, enter the letter "v" or a caret"'", respectively.

Entering a period by itself or following a value causes Port Format to exit
from the interactive mode and issue the "OK to proceed (y/n?)" .

(CR) Pressing return without entering a value preserves the current value and
causes the next prompt to be displayed.

Example:

143-Bug>PF 1
Baud rate [110,300,600,1200,2400,4800,9600,19200]
Even, Odd, or No Parity [E,O,N] = N? (CR)
Char width [5,6,7,8] = 8? (CR)

9600? (CR)

stop Bits [1, 21 = 1? 2 (new value entered)
(the next response is to demonstrate reversing the order of prompting)
Async, Mono, Bisync, Gen, SDLC, or HDLC [A,M,B,G,S,H) =A .
stop Bits [1, 21 = 2? . (value acceptable, exit interactive mode)
OK to proceed (y/n)? Y (carriage return not required)
143-Bug>

3-83

•

•

DEBUGGER COMMAND SET

PF
NOPF

Parameters Configurable By Port Format

Port base address:

Upon assigning a port, the option is provided to set the base address . This is
useful for support of modules with adjustable base addressing, such as the
MVMEOSO. Entering no value selects the default base address shown.

Baud rate:

The user may choose from the following : 110, 300, 600, 1200, 2400, 4800, 9600,
19200. IF A NUMBER BASE IS NOT SPECIFIED, THE DEFAULT IS DECI­
MAL, NOT HEXADECIMAL.

Parity type:

Parity may be even (choice E), odd (choice 0) , or disabled (choice N) .

Character width:

The user may select 5-, 6-, 7-, or 8-bit characters.

Number of stop bits:

Only 1 and 2 stop bits are supported.

Synchronization type:

Because the debugger is a polled serial input/output environment, most users use
only asynchronous communication. The synchronous modes are permitted.

Synchronization character values:

Any 8-bit value or ASCll character may be entered.

Automatic software handshake:

Current drivers have the capability of responding to XON/XOFF characters sent
to the debugger ports. Receiving an XOFF causes a driver to cease transmission
until an XON character is received.

Software handshake character values:

3-84

The values used by a port for XON and XOFF may be redefined to be any 8-bit
value. ASCIT control characters or hexadecimal values are accepted .

Assigning A New Port

DEBUGGER COMMAND SET

PF
NOPF

Port Format supports a set of drivers for a number of different modules and the ports on
each. To assign one of these to a previously unassigned port number, invoke the com­
mand with that number. A message is then printed to indicate that the port is unassigned
and a prompt is issued to request the name of the module (such as V1v1E143, V1\1E050,
etc.) . Pressing the RETURN key on the console at this point causes PF to list the currently
supported modules and ports. Once the name of the module (board) has been entered, a
prompt is issued for the name of the port. After the port name has been entered, Port
Format attempts to supply a default configuration for the new port.

When a valid port has been specified, default parameters are supplied. The base address
of this new port is one of these default parameters. Before entering the interactive con­
figuration mode, the user is allowed to change the port base address. Pressing the RE­
TURN key on the console retains the base address shown.

If the configuration of the new port is not fixed, then the interactive configuration mode is
entered. Refer to the Configuring A Port paragraph above regarding configuring assigned
ports. If the new port does have a fixed configuration, then Port Format issues the "OK
to proceed (y/n)?" prompt immediately.

Port Format does not initialize any hardware until the user has responded with the letter
"Y" to prompt "OK to proceed (y/n)?". Pressing the BREAK key on the console any time
prior to this step or responding with the letter "N" at the prompt leaves the port unas­
signed. This is only true of ports not previously assigned.

3-85

•

•

DEBUGGER COMMAND SET

Example: Assigning port 7 to the MVME050 printer port.

143-Bug>PF 7
Logical unit $07 unassigned

PF
NOPF

Name of board? (CR) (cause PF to list supported modules (boards), ports)
Boards and ports supported :
VME143: 1,2,3,4,PTR
VME050: 1,2,PTR2
Name of board? VMEOSO
Name of port? PTR2

(uppercase or lowercase accepted)

Port base address = $FFFF1080? (CR)

Auto Line Feed protocol [Y,N] = N? .
(interactive mode not entered because hardware has fixed configuration)
OK to proceed (y/n)? Y
143-Bug>

NOPF Port Detach

The NOPF command, NOPFn, unassigns the port whose number is n. Only one port may _...-
be unassigned at a time. Invoking the command without a port number, "NOPF" , does
not unassign any ports.

3-86

DEBUGGER COMMAND SET

Put RTC Into Power Save Mode For Storage
PS

PS

The PS command is used to turn off the oscillator in the RTC chip, MK48T02. The
MVME143 module is shipped with the RTC oscillator stopped to minimize current drain
from the on-chip battery. Normal cold-start of the MVME143 with the 143Bug EPROMs
installed gives the RTC a "kick start" to begin oscillation. To disable the RTC, the user
must enter "PS" .

The SET command restarts the clock. Refer to the SET Command in this chapter for
further information.

Example:

143-Bug>PS
(Clock is in Battery Save Mode)
143-Bug>

3-87

I

I

DEBUGGER COMMAND SET

ROMboot Enable/Disable

RB
NORB

RB
NORB

The RB command enables the search for and booting from a routine nominally encoded
in on-board ROMs/PROMs/EPROMs/EEPROMs on the MVME143. However, the routine
can be in other memory locations, as detailed in the RB command options given below.
Refer also to the ROMboot paragraph and example in Chapter 1.

NORB disables the search for a ROMboot routine, but does not change the options
chosen.

The default condition is with the ROMboot function disabled.

Examples:

143-Bug>RB

Boot at power-up only [Y,N] ? Y (CR)

Enable search of VMEbus [Y ,N] ? N (CR)

Boot direct address = $FFFOOOOO (CR)

143-Bug>NORB

ROM boot disabled

143-Bug>

3-88

If the user types N, then boot is
attempted at any board reset.
If the user types Y, the search for
"BOOT", etc., starts at the end of
onboard memory, in 8Kb increments.

This default address is the start of
the 143Bug EPROMs, so the search
here is fast.
This disables the ROMboot function
but does not change any options
chosen under RB.

DEBUGGER COMMAND SET

Register Display
RD

RD [[+1-l=][dname][!]] ... [[+1-1=][reg I [-reg2]][J]] . ..

The RD command is used to display the target state, that is, the register state associated
with the target program (refer to the GO command). The instruction pointed to by the
target PC is disassembled and displayed also . Internally, a register mask specifies which
registers are displayed when RD

The arguments are as follows:

+ is a qualifier indicating that a device or register range is to be added.

reg I

reg2

dname

is a qualifier indicating that a device or register range is to be removed,
except when used between two register names. In this case, it indicates a
register range.

is a qualifier indicating that a device or register range is to be set.

is a required delimiter between device names and register ranges.

is the first register in a range of registers.

is the last register in a range of registers.

is a device name. This is used to quickly enable or disable all the registers
of a device. The available device names are:

MPU
:M1v1U
FPC

Microprocessor Unit
Memory Management Unit
Floating Point Coprocessor

Observe the following notes when specifying any arguments in the command line:

a. The qualifier is applied to the next register range only.

b. If no qualifier is specified, a + qualifier is assumed.

c. All device names should appear before any register names.

d. The command line arguments are parsed from left to right, with each field being
processed after parsing, thus, the sequence in which qualifiers and registers are
organized has an impact on the resultant register mask.

3-89

I

•

DEBUGGER COMMAND SET

RD

e. When specifying a register range , regl and reg2 do not have to be of the same
class .

f. The register mask used by RD is also used by all exception handler routines,
including the trace and breakpoint exception handlers .

The MPU registers in ordering sequence are:

NUMBER AND TYPE OF REGISTERS

10

8
8

System Registers

Data Registers
Address Registers

:tv!NEMONICS

(PC,SR,USP,MSP,ISP,VBR,SFC,DFC,
CACR,CAAR)
(DO- D7)
(AO- A7)

(Total: 26 Registers. Note that A 7 represents the active stack pointer, which leaves
25 different registers.)

The MMU registers in ordering sequence are:

NUMBER AND TYPE OF REGISTERS

5
1

Address Translation/Control
Status

The FPC registers in ordering sequence are :

NUMBER AND TYPE OF REGISTERS

3
8

System Registers
Data Registers

:tv!NEMONICS

(CRP,SRP,TC,TTO,TT1)
(MMUSR)

:tv!NEMONICS

(FPCR,FPSR,FPIAR)
(FPO- FP7)

Example 1: Default display - MPU registers only.

143- Bug>rd
PC =00004000 SR =2700=TR:OFF_S . _7_ VBR =00000000
USP =0000F830 MSP =00005C l 8 ISP* =00006000 SFC =O=FO
CACR=O=D: _ I:.. . CAAR=OOOOOOOO DFC =O=FO
DO =00000000 Dl =00000000 02 =00000000 03 =00000000
04 =00000000 DS =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00006000
00004000 4AFC
143-Bug>

3- 90

ILLEGAL

DEBUGGER COMMAND SET

NOTE

An asterisk following a stack pointer name indicates that it is the active
stack pointer.

The status register includes a mnemonic portion to help in reading it:

T1

0

0
1
1

TO

0
1

0
1

TRACE BITS
MNEMONIC

TR:OFF
TR:CHG
TR:ALL
TR:INV

DESCRIPTION

Trace off
Trace on change of flow
Trace all states
Invalid mode

RD

S, M bits: The bit name appears (S,M) if the respective bit is set, otherwise a "."
indicates that it is cleared.

Interrupt Mask: A number (0 to 7) indicates current processor priority level.

Condition Codes: The bit name appears (X,N,Z,V,C) if the respective bit is set, other­
wise a "." indicates that it is cleared.

3-91

I

I

DEBUGGER COMMAND SET

RD

The source and destination function code registers (SFC, DFC) include a two character
mnemonic:

===
FUNCTION CODE MNEMONIC DESCRIPTION

===
0 PO Undefined
1 UD User Data
2 UP User Program
3 F3 Undefined
4 F4 Undefined
5 SD Supervisor Data
6 SP Supervisor Program
7 cs CPU Space

The CACR register shows mnemonics for two bits: Enable and Freeze. The bit name (E,
F) appears if the respective bit is set, otherwise a "." indicates that it is cleared.

Example 2: To display only the MMU registers.

143-Bug>RD =MMU

CRP =00000001_00000000 SRP =00000001_00000000
TC =00000000 TTO =00000000 TTl =00000000
MMUSR=OOOO= _0
00004000 4AFC
143-Bug>

PSR =0000- _0
ILLEGAL

The MMUSR register above includes a mnemonic portion, the bits are:

B Bus error bit 15
L Limit Violation bit 14

s Supervisor only bit 13

w Write protected bit 11

I Invalid bit 10

M Modified bit 9

T Transparent Access bit 6
N Number of Levels (3 bits) bits 2- 0

3-92

DEBUGGER COMMAND SET

Example 3: To display only the FPC registers .

143-Bug>RD =fpc
FPCR =00000000 FPSR =00000000-(CC= FPIAR=OOOOOOOO
FPO =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF E-OFFF
FPJ. =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF_E-OFFF
FP2 =0_7FFF_ FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF E- OFFF
FP3 =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF E-OFFF
FP4 =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF_E-OFFF
FP5 =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF E-OFFF
FP6 =0_7FFF_FFFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFFF_E-OFFF
FP7 =0_7FFF_FFFFFFFFFFFFFFFFF= O. FFFFFFFFFFFFFFFFF_E-OFFF
00004000 4AFC ILLEGAL
143-Bug>

RD

The floating point data registers are always displayed in extended precision and in scien­
tific notation format. The floating point status register display includes a mnemonic por­
tion for the condition codes. Th~ bit name appears (N, X, I, NAN) if the respective bit is
set, otherwise, a "." indicates that it is cleared.

Example 4: To remove D3 through D5 and A2, and add FPSR and FPO, starting with
the previous display.

143-Bug>RD MPU/-FPC/-D3-D5/-A2/FPO/FPSR
PC =00004000 SR =2700=TR:OFF_S._7_ VBR =00000000
USP =0000F830 MSP =00005C18 ISP*=00006000 SFC =O=FO
CACR =O=D: _I:... CAAR=OOOOOOOO DFC =O=FO
DO =00000000 D1 =00000000 D2 =00000000 D6 =00000000
D7 =00000000 AO =00000000 Al =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
FPSR =00000000-(CC=....)
FPO =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF
00004000 4AFC ILLEGAL
143-Bug>

3-93

•

•

DEBUGGER COMMAND SET

RD

Example 5: To set the display to D6 and A3 only.

143-Bug>RD =D6/A3
D6 =00000000 A3 =00000000
00004000 4AFC ILLEGAL
143-Bug>

Note that the above sequence sets the display to D6 only and then adds register A3 to the
display.

Example 6: To restore all the MPU registers.

143- Bug>rd +mpu
PC =00004000 SR =2700=TR:OFF S. 7 VBR =00000000
USP =OOOOF830 MSP =00005C18 ISP*=00006000 SFC =O=FO
CACR=O=D: _I:... CAAR=OOOOOOOO DFC =O=FO
DO =00000000 D1 =00000000 D2 =00000000 D,3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7
AO =00000000 A1 =00000000 A2 =00000000 A3
A4 =00000000 AS =00000000 A6 =00000000 A7
00004000 4AFC
143-Bug>

ILLEGAL

=00000000
=00000000
=00006000

Note that an equivalent command would have been RD PC-A 7.

3-94

DEBUGGER COMMAND SET

Remote
REMOTE

REMOTE

The REMOTE command duplicates the remote operation modem functions available from
the "system" mode menu command, entry number 4. It is only accessible when the
143Bug is in "system" mode (refer to the MENU Command paragraph in Appendix A for
details on remote operation).

3-95

I

I

DEBUGGER COMMAND SET

Cold/Warm Reset
RESET

RESET

The RESET command is used to issue a local SCSI bus reset and also allows the user to
specify the level of reset operation that will be in effect when a RESET exception is
detected by the processor. A reset exception can be generated by pressing the RESET
switch on the MVME143 front panel, or by executing a software reset.

Two RESET levels are available:

COLD - This is the standard level of operation, and is the one defaulted to on
power- up. In this mode, all the static variables are initialized every time a
reset is done.

WARM - In this mode, all the static variables are preserved when a reset exception
occurs. This is convenient for keeping breakpoints, offset register values,
the target register state, and any other static variables in the system.

NOTE

If the MVME143 is the system controller, pressing the RESET switch resets
all the modules in the system, including disk controllers like the MVME320
or MVME360. This may cause the disk controller configuration to be out of
phase with respect to the disk configuration tables in memory.

Example 1:

143-Bug>RESET
Cold/ Warm Reset [C,W] = C? .
143-Bug>

3- 96

Example 2:

143-Bug>RESET
Cold/Warm Reset [C,W] = C? VV
Execute Soft Reset [Y , N] ? Y

DEBUGGER COMMAND SET

RESET

Arm for warm start the next time
a reset is performed.
Do a software reset now, actually
forcing a warm start.

Copyright Motorola Inc. 1988, All Rights Reserved

VME143 Monitor/Debugger Release 1 . 0 - 4 / 08/88

WARM Start
143- Bug>

3-97

•

I

DEBUGGER COMMAND SET

Register Modify
RM

RM reg

RM command allows the user to display and change the target registers. It works in
essentially the same way as the :MM command, and the same special characters are used
to control the display/change session (refer to the MM Command paragraph in this
chapter).

NOTE

reg is the mnemonic for the particular register, the same as it is displayed,

Example 1:

143-Bug>RM 05

D5 =12345678? ABCDEF'

D4 =00000000? 3000.
143-Bug>

Example 2:

143-Bug>rm sfc

SFC =7=CS

SFC =l=UD

143-Bug>

? 1=

? .

Modify register and back up.
Modify register and exit.

Modify register and reopen.
Exit.

The RM command is also used to modify the MMU registers.

Example 3:

143-Bug>rm crp
CRP =00000001_00000000
SRP =00000001_00000000
TC =00000000 ? 87654321
TTO =00000000 ? 12345678
TTl =00000000 ? 87654321
MMUSR=OOOO= _0?

3-98

? (CR)
? (CR)

DEBUGGER COMMAND SET

Register Set
RS

RS reg [hexadecimal number] . ..

The RS command allows the user to change the data in the specified target register. It
works in essentially the same way as the RM command.

NOTE

reg is the mnemonic for the particular register.

Example 1:

143-Bug>RS 05 123455678
D5 =12345678
143-Bug>

Example 2:

143-Bug>rs ttO 87654321
TTO =87654321
143-Bug>

Example 3:

143-Bug>rs FPO 0_1234_5

Change MPU register.

Change MMU register.

Change FPC register.
FPO =0_1234_5000000000000000= 6.6258385370745493_E-3530
143-Bug>

3-101

I

I

DEBUGGER COMMAND SET

Switch Directories
so

SD

The SD command is used to change from the debugger directory to the diagnostic
directory or from the diagnostic directory to the debugger directory.

The commands in the current directory (the directory that the user is in at the particular
time) may be listed using the Help (HE) command.

The way the directories are structured, the debugger commands are available from either
directory but the diagnostic commands are only available from the diagnostic directory.

Example 1:

143-Bug>SD

143-Diag>

Example 2:

143-Diag>SD

143-Bug>

3-102

(The user has changed from the debugger)
(directory to the diagnostic directory,)
(as can be seen by the "143-Diag>")
(prompt.)

(The user is now back in the debugger
(directory.

)
)

DEBUGGER COMMAND SET

Set Time And Date
SET

SET

The SET command is interactive and begins with the user entering SET followed by a
carriage return. At this time, a prompt asking for MM/DD/YY is displayed. The user may
change the displayed date by typing a new date followed by (CR), or may simply enter
(CR), which leaves the displayed date unchanged. When the correct date matches the data
entered, the user should press the carriage return to establish the current value in the
time-of-day clock.

Note that an incorrect entry may be corrected by backspacing or deleting the entire line as
long as the carriage return has not been entered.

After the initial prompt and entry, another prompt is presented asking for a calibration
value. This value slows down (-value) or speeds up(+ value) the RTC in the MK48T02
chip. Refer to the MK48T02 Data Sheet (as mentioned in Chapter 1, herein) for details.

Next, a prompt is presented asking for HH:MM:SS. The user may change the displayed
time by typing a new time followed by (CR), or may simply enter (CR), which leaves the
displayed time unchanged.

To display the current date and time of day, refer to the TIME command.

Example: To SET a date and time of May 11, 1988 2:05:32 PM the command is as
follows:

143-Bug>SET
Weekday XX/XX/XX xx:xx:xx
Present calibration = -0
Enter date as MM/DD/YY

05/11/88

Enter Calibration value +/- (0 to 31)

Enter time as HH:MM:SS (24 hour clock)
14:05:32
143-Bug>

This will start a stopped clock.
(Refer to the PS Command in this
chapter.) This can speed up (+) or slow
down (-) the RTC oscillator.

3-103

I

I

DEBUGGER COMMAND SET

Trace
T

T [count]

The T command allows execution of one instruction at a time, displaying the target state
after execution. T starts tracing at the address in the target PC. The optional count field
(which defaults to 1 if none entered) specifies the number of instructions to be traced
before returning control to 143Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace commands,
which allows the use of breakpoints in ROM or write-protected memory. In all cases, if a
breakpoint with 0 count is encountered, control is returned to 143Bug.

The trace functions are implemented with the trace bits (TO, Tl) in the MC68030 status
register; therefore, these bits should not be modified by the user while using the trace
commands .

Example: (The following program resides at location $10000.)

143-Bug>MD 10000;01
00010000 2200
00010002 4282
00010004 D401

00010006 E289
00010008 66FA

0001000A E20A
0001000C 55C2
0001000E 60FE
143-Bug>

Initialize PC and DO:

143-Bug>RM PC
PC =00008000 ? 10000.
143-Bug>RM DO
DO =00000000 ? 8F41C.

3- 104

MOVE . L DO,D1
CLR.L D2
ADD . B D1,D2
LSR.L #$1,D1
BNE.B $10004
LSR.B #$1,D2

SCS.B D2
BRA.B $1000E

DEBUGGER COMMAND SET

T

Display target registers and trace one instruction:

143-Bug>RD
PC =00010000 SR =2700=TR:OFF_S. _ 7_
USP =0000382C MSP =00003C1 4 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =0008F41C D1 =00000000 D2 =00000000 D3 =00000000 I
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010000 2200 MOVE . L DO,D1

143 - Bug>T
PC =00010002 SR =2700=TR:OFF s . 7 •• 0 •• -
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010002 4282 CLR.L D2
1 43 - Bug>

Trace next instruction:

143- Bug>(CR)
PC =00010004 SR =2704=TR : OFF_S. _7_ .. z ..
USP =0000382C MSP =00003C1 4 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= . . CAAR=OOOOOOOO
DO =000 8F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010004 D401 ADD . B D1 ,D2

143- Bug>

3-105

DEBUGGER COMMAND SET

T

Trace the next two instructions:

143-Bug>T 2

I
PC =00010006 SR =2700=TR : OFF S . 7
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000

AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 AS =00000000 A7 =00004000
00010006 E289 LSR.L #1,D1

PC =00010008 SR =2700=TR:OFF_S . _7_
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O= . . CAAR=OOOOOOOO
DO =0008F41C D1 =00047AOE D2 =0000001C D3 =00000000
D4 =00000000 DS =00000000 DB =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010008 66FA BNE.B $10004

143-Bug>

3- 106

DEBUGGER COMMAND SET

Terminal Attach
TA

TA [port]

TA command allows the user to assign any serial port to be the console. The port speci­
fied must already be assigned (refer to the PF Command paragraph in this chapter).

Example 1: Selecting port 2 (logical unit #02) as console.

143-Bug>TA 2 (No prompt appears unless port 2 was already the
console .)

Example 2: Restoring console to port selected at power-up.

143-Bug>TA (Prompt now appears at terminal connected to port 0.)

3-107

I

I

DEBUGGER COMMAND SET

Trace On Change Of Control Flow
TC

TC [count]

TC command starts execution at the address in the target PC and begins tracing upon the
detection of an instruction that causes a change of control flow, such as JSR, BSR, RTS,
etc. This means that execution is in real- time until a change of flow instruction is encoun­
tered . The optional count field (which defaults to 1 if none entered) specifies the number
of change of flow instructions to be traced before returning control to 143Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace commands,
which allows the use of breakpoints in ROM or write- protected memory . Note that the
TC command recognizes a breakpoint only if it is at a change of flow instruction. In all
cases, if a breakpoint with 0 count is encountered, control is returned to 143Bug.

The trace functions are implemented with the trace bits (TO, Tl) in the MC68030 status
register; therefore, these bits should not be modified by the user while using the trace
commands .

Example: (The following program resides at location $10000.)

143-Bug>MD 10000;01

00010000 2200
00010002 4282
00010004 D401
00010006 E289
00010008 66FA
0001000A E20A

0001000C 55C2
0001000E 60FE
143-Bug>

Initialize PC and DO:

143-Bug>RM PC
PC =00008000 ? 10000.
143-Bug>RM DO
DO =00000000 ? SF41C.

3-108

MOVE.L DO,D1
CLR. L D2
ADD.B D1 , D2
LSR . L #$1,D1

BNE.B $10004
LSR.B #$1,D2

SCS.B D2
BRA.B $1000E

DEBUGGER COMMAND SET

143-Bug>rd +mmu
PC =00004000 SR =2700=TR:OFF_S._7_ VBR =00000000
USP =00005830 MSP =00005C18 ISP*=00006000 SFC =O=FO
CACR =O=D: _I:... CAAR=OOOOOOOO DFC =O=FO
DO =00000000 Dl =00000000 D2 =00000000 D3 =00000000
D4 =00000000 DS =00000000 D6 =00000000 D7 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00006000
CRP =00000001_00000000 SRP =00000001_00000000
TC =87654321 TTO =12345678 TTl =87654321
MMUSR=OOOO= _0
00004000 4AFC
143-Bug>

ILLEGAL

RM

The RM command is also used to modify the floating point coprocessor (MC68882) regis­
ters.

Example 4:

143-Bug>rm fpsr
FPSR =00000000-(CC= ? FOOOOOO
FPIAR=OOOOOOOO ? (CR)

FPO =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 0_1234_5
FPl =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 1.25E3
FP2 =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 1_7F_3FF
FP3 =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 1100_9261_3
FP4 =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? &564
FPS =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 0_5FF_FOAB
FP6 =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF? 3.1415
FP7 =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF E-OFFF? -2.74638369E-36.
143-Bug>

3-99

I

I

DEBUGGER COMMAND SET

143-Bug>rd +fpc

USP
CACR
DO
D4
AO
A4

FPCR
FPO
FPl
FP2
FP3
FP4
FPS
FP6

PC =00004000 SR =2700=TR:OFF_S._7_ VBR =00000000
=00005830 MSP =00005C18 ISP*=00006000 SFC =O=FO
=O=D: _I : . . . CAAR=OOOOOOOO DFC =O=FO
=00000000 D1 =00000000 D2 =00000000 D3 =00000000
=00000000 DS =00000000 D6 =00000000 D7 =00000000
=00000000 A1 =00000000 A2 =00000000 A3 =00000000
=00000000 AS =00000000 A6 =00000000 A7 =00006000
=00000000 FPSR =OFOOOOOO-(CC=NZI [NAN]) FPIAR=OOOOOOOO
=0_1234_5000000000000000= 6.6258385 370745493_E-3530
=0_ 4009_9C40000000000000= 1.2500000000000000_E- 0003
=1_3FFF_BFFOOOOOOOOOOOOO= 1.499511 7187500000_E- 0000
=1_3C9D_BCEECF12D061BED9= 3.0000000000000000_E-02 61
=0_4008_8DOOOOOOOOOOOOOO= 5 . 6400000000000000_E-0002
=0_41FF_F855800000000000= 2.6012612226385672_E-0154
=0_ 4000_C90E5604189374BC= 3 . 1415000000000000_E- 0000

FP7 =1_3F88_E9A2FOB 8D678C318= 2.7463836900000000_ E- 0036
00004000 4AFC ILLEGAL
143-Bug>

3-100

RM

DEBUGGER COMMAND SET

Trace on change of flow:

143-Bug>TC

00010008 66FA BNE . B $10004

PC =00010004 SR =2700=TR:OFF S. 7

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O=. . CAAR=OOOOOOOO

DO =0008F41C D1
D4 =00000000 D5
AO =00000000 A1
A4 =00000000 AS
00010004 0401

=0004 7AOE D2

=00000000 D6
=00000000 A2
=00000000 A6

ADD.B

=0000001C D3 =00000000

=00000000 D7 =00000000
=00000000 A3 =00000000
=00000000 A7 =00004000

D1 ,D2

Note that this
display also
shows the
change of flow
instruction.

TC

3- 109

I

I

DEBUGGER COMMAND SET

Display Time And Date
TIME

TIME

The TIME command presents the date and time in ASCIT characters to the console.

To initialize the time- of- day clock, refer to the SET command.

Example: A date and time of Wednesday, May 11, 1988 2:05:32 would be
displayed as:

143-Bug> TIME
Wednesday 5/11/88
143-Bug>

3- 110

14:05:32

DEBUGGER COMMAND SET

Transparent Mode
TM

TM [n] [escape]

TM command essentially connects the console serial port and the host port together,
allowing the user to communicate with a host computer. A message displayed by TM
shows the current escape character (i.e., the character used to exit the transparent mode).
The two ports remain "connected" until the escape character is received by the console
port. The escape character is not transmitted to the host, and at power up or reset it is
initialized to $01= 'A.

The optional port number n allows the user to specify which port is the "host" port. If
omitted, port 1 is assumed.

The ports do not have to be at the same baud rate, but the terminal port baud rate should
be equal to or greater than the host port baud rate for reliable operation. To change the
baud rate use the Port Format (PF) command.

The optional escape argument allows the user to specify the character to be used as the
exit character. This can be entered in three different formats:

ASCII code
control character :
ASCII character :

$03 Set escape character to 'C
'C Set escape character to 'C
'c Set escape character to c

If the port number is omitted and the escape argument is entered as a numeric value,
precede the escape argument with a comma to distinguish it from a port number.

Example 1:

143-Bug>TM

Escape character: $01='A

' A

Example 2:

143-Bug> TM 'g

Escape character: $07='G

'G
143-Bug>

Enter TM.
Exit code is always displayed .

Exit transparent mode.

Enter TM and set escape character
to 'G.

Exit transparent mode.

3-111

I

I

DEBUGGER COMMAND SET

Trace To Temporary Breakpoint
TT

IT addr

TT command sets a temporary breakpoint at the specified address and traces until a
breakpoint with 0 count is encountered. The temporary breakpoint is then removed (TT is
analogous to the GT command) and control is returned to 143Bug. Tracing starts at the
target PC address.

Breakpoints are monitored (but not inserted) during tracing for all trace commands,
which allows the use of breakpoints in ROM or write-protected memory. If a breakpoint
with 0 count is encountered, control is returned to 143Bug.

The trace functions are implemented with the trace bits (TO, Tl) in the MC68030 status
register; therefore, these bits should not be modified by the user while using the trace
commands.

Example: (The following program resides at location $10000.)

143-Bug>MD 10000;01
00010000 2200
00010002 4282
00010004 D401

00010006 E289
00010008 66FA
0001000A E20A
0001000C 55C2
0001000E 60FE
143-Bug>

Initialize PC and DO:

143-Bug>RM PC
PC =00008000 ? 10000.
143-Bug>RM DO
DO =00000000 7 8F41C.

3-112

MOVE.L
CLR . L
ADD.B
LSR.L
BNE.B
LSR.B
SCS.B
BRA . B

DO,D1
D2
D1,D2
#$1,D1
$10004
#$1,D2

D2
$1000E

DEBUGGER COMMAND SET

TT

Trace to temporary breakpoint:

143-Bug>TT 10006
PC =00010002 SR =2700=TR:OFF S. 7 I USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010002 4282 CLR.L D2

PC =00010004 SR =2704=TR:OFF S. 7 . .Z ..

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000

SFC =O=XX DFC =O=XX CACR=O= . . CAAR=OOOOOOOO

DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =000000 00 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010004 D401 ADD.B D1 ,D2

At Breakpoint

PC =00010006 SR =2700=TR:OFF_S. _7_
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX DFC =O=XX CACR=O= .. CAAR=OOOOOOOO
DO =0008 F41C D1 =0008F41C D2 =0000001C D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010006 E289 LSR.L #1,D1

143-Bug>

3-113

I

DEBUGGER COMMAND SET

Verify S-Records Against Memory
VE

VE [n] [addr] [;Xl-C][=text]

The VE command is identical to the LO command with the exception that data is not
stored to memory but merely compared to the contents of memory.

This command accepts serial data from a host system in the form of a file of Motorola
S- records and compares it to data already in the MVME143 memory. If the data does not
compare, then the user is alerted via information sent to the terminal screen.

The optional port number n allows the user to specify which port is to be used for the
downloading. if this number is omitted, port 1 is assumed .

The optional addr field allow the user to enter an offset address which is to be added to
the address contained in the address field of each record. this causes the records to be
compared to memory at different locations than would normally occur. The contents of
the automatic offset register are not added to the S- record addresses. (Appendix C has
information on S-records.) If the address is in the range $0 to $1F and the port number
is omitted, precede the address with a comma to distinguish it from a port number.

The optional text field, entered after the equal sign (=), is sent to the host before 143Bug
begins to look for S-records at the host port. This allows the user to send a command to
the host device to initiate the download. This text should NOT be delimited by any kind o
quote marks. Text is understood to begins immediately following the equals sign and
terminate with the carriage return. If the host is operating full duplex, the string is also
echoed back to the host port by the host and appears on the user' s terminal screen.

In order to accommodate host systems that echo all received characters, the
above- mentioned text string is sent to the host one character at a time and characters
received from the host are read one at a time. After the entire command has been sent to
the host, VE keeps looking for an LF character from the host, signifying the end of the
echoed command. No data records are processed until this LF is received. If the host
system does not echo characters, VE still keeps looking for an LF character before data
records are processed. For this reason, it is required in situations where the host system
does not echo characters, that the first record transferred by the host system be a header
record . The header record is not used, but the LF after the header record serves to break
VE out of the loop so that data records are processed.

3-114

DEBUGGER COMMAND SET

VE

. The other options have the following effects:

-C option - Ignore checksum. A checksum for the data contained within an
S-record is calculated as the S-record is read in at the port. Normally, this calcu­
lated checksum is compared to the checksum contained within the S-record and if
the compare fails, an error message is sent to the screen on completion of the
download. If this option is selected, then the comparison is not made .

X option - Echo. This option echoes the S-records to the user's terminal as they
are read in at the host port.

During a verify operation, data from an S-record is compared to memory beginning with
the address contained in the S-record address field (plus the offset address, if it was
specified) . If the verification fails, then the non-comparing record is set aside until the
verify is complete and then it is printed out to the screen. If three non-comparing records
are encountered in the course of a verify operation, then the command is aborted.

If a non-hex character is encountered within the data field of a data record, then the part
of the record which had been received up to that time is printed to the screen and the
143Bug error handler is invoked to point to the faulty character.

If the embedded checksum of a record does not agree with the checksum calculated by
143Bug AND if the checksum comparison has not been disabled via the "-C" option, then
an error condition exists . A message is output stating the address of the record (as ob­
tained from the address field of the record), the calculated checksum, and the checksum
read with the record. A copy of the record is also output. This is a fatal error and causes
the command to abort.

3- 115

I

I

DEBUGGER COMMAND SET

VE

Examples:

This short program was developed on a host system.

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 65040000 7001 MOVEQ.L #1,DO
6 65040002 D088 ADD.L AO ,DO
7 65040004 4AOO TST . B DO
8 65040006 4E75 RTS
9 END

****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then the program was converted into an S- record file named TEST.MX that looks like
this :

SOOF00005445535453335337202001015E
S30D650400007001D0884A004E75B3
$7056504000091

This file was downloaded into memory at address $40000 . The program may be examined
in memory using the Memory Display (MD) command.

143-Bug>MD 40000:4;01
00040000 7001 MOVEQ.L #1,DO
00040002 D088 ADD.L AO,DO
00040004 4AOO TST.B DO
00040006 4E75 RTS
143-Bug>

Suppose that the user wants to make sure that the program has not been destroyed in
memory. The VE command is used to perform a verification.

143- Bug>VE -65000000;X=COPY TEST.MX,#
SOOF00005445535~53335337202001015E

S30D650400007001D0884A004E75B3

87056504000091
Verify passes .
143-Bug>

3-116

DEBUGGER COMMAND SET

VE

The verification passes. The program stored m memory was the same as that in the
S-record file that had been downloaded .

Now change the program in memory and perform the verification again.

143-Bug>M 40002
00040002 D088? 0089.

143-Bug>VE -65000000;X=COPY TEST.MX,#
SOOF00005445535453335337202001015E
S30D650400007001D0884A004E75B3
S7056504000091

The following record(s) did not verify
S30D65040000------ 88--- -----B3

143-Bug>

The byte which was changed in memory does not compare with the corresponding byte in
the S-record.

3-117

I

CHAPTER 4
USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

Introduction
Included as part of the 143Bug firmware is an assembler/disassembler function. The as­
sembler is an interactive assembler/editor in which the source program is not saved. Each
source line is translated into the proper MC68030/MC68882 machine language code and
is stored in memory on a line- by-line basis at the time of entry. In order to display an
instruction, the machine code is disassembled, and the instruction mnemonic and oper­
ands are displayed. All valid MC68030 instructions are translated .

The 143Bug assembler is effectively a subset of the MC68030 resident structured assem­
bler. It has some limitations as compared with the resident assembler, such as not allow­
ing line numbers and labels; however, it is a powerful tool for creating, modifying, and
debugging MC68030 code.

MC68030 Assembly Language

The symbolic language used to code source programs for processing by the assembler is
MC68030 assembly language . This language is a collection of mnemonics representing:

• Operations

- MC68030 machine-instruction operation codes
- Directives (pseudo-ops)

• Operators

• Special symbols

Machine-Instruction Operation Codes

That part of the assembly language that provides the mnemonic machine-instruction op­
eration codes for the MC68030/MC68882 machine instructions is described in the
MC68030 32- Bit Microprocessor User's Manual and the MC68882 Floating- Point Coprocessor
User's Manual , MC68030UM and MC68881UM. Refer to these manuals for any question
concerning operation codes.

4-1

I

I

ASSEMBLER/DISASSEMBLER

Directives

Normally, assembly language can contain mnemonic directives which specify auxiliary
actions to be performed by the assembler.

The 143Bug assembler recognizes only two directives called define constant (DC.W) and
SYSCALL. These two directives are used to define data within the program and to make
calls to 143Bug utilities. Refer to the DC. W Define Constant Directive and SYSCALL System
Call Directive paragraphs in this chapter.

Comparison With MC68030 Resident Structured Assembler
There are several major differences between the 143Bug assembler and the MC68030
resident structured assembler. The resident assembler is a two- pass assembler that proc­
esses an entire program as a unit, while the 143Bug assembler processes each line of a
program as an individual unit. Due mainly to this basic functional difference, the capabili­
ties of the 143Bug assembler are more restricted:

a . Label and line numbers are not used. Labels are used to reference other lines and
locations in a program. The one-line assembler has no knowledge of other lines
and, therefore, cannot make the required association between a label and the label
definition located on a separate line.

b. Source lines are not saved. In order to read back a program after it has been
entered, the machine code is disassembled and then displayed as mnemonic and
operands.

c. Only two directives (DC.W and SYSCALL) are accepted.

d. No macro operation capability is included.

e. No conditional assembly is used.

f. Several symbols recognized by the resident assembler are not included in the
143Bug assembler character set. These symbols include >and <. Three other sym­
bols have multiple meaning to the resident assembler, depending on the context
(refer to the Addressing Modes paragraph in this chapter) . These are:

Asterisk (*) - - Multiply or current PC.
Slash (/) - - Divide or delimiter in a register list.
Ampersand (&) - - AND or decimal number.

Although functional differences exist between the two assemblers, the one-line assembler
is a true subset of the resident assembler. The format and syntax used with the 143Bug
assembler are acceptable to the resident assembler except as described above.

4-2

ASSEMBLER/DISASSEMBLER

Source Program Coding
A source program is a sequence of source statements arranged in a logical way to per­
form a predetermined task. Each source statement occupies a line and must be either an
executable instruction, a DC.W directive, or a SYSCALL assembler directive . Each
source statement follows a consistent source line format.

Source Line Format

Each source statement is a combination of operation and, as required, operand fields .
Line numbers, labels, and comments are not used.

Operation Field

Because there is no label field, the operation field may begin in the first available column.
It may also follow one or more spaces . Entries can consist of one of three categories:

a. Operation codes which correspond to the MC68030/MC68882 instruction set.

b. Define Constant directive: DC.W is recognized to define a constant in a word
location.

c. System Call directive: SYSCALL is used to call 143Bug system utilities.

The size of the data field affected by an instruction is determined by the data size codes.
Some instructions and directives can operate on more than one data size. For these opera­
tions, the data size code must be specified or a default size applicable to that instruction
will be assumed. The size code need not be specified if only one data size is permitted by
the operation. The data size code is specified by a period (.), appended to the operation
field, and followed by B, W, or L, where:

B = Byte (8-bit data).
W = Word (the usual default size; 16-bit data) .
L = Longword (32-bit data).

The data size code is not permitted, however, when the instruction or directive does not
have a data size attribute .

4-3

I

I

ASSEMBLER/DISASSEMBLER

Examples (legal):

LEA (AO),Al Longword size is assumed (.B, .W not allowed); this instruc­
tion loads effective address of the first operand into Al.

ADD.B (AO),DO This instruction adds the byte whose address is (AO) to the
lowest order byte in DO.

ADD Dl,D2

ADD.L A3,D3

This instruction adds the low order word of Dl to the low
order word of D2. (W is the default size code.)

This instruction adds the entire 32-bit (Iongword) contents of
A3 to D3.

Example (illegal):

SUBA.B #S,Al

Operand Field

Illegal size specification (.B not allowed on SUBA). This in­
struction would have subtracted the value 5 from the low or­
der byte of Al; byte operations on address registers are not
allowed.

If present, the operand field follows the operation field and is separated from the opera­
tion field by at least one space . When two or more operand subfields appear within a
statement, they must be separated by a comma. In an instruction like ' ADD Dl ,D2', the
first subfield (Dl) is called the source effective address field , and the second subfield
(D2) is called the destination effective address field. Thus, the contents of Dl are added
to the contents of D2 and the result is saved in register D2. In the instruction 'MOVE
Dl,D2', the first subfield (Dl) is the sending field and the second sub field (D2) is the
receiving field. In other words, for most two-operand instructions, the general format
'opcode source, destination' applies.

Disassembled Source Line

The disassembled source line may not look identical to the source line entered. The
disassembler makes a decision on how it interprets the numbers used. If the number is an
offset off of an address register, it is treated as a signed hexadecimal offset. Otherwise, it
is treated as a straight unsigned hexadecimal. For example,

MOVE.L #1234,5678
MOVE .L FFFFFFFC(AO) ,5678

4- 4

ASSEMBLER/DISASSEMBLER

disassembles to:

0000300021FCOOOO
0000300821E8FFFC

12345678 MOVE.L
5678 MOVE.L

#$1234, ($5678) .w
-$4(AO), ($5678) .W

Also, for some instructions, there are two valid mnemonics for the same opcode, or there
is more than one assembly language equivalent. The disassembler may choose a form
different from the one originally entered. As examples:

a. BRA is returned for BT

b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two branch instruc­
tions. The BT form (branch conditionally true) has the same opcode as the
BRA instruction. Also, DBRA (decrement and branch always) and DBF
(never true, decrement, and branch) mnemonics are different forms for the
same instruction. In each case, the assembler will accept both forms.

Mnemonics And Delimiters

The assembler recognizes all MC68030 instruction mnemonics. Numbers are recognized
as binary, octal, decimal, and hexadecimal, with hexadecimal the default case.

a. Decimal - is a string of decimal digits (0 through 9) preceded by an ampersand
(&). Examples are: &12334, -&987654321 .

b. Hexadecimal - is a string of hexadecimal digits (0 through 9, A through F) pre­
ceded by an optional dollar sign ($). An example is: $AFE5 .

One or more ASCII characters enclosed by apostrophes (' ') constitute an ASCII string.
ASCII strings are right-justified and zero-filled (if necessary), whether stored or used as
immediate operands .

0000300021FCOOOO 12345678 MOVE.L
005000 0053
005002
005008

223C41424344
3536

#$1234' (5678). w
DC.W 'S'
MOVE.L #'ABCD ' ,D1
DC.W '56'

4-5

I

I

ASSEMBLER/DISASSEMBLER

The assembler/disassembler recognizes/references these register mnemonics:

Pseudo Registers
===

RO-R7 USER OFFSET REGISTERS
===

Main Processor Registers

===
PC
SR
CCR
USP
MSP
ISP
SFC
DFC
CACR
CAAR
DO-D7
AO-A7

Program Counter. Used only in forcing PC-relative addressing.
Status Register.
Condition Codes Register (Lower eight bits of SR).
User Stack Pointer.
Master Stack Pointer.
Interrupt Stack Pointer. VBR Vector Base Register.
Source Function Code Register.
Destination Function Code Register.
Cache Control Register.
Cache Address Register.
Data registers.
Address Registers. A7 represents the active system stack pointer, (one
of USP, MSP, or ISP), as specified by M and S bits of status register
(SR).

===
MEMORY MANAGEMENT UNIT REGISTERS

===
MMUSR
CRP
SRP
TC
TTO
TTl

Status Register
CPU Root Pointer
Supervisor Root Pointer
Translation Control Register
Transparent Translation 0
Transparent Translation 1

===
FLOATING POINT COPROCESSOR REGISTERS

===
FPCR
FPSR
FPIAR
FPO-FP7

Control Register
Status Register
Instruction Address Register
Floating Point Data Registers

===

4-6

ASSEMBLER/DISASSEMBLER

Character Set

The character set recognized by the 143Bug assembler is a subset of ASCII, and these are
listed as follows:

a. The letters A through Z (uppercase and lowercase)

b. The integers 0 through 9

c. Arithmetic operators: + - * I << >> ! &

d. Parentheses ()

e. Characters used as special prefixes :

(pound sign) specifies the immediate form of addressing.
$ (dollar sign) specifies a hexadecimal number.
& (ampersand) specifies a decimal number.
@ (commercial at sign) specifies an octal number.
% (percent sign) specifies a binary number.
' (apostrophe) specifies an ASCII literal character string.

f . Five separating characters:

Space
, (comma)
. (period)
I (slash)
- (dash)

g. The character * (asterisk) indicates current location.

Addressing Modes

Effective addressing modes, combined with operation codes, define the particular func­
tion to be performed by a given instruction. Effective addressing and data organization
are described in detail in Section 2, Data Organization and Addressing Capabilities, of the
MC68030 32-Bit Microprocessor User's Manual .

The addressing modes of the MC68030 which are accepted by the 143Bug one- line as­
sembler are summarized in Table 4-1.

4-7

I

I

ASSEMBLER/DISASSEMBLER

TABLE 4-1. 143Bug Assembler Addressing Modes
===

FORMAT DESCRIPTION

===
Dn
An
(An)
(An)+
-(An)
d(An)
d(An,Xi)
(bd,An,Xi)
([bd,An],Xi,od)
([bd,An,Xi] ,od)
(d16,PC)
(d8,PC,Xi)
(bd,PC,Xi)
([bd,PC] ,Xi,od)
([bd,PC,Xi] ,od)
(xxxx).W
(xxxx).L
#xxxx

Data register direct.
Address register direct.
Address register indirect.
Address register indirect with postincrement.
Address' register indirect with predecrement.
Address register indirect with displacement.
Address register indirect with index, 8-bit displacement.
Address register indirect with index, base displacement.
Address register memory indirect postindexed.
Address register memory indirect pre-indexed.
Program Counter indirect with displacement.
Program Counter indirect with index, 8-bit displacement.
Program Counter indirect with index, base displacement.
Program Counter memory indirect postindexed.
Program Counter memory indirect pre-indexed.
Absolute word address.
Absolute long address .
Immediate data.

The user may use an expression in any numeric field of these addressing modes. The
assembler has a built-in expression evaluator. It supports the following operands types:

a. Binary numbers (%10)

b. Octal numbers (@765 .. 0)

c. Decimal numbers (&987 .. 0)

d. Hexadecimal numbers ($FED .. O)

e. String literals ('CHAR')

f. Offset registers (RO-R7

g. Program counter (*)

4- 8

ASSEMBLER/DISASSEMBLER

Allowed operators are:

a. Addition +

b. Subtraction

c. Multiply *

d. Divide I

e. Shift left <<

f. Shift right >>

g. Bitwise OR

h. Bitwise AND &

The order of evaluation is strictly left to right with no precedence granted to some opera­
tors over others . The only exception to this is when the user forces the order of prece­
dence through the use of parentheses.

Possible points of confusion:

a. The user should keep in mind that where a number is intended and it could be
confused with a register, it must be differentiated in some way. For example:

CLR DO means CLR.W register DO. On the other hand,

CLR $DO

CLR ODO

CLR +DO

CLR DO+O all mean CLR.W memory location $DO.

b. With the use of'* ' to represent both multiply and program counter, how does the
assembler know when to use which definition?

For parsing algebraic expressions, the order of parsing is:

operand operator operand operator . .

with a possible left or right parenthesis.

4-9

I

I

ASSEMBLER/DISASSEMBLER

Given the above order, the assembler can distinguish by placement which defini-
tion to use. For example:

*** means PC X PC
+ means PC + PC
2** means 2 * PC
*&&16 means PC AND &16

When specifying operands, the user may skip or omit entries with the following address­
ing modes.

a. Address register indirect with index, base displacement.

b. Address register memory indirect postindexed.

c. Address register memory indirect pre-indexed.

d. Program counter indirect with index, base displacement.

e. Program counter memory indirect postindexed.

f. Program counter memory indirect pre-indexed.

For modes address register/program counter indirect with index, base displacement, the
rules for omission/skipping are as follows:

4-10

a. The user may terminate the operand at any time by specifying ')'. Example:

CLR

CLR

()

(")

or
is equivalent to

CLR (O.N,ZAO,ZDO .W*l)

b. The user may skip a field by "stepping past" it with a comma. Example:

CLR (D7) is equivalent to

CLR ($D7,ZAO,ZDO.W*l)

but
CLR (, ,D7) is equivalent to

CLR (0 . N,ZAO,D7.W*l)

ASSEMBLER/DISASSEMBLER

c. If the user does not specify the base register, the default 'ZAO' is forced.

d. If the user does not specify the index register, the default 'ZDO.W* 1' is forced .

e. Any unspecified displacements are defaulted to 'O.N' .

The rules for parsing the memory indirect addressing modes are the same as above with
the following additions.

a. The subfield that begins with '[' must be terminated with a matching '] '.

b. If the text given is insufficient to distinguish between the pre-indexed or postin­
dexed addressing modes, the default is the pre-indexed form.

DC.W Define Constant Directive

The format for the DC.W directive is: DC.W operand

The function of this directive is to define a constant in memory . The DC.W directive can
have only one operand (16- bit value) which can contain the actual value (decimal, hexa­
decimal, or ASCIT) . Alternatively, the operand can be an expression which can be as­
signed a numeric value by the assembler. The constant is aligned on a word boundary as
word (.W) size is specified. An ASCIT string is recognized when characters are enclosed
inside single quotes (' ') . Each character (seven bits) is assigned to a byte of memory,
with the eighth bit (MSB) always equal to zero. If only one byte is entered, the byte is
right justified. A maximum of two ASCIT characters may be entered for each DC.W
directive. Examples are:

00010022 04D2 DC . W &1234 Decimal number
00010024 AAFE DC.W AAFE Hexadecimal number
00010026 4142 DC.W 'AB' ASCIT string
00010028 5443 DC.W ' TB' +1 Expression
0001002A 0043 DC.W 'C' ASCIT character is right justified

4-11

I

I

ASSEMBLER/DISASSEMBLER

SYSCALL System Call Directive

The function of this directive is to aid the user in making the TRAP #15 calls to system
functions. The format for this directive is :

SYSCALL function name

For example, the following two pieces of code produce identical results .

or

TRAP #$F
DC.W 0

SYSCALL .INCHR

Refer to Chapter 5, SYSTEM CALLS, for a complete listing of all the functions provided.

Entering And Modifying Source Programs
User programs are entered into the memory using the one- line assembler/ disassembler.
The program is entered in assembly language statements on a line- by-line basis. The
source code is not saved as it is converted immediately to machine code upon entry. This
imposes several restrictions on the type of source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not allowed . The
assembler has no means to store the associated values of the symbols and labels in lookup
tables . This forces the programmer to use memory addresses and to enter data directly
rather than use labels.

Also, editing is accomplished by retyping the entire new source line . Lines can be added
or deleted by moving a block of memory data to free up or delete the appropriate number
of locations (refer to the BM Command paragraph in Chapter 3).

Invoking The Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory Modify (MM)
and Memory Display (MD) commands:

and

4-12

MM addr ;DI

where (CR)
.(CR)

sequences to next instruction
exits command

MD[S) addr[:count I addr];DI

ASSEMBLER/DISASSEMBLER

The MM (;DI option) is used for program entry and modification. When this command is
used, the memory contents at the specified location are disassembled and displayed . A
new or modified line can be entered if desired.

The disassembled line can be an MC68030 instruction, a SYSCALL, or a DC.W directive.
If the disassembler recognizes a valid form of some instruction, the instruction will be
returned; if not (random data occurs), the DC.W $XXXX (always hex) is returned. Be­
cause the disassembler gives precedence to instructions, a word of data that corresponds
to a valid instruction will be returned as the instruction.

Entering A Source Line

A new source line is entered immediately following the disassembled line, using the for­
mat discussed in the Source Line Format paragraph in this chapter:

143-Bug>MM 1 0000; 01
00010000 2600 MOVE. L DO, D3 ? AOOQ.L #1 ,A3

When the carriage return is entered terminating the line, the old source line is erased
from the terminal screen, the new line is assembled and displayed, and the next instruc­
tion in memory is disassembled and displayed:

143-Bug>MM 10000;01
00010000 528B
00010002 4282

ADDQ.L #1,A3
CLR . L D2 ?

If a hardcopy terminal is being used, the above example will look as follows:

143-Bug>MM 10000;01
00010000 2600
00010000 528B
00010002 4282

MOVE.L DO , D3 ? AOOQ . L #1,A3

ADDQ . L #1 , A3
CLR.L D2 ?

Another program line can now be entered. Program entry continues in like manner until
all lines have been entered. A period is used to exit the MM command.

If an error is encountered during assembly of the new line, the assembler displays the line
unassembled with a "'" under the field suspected of causing the error and an error mes­
sage is displayed. The location being accessed is redisplayed:

4-13

•

I

143-Bug>m 1 0000; di
00010000 528B
00010000

*** Unknown Field ***

ASSEMBLER/DISASSEMBLER

ADDQ.L #l,A3 ? lea.l 5(a0,d8),a4
LEA.L 5(AO,D8) ,A4

00010000 528B ADDQ.L #l,A3 ?

Entering Branch And Jump Addresses

When entering a source line containing a branch instruction (BRA, BGT, BEQ, etc.), do
not enter the offset to the branch destination in the operand field of the instruction. The
offset is calculated by the assembler. The user must append the appropriate size exten­
sion to the branch instruction.

To reference a current location in an operand expression, the character "*" (asterisk) can
be used. Examples are:

00030000 60004094 BRA *+$4096

00030000 60FE BRA . B *

00030000 4EF90003 0000 JMP *

00030000 4EF00130 00030000 JMP (*,AO,DO)

In the case of forward branches or jumps, the absolute address of the destination may not
be known as the program is being entered. The user may temporarily enter an "'"' for
branch to self in order to reserve space. After the actual address is discovered, the line
containing the branch instruction can be re-entered using the correct value.

NOTE

Branch sizes must be entered as ".B" or ".W" as opposed to " .S" and ".L".

Assembler Output/Program Listings

A listing of the program is obtained using the Memory Display (MD) command with the
;DI option. The MD command requires both the starting address and the line count to be
entered in the command line. When the ;DI option is invoked, the number of instructions
disassembled and displayed is equal to the line count. 0
To obtain a hard copy listing of a program, use the Printer Attach (PA) command to
activate the printer port. An MD to the terminal then causes a listing on the terminal and
on the printer.

4-14

ASSEMBLER/DISASSEMBLER

Note again, that the listing may not correspond exactly to the program as entered. As
discussed in the Disassembled Source Line paragraph in this chapter, the disassembler
displays in signed hexadecimal any number it interprets as an offset off of an address
register; all other numbers are displayed in unsigned hexadecimal.

4-15

•

Introduction

CHAPTER 5
SYSTEM CALLS

This chapter describes the 143Bug TRAP #15 handler, which allows system calls from
user programs. The system calls can be used to access selected functional routines con­
tained within 143Bug, including input and output routines. TRAP #15 may also be used to
transfer control to 143Bug at the end of a user program (refer to the .RETURN Function
paragraph in this chapter).

In the descriptions of some input and output functions, reference is made to the "default
input port" or the "default output port" . After power-up or reset, the default input and
output port is initialized to be port 0 (the MVME143 serial port 1). The defaults may be
changed, however, using the .REDIR_I and .REDIR_O functions, as described in this
chapter.

Invoking System Calls Through TRAP #15

To invoke a system call from a user program, simply insert a TRAP #15 instruction into
the source program. The code corresponding to the particular system routine is specified
in the word following the TRAP opcode, as shown in the following example.

Format in user program:

TRAP #15 System call to 143Bug
DC.W $xxxx Routine being requested (xxxx = code)

In some of the examples shown in the following descriptions, a SYSCALL macro is used.
This macro automatically assembles the TRAP #15 call followed by the Define Constant
for the function code. For clarity, the SYSCALL macro is as follows:

SYSCALL MACRO
TRAP #15
DC.W \1
ENDM

Using the SYSCALL macro, the system call would appear in the user program as follows:

SYSCALL routine name

5-l

II

•

SYSTEM CALLS

It is, of course, necessary to create an equate file with the routine names equated to their
respective codes.

When using the 143Bug one-line assembler/disassembler, the SYSCALL macro and the \.. .../
equates are predefined. Simply write in "SYSCALL" followed by a space and the func-
tion, then carriage return.

Example:

143- Bug>M 3000;01
0000 3000 00000000
0000 3000 4E4F0022
0000 3004 00000000
143-Bug>

ORI. B #$0, DO? SYSCALL .OUTLN
SYSCALL .OUTLN
ORI.B #$0,DO? .

String Formats For 1/0

Within the context of the TRAP #15 handler there are two formats for strings:

Pointer/Pointer Format· ~ The string is defined by a pointer to the first character and
a pointer to the last character + 1.

Pointer/Count Format - The string is defined by a pointer to a count byte, which
contains the count of characters in the string, followed by
the string itself.

A line is defined as a string followed by a carriage return and a line feed: (CR)(LF).

SYSTEM CALL ROUTINES

The TRAP #15 functions are summarized in Table 5-l. Refer to the write-ups on the
utilities for specific use information.

5-2

SYSTEM CALLS

TABLE 5-l. 143Bug System Call Routines
===
CODE FUNCTION DESCRIPTION
===
$0000 .INCHR Input character
$0001 .INSTAT Input serial port status
$0002 .INLN Input line (pointer/pointer format)
$0003 .READSTR Input string (pointer/count format)
$0004 .READLN Input line (pointer/count format)
$0005 .CHKBRK Check for break
$0010 .DSKRD Disk read
$0011 .DSKWR Disk write
$0012 .DSKCFIG Disk configure
$0014 .DSKFMf Disk format

II $0015 .DSKCTRL Disk control
$0020 .OUTCHR Output character
$0021 .OUTSTR Output string (pointer/pointer format)
$0022 .OUTLN Output line (pointer/pointer format)
$0023 .WRITE Output string (pointer/count format)
$0024 .WRITELN Output line (pointer/count format)
$0025 .WRITDLN Output line with data (pointer/count format)
$0026 .PCRLF Output carriage return and line feed
$0027 .ERASLN Erase line
$0028 .WRITD Output string with data (pointer/count format)
$0029 .SNDBRK Send break
$0043 .DELAY Timer delay function
$0050 .RTC TM Time initialization for RTC
$0051 .RTC DT Date initialization for RTC
$0052 .RTC DSP Display time from RTC
$0053 .RTC RD Read the RTC registers
$0060 .REDIR Redirect 110 of a TRAP #15 function
$0061 .REDIR I Redirect input
$0062 .REDIR 0 Redirect output
$0063 .RETURN Return to 143Bug
$0064 .BINDEC Convert binary to Binary Coded Decimal (BCD)
$0067 .CHANGEV Parse value
$0068 .STRCMP Compare two strings (pointer/count format)
$0069 .MULU32 Multiply two 32- bit unsigned integers
$006A .DIVU32 Divide two 32-bit unsigned integers
$006B .CHK SUM Generate checksum
$0070 .BRD ID Return pointer to board ID packet

===

5-3

II

SYSTEM CALLS

.INCHR Function

.INCHR

TRAP FUNCTION: .INCHR - Input character routine

CODE: $0000

DESCRIPTION: Reads a character from the default input port. The character is returned
in the stack.

ENTRY CONDIDONS:

SP ==> Space for character (byte)
Word fill (byte)

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Character (byte)
Word fill (byte)

EXAMPLE: SUBQ . L #2,SP

SYSCALL . INCHR

MOVE.B (SP)+,DO

5-4

Allocate space for result.
Call .INCHR.
Load character in DO.

SYSTEM CALLS

.INST AT Function

.INSTAT

TRAP FUNCTION: JNSTAT - Input serial port status

CODE: $0001

DESCRIPTION: Used to see if there are characters in the default input port buffer. The
condition codes are set to indicate the result of the operation.

ENTRY CONDillONS:

No arguments or stack allocation required

EXIT CONDillONS DIFFERENT FROM ENTRY:

Z(ero) = 1 if the receiver buffer is empty

EXAMPlE: LOOP SYSCALL . I NSTAT

BEQ.S EMPTY

SUBQ . L #2,A7

SYSCALL .INCHR

MOVE. B (SP)+, (AO)+

BRA.S LOOP

EMPTY

Any characters?
No, branch
Yes, then
Read them
In buffer
Check for more

5-5

II

II

SYSTEM CALLS

.INLN Function

.INLN

TRAP FUNCTION: .lNLN - Input line routine

CODE: $0002

DESCRIPTION: Used to read a line from the default input port. The buffer size should be
at least 256 bytes.

ENTRY CONDIDONS:

SP ==> Address of string buffer (longword)

EXIT CONDIDONS DIFFERENT FROM ENTRY:

SP ==> Address of last character in the string+ 1 (longword)

EXAMPLE: If AO contains the address where the string is to go;

SUBQ.L #4,A7 Allocate space for result.
PEA.L (AO) Push pointer to destination.
TRAP #15 (May also invoke by SYSCALL
DC.W 2 macro ("SYSCALL .lNLN").)
MOVE.L (A7)+,Al Retrieve address of last character+ 1.

NOTE: A line is a string of characters terminated by (CR). The maximum allowed size
is 254 characters. The terminating (CR) is not considered part of the string, but
it is returned in the buffer, that is, the returned pointer points to it. Control
character processing as described in the Terminal Input/Output Control paragraph
in Chapter 1, is in effect.

5-6

SYSTEM CALLS

.READSTR Function

.READSTR

TRAP FUNCTION: .READSTR - Read string into variable-length buffer

CODE: $0003

DESCRIPTION: Used to read a string of characters from the default input port into a
buffer. On entry, the first byte in the buffer indicates the maximum num­
ber of characters that can be placed in the buffer. The buffer size should
at least be equal to that number+2. The maximum number of characters
that can be placed in a buffer is 254 characters . On exit, the count byte
indicates the number of characters in the buffer. Input terminates when a
(CR) is received. The (CR) character appears in the buffer, although it is
not included in the string count. All printable characters are echoed to
the default output port. The (CR) is not echoed. Some control character
processing is done:

·c Bell

·x Cancel line
-H Backspace

(DEL) Same as backspace

(LF) Line Feed

(CR) Carriage Return

Echoed .
Line is erased.
Last character is erased.
Last character is erased.
Echoed .
Terminates input.

All other control characters are ignored.

ENTRY CONDIDONS:

SP ==> Address of input buffer (longword)

EXIT CONDIDONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The count byte contains the number of bytes in the buffer.

5- 7

II

I

SYSTEM CALLS

.READSTR

EXAMPLE: If AO contains the string buffer address:

MOVE.B #75, (AO) Set maximum string size .
PEA.L (AO) Push buffer address.
TRAP #15 (May also invoke by SYSCALL
DC.W 3 macro ("SYSCALL .READSTR").)
MOVE . B (AO) , DO Read actual string size .

NOTE: This routine allows the caller to dictate the maximum length of input to be less
than 254 characters. If more characters are entered, then the buffer input is
truncated. Control character processing is described in the Terminal Input/Output
Control paragraph in Chapter 1.

5-8

SYSTEM CALLS

.READLN Function

.READLN

TRAP FUNCTION: .READLN - Read line to fixed-length buffer

CODE: $0004

DESCRIPTION: Used to read a string of characters from the default input port. Charac­
ters are echoed to the default output port. A string consists of a count
byte followed by the characters read from the input. The count byte indi­
cates the number of characters in the input string, excluding (CR)(LF). A
string may be up to 254 characters .

ENTRY CONDITIONS:

SP ==> Address of input buffer (longword)

EXIT CONDffiONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The first byte in the buffer indicates the string length.

EXAMPLE: If AO points to a 256-byte buffer;

PEA.L (AO) Load buffer address
SYSCALL .READLN And read a line from default input port.

NOTE: The caller must allocate 256 bytes for a buffer. Input may be up to 254 charac­
ters. (CR)(LF) is sent to default output following echo of input. Control charac­
ter processing is described in the Terminal Input/Output Control paragraph in
Chapter 1.

5-9

II

II

SYSTEM CALLS

.CHKBRK Function

.CHKBRK

TRAP FUNCTION: .CHKBRK- Check for break

CODE: $0005

DESCRIPTION: Returns "Zero" status in the condition code register if break status is
detected at the default input port.

ENTRY CONDillONS:

No arguments or stack allocation required

EXIT CONDillONS DIFFERENT FROM ENTRY:

Z flag in CCR if break detected

EXAMPLE: SYSCALL .CHKBRK

BEQ BREAK

5-10

SYSTEM CALLS

.DSKRD, .DSKWR Functions

.DSKRD
.DSKWR

TRAP FUNCTIONS: .DSKRD - Disk read function
.DSKWR - Disk write function

CODES: $0010
$0011

DESCRIPTION: These functions are used to read and write blocks of data from/to the
specified disk or tape device . Information about the data transfer is
passed in a command packet which has been built somewhere in mem­
ory. (The user program must first manually prepare the packet.) The
address of the packet is passed as an argument to the function. The same
command packet format is used for .DSKRD and .DSKWR. It is eight
words in length and is arranged as follows :

FE DC B A 9 8 7 6 54 3 210

$00 CONTROLLER LUN I DEVICE LUN

$02 STATUS WORD

$04 MOST -SIGNIFICANT WORD

MEMORY ADDRESS

$06 LEAST -SIGNIFICANT WORD

$08 BLOCK NUMBER (DISK) MOST - SIGNIFICANT WORD

OR

$0A FILE NUMBER (STREAMING TAPE) LEAST -SIGNIFICANT WORD

$0C NUMBER OF BLOCKS

$0E FLAG BYTE l ADDRESS MODIFIER

5-11

II

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions
Extend the life of your critical industrial,

commercial, and military systems with our

superior service and support.

We buy equipment
Planning to upgrade your current

equipment? Have surplus equipment taking

up shelf space? We'll give it a new home.

Learn more!
Visit us at artisantg.com for more info

on price quotes, drivers, technical

specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?
(217) 352-9330 I sales@artisantg.com I artisantg.com

