HP 6942A
Benchtop Multiprogrammer

2l ARTISAN

‘ TECHNOLOGY GROUP

Your definitive source

Limited Availabilit -

L;?eldeand\;ilgxééll):ent Condition fD r q ua I ITY p re-own Ed
equipment.

Open Web Page

https://www.artisantg.com/46900-5 Artisan Technology Group
(217) 352-9330 | salesaartisantgLom | artisantg.com

Alltrademarks, brandnames, and brands appearing herein are the property of their respective owners.

» Critical and expedited services « We buy your excess, underutilized, and idle equipment
«» In stock / Ready-to-ship « Full-service, independent repair center
Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/46900-5/Agilent-6942A?pdf=46900-5
https://www.artisantg.com/46900-5?pdf=46900-5

6942A MULTIPROGRAMMER
USER’S GUIDE

HP Part No. 068%42.80003 November 1979

LA AL B B N NN NN NENNINENENZMNMNNNHNNIENZSZHNNNN

TABLE OF CONTENTS

Chapter Page No. Chapter Page No.
I INTRODUCTION............ 1-1 36 Controller/Multiprogrammer
1-1 SCOPE OF THIS Connections and Addresses . . 3-1
USER'SGUIDE............ 11 3-8 I/0 Card Selection 32
1-4 RELATED PUBLICATIONS .. 1-1 312 PROGRAMMING THE
1-8 OTHER HP-IB OUTPUT CARDS.......... 3-z
CONTROLLERS 1-2 3-13 The Output Parallel (OP}
Instruction 3-2
I INSTALLATION 3-16 Send the Program. 32
AND CHECKOUT 2-1 321 I/Q Card Data Formats 33
2.2 EQUIPMENT REQUIRED 2-1 3.27 PROGRAMMING
2.7 INSTALLATION. 2-1 INPUT CARDS 33
2-8 Instaliing Controller ROM'S 3-29 The Input Parallel {IP}
and HP-IB Interface Card 2-2 instruction 3-4
2-9 Input Power 3-33 - Input Simulation and
Requirements and Line Data Readback 3-4
Voltage Conversion for Multi- 3-39 Checking For Programming
. programmer System 2-2 Errors 3-5
2-11 Setting Multiprogrammer
System HP-1B Addrass 2-3 IV PROGRAMMING CONCEPTS 41
2-14 Setting Frame Address 4.2 HP-IB MESSAGES.......... 4-1
Switches.................. 2-3 4-4 Data Messages 4-1
2-18 Connecting Cables 2-4 4-8 Clear Message (Device Clear) .. 4-2
2-23 Installing /0O Cards. 2-6 4-18 DATA MESSAGE
2-29 Cooling Fan and Air Filter 2-9 PROCESSING............. 4-3
2-32 CHECKOUT 4-19 Output Instructions. 4-3
AND TROUBLESHOOTING 2-9 4.24 fnput Instructions,, 4-5
2-33 Front Panel Controls and 4-26 Reading Back Data
Indicators 2-9 from Instructions. 4-5
2-36 Pre-Operational Checklist. 2-10 4-28 Reading Back Status
2-38 Power-On/Self Test 2-10 Information. 4-5
2-41 Self Test Error Detection 4-30 Real Time Clock 4.5
and Card ldentifier 4-32 i/0 CARD OPERATIONS. .. 4-5
Utility Program. 2-11 4-34 Output Cards 4-5
2-45 Self Test Error Codes........ 2-11 4-47 Input Cards 4-7
2-47 Power Supply Failures 2-14 4-53 I/O CARD SUBADDRESSES 4-8
2-50 Data Common Ground. .., ... 2-14 4-56 Output Card Subaddresses . .. 4-8
Input Card Subaddresses. . .. 4-16
I GETTING STARTED......... 3-1 480 Counter Card Subaddresses .. 4-10
31 INFRODUCTION........... . 31 4-82 irderrupt and Memaory
34 HARDWARE Card Subaddresses......... 4-1¢

REQUIREMENTS 3-1 4-64 I/0 CARD DATA FORMATS 410

Chapter

TABLE OF CONTENTS (Continued)

4-68 Data Type........... ... L
471 Least Significant Bit

Value (LSB Value)
4-73 Range Code................
4-75 Size ... e
4-77 Limbt. ... e
4-79 Card Identifier
4.81 1/0 Card Data Format

Wake-tp Values
4.-84 Error Processing
4-86 Programming in

Engineering Units
PROGRAMMING

ESSENTIALS

5-2 INSTRUCTION SET.........
5.5 System Control

Instructions.
5-9 Qutput Instructions.
511 input Instructions
5-1h Card Control

Instructions.
518 System Timing

Instructions.
5-22 High Level and Low

Level Instructions
5.27 INSTRUCTION SYNTAX

CONVENTIONS...........
5-30 Opcodec.u...
5-32 Card Address
5-39 CardData..................
5-42 Control Parameters..........
5-45 Instruction Terminator
547 Delimiters
5.50 INSTRUCTYION

PROCESSING

MODES
5-53 SeriatMode
5-bb Parallel Mode
557 Seriai-Paraliel Mode

Control Instructions
5-59 Immediate Mode
5.1 BASIC CUTPUT

INSTRUCTIONS
5-83 Qutput Paraiief {OP)

INSTRUCTION
5.70 Gutput Sequential {0S)

Instruction
5.77 Qutput Bit (OB}

Instruction
5.85 Low Level Qutput

Instructions
5-104 BASIC INPUT

INSTRUCTIONS

Page No,

4-10
411
411
4-11
4-11
4-11

4-11

4-13

B-1

5-1

5-1

B-1

5-4

5.4

5-4

55

56

b6
56

5-6
5-8
59

. B1%
511

5-12

5-12

5-12

513

Chapter

Vi

5-106

5-135

5-143
5-148

5-163
5-169
5-172
5-185
5187
5-193
5-201
5.208
5-215
5-218
5-222
5-224
5-236
5-266
5-258
5-264

5-271

Input Paralie! (IP)

mstruction,
Additional Readback
Considerations
External Triggers
Input External (IE)
Instruction
Read Vaiue
SYSTEM STATUS
Multiprogrammer SRQ
Status Information
Busy Instruction

Status
INTERRUPT
INSTRUCTIONS
Qutput Interrupt (O
Instruction
input Interrupt (1)
instruction

Multiple O and H
interrupt instructions
Interrupt Now {IN)
instruction
interrupt Instruction
Application Program......
/G CARD FORMAT
INSTRUCTIONS
Read Format {RF)

Instruction
Set Format {SF)

Instruction
SYSTEM TIMING
INSTRUCTIONS
Set Clock {SC)

Instruction
Read Clock {RC)

Instruction,
Wait (WA} Instruction ..., . ..

Wait Until (WU

5-286

Instruction
Clear Wait {CW)
Ingtruction

SPECIAL PURPOSE

PROGRAMMING
INFORMATION
6-2 GROUP INSTRUCTIONS
6-5 Defining a Group

Instruction
6-7 Using Group Instructions.
6-9 Clear Group {CG}

Instruction
6-12 Redefining Group

Instructions.

Page No.

5-19
5-20

5-21
5-22
5-23
5-23
5-27
5-28
5-29
5-31
5.32
533
5-33
5-33
5-34
5-37
5-39
5-40

5-40
541

5-42

5-42

61

6-1
6-2

6-2

Chapter

Vil

TABLE OF CONTENTS (Continued)

6-14 Instruction Execution Time
and Memory Utilization
6-17 ARMED CARD

INTERRUPTS.............
6-19 Multiprogrammer Interrupt

System
§-22 Arm Card {AC}

Instruction

G-24 Armed Card Interrupt

List Readback
6-33 Disarm Card (DC)

Instruction
6-36 /0 CARD STATUS.........
6-39 Read Status (RS)

Instruction
6-41 Sample Program
6-43 CLEARING /0 CARDS
6-45 Clear Card (CC}

Instruction
6-48 Sample Program
6-50 IMMEDIATE MODE........
6-562 Go Immediate (G}

Instruction
6-56 Restrictions.
6-68 Go Normal (GN)

ftruction ... oL,
6-61 DISABLING AND ENABLING

OUTPUT CARDS

6-63 System Disable (SD}

struction ...,
6-69 MEMORY INSTRUCTIONS.
6-71 Memory Output (MO)

instruction
6-75 Memary Input (M)

Instruction
6-80 MULTIPROGRAMMER

MEMORY UTHLIZATION ..
6-82 Memory Usage
6-93 Memeory Full Condition,
5-98 Avoiding Memory

Overflow

PLUG-IN CARD
DESCRIPTIONS
AND PROGRAMS
7-5 Resistance Output Cards,
Models 69700AS5-69706A
7-18 D/A Voliage Converter
Card, 89720A
7-27 D/A Current Converter
Card, 69721A
7-36 Relay Qutput Card,
69730A ... L
7-45 Digital Output Card,
BO731A ...

Page No.

6-3

6-3

6-4

6-6
6-6

6-6

6-7
6-7

6-7
6-8

6-8
6-8

6-9

6-9
6-10

6-10
8-10
6-11
6-11
6-12

6-13

7-1
7-1

7-4

7-8

7-10

Chapter
7-52
7-68
7-80
7-89

7-98

7-107
7-120
7-132
7-181
7-1862
7-159
7-165
7-169

7-173

Puise Train Qutput Card,
B69735A
Timer/Pacer Card,
BI736A ...
A/D Converter Card,
6O7TSTA L.
Isolated Digitai [nput
Card, 89770A
Digital input/Anaiog
Comparator Card,
BOTTMA ...
Counter/Totalizer Card,
BI77BA ...,
Interrupt Card,
BOYIBA
Memory Card,
BY790A ...
MULTIPLE CARD
PROGRAMS
External Triggering
Output and Input

Resistance Measurement. . .,
Frequency Measurement
Synthesizing a
Waveform.................
High-Speed Analog

Data Acquisition

APPENDIX A NUMBER THEQRY

A-2 DECIMAL NUMBERS
A-9 OCTAL NUMBERS

A-15 DECIMAL CONVERSION

ALGORITHMS
A-22 NEGATIVE NUMBERS
A-30 BINARY CODED DECIMAL (BCD}.,

APPENDIX B ERROR CODES
8.2 GENERAL PROGRAMMING

APPENDIX C UTILITY PROGRAMS
C-2 CHECKING SUBROUTINE
C-5 EHROR TRAPPING

SUBROUTINE...................

C-7 SELF TEST ERROR DETECTION AND

CARD IDENTIFIER PROGRAM. ..

APPENDIX D

Page No.

7-18

7-21
7-23
7-26

7-29

7-34
7-36
7-38
7-39
7-41
A-1
A-1
A-2

A-3
A-4

B-1
B-1
B-2
C-1
C-1

C-5

DEBUGGING THE SYSTEM
D-4 REPORTABLE ERRORS
D-10 NON-REPORTABLE ERRORS

D-1
D-2

Chapter |
INTRODUCTION

1-1 SCOPE OF THIS USER’'S GUIDE

1-2 This User's Guide provides programming, operating,
instailation, and verification procedures for the entire 8942A
Multiprogrammer system {consisting of the 68424
Multiprogrammer, 69434 Extender(s), and complete famity of
/0 cards!. The Multiprogrammer is designed to operate on
the Hewlett-Packard Interface Bus (HP-1B) under control of a
Desktop Computer or System Computer (HP-1B Controlier).
Note that the intent of this guide is to provide al’ of the pro-
gramming information that is pertinent 1o the Muitiprogram-
mer System. It does not cover the fundamentals of programm-
ing your Controller nor does it describe the structure and
operation of the HP-IB. Refer to “'Related Publications” for a
list of other documents that are presently available for these
items.

1-3 The following is an abbreviated listing of all of the ma-

jor information contained in this guide together with a brief

description concerning the scope of this material.
Installation and Checkout. Chapter 2 contains all of
the information necessary for interconnecting the con-
trofler and the Multiprogrammer units on the HP-1B.
Checkout procedures, using the Multiprogrammer's
self test feature and the uitlity program cartridges sup-
plied with the User's Guide, verify that the equipment
is instatled correctly and can be programmed by the
controller.
Getting Started. Chapter 3 aliows a first time user of
the Multiprogrammer to get acquainted with the unit.

C. Descriptions and listings of the utility
programs contained on the tape car-
tridges provided with the unit.

D. A description on how to debug the
Multiprogrammer system and avoid
potertiial programming problems.

1-4 RELATED PUBLICATIONS

1-5 The following is a list of other publications that may be
helpful 1o the user,

1-6 Other 6942A Literature. Other 6942A literature in-
ciudes the pocket-sized '"Quick Reference Guide”
{06942-80004) and the operating manual that is shipped with
each §/0 card. Each 1/Q card manual explains how 1o change
the jumpers or switches that affect the operating
characteristics that can be altered for that specific card; e.g.
logic sense, logic levels, data formats, etc,. Information on a
more general level is contained in the 8342A Multiprogrammer
brochure (5952-40340}.

1-7 HMP-IB Literature. General information about the HP-
18 can be found in the latest Hewletr-Packard “'Electronic in-
struments and Systems’ catalog. More specific information
on the HP-IB is contained in the “"Condensed Description of
the HP-1B" (69401-80030).

1-8 HP-1B Controller Manuals. The following is a list of
the manuals for seach type of contrcller that is covered in this
User's Guide.

It contains basic operating and programming informa- 9825 Publications HP Part No.
tion and includes programming examples using & Operating and Programming 0O825-90000
9825,35, or 45 Desktop Computer. Quick Reference Guide 09825-90010
Programming Concepis.Chapter 4 containg MP-iB Advanced Programming ROM 09825-90021
message concepts and condensed descriptions of the General 1/0 Programming ROM 0982590024
Multiprogrammer operating concepts that you will Extended 1/0 Programming ROM 09825-90025
need to effectively program the 69424, HP-IB Interface Instaliation 98034-90000
Programming Essentials. Chapter b outlines the
fundamentals of programming a 8942A Multiprogram- 9835 Publications HP Part No.
mer System. It contains an overall description of the
instruction set and detaled descriptions of 21 of the Operating and Programming 09835-80000
most often used instructions. Programming examples Quick Reference Guide 09835-90010
for 9825,9835, and 9845 Controlters are included. Beginner's Guide 09835-90001
Speciat Purpose Programming. This chapter Owner's Manual 09835-90005
describes the remaining 11, special purpose, instruc- [/O ROM Programming 09835-30060
tions in the Multiprogrammer’s instruction set. HP-1B Interface Installation 98034-90000
Plug-in Card Descriptions and Programs. Chapter
7 contains a brief functional description and program- 9845 Publications HP Part No.
ming exampies for each type of 1/0 card. ‘f‘ffOperatiﬂg and Programming 09845-91000
Appendices: ¥. Quick Reference 09845-91015
A. A brief description of the number " Beginner's Guide 09845-91007
systems that apply to the / 1/O ROM Programming 09845-91060
Multiprogrammer. 4+ Owner's Manual 09845-81005
B. A description of the error codes that ./ HP-IB Interface Installation 98034-90000

are reported by the Multiprogrammer.

t-1

1-9 OTHER HP-iB CONTROLLERS

1-10 Any HP-1B Controller, whether it be a fuli-sized com-
puter or desk-top computer, can be used to program the
Muitiprogrammer. This guide contains some specific program-

1-2

ming examples using a 9825,35, or 45 Controller. However,
sufficient information about the Multiprogrammer’s instruc-
tion set is included so that any Controller can be used provided
that the User is thoroughly familiar with the Input/Qutput
operations of that Controller.

Chapter 2
INSTALLATION AND CHECKOUT

2-1 This chapter provides procedures for interconnecting
a 9825, 9835, or 9845 controller and a 6942A/6843A
Multiprogrammer System using the HP-1B. The procedures in-
clude gathering the proper equipment, installing the applicable
ROM'’s in the controller, setting the address switches, and
connecting the cables. Checkout procedures, using the utility
program cartridge supplied with this user’s guide, verify that
the equipment is installed correctly and that the Multiprogram-
mer System can be programmed by the controller.

2.2 EQUIPMIENT REQUIRED
2-3 The foliowing equipment is required to assemble the
system:

1. Programmable Controller: 9825A/8,
9835A/B, or 9846A/B/S/T
2. HP-IB Interface Card HP 98034A
3. Controller ROM's
9825: General /0, Extended |/0, Advanced
Programming, String Variables
9835/9845: 1/0 ROM (optional)
4. Utility program cartridge for 9825 (06242-13001)
or 9835/9845 (06942-13002)
5. Multiprogrammer HP 8942A (plus 6943A
Exiender Units if needed).
6. 1/0 Cards and edge connectors (see paragraph 2-23}
for the 6942A/6843A Muitiprogrammer System.
7. Muitiprogrammer Transmission System
Boards {see paragraph 2-18):

a, Data Strobe (DST) Jumper Board HP Part
No. 06942-60020: instalied wher only one
unit (6942A mainframe} is used in the
system.

b. Transmission System Mainframe Board
HP Part No. 14700-60020 (part of Last Ex-
tender Kit 14700A): installed in a 6942A
mainframe when one or more 6943A Ex-
tender Units are used.

c. Transmission System Intermediate Ex-
tender Board(s) MP Part No. 14701-60020
{Intermediate Extender Kit 14701A): In-
stalled in each 6943A Extender Unit ex-
cept the last Extender Unit in the line.

d. Transmission System Last Extender Board
HP Part No. 14700-60021 (part of Last Ex-
tender Kit 14700A): Installed in the iast
6943A Extender Unit in the line.

8. Interconnecting Cables (see paragraph 2-18):

2-1

a. Controller-to-6942A: Cable is part of the
98034A HP-1B Interface Card. Extra HP-IB
cables can be ordered separately:

10631A HP-IB cable, 1 meter {3.3 ft)

106318 HP-IB cable, 2 meters {6.6 ft)
10631C HP-IB cable, 4 meters 13.2 ft}
106310 HP-IB cable, 0.5 meter {1.6 ft)

b. 6842A-10-6943A etc: Standard T meter
(3.3 ft} chaining cable HP Model No.
14702A purchased separately. Lengths up
to 162 meters are available on special
order. The system can operate with a
total distance of 162 meters {500 feet)
between the 6942A and the last 6943A,
This maximum length is the sum of the
lengths of alt 14702A Chaining Cables us-
ed in one chain.

2-4 INSTALLATION

25 Rear covers are installed on 69424 and 6343A units to

hold the I/O plug-in card connector hoods in place and pre-

vent them from loosening. The cover(s) must be removed in

arder to gain access to the 1/0 card slots, the cable connec-.
tors, address switches, and the power module. Four quarter-

turn fasterners secure the cover to the rear of the unit, Figure

2-1 illustrates the rear views of the 8942A units with their

covers removed. The following 8 general steps are required

prior to applying power and programming the Multiprogram-

mer System.

1. nstall ROM's and HP-IB Interface Card in
controlier {paragraph 2-8).

2. Remove rear coverls) from Multiprogram-
mer units(s},

3. Ensure proper line voltage is selected and
power cord is connected to power module
{paragraph 2-9).

4, Check HP-IB address on 6342A
{paragraph 2-11}L

8, Set the frame address on the 5942A and

any B943A's used in the system
{paragraph 2-14).

6. Connect cabies between controller and
6842A and between all Muitiprogrammer
units used in Systern {paragraph 2-18).

7. tnstall 1/0 cards and make connections
from |/0 cards to user's devices
(paragraph 2-23}

8. Verify operation {paragraph 2-32} and
then replace rear coveris).

FRAME
ADDRESS

SWITCH SELF TEST
ERROR CODE
LED'S (6}
ol
in i ri. ., . L Y L Y n Pl FY oY T, . FY I)
&) o
© AC
POWER
Lt MODULE
——1 —
o w | TP nP-B
- CONNECTOR
@.\ HE-18
[t ADDRESS
I b | C SWITCH
L
¢ 1 2 3 4 6 B 7 8 9% 1o H B B ¥ I5
T
CARD SLOTS 8-15
TRANSMISSION HP-IB INTERFACE
SYSTEM BOARD
BOARD
A. 6942A Multiprogrammer
FRAME
ADDRESS
SWITCH
R
J_‘l\ Iftmw«nmmm_n_h__n...n_n_n_n_n_._nmunmm T o BO— :.E
o) o
AC
POWER
L4 MoDuce

il

@ I 2 32 4 5 8§ T & 9

T
CARC 5L.OTS 8-i5

B. 6943A Extender

TRANSMISSION
SYSTEM

Figure 2.1, 6942A and 63843A Units {Rear Views)

2.6 installing Controlier ROM's and HP-IB
Interface Card
27 Plug the ROM’s and 98034A Interface Card into the

controiler {see applicable service manual}. The ROM’s and in-
terface card are installed with the controlier switched off.

2-8 The 98034A Interface Card provides HP-IB capability
for the controller (3825, 8835, or 8845) and can be installed in
any of the slots in the rear of the controller. The select code
for the HP-IB card is preset to 7", Throughout this guide, ail
examples and sampie programs use a select code of 7", Set-
ting the seiect code and installing the HP-1B Interface Card are
described in Chapter 2 of the 98034 A installation and Program-
ming Manual (98034-50000).

22

2-9 Input Power Requirements and Line
Voltage Conversion for Multiprogram-
mer System

2-10 The 6942A and 6943A units may be operated con-

tinuously from a nominal 100V, 120V, 220V, or 240V {48-63Hz}
power source. A printed circuit board focated within the ac
power module on the rear panel selects the power source.
Voltage choices are available on both sides of the PC board.
Before connecting the instrument to the power source, check
that the PC board selection matches the nominal line voltage
of the source. The operating voltage that is selected is the one
printed on the lower-left side of the PC board [see Figure 2-2).
As shipped from the factory, the PC board in this unit is posi-
tioned for the voltage used in the area that the unit is to be

delivered. To select another input voitage proceed as folicwvs:

a. Remove power cable from instrument

b, Move plastic door on power module
aside.

c. Rotate-FUSE PULL down and remove line
fuse F1.

d. Remove PC board from siot. Select

operating voltage by orienting PC hoard
to position the desired voitage on top-left
side of PC board, Push board firmly into
slot.

. Rotate FUSE PULL back up into normal
position and re-insert fuse F1 in holder us-
ing caution to select the correct value for
F1 (6A for 100V or 120V and 3A for 220V
or 240V},

f. Ciose plastic door and connect power
cabile. The unit is shipped with a power
cord plug that is appropriate for the user's
location.

SWITCHES

NOTJ (I

USED t

VOLTAGE SELECT
P.C. BOARD

Figure 2-2 Line Voltage Conversion

2-11 Setting Multiprogrammer System

HP-iB Address

2-12 The MP-18 address for the Multiprogrammer system
is selected by address switches on the HP-IB interface Board
on the rear of the 6842A unit (see Figure 2-1}, The switches are
set for an address of 23" as the unit is shipped from the fac-
tory. Since the controller's HP-IB Interface Code is 7, the
Multiprogrammer System’s complete address as programmed
from the controlier is 723. Throughout this guide, all program-
ming examples use the 723" address.

2-13 As shown in Figure 2-3, there are seven address swit-
chas on the rear of the 6342A. Switches 1 through & are
shown set to decimal “23'": 1 through 3 and b are set to logic
“1'" while 4 is set to fogic "'0”". The last two switches, 6 and 7,
are not used. The dot on the switch assembly identifies the
fogic 1" side and address switch no. 1 (the LSB).

2-3

Figure 2-3. HP-IB Address Switches (rear of 6942A)

2-14 Setting Frame Address Switches

NOTE

Make sure that each Multiprogrammer
unit in the system is set to a different
frame address before power is applied to
the system.

2-15 A frame (unit) address switch is located on the rear of
each 6942A and 6943A Multiprogrammer unit {see Figure 2-1).
The frame address is part of an overall address that identifies a
particular 1/0 card in the system. Since one G6342A
Muitiprogrammer and up to seven 6843A Extender units can
be connected together in a Multiprogrammer system, each
unit's frame address switch must be set to a different number
in the range from 0 to 7. The following is a list of the 128 possi-
bie 1/O card slot main addresses in a Multiprogrammer
System; i.e. 16 card slots (0 -15} in each of 8 frames {0-7), or
8x 16 = 128. An /0 card assumes the address of the slot and
frame in which it is installed. The complete address syntax, in-
cluding subaddresses, is described in Chapter 5,

NOTE

It is not necessary to send {type in}
leading zeros when specifying 1/0 card
slot addresses in your program; conse-
quently the sfot addresses for frame 0
can be typed as numbers from 0
through 15.

1/0 Card Main Addresses

Frame Siot

- 0615 or Specify I/0O Cards 0-15 in Frame 0
0-16:

100 - 115: Specify 1/0 Cards 0-15 in Frame 1
200 - 215 Specify 1/0 Cards 0-15 in Frame 2
300 - 215: Specify I/O Cards 0-15 in Frame 3
400 - 415: Specity I/0 Cards 0-15 in Frame 4
500 - 515: Specify 1/0 Cards 0-15 in Frame 3
600 - B15; Specify 1/O Cards 0-15 in Frame 6
700 - 715 Specify /O Cards 0-15 in Frame 7

2-16 A 6942A unit is shipped from the factory with its
frame address switch set to “0"" while a 6943A unit is shipped
with its switch set to "'1". The user can change these settings
as required. As shown in Figure 2-4, a frame address switch
has 16 positions which are marked in hexadecimal. Note that
only the first 8 positions {0-7} should be used. The remaining 8
positions {8-F) are a repetition of the first eight; that is, posi-
tion 8 is the same as position 0 {frame address 0}; position 2 is
the same as pesition 1 (frame address 1), etc.

(Fy)

o]
o] EX=QZ Hal
o] 9
B Ayges |G}

@ n

NOTE: NUMBERS/LETTERS IN PARENTHESES ARE NOT
MARKED ON SWITCH. ONLY POSITIONS -7
SHOULD BE USED. SWITCH 1§ SHOWN SET
TO POSITION ©.

Figure 2.4, Frame Address Switch

To change the frame address of a Multiprogrammer unit, in-
sert a small screw driver into the switch slot and set the
pointer to the desired position {G-7). In a multiple unit system
{one 6942A and up to seven 6343A's) the 6342A would nor-
mally be set to address O while the subsequent 6943A units
would be set to 1, 2, 3, etc. Note however, that i is not re-
guired 1o set the switches in numerical sequence: e.g. the
6942A can be set to address 2, the first 6943A extender to ad-
dress 0, etc. In any case, each unit in the system must have a
different address.

217 Most of the programming examples provided in this
guide assume that only one unit {69424} is used and its frame
address is set to 0. When Extender uniti{s} are used, the frame

2-4

address switches not oniy specify the unit address numbers
but also specify the priority of each unit in the system. The
lowest numbered frame {unit) has the highest priority., Within
a unit, the /0 card slot prigrity is fixed by siot numbe??ﬁi’”é"?“‘”

WitH Siot 0" havmg “the highest priority, The Multiprogrammer
BYStETi USES this priority when processing data so that data
transfers with the high priority 1/0 cards (low address
numbers) are completed first,

Z2-18 Connecting Cables

2-18 The cable connections and the types of transmission
systemn boards required depend upon the number of
Muitiprogrammer units used in the system. All possible com-
binations are iliustrated in Figure 2-b. Note that a 9835 or 9845
controller can be substituted for the 9825 contreller shown in
each figure. The 98034A HP-IB Interface Card must be used
with each of these controllers.

2-20 Figure 2-5A llustrates a one unit (the 63942A)
Multiprogrammer system. The 98034A HP-1B Interface Card in
the controller is equipped with the proper cable 1o mate with
the HP-1B connector on the HP-IB Interface Board on the rear
of the 6942A. For this configuration the DST Jumper
Transmission System Board 08942-60020 must be installed in
the 6942A.

2-21 Figure 2-5B iliustrates a two unit system: one 6942A
unit and one 6943A unit. For this configuration, a Mainframe
Transmission System Board {14700-60020) must be instalied in
the 8942A and Last Extender Transmission System Board
(14700-60021) in the 6943A. Chaining cable HP Part No.
14702A interconnects the transmission boards in the two
units. The maximum distance between the 6942A and the
6943A is 152 meters {500 feet).

2-22 Figure 2-5C iliustrates the cable connections and
transmission board requirements for a systemn comprised of
three or more {up to eight) Multiprogrammer Units, one 6942A
and up to seven 6843A's. The {fransmission board re-
quirements for this system are as follows:

Transmission System Boards HP Part No.
1 Mainframe Board 14706-60020
Up to 6 Intermediate Extender
Boards 14701-60020
1 Last Extender Board 14700-60021

Note that each Intermediate Extender Transmission System
Board is equipped with a double connector which provides
connections with the units before and after it in a system
employing more than one 6943A Extender Unit. The maximum

distance between the 8942A and the last 6343A is 1562 meters
(500 feet).

ADDRESS SELF TEST
SHETCH ERROR CODE
®707) 7 LEDS(E)
62424 MULTI i - use fron
P e~ ks AC
— 3 POWER
i Ll woBULE
[i .-,
i REAR | | "\
§ (vasw i
COVER -1
; REMOVEDY o ADDRESS
"! @) o bei H SWITCH
by s T 7
& A
16-1/0 CARD SLOTE @+ 15w 1
SOWER TRANSMISSON
SB034A
MODULE 2 SYSTEM
P10 INTEREACE SOARD,
{DST JUMPER,
06942 - 60020}
HP-18 INTERFACE
S0ARD
. KP-B CABLE {SUPPLIED WITH 380344 V.
A. One Multiprogrammer Unit
287254
REAR
VIEW

TRANSMISSION SYSTEM BOARD
{LAST EXTENDER, 14700 - 6002})
e HP-18 CABLE

69424 MULTI 69434 EXTENDER
[re A
I A P P e LS
A B
REAR H
VIEW Ay
{COVER
REMOVED)
s - Yo 1
& 3
16-1/0 GARD'SLOTS B-18 16170 GARD SLOTS @15
TRANSMISSION SYSTEM BOARD
(MAINFRAME. 14700~ 600207 S CHAINING CABLE HP PART NO. 147024 y
B. Two Multiprogrammer Units
9825A
v r
HP-18 CABLE THANSMISSION SYSTEM BOARD TRANSMISSION SYSTEM BOARD
/ (INTERMEDIATE EXTENDER {LAST EXTENDER
1470 1- 60020} 14700- 80021
5942A MULTS 63434 EXTENDER™ 69454 LAST EXTENDER \
¥ A 3
1 F PSSP RPN Tn T S SR
‘I‘] HE) mj‘ﬁ’r) e {
i JJ
m o
e O — ’ ; y s
=) 7 21 [t 12 o t
§-1/0 GARD SLOTS @-i6 164/ CARD'SLOTS B-15 18-L/0 CARD SLOTE B- 15
4
___ CHAINING CABLE HP PART NO. 14702A FA S J
7
TRANSMISSION SYSTEM BUARD ® UP TO SIX INTERMEDIATE EXTENDERS (EQUIPPED WITH

(MARFRAME 14700 - 60020 } 16701~ 80020 BOARDS) CAN BE USED,

¥ CONNECTS TO NEXT MNTERMEDIATE EXTENDER WHEN MORE
THAN THREE MULTIPROGRAMMER UNITS ARE USED

C. Three or More lup to B) Multiprogrammaer Units

Figure 2-5. Multiprogrammer System Cabie Connections

25

2-23 installing 1/0 Cards

CAUTION

Always turn off power at a
Multipragrammer unit before installing

or removing an 1/0 card. If power is not
removed, it is possible to short com-
ponents in the Multiprogrammer when

instalfing or removing a card, thereby
causing possible damage.

2-24 Each 1/0 card is equipped with a handie which is
useful when installing or removing the card. The handle is
located on the card’s outer edge and is labeled to identify the
card type (see Table 2-1). The |/Q cards are instalied in slots 0
through 15 in the rear of 6842A and 6943A units (see Figure
2-1). As stated previously, the 1/0 card assumes the address
of the slot (and unit} in which it is inserted. Within a unit, there
is an interrupt priority in slot number order with slot 0 having
the highest interrupt priority (see paragraph 2-17). The follow-
ing paragraphs describe the current requirements for each
type of /0 card, the card installation procedures, and the
edge connector that is shipped with each card.

2-25 1/G Card Current Requirements, Operating power
(+ 5BV, 12V, Isolated + 18V} as well as data, address, and
control signals are supplied to the 1/0 cards through the con-
nectors in slots O through 15, The front panei POWER INTER-
RUPT and ISOLATED POWER indicators monitor the status
of the power supplies {see paragraph 2-33}.

+ BV Supply: Al of the I/0 card types require + 5V
power. The + 5V supply has a current rating of 18.5A with

12.8A available for the 1/0 cards. The current requirements for
each type of /0 card are listed in Table 2-2. Note that Memory
card assembly 89730A is comprised of two cards which must
be installed in adjacent card slots. Each memaory card pair re-
quires substantially more current than the other card types.
Memory card pairs equipped with Option 002 (2K memory }
or Option 004 (4K memory) require even mors current. Conse-
quently, the 1/0 card slot requirements for memory card pairs
are as Tollows:

Option 002 (2K memory}: Maximum of six memory card
pairs occupying 12 slots in a 6942A or 6943A unit plus 3 slots
left vacant,

Option 004 (4K memory}: Maximum of five memory card
pairs occupying 10 slots in a 6942A or 6943A unit plus 6 slots
left vacant.

+12VSupply: The Digital Input and the Counter cards
use * 12Vpower. The + 12V supply has 2A (+ 12V} and 1.5A
{—12V] available for the /0 cards. The +12V supply’s cur-

rent requirements for the Digital Input and the Counter Cards
are listed in Tabie 2-2.

118V Isolated Supplies: The Voitage D/A, Current D/A
and the High Speed A/D cards use th~ isolated * 18V bias
voltages. In addition, the Counter card can use an isolated
+ 18V supply instead of the +12V supply. Each
Multiprogrammer unit provides 3 regulated + 18V supplies.
The 18V supply current requirements for the applicable
cards are listed in Table 2-2. The current capabilities of sach
- £18V supply are given in Table 2-3.

The status of each % 18V supply is indicated by an LED in-
dicator on the Multiprogrammer unit's (6942A or 6943A) front
panel {see paragraph 2-34). The supplies are operational if the
indicators are on. Fuses for the three supplies are mounted on
a fuse board which is accessible by removing the front panel
grilt and the fuse board cover (see paragraph 2-49},

Table 2-1. 1/0 Cards
Label on
Card Handle Card Name Mode! No.
RES QUTPUT Resistance Qutput 69700A thru 69706A
VOLTAGE D/A Digital-to-Analog Voltage Converter 837204
CURRENT D/A Digital-to-Analog Current Converter B89721A
RELAY OUTPUT Relay Output 69730A
DIGITAL OUT Digital Qutput 69731A
PULSE TRAIN Pulse Train Output and Stepping Motar Controller 68736A
TIMER/PACER Timer/Pacer 69736A,
HlI SPEED A/D Analog-to-Digital Converter 69751A
ISO DIG INPUT Isolated Dighal Input 69770A,
DIGITAL INPUT Digital Input/Analog Comparator 69771A
COUNTER Counter Totalizer 6Y775A
WORD INT Interrupt B9776A
MEMORY Memory 689790A
BREAD BOARD Bread Board 69793A

Tabie 2-2. 1/0C Card Current Requirements

Card +5BY + 12V -2y +18v{ij - 18V}
Res Qutput 637mA e - o -
Voltage D/A 3B7mA — — 80mA 38mA
Current D/A 387mA — o T10mA 82mA
Relay Output 633mA — —_ - -
Digital Out 409mA e — —_— —
Pulse Train 717mA — - — o
Timer/Pacer 733mA e — o s
Hi Speed A/D 366mA — — 150mA 79mA
tso Dig Input 338mA — — — —
Digital Input 309mA 17mA 39mA e -
Counter 736mA 120mA 12mA *x* **
Word Int 401mA — — o e
% 1K Memory {Standard) 1.6A — - —_ -
¥ 2K Memory (Option 002} 2.0A —_ o — —
* 4K Memory {Option 004) 2.8A — —— —_ —

* Each Memory Card Assembiy consists of two cards which occupy two 1/0 slots.

** Jumpers on Gounter card can select the isolated 18V supply instead of the % 12V supply {non-isolated)

Table 2-3. + 18V Supply Current Capabiiities

No.1

MNo.2 No.3

Power Supply
+18V - 18V

+ 18V ~ 18V + 18V - 18V

Current Rating 1A 0.6A

G.4A 0.26A 0.2A 0.15A

MULTIPROGRAMMER UNIT

/ BACKPLANE CONNECTOR
o +igy

©CCM HSUPPLY NG.3
o8y

o418V
OCOM YSURPLY NO.2
18y

1 o—-omuav}
o—oCOM YSUPPLY NG.I
ey e JHY
OUTER EDGE
CONNECTOR

Figure 2-6. /0 card 18V Isolated Supply Jumpers

2.7

2-26
outiined below assume that the Multiprogrammer Unit's
{BO42A or 6943A) rear cover is removed and the proper
transmission system board is instatled.

Card Installation Procedure. The procedures

a. With the card handle on the bottom and with the
card componenis on the right, slide the card into the
desired slot (0-15) until i touches the connector. Note
that alt cards are slotted between pins 12{n) and 14(R)
and all /0 slot connectors of a Multiprogrammer unit.
are keyed between the same points. This makes it vir-
tually impossible to plug a card in upside down or into
any siot other than an /O card siot 0-15

NOTE

Memory card assembly 697904 is com-
prised of two cards and occupies two
slots (see Memory card description in
Chapter 7.

b. With the 1/0 card touching the connector, rotate
the card handle downward until it engages a groove
at the bottom of the /0 slot. Now rotate the handie
upward. This will push the card into the
Mu%tigm rammer connector. {To remove a card,
rotat handle downward, This will release the card
from its connector).
c. Connect user’s equipment to pins on outer edge of
card as described in the next paragraph.
d. As installation and wiring are completed for each
1/0 card, record the following information,

(1) Card type

(2} Application in external system

{3) Card main address:

Slot No. + (Frame No. X100}
(4) Card subaddresses {if applicable}
{8} Data format parameters: data type, LSB
vaiue, number of bits.

e. Install rear cover on multiprogrammer unit. The rear
cover hoids the |/C card connector hoods securely in
place, preventing them ffom backing off or loosening.

QoS

2-27 {/0 Card Edge Connector (Figure 2-7). Edge Con-
nector Assemblies interface 1/0 cards with each other or with
external devices. One Edge Connector Assembly, is shipped
with each [/0 card. Order Model 14703A when extra connec-
tors are required. Each connector assembly consists of the
following items:

NOTE

The encircled numbers key the items to
Figure 2-7.

Hood Assembly Kit, gty 1, consisting of:

@ Strain relief

@ Cable clamps, 4 sizes

@ Right Mood Assemnbly, gty 1

% Left Hood Assembly, gty 1
Screw, 7/16 inch, aty 1

@ Screws, 11/16 inch, gty 4

Connector Pin Housing, qty 1 *

Connector Key
@ Solder Pin: 45 plated solder pins are packaged in a plastic
bag. Two bags are shipped with card models 69751A, 63770A,
B69771AS, 69775, and 69793A. One bag is shipped with the
other card models.

Spring: One plastic bag containing six springs is shipped
with each 1/O card. The springs are inserted into the connec-
tor pin housing to ensure a tight connection to card’s edge.

2-28 The Edge Connector Assembly is designed to accom-
modate two 36-conductor cables with outside diameters of

0.360 inches. An unterminated 36-conductor cable {HP Part
No. 8120-1163) can be ordered by the foot from Hewlett-
Packard. To assemble and wire an edge connector, gather the
tools and materials listed below and perform the assembly pro-

cedure. Refer to the applicable 1/0 card connector diagram in
Chapter 7.

Tocols and Materials Required:

a small pair of long-nose pliers

a smali pair of diagonal wire cutters,

a wire stripper designed for small-gauge wire,

a Phillips screwdriver with a No. 0 point,

a low-wattage pencil-type scldering iron (a 25-watt

iron with a tip 1/16 in. to 1/8 in. wide is about

right},

6. some 60/40 ailloy, rosin-core solder {small diameter
wire, .030 to .045 inj,

7. solder pin de-insertion tool, Amphenol P/N 81073-1.

SUE

Assembly Procedure {Figures 2-7 and 2-8}:

a. Insert the required number of soider pins @ to be
wired into connector pin housing (7) .Pins are inserted
into the applicable pin slots from the rear of the con-
nector housing. Figure 2-8 illustrates a sample pin
configuration for a digital cutput card.

b. Solder each cable wire to the appropriate soider pin.

C. To balance the connector insert extra solder pins @
in the slots next to the wired sotder pins {see Figure
2-8).

d. Insert springsinto connector pin housing. Springs
are inserted from front of connector assembly {see
Figure 2-7). A pair of springs is inserted into adjacent
connector slots in three places on the connector (see
Figure 2-8}.

8. Instali key {Figure 2-7) in applicable sfot. Connec-
tor key is instailed from front of housing assembly.
Pface the hood assemblies) and (@) around the con-
nector pin housing () . Ensure that the bottom (high
numbered pin slots) of the housing is at the bottom
{cable entrance) of the hood assemblies.

g. Route cable wires through cable entrance and then
fasten the left and right hood asssemblies together by
inserting and tightening screw (&) .

h. Fasten connector pin housing @ to the assembled
hoods () and @) using 2 screws (B) .

tngert strain relief 1 and proper sized cable clamp 2 in
' the cable entrance and fasten with 2 screws (B) .

Figure 2.7. 1/0 Card Edge Connector Assy

Toe Pas CONNECTOR
FiN HOUSING

CUTPUT
[DATA BITS

i R R A s i W

X = SOLDER PIN {WIRED)
/= EXTRA PIN IUNWIRED)
+ = SPRING

R]

i
K O e T ofn 8 TS

GATE
FiAG

H
m

COMMON

{REAR VIEW}

Figure 2-8. Sample Pin Configuration for a Digital
Qutput Card

2-289 Cooling Fan and Air Filter

2-30 The 6942A and 6943A Multiprogrammer Units are
equipped with variable speed fans that provide cooling air. A
fan speed controi circuit changes the fan speed depending
upon the temperature within the unit and primary load current
changes. Airflow is increased when power dissipation and
heat increase, and is reduced when the dissipation and heat
decrease. A temperature sensing circuit will shut the unit's in-

ternal +5V, 12V supplies off if the cooling fan faiis and-

causes overheating.

2-31 The grill on the front of a Multiprogrammer unit and
the air filtér behind it must be kept clean. The grill can be
wiped clean with a damp cloth and can be removed by loosen-
ing two captive screws. The air filter is held in place on the
backside of the gtill by 6 Velcro fasteners. The filter can be
cleaned by air blasting it in the reverse direction.

. CAUTION

After 12 months the air fitter loses its
“flameproof” properties and must be
replaced. Do not wash a dirty filter in a
detergent because this will remove its
“flameproof” properties. Clean fifter
with forced air as described above.

29

2-32 CHECKOUT AND

TROUBLESHOOTING

NOTE

If & defective 69424, 6943A, or 1/0 card
/s detected when performing the
checkout procedures, contact your HP
service engineer. Troubleshooting pro-
cedures given in this guide are limited to
isolating a malffunction to a defective
unit or 170 card. 1/0Q card test programs
are provided in Chapter 7.

2-33 Front Panel Controis and Indicators

{Figure 2-9)

2-34 6942A {Figure 2-9A). The 6942A Multiprogrammer
fromt panel contains a LINE switch, a SELF TEST indicator
and power supply indicators.

LINE switch - The LINE pushbutton switch
is pushed-in 10 turn the unit
on and is released (out posi-
tion} 1o turn the unit off.

SELF TEST - The SELF TEST indicator

{LED} lights green to indicate
that the main components of
the Multiprogrammer Systemn
are operating properly. The
self test feature is initigted
whenever power IS turned-on
or the HP-IB ""Device Clear”
command is executed at the
controlier (see paragraph
2-41). When the self test runs
to cornpletion in approximately
4 seconds, the SELF TEST in-
dicator should light,
POWER INTERRUPT - The POWER INTERRUPT in-
dicator (LED! lights red to in-
dicate that the 5V and 12V
bias supplies in the unit were
shut down (via internal
crowbar circuit} due to an
overvoltage or undervoliage
condition in any of the sup-
plies. The 5V and 12V supplies
have current limiting circuits
that iimit the output current if
an overcurrent condition exists.
For most overcurrent condi-
tions, the crowbar circuit will
activate (POWER INTERRUPT
will light red) and shut the sup-

POWER INTERRUPT
{continued}

pites down. Note aiso that a
thermal detection circuit will
shut down the 5V and 12V
supplies (via crowbar circuit) if
the cooling fan fails and causes
overheating.

ISOLATED POWER
1,2,3 - The three {ISOLATED POWER
indicators {LED’s} light green
to indicate that the associated
* 18V isolated supplies are
operational. If any indicator
does not light, check the ap-
plicable fuse on the fuse

board {see paragraph 2-49).

L e]
kT FACKARD

e B

5

A, 6%42A Multiprogrammer

E3a3 b S MIOGRAMLE EXTEREER
HEWLETT - Pachshl

T T
1

B. 6§343A Extendt_ar

Figure 2-9. Multiprogrammer Unit Front Panels

2-35 6843A {Figure 2-89B}. The LINE switch and power

supply indicators on the 8843A front panel are identical to
those on the 6942A front panel. However, the 6943A has a
SYSTEM ENABLE indicator (LED) instead of a SELF TEST in-
dicator. The SYSTEM ENABLE LED indicates the status of
the system enabie (SYE} line that runs throughout the
Multiprogrammer Systern. When the SYE line is reset
(SYSTEM ENABLE indicator off), ali output cards in the
system are disabled (e.g. resistance ouiputs are shorted,
voltage outputs are held at 0 volts, digital outputs are heid in
the open or zero state}, This feature protects the external
system {user's process) from potentially damaging outputs
resulting from the storage registers on the output cards
assuming random states at power turn-on. Thus, the SYE line
is reset at initial power turn-on and wili remain reset until an in-
struction is executed, As soon as the appropriate instruction is

2-10

exgcuted, the SYE line is set and the SYSTEM ENABLE in-
dicator(s} on all 6943's will light green. With SYE set, an out-
put card is enabled but will remain in the “safe” state until it is
addressed in an instruction. Note that the SYE line is also set
and reset by the System Enable {SE} and the System Disable
{SD) instruction, respectively {see Chapter g).

2-36

2-37 Run through the following checkdist before applying
power and programming the system.

1. The proper ROM'’s and the 98034A HP-IB Interface
card are installed in the controller. Address code
7" is selected on the controller’s 98034A HP-1B
interface card (see paragraph 2-6).

Correct ac line voltage is selected on 6942A and
6943A"s {if used) power modules (see paragraph
2-9).

HP-IB address switches on rear of 6942A are set to
decimal 23" (see paragraph 2-11).

Correct transmission system board(s) are installed,
frame switches set, and chaining cables connected
(see paragraphs 2-14 through 2-22).

The required 1/0 plug-in cards are instalied in the
6942A and 6943A (if used).

Pre-Operaticnal Checklist

Power-On/Self Test

NOTE

Power must be applied to all 69434 Ex-
tenders first and then to the 69424, If
this sequence is not followed, the
systermn wilfl faif “Self Test”.

2-38 The Multiprogrammer System has a self test feature
that is initiated whenever power is turned-on at the 6942A
front panel or when power is already turned on and the HP-IB
“Device Clear” command is executed by the controller (see
paragraph 2-43). When the self test runs t¢ completion in ap-
proximately 4 seconds, the SELF TEST indicator on the B942A
front panel should light {green) indicating that the main com-
ponents of the system are operating properly. If the SELF
TEST indicator does not light it indicates that a major malfune-
tion was detected and the test was aborted {did not com-
plete}. The built-in seif test feature checks the 6842A’s control
functions, ROM’s, RAM's, HP-IB interface, backplane, and
any 6943A extenders that are connected. Self test also makes
a partial check of each 1/0 card installed in the system. 1/0
card functions such as controi, address decoding, and data
write and readback through the first rank of storage are check-
ed during self test. Backplane connections to the [/ 0 cards are
atso verified. The 1/0 card circuits involved in sending signals
to or receiving signals from the external device {user's pro-
cess) are not checked by the seif test feature. Thus, 1/0 card
faitures may or may not affect Self Test and can be categoriz-
ed as follows:

1. Those that affect the backplane portion of self test
and cause the test to be aborted (see Self Test Fr-

ror Codes Desciption in paragraph 2-49).

2. Those that are detecied during seif test but do not
abort the self test and can be readback to the con-
troffer when self test completes (see Seif Test and
Card Identifier Program Description in paragraph
2-41).

3. Those that cannot be detected by Self Test and
will only be found by a system malfunction.

2-40 Follow the procedures outlined in Figure 2-10 when
applying power to the system. If incorrect power supply or self
test indications are obtained, procedures. are included to
isolate the trouble to a defective B942A unit, 6943A Extender
Unit, or I/O card. Additionai troubleshooting information is
provided in paragraph 2-49.

2-41 Self Test Error Detection and Card
identifier Utility Program
2-42 This utility program is recorded on the 9825 and

9835/45 controller cartridges supplied with this user's guide.
Program listings {9825 and 9835/45} are provided in Appendix
C. The program is used to verify that the Multiprogrammer
system is functioning properly and to provide a list of the {/0
card types that are instalied in the system. The data type,
LSB, and no. of bits are listed with the associated card type
and stot number. Al of the information is printed out (9826} or
disptayed {9835/45).

2-43 The subroutine first sends an HP-IB ""Device Clear”
command to the Muitiprogrammer System to reset the system
and initiate the system self test. It waits four seconds for the
self test 10 complete and then checks if any errors were
detected by the self test, If no errors were detected, it prints
out (9825} or displays (9835/45) the slot numbers, card types,
and the associated data format parameters (data type, LSB,

na. of bitsh. If any errors were detected, the applicable error
printout/display is provided. To run the Self Test Error Detec-
tion and Card Identifier Subroutine, follow the procedures
outlined in Figure 2-11. Trouble isolation procedures are in-
cluded if incorrect indicating or error printouts/displays are
obtained.

2-44 The following sample printout first shows that the
Muttiprogrammer System passed self test and then lists the
card types installed in the system along with slot numbers and
data format parameters. i the slot numbers disagree with the
ones in your records, verify that you plugged the card into the
correct slot. H the slot numbers agree with the ones you
recorded, you are ready to enter your program,

2-11

Sample Printout

H
Jost gt

21 I

i,
ton

£10

sHr b

if
L bt

i
ol

et 1

e
b 0

= 1%
i
%
i il
1&

it

2-45 Self Test Error Codes

2-46 The Multiprogrammer Systems internal self test
fegture checks approximately 80% of the 6942A /6843 A main-
frame circuits as well as the read/write and control portions of
the 6942A/6943A 1/0 cards. Major malfunctions that cause
the system to fail seif test {6942A SELF TEST indicator

TURH ON POWER A7
LR

THRN H943a
BT GRRER

LTS
LY WHEN Foa
CMCY

9434 UNIT
DEFECEIVE

.

R LG
F TCIN PR
B hirans

SN BT s ATED BY
BACH 0 ONE AT

SHORTES 3% 1
*

st T
I THEN BACK

a547A el

£ OuER
SUPFLY FAILURE]

NPLUG §R4TE LG
CARDS TUfil POWER

. R I LI 'S ARE 5GED W
: - ” N Tik SYETEN, T SEFESYINE ONE O
FURN DFF 5% 0 B SIEMOVING EACH THTENER
e (ONE AT & YilEs A

Tilts MG REPERTIRG TH SL.
TZET TURKNMG G3C2h BFE A THEN B
ohit

Figure 2-10. Power On/Self Test, Checkout Procedures

212

FURM (M LONTROLL [T
‘i‘EHT H?\ll?‘e i

e
TED AN RA‘i TG
COMPLE T

ERAMTO T/ DISPL Y

T 55, D

SAVT BRINTOAT, SYS

TEM S REASY FOR
0

g

B343A BEFECTIVE OF
MUt TIRLE EXTENDERS

& i
IVE GNE CAN BE
TED BY REMOVING
EACH ERYENDER ONE -
A% -R-THAE A3 RERLN-

DEFEC]
FLARD, RERENE 19
CARES BND RERUN
PROCAAM 10 SOLATE
BETWEEN THE 63434
AN ITS G CARES,

T ORHECATOR WENT GUY
SEOOMBE THEN CAME BACK ON

R IFERROR
CODE \E\ 1% ENTHIER,
FEFER T APPENOIX G
FOR TROUBLESHDOT-
MG INFORMHI N FOR
CTHER Eam

TURN 63424 PUNE'(
OFF ANTH 3
CHATS

FRIFTER/DISPL AT

3428 UMY DEFECT.
i ERROR COE
i PRAVIED GUT/

SY‘TLM BGARG IS
IHSTALLED}

M‘SS'ON SYSTEN BOARD
M THE 85424 TokN
BHEAN POWER ON ARD
PR S FUW KEY Or;l‘

CONE OF THE 140
CARDE 15 DEFECTIVE
[DE”’CTIJ{

T"E i’ﬂOBﬂﬂ\R EACH
Tistt:

Figure 2-11. Self Test Error Detection and Card identifier Program, Operating and Troubleshooting Procedures

2-13

does not light} are indicated by six LED’s located on the HP-1B
Interface Board in the rear of the 6942A (see Figure 2-1. The
six LED's are arranged vertically with LED {DI} representing
the MSB on top and the LSB designated D6 at the bottom.
The LED's are visible when the 6942’s rear cover is removed
and light red to indicate a major failure. The pattern of lighted
LED's will be used by the service engineer in isolating the
failure to a defective circuit. The general error codes are listed
below for your information, however, further troubleshooting
is beyond the scope of this User's Guide.

Codes (Led Nos.). Failure Indicated

(TOP)1 2345686

11 X XX Microprocessor Board or RAM Data Bus
01 X X X X RAM Board

10 X X X X HP-IB Interface

00 X X X X /0 Card Control Logic

\

These identify
particular circuits

2-47 Power Supply Failures

248 Normally when power is applied, the POWER INTER-
RUPT indicator (red} is off and the three ISOLATED POWER
indicators (green) are on. If the POWER INTERRUPY is on,
the internal BV and 12V supplies were shut down {via internal
crowbar circuit] due to an overvoitage, undervoltage, or
overheating condition. For this condition, first check that the
cooling fan is operating properly and then check for shorted
1/0 cards. Note that the POWER INTERRUPT indicater comes
on briefly when the unit is turned-off. If the unit is turned-on
again before the POWER INTERRUPT indicator has gone out,
the internal crowbar circuit will remain active and the POWER
INTERRUPT will stay on.

2-48 i all three ISOLATED POWER indicators do not light
when power is applied, check primary power connection and
tine fuse (see paragraph 2-9). If only one or two ISOLATED
POWER indicators do not light, check for a blown fuse on the

2-14

fuse board. As shown in Figure 2-12, each isolated supply has
two fuses. The fuse board is located behind the front grill and
to the right of the fan assembly. To gain access to the fuses,
proceed as follows:

a. Turn-off power

b. Loosen two captive screws and remove the grill
from the front of the unit.

¢. Remove two screws securing the fuse board cover.
Note that the fuse board cover is also a fuse in-
terfock which disconnects the six fuses when the
cover is removed.

d. Pull fuse board straight back and remove from
unit. Execise care not to bend the 12-pin interlock
connector on the rear of the cover.

2-50 Data Common Ground

2.51 Jumper W1 on the fuse board (Figure 2-12) connects
the data common ground ()10 the power (safety) ground 2+
The jumpers are instalied on all 6842A and 6943A units as they
are shipped from the factory. They should be left instalied for
best noise immunity. However, if the 6943A Extender Units
are spread over a long distance; the jumpers may be removed
from the 6943’s to prevent ground loops.

FUSES FOR ISOLATED POWER SUPPLIES
o]

JUMPER:
CONNECTS DATA

GROUND -k

Figure 2-12. Fuse Board for Isolated Power Supplies

Chapter 3
GETTING STARTED

3-1 INTRODUCTION

3-2 The purpose of this Chapter is to acquaint you with
some of the basic operating and programming features of the
6942A Muitiprogrammer. Using some of the less complex out-
put and input cards of the Multiprogrammer, we wili send data
to the putput cards and read back data from the input cards.
In each case, the results wiil be monitored to verify that the
program was sent correctly and was properly executed by the
6942A. Only two Multiprogrammer instructions will be used
and working through this Chapter should take approximately
one hour,

3-3 The material in this Chapter assumes that you have
completed the installation and checkout procedures given in
Chapter 2, thus assuring that the 69424 mainframe and the

input portion of your I/0O cards are operational. After comple-

ticn of this Chaptes, you wilt need more information about the
Multiprogrammer’s instruction set, so please read Chapters 4
and b (as a minimum} before attempting to write final pro-
grams.

3-4 HARDWARE REQUIREMENTS

35 The programming procedurss in the subsequent
paragraphs require a working system, consisting of: a con-
troller, 6942A Multiprogrammer, and several 1/0 cards.

3-8 Controlier/Multiprogrammer Connec-
tions and Addresses

3-7 Connect the 6942A to a controller {9825, 9835, or
9B4b) using the HP-1B Interface as described in Chapter 2.

Table 3-1. Suggested |/0 Cards and Associated Equipment

ouUTPUT INPUT CARD CON-
MODEL DESCRIPTION MONITORING STIMULUS NECTOR
PINS (see
Chap. 7}
OUTPUT
B69731A Digital Qutput Voltmeter {0-10V) Athra T {+}
or Logic Probe and corn {rr}
{16 Bits)
B9730A Relay Output Ohmmeter 1A thru 3Tkk
{16 contacts)
69720A Voitage D/A Converter Voltmeter (0-10V} Wi+)landyY
G9721A Current D/A Converter Ammeter {0-20mA) 18 (+) and 21
INPUT
69771A Digital Input Clip Lead or Athry T
Power Supply {16 Bits)
{0-5V)
69770A {solated Digital Input Power Supply Athru T
Std: G-BY and
001: 0-12V 1thru 6
002: 0-24V {16 Bits}
63751A A/D Converter Power Supply Wi+)and Y
(0 to =10V}

Note that throughout this User's Guide, we assume that the
Multiprogrammer's HP-1B address is 23, and that the con-
trolier’'s HP-1B Interface select code is 7, resulting in a com-
plete HP-1B address of 723. Also, the programming examples
in this chapter assume that the 6942A’s frame address switch
is at its factory setting of 0.

3-8 1/0 Card Selection

39 Gather your /O cards by examining Table 3-1 and
selecting two oufput and twe input type cards. i possible,
select two different model numbers of each type to provide a
wider familiarity. Although the programming examples given
in this Chapter apply to most Multiprogrammer |/ cards, the
specific cards of Tabie 3-1 are recommended because they are
less complex and programming results can be more easily
monitored. If you don't have two of these output or input
cards, a minimum number of one output and one input card is
required to complete all of the programming examples.

310 Monitoring and Stimulus Devices. Table 3-1 also
lists the devices suggested for monitoring the outputs of the
output cards and the stimulus required for simulating an input
to the input cards. For example, each output bit of the Digital
Output Card can be checked with a voitmeter or logic probe
and each bit of the Digital Input Card can be stimulated with
an open circuit {Hi} or a clip lead to common {LO). During
subsequent procedures, these devices must be connected to
the edge fingers of the [/O cards. When this becomes
necessary, use the connectors and gold pins provided with
each 1/0 card together with the connector diagrams given in
Chapter 7.

311 Now the I/0O cards that you have selected can be in-
serted into the appropriate slots in the 6942A mainframe.
Generally, any 1/O card can be placed in any one of the 16
slots in the 6942A mainframe {see Chapter 2). Each /0 slot
has a number assigned to it (from 0 to 15) marked on the bot-
tom of the card cage. When an 1/0 card is plugged into a
specific slot, it assumes the address of that siot, so you must
be aware of the slot number of each card. The programming
examples in this Chapter assume that you have inserted two
output cards in stots 0 and 1 and two input cards in slots 2 and

3.
CAUTION .

To avoid damaging the /0 cards and
the mainframe, always turn the main
power switch off before removing or in-
serting |/Q cards.

3-12 PROGRAMMING THE OUTPUT

CARDS
313 The COutput Paraliel {OP) Instruction

314 We will be using the OP instruction to program the
output cards, The OP instruction sends data from the con-

trofler to your output cards, and then instructs the cards to
begin simultaneously processing the data. The instruction
completes when all addressed cards have completed process-
ing the data and the results are available at the output edge
connectors, For example, an OP instruction sent to a pair of
Voltage D/A Converter cards would first send data to storage
registers on both cards and then instruct the cards to convert
the data into equivalent analog output voltages.

3-15 OGP Format. Before actually programming your out-
put cards, let's look at the basic elements of a typical OP in-
struction as programmed from a 9825 Desktop Computer. As
shown in Example 3-1, the "wrt” portion tells the controlier to
output a message to the HP-1B and address 723 establishes
the Multiprogrammer System as the device that will obey the
characters that foliow. The instruction opcode characters {OP
in the example] provide control information that teli the
Multiprogrammer how to process the message as was explain-
ed in the previous paragraph. The card address selects the
frarme (unit) and card slot {from 0 to 15) that will receive the
data {2b6) that follows. In the exampie, card address 1 selects
slot 1 in frame 0 (the 6942A). Because leading 0's need not be
transmitted, the address for any card slot in unit 0 is simply
equat to the slot number {0 to 15}, The actuai data value that is
sent to the card is a fixed point real number that depends on
the type of card and its data format. This will be discussed in
more detail later in this Chapter. The final character is the ter-
minator {T} which indicates to the Multiprogrammer that the
instruction is complete and it can begin processing.

Example 3-1. Structure of a Typical OP Instruction

Card Address

Instruction Opcode
i

CE IR SR R

i—b Multiprogrammer Address

Output Statement

Data to Card

Terminator

3-16 Send the Program

3-17 To program two output cards (in stots 0 and 1) send
the statement of Example 3-2. Refer to the chart below the ex-
ampie for the data values (D} to send to your specific output
cards.

3-18 After you have programmed your cards, verify that
the results are correct by using the test equipment recom-
mended in Table 3-1. To facilitate connections to the card
edge fingers, fabricate the card connectors using the gold pins
as outlined in Chapter 2. Use the connector drawings in
Chapter 7 and the ““Connector Pins” column of Table 3-1 to
determine where to connect your measuring device. For ex-
ampie, to check bit 0 on a Digital Output Card, connect your
voltmetar or logic probe between pin A(+} and pin rr {com-
mont. It should read 5Vdc. Further, to check relay C on a Relay
QOutput card, connect your ohmmeter between pins 1 and Al
should read zero ohms,

Example 3.2 Programming Two Output Cards

8826A Controller

send values
/-‘——7— betow
G owrt VESs 0P @sDa DT
9835/45 Controller
14 QUTRUT Faoy "0 @D 1077
Output Card Data (D) Dutput Resuits
6G731A, Dighal Qut. 65535 All 16 Bits = logical
15 (BV)
697304, Relay Cut. 85535 Ail 16 Ralays closed (&
ohms})
§9720A, Voltage D/A 5 + B¥de Output
697214, Current D/A 10 + 10mA Output

3-20 H the measured results do not agree with your pro-
gram, verify that your program line agrees in every raspect
with that of example 3-2, If it still does not work, proceed to
“Programming Errors” iater in this Chapter.

3-21

3.22 Before programming your input cards, you may warnt
to program other data values to the output cards. In order to
do this, you must be aware of the data format requirements of
the Multiprogrammer’s 1/0 Cards.

§/0 Card Data Formats

323 As indicated in the last example, the Multiprogram-
mer accepts data in a variety of formats, converts it to the cor-
rect form and then sends it fo the card. The idea is to allow
you to program in a data format that “makes sense” for the
card you are using. For example, the Voltage D/A card is pro-
grammed in volts, since the card outputs volts,

3-24 All of the 1/0 cards “"weake-up’’ to accept data in &
certain format. To determine the format for your cards, you
can use the Card ldentifier Utitity program described in
Chapter 2. Besides identifying the cards, this program
specifies the data type, LSB value, and number of bits.

3-25 Table 3-2 also indicates the wake-up formats for the
output cards used in this Chapter. Use the data types, ranges
and resolutions listed to program desired data to the cards.

3-26 MNotice that the Multiprogrammer allows you to refor-

mat the 1/0 cards, specifying other data types, LSB values, bit
sizes, and ranges. Reformatting of I/0 cards is described in
Chapter 5. In addition, a more detailed discussion of the con-
cept of /0O card data formats is pravided in Chapter 4,

3-27 PROGRAMMING THE INPUT CARDS

3-28 Programming the input cards is a two-step process.
First an input instruction is sent to the Multiprogrammer
System commanding a card, or group of cards, 1o capture ex-
ternal data and store it in the 6842A°s mainframe memory.
Next, an input statement is used to read this data back to the
controller,

Table 3-2. Qutput Card Wake-Up Formats

Card Type Programming Data Card gets Bit Resolution
Type and Range Data in Size (LS8}
69731A, Digital Outout 0-65535 Unsigned
Binary 16 1
63730A, Reiay Output (-65635 Unsigned
Binary 16 1
69720A, Voltage D/A ~10.24 to + 10.235V 2's Comple-
ment 12 0.008Y
89721A, Current D/A —20.48 to +20.475mA 2's Comple-
ment 12 0.01mA

3-3

3-29 The input Paralle! {IP} Instruction

3-30 The IP instruction will be used to direct your input
cards to take the data at their edge connectors, process the
data, and then transfer it to memory locations inside the main-
frame. How the input data is processed, depends on the card
type. The 63761A A/D card converts an analog input voltage
into a digital value while a 69771A Digital Input card samples
16 input lines and then returns the resultant values.

331 Example 3-3 shows the format of a typical input
operation using a 9825 Desktop Computer. In the first line, an
P instruction commands an input card in slot 2 to teke a
reading. After the card has completed, its input data is stored
in 8942A memory for immaediate or future readback. The “red”’
statement takes the data from memory and stores it in variable
Al

Example 3-3. Structure of an [P Instruction

I— Card Address

Bie ot Fas Tl
e A

Input Statement -———[Variable to

Store Input Data
Multiprogrammer -
Main Address Extended Talk

Address for IP Instruction

P Instruction

roprea Vi

3-32 Netice that an HP-I8 extended talk address has been
added to the Multiprogrammer’s main address in the input
statement, The extended talk address, which must be
specified whenever data or status is read back to the con-
troiter, allows the Multiprogrammer to identify the source of
the requested data. Right now we wili only be concerned with

talk address G1 which is associated with the P instruction.
However, a total of 13 different extended talk addresses are
used by the Multiprogrammer and these are listed hoth on
your programming card and in Chapter 4.

3-33 Input Simulation and Data Readback

3-34 Befare programming the input cards, connect the
stimulus devices indicated in Table 3-3. Leave all input pins
open on a Digital Input card to simulate 16 logical ''1's”, and
connect a 10V scurce between pins W {(+} and Y on an A/D
Converter card. To simulate an all "1's” condition on an
isolated Digital Input card, you must connect the voltage in-
dicated between each lettered pin (A-T) and the associated
numbered pin (1-16), For example, make bit 00 a logical 1",
by connecting the voltage between pins A (+) and 1.

3-35 Now send the following program to your input cards.
The first line sends an [P instruction for the two input cards:
assumed 10 be in stots 2 and 3. The next line reads back the
data obtained form the IP instruction, stores it in variables A
and B (one variable for each card’s data), and then displays
the results. The results should agree with the stirulus of Table
3-3. Digital Input cards should have returned a value of 65535
{which is the decimal equivalent of 2') and the A/D Converter
card should have returned 10.00V.

Example 3-4. Programming Two Input Cards

9825 Controlier
o W TR T AT

B et

13 pred

Tabie 3-3. External input Simulation

INPUT CARD STIMULUS

RESULT DISPLAYED

69771A, Digital Input

Input pins (A-T oper = logical “1”

input pins connected to common
(pins r, 36) = logical "0

16 logical “'1's” = 65535

16 logical “0's" = 0.00

69770A, Isolated Digital Input

Std Card = BV
Opt. 001 = 12V
Opt. 002 = 24V

Correct Voltage (see below) connected bet-
ween pins A-T {+} and 1-16 = logical 1"

Input pins open = logical 0"

i

16 logical “1's” = 656535

16 logical “0's” = 0.00

89751A A/D Converter

0 to * 10V connected hetween

pins W{+) and Y returns identical value to
controller

10V input = 10.00 displayed

34

3-36 If desired, you can now alter the exiernal inputs to
your cards and determine i the new data values returned to
the controlier are cotrect. For the digial cards, you can
simulate other 16-bit binary words by changing the ap-
propriate bits from logical “1's” to jogical "0's”. The
equivalent decimal value of the 16-bit binary number that you
select is the value that will be displayed. For the A/D Con
verter, you can set your external power supply to any voltage
between 0 and + WOV {within a resolution of 5mV) and the
identical value should be returned to the display.

3-37 Multipie IP Instructions and Delayed Readback.
As mentioned previously, the data taken from one IP instruc-
tion does not have to read back betore performing other 1P in-
structions {or any other Multiprogrammer instructionst, Dur-
ing actual procedures, multiple P instructions can be issued;
all of them executed; and then st a later time all of the data can
be read back (possibly when the process has completed}, This
allows your application to run at maximum speed, without tak-
ing the time to read data back in the middle of a time-criticai
process.

3-38 When more than one [P is active in the system, a
separate “red’” or "ENTER” request must be made for each IP
instruction {using extended talk address 01 in each case}. The
data from each IF will be received in the order that the instruc-
tions were programmed; the data from the first 1P will be
received first, data from the second [P second etc,.

3-39 Checking For Programming Errors

340 The Multiprogrammer System performs extensive er-
ror checking of every instruction. 1t checks for syntactical er-
rors, such as leaving out a "T" (terminator} or a card address.
General programming errors, such as using illegal opcodes or
talk addresses, are also checked. if a programming error is
detected by the Multiprogrammer, the appropriate error code
is entered in the error buffer and the HP-IB service request
{SRQ)} line is set. The Multiprogrammer also sets the SRQ line
for & number of other reasens; including the detection of hard-
ware errors, completion of certain instructions, completion of
self test, and a few other conditions. None of the procedures
used in this Chapter wilt set SRQ unless a programming error
is made. Hence, our description here will be limited to the
detection of programming errors. Chapter 5, “Multiprogram-
mer SRQ Status Information,”” contains a complete descrip-
tion of alt the conditions that can set SRQ and describes the
possible responses to a servica request from the 69424, In ad-
dition, the basic concept of HP-IB service requests is explain-
ed in “MP-IB Messages'' in Chapter 4.

3-41 Detecting programming errors require two successive
read statements. First, Multiprogrammer main SRQ status is
read back from extended talk address 10 to determine the
number of programming errors that have been made {from 0
to 11 errors can be stored). If any errors were made, a second

status read, from extended falk address 11, coniains a code
that indicates the instruction and/or type of error and a card
address, if applicable.

3-42 Reading SRQ Status. As shown in Example 3-5,
compiete SRQ status information can be read back to a 9825A
Controlier and stored in up to six variables. Varisbles C
through ¥ contain the status of certain advanced instructions
aot pertinent to this Chapter. For this Chapter, we will just
use variables A and B.

Example 3-8, Reading Complete SRQ Status

frored VESIEsFE [CDEF]

S, e e

N
Multiprogrammer —-]

Stores additional
Main Address SRQ information

Extended Address

Stores number
for SRQ Status

of error variables

b—— Stores code
of instructions
that set SRQ

3-43 Similarly, the information in variable A is not relevant
to this Chapter but must be read back to obtain the number of
possible programming errors stored in variable B, Variable A
contains a code that indicates whether one or more of certain
instructions caused activation of the SRQ line. However, the
instructions and operating modes of this Chapter are such that
SRQ will not have been set by the previous procedures and
thus, the information in variable A can be ignored.

3-44 Variable B indicates how many pieces of error infor-
mation are in the Multiprogrammers error buffer {from 0 to
- 0, no errors were detected. If B# 0, arrors were
detected and the error type code should be read back from ex-
tended talk address 11.

3-45 Error Codes. The Muitiprogrammer reports two
basic types of errors on extended talk address 11: hardware er-
rors and programming errors. For some programming errors,
associated card addresses are also reported. Hardware errors
are negative decimal numbers {— 11 through - 24} and are
usually detected during self test. Refer to the checkout portion
of Chapter 2 for a description of self test. Alsa, Appendix B
contains a description of all hardware and programming error
codes.

3-46 As indicated in Tables 3-4 and 3-5, programming er-
rors are subdivided into two groups; those of a general nature
and those that can be associated with a specific instruction.
For the programming procedures of this Chapter, only two of
the general errors are possible; ilegal opoodes (2} or illegal
extended talk address {(—1).

Table 3-4. General Programming Error Codes

Code Description

-1 lilegal extended talk address

-2 lHlegal opcode

-3 lilegal operation inimmediate mode
i

- B* legal BCD Code read back

* A second code foliows indicating the card address
assoctated with this error. Card addresses are positive
numbers (from 0 to 15).

Table 3-5. Instruction identification and Error Codes

Instruction Identification Codes

ID Code inst. ID Code Inst,
- 100 oB — 1800 RF
— 200 P — 1900 DC
- 300 cP - 2000 AC
— 400 i = 2100 cyY
- 500 0s — 2200 wC
— 600 IE - 2300 GN
- 700 M1 - 2400 WF
- 800 MQ — 2500 RS
- 900 Ol - 2600 RV
- 1000 WA — 2700 GS
- 1100 wu — 2800 GP
- 1200 Not Used — 2900 SC
- 1300 Gl - 3000 RC
— 1400 IN - 3100 SE
- 1500 cC - 3200 sD
- 1600 SF - 3300 Cw
- 1709 CG

Instruction Error Codes
Error Code Description
- 30 No. of cards incorrect
—-31 Hiegal character in inst.
- 32 Wrong card address
- 33* liegal use of card addr.
- 34* Data error
- 35* Data limit exceaded
- 36 lllegal repeat or wait factor
-~ 37 lllegal use of group number
-38 lltlegal group number
-~ 38 lliegal Ol or {l in immediate mode
— 4% SF parameter Error
—41* Hlegal card address
— 42* faulty card at this address
— 43* no card at this address
-39 miscellaneous

* A second code foliows indicating the card address (positive
number from 0-15) associated with this error, For example,

— 334 followed by 1 indicates an OP instruction data error for
the card in slot one.

3-47 It the Multiprogrammer detects an error while it is
processing an instruction, it will report it as an instruction er-
ror. An instruction error contains two pieces of information:
the instruction that was involved and the specific error. In this
Chapter, only two instruction identification errors are possibie
(200 and - 300} because only the OP and IP instructions
were used. Notice that the instruction error that is reported by
the Muttiprogrammer will be the sum of the identification code
and the specific error code. For example, if you attempt to
send an IP instruction to an empty card slot a code of —243
will be received when reading back from extended talk addrass
1. For error codes associated with 1/0 cards, a positive
number {corresponding to the card sfot address} will foliow
the error code.

3-18 Reading Back Error Codes. The routine of Exam-
ple 3-6 can be run if you suspect that you made programming
errors in the previous procedures. The routine first reads SRQ
status from extended talk address 10 and stores the number of
programming {or hardware)} errors in variable B, If no errors
were made (B = 0}, the program prints 5o errors’” and stops.
If errors do exist, (B=1 to 11) the error codes are read back
lone at-a-time from extended talk address 11}, stored in-
variable r1, and then printed out.

Example 3-6. Programming Error Check

Tt s veri

9835/45 Controller

3-49 I your earlier program procedures alf workad correct-
ly, you can intentionally generate some programming errors
and than run the check routine of example 3-6 to ensure that
the correct error codes are returned. Example 3-7 shows
some suggested programming errors and the resultant error
codes that should be printed out.

Example 3-7. Programming Errors and Assaciated Codes

8325 Centrolier
WEn FEmy O L e T

Error: - 2 {lliegal opcode)

et Fane "R 1T

Error: ~334,1(No data specified for card 1)

9835/45 Controller

SR

RN P A

Error: —2 {lllegal opcode)

Error: — 334, HNo data specified for card 1)

Chapter 4
PROGRAMMING CONCEPTS

4-1 This Chapter describes the programming concepts
which you must understand before procesding to the pro-
gramming information provided in Chapters 5, 6, and 7. The
topics covered include both HP-IB message and
Multiprogrammer programming concepts. After the applicable
HP-1B message types are described a general description of
how the Multiprogrammer processes a typical data message is
provided. Next, the basic 1/0 card operations, that result from
a data message, are described. Finally, 1/0 card subaddress-
ing and data format concepts are discussed.

4-2 HP-1B MESSAGES

4-3 Communications on the HP-1B take the form of quan-
tities of information which are transferred from one device to
one or more other devices on the bus. These quantitites of in-
formation can be thought of as ''messages” and most of the
programming manuals for Hewlett-Packard desktop and
systems computers use the message concept when describing
their HP-IB operations. The purpose of this discussion is to
summarize &ll of the bus messages that can be implemented
by the 8342A Multiprogrammer. Hewlett-Packard has defined
a set of twelve messages that provide complete communica-
tion capability on the HP-IB. Of these twelve messages, the
B6942A uses five; as listed below.

1. Data Message: The 6942A Multiprogrammer accepts
address, control, and numaerical data from the con-
trolter and sends back input data and status informa-
tion,

2. Clear Message: A clear message from the controfier
resets the B942A to its initial state.

3. Require Service Message: The 6942A requests service
from the controller by setting the HP-IB service re-
quest (SRA) ine. The controller can then conduct a
serial or parallel poll of the bus to determine which
device requested service,

4. Status Byte: An 8-bit byte sent to the controller in
response to a serial poll. The byte indicates whether
the 6942A is currently requesting service.

5. Status Bit: A single bit sent to the controlier in
rasponse to a parailel poll.

4-4 Data Messages

4-5 in terms of HP-IB data messages, the 6942A receives
address and control information as well as numerical data
from the controller. In addition, input data from the 6942A can
be read back to the controller. The following examples show

typical data messages that send data to the 6942A and read
data back to the controlier.

4-6 Sending a Data Message. in Example 41, a
"wrt''statement {9828} or an “QUTPUT" statement
(9835/9845) instructs the controller 16 send a data message to
an HP-IB device. Address 723 establishes the Multiprogram-
mer as the destination for the message. The message itself
begins with control information in the form of an instruction
op-code (OS) and is followed by address value "1 which
select the [/O card in slot 1 to receive the data (123) that
follows. Detailed information about the Multiprogrammer’s in-
struction op-codes and [/0 addressing scheme is presented in
Chapter 5.

Exampie 4-1. Sending a Typical Data Message

9825 Controlier

Card Slot Address Data To Card

117

Output J- _[Multiprogrammer

Statement Address

Instruction
Opcode

Terminator

9835/9845 Controller

S

QUTHFLT 7

Staterment j

N
L {Same as above}

4-7 Receiving a Data Message. Example 4-2 shows a
"red” or "ENTER" statement that tells the controller to read
back data from the 6842A's memory and store it in variables
A,B,C. Each time data is read back to the controlier, an ex-
tended talk address must be specified in order to identify the
source of the data. In the example, it is assumed that the data
was collected and stored as a result of an Input Parallel (IP) in-
struction that was previously sent to the 6942A. As shown in
the exarmnple, the extended talk address (31} is simply added at
the end of the main address {723) when typing the address
portion of the statement. Note that extended talk addresses
are utilized only when reading data back to the controller. Ex-
tended listen addresses are not required for messges sent from
the controller to the Multiprogrammer. Overall, there are 13
different extended talk addresses associated with the 6942A:
nine are related to instruction opcodes and four are provided

Output

for reading status. As shown in Table 4-1, the extended ad-
dresses range from 01 to 14, 07 is not used. Programming ex-
amples utilizing these addresses are given in subsequent
Chapters.

Table 4-1. Extended Talk Addresses

INSTRUCTION
CODE or
STATUS
01 P
02 I
03 IE
04 RF
05 Mt
08 Rv
07 (Not Used)
08 RS
09 6]
10 Maultiprogrammer SRQ Status
11 Error status List
i2 Armed Card Interrupt List
13 Busy Instruction Status
14 RC

Example 4-2. Receiving A Typical Data Message
9825 Controller
69424

Address '

Input I

Stetement

Extended Tatk Address

i for previous IP Instruction

t !
I

E Variables to

store input data

9835/9845 Controller

B4 E

P i i
I S R
{Same as above}

Input
Statement

4-8 Clear Message (Device Clear)

4-9 Example 4-3 shows a "clear” or "RESET" statement
that tells the controlier to reset the Multiprogrammer to its
turn-on, or wake-up, state. The internal effects of the clear
message are, as follows:

1. The 6942A's System Enable (SYE) line is turned off.
When off, SYE disables the outputs of ali output type
cards setting them to a 'safe’” state. For example, all
relays on the 69730A Relay Qutput card are opened.

2. The 6942A is forced to perform a self test. This, in
turn, clears Muitiprogrammer memory in 6342A of all
instructions and and also clears the internal registers
on ali 1/Q cards of any data or control information. in
addition, the mainframe defauits to the serial mode
(see Chapter 5) of instruction processing and the data
formats of all 1/0 cards revert to theit wake-up state,

Example 4-3. Sending the Clear Message

9825
9835/45:

4-10 Service Request and Polling
Messages
4-11 Generally, receipt of a require service message in-

dicates to the controller that it should interrupt its normal
tasks and take some form of action to maintain praper opera-
tion of the bus. The 6842A uses the SRQ line of the HP-IB to
send the require service message. Because the SRQ line is a
single wire that is connected to every HP-1B device, the con-
trolier must conduct a serial or parallel poll to identify the
sourcels) of the service request. The interrupt system of the
controller can be used to monitor the SRQ line and jump to the
polling routine when devicels) reguest service.

4-12 Serial Poll. In a serial poll, the controller polis each
device on the bus, one at a time. In response to the poll, each
device returns a status byte message to the controller in-
dicating whether or not it requested service (set SRQ). Exam-
ple 4-4 shows how to serial poll the Multiprogrammer and
store its status byte in variable G.

Example 4-4, Multiprogrammer Serial Poll

9825:
8835/9845:

4-13 The status byte (an 8-bit character) that is stored in
variable G of the example will have a decimal value of 84 (bit 6
on} if the Multiprogrammer requested service, or a value of
128 (bit 7 on) if it had not requested service. None of the re-
maining bits of the status byte (bits O through 5} are used by
the Multiprogrammer in a serial poll. Once a service request
has been detected, the user should perform a read of
Multiprogrammer SRQ status (from extended talk address
10 1o determine why service was requested. Notice that in ac-
cordance with HP-iB standards, a serial poll will cause the
Multiprogrammer to clear the SRQ line. A seriat poll will not,
however, reset the 6942A’s status byte (to 128}, Until its status
byte is reset, the Multiprogrammer cannot generate new ser-
vice requests and will continue to respond affirmatively to
serial poiling. Reading Multiprogrammer SRQ status (red
72310/ENTER 723.10) will reset the status byte message, as
well as clear the SRQ line.

4-14 Example 4-5 illustrates using the controller’s interrupt
system to monitor the SRQ line, serial polt the Multiprogram-

mer when SRQ is set, and then read back Multiprogrammer
status. In line 20 (9825} or lines 20 through 40 (9835/9845), an
interrupt linkage between HP-IB interface 7 and a subroutine
flabeled “multi” is established and interface 7 is enabled for in-
terrupts. When an interrupt occurs {SRQ line is set), the pro-
gram jumps to line 100. Line 100 is a serial poll of the
Muitiprogrammer followed by a check of the status byte
stored in variable G. If the 6942A requested service {G =64},
complete SRQ status information is read back to the controller
and stored in variables A through F. If the Muitiprogrammer
did not request service {G#64}, a return to the main program is
executed. Chapter 5 describes ail of the status information
returned and ‘all’ of the conditions (instruction completions,
error detection, etc.) that will cause the Multiprogrammer to
set the SRQ line.

Example 4-5. Serial Poll and SRQ Status Read
8825 Controiler

gyl Ve Teglnd Tielre ¥

1
19l

[HERE

if G

TR R Ba O T B F

4-15 Parallel Poll. In time-critical situations, it may be
desirable to use the HP-IB parallel poll function. A parallel poll
permits the controller to check the SRQ status of up to eight
devices at one time. Each device sends a single bit in response
to a paraliel poil. The parallel poll bit is a "'t if the
Multiprogrammer requested service and is "0 if it did not.
The Multiprogrammer supports the complete parallel poli
function, including parallel poll, paraliel poll configure and
parailel poli unconfigure commands. Refer to the programm-
ing manual of the appropriate controller for a description on
the use of this function. Note that the parallel poli message
will not affect the SRQ line nor the Multiprogrammer status
byte messages.

4-16 DATA MESSAGE PROCESSING

4-17 The following paragraphs provide a general overview
of the way in which the 8942A Multiprogrammer processes
data messages (instructions and data). Figure 41 is a
simplified instruction fiow diagram which should be referred to
when reading this discussion. -in addition to the instruction

4-3

and data flow, the diagram illustrates five microprocessor con-
trolled programs which are required to process the instruc-
tions. The five programs are internai {stored in ROM) to the
Multiprogrammer and are labeled as follows: HP-I1B Com-
munications, Instruction Decoding, Data Conversion, Instruc-
tion Sequencing, and Instruction Execution. Although these
programs are transparent to the user, they are shown here to
aid in describing how the instructions are processed. The
Multiprogrammer is designed to aflow all five of these pro-
grams to run concurrentty. Thus, while one or more instruc-
tions are executing, additional instructions can be
simultaneously read into the Muttiprogrammer, decoded, con-
verted to the internal format, and sequenced. This allows the
Multiprogrammer to make the most efficient use of its
microprocessor, thereby providing enhanced instruction se-
quencing and control capabilities, and also providing the max-
imum system throughput.

4-18 To assist in understanding how an instruction is pro-
cessed, let’s follow the execution of first an output instruction
{OP} and, then an input instruction {IP}. The OP {Qutput
Parallel} and IP {Input Parallel} instructions are part of a power-
ful set of 32 instructions which provide a high degree of pro-
gramiming flexibitity. The instruction set is described in detail
in subsequent Chapters. All instructions, either input or out-
put, originate as part of an output statement from the
9825, 9835, or 9845 system controller (see paragraph 4-6).

4-19 Output Instructions
4-20 For this discussion assume that output instruction
"OP,1,1237” is sent over the HP-iB to the 6942A

Multiprogrammer. A high speed buffer accepts up to eight
characters {ASCIH) at rates of up to 800,000 bytes per second.
The HP-IB Control program takes the data from the first buffer
and places it into & 128 character buffer. The purpose of the
buffers is to decouple the HP-IB from the 6942A. As instruc-
tions are processed, the Multiprogrammer takes one character
at a time from the buffer. Without the buffers, the HP-IB
would have to wait for the Multiprogrammer to complete this
one-at-a-time processing. With the buffers, 128 characters
can be stored at a rate of 40,000 characters per second. Thus,
instructions and data can be quickly down locaded from the
cantroller into the Muttiprogrammer, freeing the controller and
HP-1B for other operations while the Multiprogrammer is pro-
cessing the instructions. Of course if more than 128 characters
are sent to the Multiprogrammer at a high rate, HP-IB opeta-
tions will be slowed down by the Multiprogrammer’s process-
ng.

4-21 The instruction Decoder and Data Convarsion pro-
grams take characters out of the buffer setting up “instruction
modules” in 6942A mainframe memory that contain the card
address and card data converted to binary. The instruction
modules cordain all the information necessary to execute the
instruction.” in the OP example, after card address 1 is con-
verted to binary, the Data Conversion program determines
how the card is formatted and converts its data accordingiy.
Assuming that card 1is formatted as a decimal data type with
an LSB =1, the program converts 123 to unsigned binary. The

o,
HP-1B CONTROL i
DATA CONVERSION [
Lo INSTRUCTION DECODING |
- INSTRUCTION SEQUENCING
[— INSTRUCTION EXECUTION
40K
ﬁﬁﬁﬁﬁ BYTES/ SEC
BUFFER M
outPUT FOR 1D AG LINE SYNC U
C ke BUFFER | INSTRUCTIONS B DATA 3 INSTRUCTIONS INSTRUGTIONS B DATA L
3 : 8 CHARACTERS ASCH & QUTPUT DATA [RINARY {
o 128 CHARACTERS — reaL |l P
g e 'B> HE- B INTERFACE CLOCK DATA_p T || &
‘ NPUT Y INPUT DATA CLock 1 &
R BUFFER INPUT DATA et 1 MULTIPROGRAMMER R
8 CHARACTERS ASCH o1 & W RERLTET MAINFRAME A
: MEMORY u
7~ ‘ - E
SERVICE 02¢_INPUT INTERR R 110
REGUEST 170 CARD DATA c
TN e AL
03 g
E S
04 RERD FORMAT c
K
g
05 ;
EXTENDED §
TALK Ve
ACDRESS ©6
SELECTOR
OBREAD STATUS
09
1ad
FO<1 6 VARIABLES SERVICE
REQUEST
0}l VARIABLES STATLS
UP T RIABL
" ERROR
LIST
UP TO 128 VARIABLES ARMED CARD
INTERRUPT
LIST
Y
STATUS
\ < </
Figure 4-1. Instruction Processing, Flow Diagram
/0 card data formats are described in paragraph 4-64. instructions are processed one-at-a-time and the next instrue-
tion cannot start until the previous one has completed. In the
4-22 The binary equivalents of the card address and data paraliel mode, the Multiprogrammer aillows certain instruc-
values are placed in the instruction module in mainframe tions to run concurrently (in paraliel). Instruction sequencing
memory along with ali other information required to execute is further described in Chapter 6.
the OP instruction. Because of the sequencing capabilities
provided by the Multiprogrammer (e.g. seriat or parallel pro- 4-23 Since, in our example, the OP is the only instruction
cessing modes), the Instruction Seqguencing program is re- being processed, it can execute immediately. Thus, the se-
quired 1o determine when the instruction can run. The quencing program informs the Instruction Execution program
Multiprogrammer “wakes-up” in the serial mode of instruction that the OP can run. The execution program provides the in-
sequencing when it is first turmed-on. In the serial mode, most terface to the I/0 cards and initiates all card operations. The

4-4

execution of our sample OP instruction consists of sending
123 to card 1 and then cycling the card. The term “cycle’
means "to cause the card to perform its function”. H card 11is
a Digital Output card, cycling causes the binary equivalent of
123 to be transferred from a storage register on the card to the
card’s output terminals. Card operations including cycling are
described in more detail in paragraph 4-32. When the card has
compileted ail operations, the instruction module is terminated
and the OP instruction is completed.

4-24 input Instructions

4-25 The processing of an input instruction, such as
“IP,2T", is similar to that described for an output instruction.
It is sent over the MP-IB {0 the 128 character buffer and is
decoded and sequenced in a manner similar to the GOP, The
card address “2" is converted to binary; however, an P in-
struction has no data to convert. When it is executed, an 1P
eycles an input card, reads data from the card, and stores the
data in the instruction module which was setup when the in-
struction was decoded. Although the execution of the instruc-
tion is over after the data is stored in the instruction module,
the data still has to be sent back to the controller. Therefore,
the instruction module is saved until the data can be read back
by the controller.

4-26 Reading Back Data from Instructicns
4-27 The controlier reads back data from an instruction by
executing a read statement {see paragraph 4-7) from the ap-
plicable HP-18 extended talk address. In our example, the HP-
B extended talk address is 01 {for an IP instruction). The HP-
iB Control program detects the read statement, signals the Ex-
tended Talk Address Selector to get the appropriate data, con-
verts it to the specified format, and transmits it over the HP-1B
1o the controlter. If the input card in slot 2is an A/D Converter
card, the data wili be converted to a value representing volts.
When all the data has been sent back to the controlier, the in-
struction module is terminated and the 1P instruction is com-
pleted.,

4-28

4-29 As shown in Figure 4-1, besides reading back data
from instructions {Input Parallel, Input Interrupt, etc), the
Multiprogrammer can also read back four different types of
status information: Service Request Status, Error List, Armed
Card Interupt List, and Instruction Busy Status. The desired
status information is processed and read back to the controlier
by the HP-1B Control program and the Extended Talk Address
Selector in 8 manner similar to that described above for the In-
put Parallel {1P) instruction. The different types of status infor-
mation are described in subsequent chapters.

Reading Back Status information

4-30 Real Time Clock

4-31 The Muftiprogrammer has a real time clock which
provides the time of day in days, hours, minutes, and

45

seconds. It also provides control information to the Instruction
Sequencing Program. Real Time Clock processing runs in
paraliet with all other Multiprogrammer operations. Certain
System Timing instructions, described in Chapter 5, use the
Real Time Clock in sequencing events and in measuring elaps-
ed time,
4-32 1/0 CARD OPERATIONS

4-33 Even the simplest /O card data transfers, such as
with OP and [P instructions, require the cards 1o perform
multipie operations. An explanation of what these operations
are and why they are needed will help in understanding how
the instructions work. This discussion expiains the basic
operations performed by both output and input cards, using
an OP instruction to a Digital Qutput card and an [P instruction
t¢ a Digital Input card as examples. Al [/0 cards, both output
and input, have a common circuit called the Control chip
which is a large 40 pin device near the front of the card. This
circuit interfaces the card 1o the microprocessor via the
Multiprogrammer backplane and controls ali communications
between the backplane and the /Q card. Using identical inter-
faces for ali cards eliminates the need for special instructions
for each card type. The result is a general purpose instruction
set where all instructions can be used with all cards.

4-34 Output Cards

4-35 Figure 4-2 is a simplified block diagram of a Digitat
Output card iliustrating the data flow, the major control
signals, and the signals available at the card’s edge connector.
Referring to Figure 4-2, let’s look at exactly what operations
are performed when programming an OP instruction to a
Digital Output card. Assume that the card is installed in card
slot T and instruction “0P,1,123T" is programmed. This in-
struction sends the binary pattern representing 123to the card.
The OP instruction perferms two basic operations on the card,
First, the data is sent to the first rank storage register on the
card, Aithough the card now has the data, it has not yet been
sent to the output terminals. The second opearation consists of
cycling the card which transfers the data to the card’s edge
connector via the second rank storage register, the enable
gates, and the logic level drivers. The cycling operation also
generates a gate signal which initiates the gate/flag sequence
thandshake cycle}. Completion of the gate/flag sequence in-
dicates that the card has completed operations. With the
gate/flag jumper instalied as shown in Figure 4-2, the se-
guence is completed instantaneously. Removal of this jumper
allows the external device to determine the completion of the
handshake cycle {see paragraph 4-38). Whenever an 1/0 card
completes its handshake cycle the end-of-process {EQP}
signal is generated. Certain instructions {such as OP and IP}
require that each card, specified in the instruction, signai
linterrupt) the microprocessor when it complates operations.
These types of instructions automatically "arm” the card
which will cause the EOP signal to generate the
“Microprocessor Interrupt”’ signal (see paragraph 4-44). The
arming circuit is inside the control chip on Figure 4-2.

DATA FIRST SECOND LOGIC
B4 RANK RANK gy EHABLE B LEVEL <
6 STORAGE | | | STORASE | g ATE & 1 DRIVERS | ‘g
A
WRITE LOAD ENABLE
SUBADOR @ SECONI
RANK
ADDRESS /
CONTROL
Traﬁﬁ_(E)M CONTROL TQ/ FROM
BACK. T pnCRO CHiP L EXTERNAL
g PROCESSOR CARD ENABLE EXT. ENABLE (EEN] .| DEVICE
INTERRUPT 4
G
GATE GATE
B
| FLAG j FLAG
END OF PROCESS {EOP)
&
BUSY
EXT TRIGGER _
Figure 4-2. Digital Qutput Card, Simplified Block Diagram

4-36 Internal Gate/Flag. To explain an inmernal gate/flag
operation, assume that data is sent to a Relay card. The relays
require 6 msec to close. To ensure that data {in an OP or 08
instruction} can not be sent to a Relay card at a rate faster than
6 msec, the relay card uses a 6 msec one-shot timer in the
gate/flag circuit (see Figure 4-3). The gate signal starts the
timer when the relay card is cycied, and 6 msec later when it
completes, the flag is generated indicating that the data
transfer process is complete {relays have settled}.

GATE

&m Sec

CONTROL.
END OF PROCESS TIMER

€0 CHIP | g FLAG

Figure 4-3. Relay Card Internal Gate/Flag Timer

4-37 The gate/flag handshake on the D/A Converter card
works in a similar manner, except the timer is only 6
microseconds. Cards like the Digital Quiput shown in Figure
4-7, require no delay whatsoever. As soon as the data is stored
in the second rank of storage, it appears at the output ter-
minals and the gate/flag sequence completes instantly.

4-38 External Gate/Flag. Even though a Digital Qutput
card can process data instantaneously, the external device
connected to the card might not be so fast. in this situation, if

4-6

we send data 1o the card as fast as the card can take it, we
might be sending it to the external device too quickly. As an
example, assume we are using a 16-bit Digitat Output card to
send data to an external 16-bit D/A Converter. Although the
Digital Qutput card wiil complete instantansously (remember,
fiag is tied to gate), the external D/ A requires 18 msecs to con-
vert the digitai signal to an analog voitage. If we send the data
to the output card as fast as possible (faster than 10 msec), we
will overwrite the data to the D/A, generating erroneous
resuis.

4-39 To solve this problem, remaove the gate/flag jumper
(see Figure 4-2) from the Digital Output card to extend the
gate/flag handshake to the external device. The external
device, such as the D/A in the above example, can then con-
trol when the Digital Output card signals completion, thus,
guaranteeing that it wili always be ready for the next data
word. This is called synchronizing the external device to the
Multiprogrammaer. Each data transfer occurs only when both
the Muitiprogrammer and the external device are ready for it.

4-40 A card can remain busy for an indefinite period, thus
any type of external device, including those that require
human interaction, can be synchronzied to the Muitiprogram-
mer with the external gate/flag handshake. The controller can
always send a sequence of instructions e.g. {OP's) to the
Multiprogrammer and be gauranteed that all of the data will be
taken correclty, in the proper order,

4-41 When using the external gate/flag handshake, you
must be sure that the external device will always respond with
a flag. If for any reason, a flag is not returned, the OP
associated with the card will not complete, and because of the
serigi mode, no other instructions will run until the OP com-
pletes, resuiting in the system hanging up. Appendix O will
discuss methods to recover from this condition. To unders-
tand how the gate/flag handshake works, lets examine exactly
what the signais do.

® @

i

1

Fi.AG (INPUT) 1
o t

| 1 i
Ih———— A mm—b;q—— E] ﬁ—f—-b§
] i E
TIME CYCLE
ENDS
{EOPY

| .
o GATE {0UTHUT) Cl

i

CYCLE
STARTS

Figure 4-4. Gate/flag Handshake
4-42 As shown in Figure 4-4, the handshake begins at time
, when the controi chip starts the cycle by making
GATE=1. {The data is latched into the second rank storage
register simuitaneously}. At time , the external device
acknowledges receipt of the gate signat by setting FLAG =1,
and this causes the control chip to clear gate (GATE=0). The
sequence does not complete (and the controt chip does not
sighal_the microprocessor) untit the trailing edge of flag, at
ﬂme@. This gives the external device maximum flexibility. it
can, depending upon its particular circuitry, delay the hand-
shake in either time period A or B. For example, an external
D/ A response to the gate signal by setting a busy status line.
At the completion of the conversion (10 msec), the busy line is
reset = 0. This busy status line can be tied directly to the flag
input, in which case the D/A holds off the output card in time
period B.

CARD 1 EOP
CARD 2 £op
&
CARD 5 EOP
| i
| i
CYCLE INST
CARDS COMPLETE

Figure 4-5. Cycling Multiple Cards with OP Instruction

4.43 Multiple Output Cards. Most types of output cards
have first rank and second rank storage registers connected in
exactly the same sequence. Thus, an OP instruction can be
given to a series of various types of cutput cards with identical
results. The cycling step of the OP instruction is performed
simultanegusiy on ait cards specifed in the instruction. When a
card is cycled, the data from the first rank of storage is loaded
into the second rank, where it is proprogated to the output ter-
minals. Until the second rank storage register is updated, the
output date will remain unchanged. Assume that an output
parallel instruction “0P,1,123,2,456,3,789T" is programmed.

As shown in Figure 4-5, the OP loads the data into each card,
and then cycles all cards simultaneously. As each card com-
pietes, it generates an EQP, however the "OP" instruction
does not complete until; all cards hava completed.

4-44 Microprocessor interrupt. As described previous-
ly, whenever an 1/0 card completes a data processing se-
guence, an EOP signal is generated. If the card is programmed
by an instruction that automatically arms the card
(OB,I1P,OP,11,05,1E, or O), the EOP signal will generate an in-
terrupt to the microprocessor which will then determine the in-
struction that the card is assigned to, disarm the card, and
continue the processing according to the type of instruction
and processing mode of the Multiprogrammer. For example, if
the interrupting card is the only card assigned tec an “OP" in-
struction and the Muitiprogrammer is in the serial mode, the
next instruction is allowed to start.

4-45 Not all instructions arm the card. The write and cycle
{WC) instruction used 10 program output card, simpiy sends
data to the card{s) then cycles the card{s). The ¢ycle (CY) in-
struction simply cycles the card. Cards may also be cycled by
appling an external trigger to the external trigger input on the
card (see Figure 4-2). The Arm Card {AC} instruction can be
used to enable cards that are being externaily triggered or pro-
grammed with a “"WC'" or “CY" instruction to interrupt the
microprocessor upon completion of their data processing.
These interrupts are called “armed card interrupis’” and are
discussed in detail in Chapter 6. Note that if a card is cycied
without first being armed, the EOP signal wili go high in-
dicating that the card completed its operation but will not be
reset by the microprocessor until another instruction address-
ing the card is programmed.

4-46 Card Enable. Al output card types have a card
enable circuit that disables the card outputs when power is in-
itially applied.{The enable circuit for the Digitai Output card is
shown in Figure 4-2.}) A card’s outputs remain disabled until
the Multiprogrammer's system enable (SYE) line is turned on
and the particular card is cycled for the first time. The SYE line
is ane of the control signals applied to the control chip on each
card and is turned on when the first instruction is executed,
An individual card is not enabled however until it is cycled.
When disabled, an output card is set to a “safe” state {e.g.
relays on a2 Relay Qutput card are opened).

4-47 input Cards

4-48 Figure 4-6 is a simplified diagram of a Digital input
card. The input operation is the reverse of the output. The
card is cycled, loading the data on the input terminals into the
input latch. At this point the control chip signals the
microprocessor that the card has completed and the
microprocessor responds by reading the data from the input
latch. The identieal sequence, sampling the data on the edge
connector, loading it into the input latch, signalling the
microprocessor, and then having the microprocessor read the
input latch, is performed on every type of input card. Note
that the card enable circuit shown in Figure 4-2 for the Digital
Output card does not apply to the input cards.

4-49 Assume that the input card is installed in slot 4 and
instruction “tP,4,T” is programmed. The sequence of events
for an input from the card in slot 4 is as follows:

Cycle card

1) Initiate gate/flag handshake

2} Load data into input latch at completion of hand-

a.

shake

b. Signal microprocessor that card has completed (inter-
rupt)

cC. Send data from card to mainframe memory.

At a later time the controller can read the data from the main-
frame memory over the MP-IB using the IP instructions ex-
tended talk address of 01 {red 723.01}. Refer to paragraph 4-7.

BATA LOBK GATA
LEVEL

DRIVERS

IWNPLT
LATCH

i

READ
FOFROM SUBADDR @
MULT?
BACK- ™
PLANE

LGAT

ARDRESS /S
CONTROL

(-TQI Fﬂﬂ:ﬂ
EXTERNAL
CONTROL DEVICE
MICRS- CHIP
PROCESSOR

o INTERRUPT

gUSY

|, EXT. TRIGGER

Figure 4-8 Digital Input Card, Block Diagram

4-50 Internal Gate/Flag. Just as with output cards,
some input cards complete their cycles instantly while others
take varying lengths of time to complete. The A/D input card,
for example, takes 33 microseconds to take a reading. Input
cards also make use of the gate/flag handshake. When an
A/D card is cycled, the gate tells the A/D converter to process
a reading. At the compietion of the conversion, the A/D
signals the control chip via the flag line. This causes the con-
veried data to be stored in the input latch, and a card comple-
tion (interrupt) signal 10 be sent to the microprocessor from
the control chip. Some cards, such as the Digital Input, require
no processing time, so just as with the Digital Quiput card, the
flag signal is tied to the gate. This forces the card to complete
as soon as the Gate is generated.

4.51 External Gate/Flag. Again, the situation arises
when the card can complete very quickly, but the externat
device might be siow. In the case of inputs, if the data is joad-
ed into the input latch before the external device can transmit
the correct data to the input card, erroneous data will be
stored in the input latch. To avoid this problem, a way to syn-
chronize the external device with the Multiprogrammer is re-
quired so the data is not stored until the external device has
transmitted it. Just as with cutput cards, the gate/flag hand-
shake can be extended 1o the external device. Again refer to
the gate/flag handshake in Figure 4-4. Although the card

48

;

never compietes until the end of the cycle, the user can
specify whether the data should be stored in the input latch on
the leading or trailing edge of the fiag signal {see Digital Input
card Manual).

4.-52 Additional information on the operation of the /O
cards will be given throughout Chapters b and 6. A complete
summary of ali the 1/0 card information, both generai card in-
formation, and specifiic information about each card type, in-
cluding exampie programs, is given in Chapter 7.

4-53 {/OCARDSUBADDRESSES

4-54 The Multiprogrammer utilizes an 1/0 card subad-
dressing scheme that allows programming the more complex
{multi-functioned} 1/0 cards as well as the simple 18-bit Digital
Input and 16-bit Digital Qutput cards described in the previous
paragraphs. There are eight subaddresses (4 write and 4 read}
that can be used to program specific functions on an /0 card.
The appropriate subaddress number (0}{? ,2, or 3} is.appended
1o the card slot address in the instruction syntax. Note that the
subaddress number defaults to 0 if it is not specified in the ad-
dress; therefore, it may be omitted when addressing subad-
dress 0. For example address "'1.0" specifying subaddress 0
on card 1 can also be programmed as 1. To pragram subad-

3

dress 3 on card 1, “1.3" must be programmed. Refer 1o
Chapter 5 for a detailed description of instruction syntax, _
e

S

4-55 Subaddress 0 is the main address and is used when
sending data {write 0} to an output card or when reading data
{read 0} from an input card. The OP and IP instructions,
described in paragraphs 4-35 and 4-49, used subaddress § to
program the Digital Output and Digital Input cards, respective-
ly. Write subaddresses are spécifed when output instructions
{e.g. OP, OS) are executed, and read subaddress are specified
when input instructions {e.g. 1P, IE) are executed. The data
values than can be sent (write 0) 1o an output card or read
{read 0} from an input card depend upon the particular /0
card's data format parameters (see paragraph 4-64). The
foilowing paragraphs describe the subaddressing scheme us-
ed with each type of I/0O card that is currently available with
the 6942A/6943A Multiprogrammer System. Table 4-2 sum-
marizes the subaddressing scheme by listing each 1/0 card by
type and speciying the applicable subaddresses.

4-56 Cutput Card Subaddresses

4-57 The desired output value is sent to the applicable out-
put card using write subaddress 0. Read subaddress 3 can be
used to ensure that the output value sent was actually receiv-
ed by the output card. The Pulse Train and Timer/Pacer out-
put cards use additional subaddress to program special func-
tions on each card. The Pulse/Train card uses the write 1 and
write 2 subaddresses 1o program the frequency (period) of its
output pulses. The Timer/Pacer card uses write subaddress 2
to program its mode of operation {one-shot or recirculate}.
Also, as noted in Table 4-2, for certain special conditions the
write 1 subaddress can be used to program the period of the
pulses produced by the Timer/Pacer card. Complete details on
programming output cards are provided in Chapter 7, pages
7-1 through 7-17.

Table 4-2.

[/C Card Subaddresses

SUBADDRESSES
170
CARD TYPE WRITE READ
0 1 2 3 0 1 2 3
Qutput Cards
Resistance Output Qutput . _ _ Output
69700A-69706A Value - - - Value
Voltage D/A Qutput o _ . Output
697207 Value - - - Value
Current D/A Output . _ _ . . Qutput
69721A Value - Value
Relay Quiput Qutput - . _ _ . Output
69730A Value - Value
Digital Qutput Output . . L Cutput
897314 Value - "'" - Value
Pulse Train No. Of Period Pariod _ . . . No. of
69736A Pulses Multr Magtd Pulses
*
Timer/Pacer Pulse Period Mode _ . . Pulse
69736A Width Multr - Width
input Cards
High Speed A/D Seif input Self
89751A Test e — f— Value — — Test
Vatue Value
Isolated Digital Self input Self
Input 63770A Test —_ - — Value —_— — Test
Value Vaiue
Digital Input Self Input Self
69771A Test e —— s Value —_ o Test
Value Vaiue
Counter Card Count . _ . Present . . Count
69775A Preset Count Preset
interrupt Card Ref Mode Mask _ Intrppt Ext Mask Ref
BY776A Word Word Word Word
Memory Cards
Memory Card 1 Write Mode . - Read
P/O 69790A Data Data - - "'"
Memory Card 2 Ref Diff Write Read Read Ditf Write Ref
P/Q 69790A Word Counter Pointer Pointer Pointer Counter Pointer Word

* Subaddress H{period multiplier} on a Timer/Pacer card is not programmable with the card set to the special auto-ranging data type
{see paragraph 4-73), Subaddress 1 on the Timer Card can onily be programmed if another data type is selected {see Timer Card
manual).

4-9

4-58 Input Card Subaddresses

4.59 The input value is read from the applicable input card
using read subaddress 0. Input cards use the write 0 and read
3 subaddresses for test purposes. Write 0 is used 1o send test
data to a dummy register on an input card. The test data can
then be read back using the read 3 subaddress o ensure that
the Multiprogrammer can communicate with the input card,
Complete details on programming input cards are provided in
Chapter 7, pages 7-17 through 7-23.

4-80 Counter Card Subaddresses

4-61 As shown in Table 4-2, the count preset value is sent
to the card using the write 0 subaddress. Read 3 can be used
to ensure that the desired count preset value was received by
the card. The actual count in the card can be read at any time
using the read 0 subaddress. Detsils in programming a

Counter Card are provided in Chapter 7 on pagss 7-23 through
7-25.

4-62 interrupt and Memory Card Sub-
addresses
4-63 As shown in Table 4-2, these cards use all of the

subaddresses. The subaddresses allow various input and out-
put operations to be programmed. Note that the Memory
Cards are two interconnected cards that function as a single
memory. Memory card ¥ contains the memory and the mode
control circuits. Memory card 2 contains a reference register,
differential counter, write pointer, and a read pointer. All
subaddresses are used on Memory Card 2. Refer to Chapter 7
for complete programming details. The Interrupt Card is
covered in pages 7-26 through 7-28 while the Memory Cards
are described in pages 7-29 through 7-34.

4-64 i/0 CARD DATA FORMATS

4-65 One of the major features of the Multiprogrammer is
its ability to communicate with the controller using ""Engineer-
ing Units” data values. instead of requiring the programmer to
converse with the /0 cards in a specific data format, such as
octal or decimal, the Multiprogrammer allows the user to pro-
gram in ynits that "make sense’” for the particular application.
A Voltage D/A card is programmed in voits, a Current D/A
card in miliamps, and a Timer card in seconds, milliseconds,
or microseconds. Cards are designed to “wake-up” in the
most appropriate units when power is first applied or when the
system is reset. The units can be respecified however, for any
card at any time,

4-86 Programming in “'Engineering Units” means that a
specific finear relationship (a scale factor) is assigned between
the units the programmer is conversing in (engineering units),
and the binary data at the /0 card. For exampie, a binary
value of 1 sent to a Voltage D/A card will cause the card to
output 005 volts. Once this relationship is defined in the
Multiprogrammer firmware, the card can be programmed
directly in volts. If we program .08V {005V = 10}, the
Multiprogrammer will send the binary value of 10 to the

4-10

Voitage D/A card, which will then cutput .05V, The use of
engineering units is described in paragraph 4-86.

4-87 Each 1/0 card has five programmable data format
parameters which specify how the Muitiprogrammer will pro-
cess the data it sends to or receives from a particular card. The
five parameters consist of the data type, ieast significant bit
(LSB) value, size {no. of bits), an optionai programmable limit,
and a card identifier. The data format parameters for all 1/0
cards in the system are reported and stored in Multiprogram-
mer memory so thai each card's data can be processed pro-
perly. The Multiprogrammer accepts data, converts it to the
form specified by the applicable data format parameters, and
then sends the converted data to the card for ouiput instruc-
tions, of reads it back to the controller for input instructions.
Two instructions interact with the data format parameters; the
Set Format (SF) and the Read Format {RF) instructions. The
RF instruction reads the current valua of all five parameters
whiie the SF instruction is used to modify one or more of the
parameters. When the SF instruction is used to modify a
card's “"wake-up” parameters, the Muitiprogrammer will
recognize the new parameters untit another SF changes them
or until the Multiprogrammer is reset. Once the Multiprogram-
mer is reset, the I/O card’s data format parameters revert to
their "wake-up” values. Executing an HP-IB Device Clear
command or turning the power on will initiate the system self
test and also reset the Multiprogrammer {see paragraph 2-38},
The RF and SF instructions are described in detail in Chapter
B, Descriptions of the five data format parameters are provided
in the following paragraphs.

4-68 Data Type

4-69 The data type parameter specifies the conversion
routine that the Multiprogrammer wili apply to the data before
sending it fo the card {data output) or reading it back to the
controiler (data input). The Multiprogrammer supports six dif-
ferent data types. Each data type is identified by a code bet-
ween 1 and 7. When using either the RF or SF instruction, the
data types are specified by the data type codes. Note that the
data types listed below inciude the form that the data is in
when it is processed at the 1/0 card as well as the form that
the user programs in.

Data Type Codes

Code User Programs in Card Data

1 *Decimal 2's Complement Binary

2 *Decimal Signed/Magnitude Binary
3 *Decimat {pos. only) Unsigned Binary

4 *Decimal + Range Timer-Auto Range

5 Not Used —_

6 *Decimal (pos. only) Unsigned BCD

7 QOctal integer Unsigned Binary

* Fixed point decimal number with a maximum of 3 places to
the right and 7 places to the left of the decimal point.

4-70 Ali of the data types except octal provide engineering
units {e.g. volts, milliamps, milliseconds, etc). programming

capability where the user programs in fixed point decimal
numbers that represent the value of the applicable engineering
units. Additional information on the various data types {2's
complement, sign/magnitude binary, etc.} is given in Appen-
dix A. The octal data type {code 7} is provided for applications
that require accessing individual bits on a card independent of
the other bits. Octal is particutarly useful when programming
the 16-bit relay output card. The octal pattern is easily con-
verted to the desired relay contact closures.

471 Least Significant Bit Value (LSB
Value)
4-72 The 1.58 value is the scale factor that specifies the

relationship between the engineering units programmed and
the binary number at the /0 card. It indicates what engineer-
ing unit value corresponds to the smallest binary vaiue. This
scale factor is used by the firmware to perform linear transla-
tions from engineering units to binary for output instructions,
and from binary to engineering units for input instructions. A
complete description of the methods invoived, and the pro-
cedure for computing the LSB wvalue, are described in
paragraph 4-86. Since the Octal data type {code 7) does not
use engineering units, the LSB value does does not apply. The
Timer data type (code 4), because of its auto-ranging capabili-
ty, uses a range code, /0 cards that use any of the other data
types ‘wake up'’ with an appropriate value assigned to the
LSB parameter. The LSB “wake-up'’ values can be changed
using the SF instruction. When using an S¥ instruction, the
allowable range of values for the LSB parameter is from .001
to 65.535. Negative L.SB values are not allowed.

4-73 Hange Code

4-74 Because of the auto-ranging eapabilites of the Timer
data type {code 4), a8 Range Code is specified instead of an
LSB value. Auto-ranging is used because the programmable
range of the Timer/Pacer card far exceeds the standard 16-bit
range. The range code specifies one of three enginesring units
the card can be programmed with.. The actual LSB value
assigned to the card is automatically computed by the firm-
ware for each output to the card. The range codes are: S for
seconds, M for milliseconds, and U for microseconds. As
described in paragraph 4-81, the timer wakes up being pro-
grammed in milliseconds. The full programming ranges for the
three codes are:

Code Range

U (Microseconds} 1.0 to 4,294,836 Microseconds

M (Milliseconds}) .001 to 4,294,836.225 Milliseconds
S {Seconds} .001 to 65,535 Seconds

Refer to the Read Format and Set Format instructions in
Chapter 5, and the Timer card-description in Chapter 7 for com-
plete programming details.

4-75 Size

4.76 The size parameter on each card spacifies whether
the card wilizes 12 or 16-bits of data, For certain applications,

it may be desirable to change the size parameter on a par-
ticular card. For example assume that the external digital out-
puts from a 12-bit High Speed A/D card are connected to the
digital inputs on a 16-bit Memory Card. In this example, an SF
instruction can be used to change the size parameter of the
Memory card to 12-bits,

4-77 Limit

4-78 The limit parameter is a positive engineering units
number that must be within the range allowed for the specific
card’s data type, LSB, and size parameter values, The ab-
solute vaiue of the data (number) programmed to the card
must be less than or equal to the limit specified, or an error

is detected. All cards wake-up with their programming range
specified by the data type, LSB, and size parameters. For ex-
ample, a Voltage D/A card wakes-up with a programmabie
range from - 10.240 to +10.236 (see paragraph 4-81). i
desired, the SF instruction can be used to set the limit
parameter on the D/A card to 10.000. Now if the absolute
value of the number programmed (e.g. -~ 10.15 or 10.15) ex-
ceeds the limit (10}, the card will not be programmed and an
error will be detected. Note that limits cannot be set for 1/0
cards using the octal or the special timer data types.

4-79 Card ldentifier

4-80 Fach /0 card type is assigned a card identifier code
in the range from 0-63. The card [D codes are used to enable
card dependent features built into the firmware and also to
identify what card types are instailed. The card ID code is nor-
mally used when data is read back from an RF instruction. The
card iD codes are listed below along with the corresponding
card type.

{0
Code Card Type
1 Timer/Pacer
4 Memory Card 2
6 Memory Card 1
12 Word Interrupt
42 Digital Cutput
44 Digital Input
45 Isolated Digtal Input
486 Relay Output
48 Voitage or Current D/A
52 A/D Converter
b8 Resistance Output
58 Pulse Train
83 Counter
4-81 1/0 Card Data Format Wake-up
Values
4-82 Circuits on each /O card specify the "wake-up”’

vaitues for the data type, LSB, size, and card |D parameters.
Note that these circuits do not affect how the card performs
its function. Their only purpose is to specify the data type and
L.SB parameters which determine how the Multiprogrammer

firmware will process the data it sends to or receives from the
particular 1/0 card. Jumpers on each /O card allow the
“wake-up” values of the data type and LSB parameters to be
changed from their factory selected values, If an application
calls for a specific 1/0 card to be used with a data type and/or
LS8 value that will always be different from the factory set
“wake-up” values, it is recommended that the jumpers be
changed. The card ID and size parameter circuits are hard-
wired on each 1/0 card and can only be changed from their
“wake-up” values with the SF instruction. As mentioned
previously, the SF instruction can be used to change some or
all of the data format parameters.

word for each card is read into the Multiprogrammer’s firm-
ware. The wake-up word specifies the values of all five of the
data format parameters. Each card wakes-up with its fimit set,
a card can be programmed to its maximum value. The wake-
up vatues for the card ID, data type, LS8 and size parameters
are given in Table 4-3 for each type of |/O code. The
associated card name and model number are given along with
the applicable parameters. Note that most cards wake-up in
data type 3 with an LSB of T and a size of 16-bits. The range of
values that can be programmed is calculated for each card (ex-
cept the Timer) from the data type, LSR, and size parameters.
The Timer/Pacer card uses a range code instead of an LSB
value (see paragraphs 4-73).

4-83 Whenever the system is run through self test (see
paragraph 2-38), every card slot is accessed, and a “wake-up”

Table 4-3. /O Card Wake-Up Values

D DATA TYPE
CARD MODEL CODE|ySeR PROGRAMS IN|l COpE | LSB | SIZE | RANGE
Timer/Pacer BI736A 1 Becimal + Range 4 %3 18 001 1o 4,294,836.225 msec
Memory Card 2 P/0 69790A 4 Becimat (pos oniy} 3 1 16 0 to 65,535
Memory Card 1 P/0 69790A 6 Decimal (pos oniy} 3 1 16 0 to 65,535
Interrupt B69776A 12 | Decimat (pos only) 3 1 16 0 to 65,535
Digital Output 89731A 42 | Decimal (pos only} 3 1 16 0 to 85,535
Digital Input 63771A 44 | Decimal (pos oniy} 3 1 16 |0to 65,535
Isolated Digitat In | 89770A 45 | Decimal (pos only} 3 1 16 G to 65,035
Reiay Output 89730A 46 | Decimal {pos only) 3 1 16 (to 65,635
Voltage D/A 80720A 48 | Decimal {pos or neg) 1 .005v 12 - 10.240 to + 10,2358V
Current D/A 63721A 48 | Decimal Ipos or neg) 1 | .0imA | 12 | -204810 +20.47mA
High Speed A/D 69751A 52 { Decimal {pos or neg) 1 005V 12 —10.240 to +10.235V
Resistance Quiput | 69700A 56 | Decimal {pos only) 3 1 12 0 1o 4095
Resistance Output | 69701A, 56 | Decimal (pos only} 3 L1V 12 0 to 40.095Vv**
044, 05A
Resistance Quiput | 69702A,06A 56 | Decimal {pos oniy) 3 025y *¥ 12 G to 102.350V**
Pulse Train 697358 58 | Decimal {pos or neg) 2 1 716 -32767 to + 32767
Counter 69775A 63 | Decimal {pos only) 3 1 16 0 to 65,635

*Special auto-ranging capability ensures best possible resolution. :
**LSB and Range values in volts are specified for Resistance Output Card/Option 40 Power Supply combination.

4-84 Error Processing

485 After ail b parameters have been set up (either with
their wake-up values or with an SF instruction), the
Multiprogrammer will start processing the card’s data accor-
ding to these specifications. Extensive error checking is per-
formed on the data to guarantee that it is a legat value for the
specific card. If any error is detected, the Multinrogrammer
will not process the instruction and will store an error message
explaining what the problem was. The following are some of
the checks made by the Multiprogrammer for output instruc-
tions.

Range Check - After converting the data to binary, the
Mutiprogrammer checks to see if the data has overfiowed out
of the 12 or 16-bit card (determined by the size parameter}.
This check is performed before the Hmit check, thus an
overfiow will be reported (as a “"data error’’) regardless of the
limit programmed, {or if no limit was programmed;.

Sign Check - Attempts to program a negative number when
using data types 3 (unsigned binary), 4 (timer}, 6 {unsigned
BCD), or 7 {octal} will cause the system to store a “'data er-
ror’”.

Roundoff- The Multiprogrammer aiways rounds off the
engineering units value to the closest even multiple of the LSB
value. For example, if the L.SB~=.005V, and the value pro-
grammed is 1.234V, the Multiprogrammer wili.round this off to
1.238V (247 x ,005).

4-86 Programming in Engineering Units
4-87 As was explained before, engineering units allow the
user to customize the way he communicates with his /0
cards. He can program the card in units that “make sense’’ for
the application the card is used in. To do this, the LSB value is
used as a scale factor by the firmwareto make the appropriate
conversions. The relationship between the engineering units,
the binary value at the card, and the L.SB value are as follows:

for outputs: {Engin Unit} / (LSB} = Binary Value

for inputs: {Binary Value) x (LSB) = Engin Units

4-88 Using the above formulas, it is easy to compute the
maximum range of engineering unit values allowed. A 16-bit
card, with data type 3 (unsigned binary), has & maximum
binary value of 65,535. The maximum LSB = 65.5385, thus:

max engin units

il

{binary) x (LSB}
665635 x 65.535
4,284,836.225

il

"
I

4;89 To compute the maximum negative number, use data
type 1 (2's complement). The maximum negative binary value
-32,768, thus:

1l

{binary} x (LSB)
- 32768 x 65.536
= —2,147,450.880

max engin units

I

413

4-80 To customize the engineering units for a particular
application, re-arrange the expression.

{Engin Units) / (Binary Value) = LSB Value

As can be seen, all that must be known is a single engineering
unit value, and the corresponding binary value to complete the
LSB value.

Exampie: Some applications call for programming the
D/ A card in a percentage of the full scale value. The D/A card
is a 12-bit, 2's complement card, thus it has 21"‘Z or 4086
values. Since it is 2's complement, it is a bipolar card, with
2048 positive values (2047 positive valises and 0}, and 2048
negative values. To program as a percentage of full scale, the
foliowing refationship is used:

100% = 2047
thus LSB = {engin units) / (binary)
= 100/2047
= .049

If we assign an LSB = .048, we can program the D/A card
directly in percentage of full scale.

4-9% Another example is using a pulse train output card to
control a stepping motor. The pulse train card generates a pro-
grammable number of square-wave output pulses. The
square-wave pulses can be connected to a stepping motor
transtator to control the magnitude (no. of revolutions), direc-
tion, and the speed of motor rotation. The 16-bit pulse train

card "'wakes-up” set for sign/magnitude programming (data
type 2) with an LSB value of 1. For these data format values,
the card is programmed directly in the number of output:
pulses desired (—32767 to +32767), where the polarity
specifies direction of rotation.

4-92 In this application, it makes sense to customize the
engineering units to be the "number of revolutions desired”
instead of the "number of pulses” desired. Assuming that 200
pulses from the card translates into one ‘stepping motor
revolution, the L.SB velue is scaled as follows:

LSB = (engin units} / binary}
= 1/200
= 005

Now if we set the LSB value to .005 and program an engineer-
ing units value of 1 revolution to the card, the binary
value of 200 will be sent to the card. This causes the card to
generate 200 square-wave pulses which are translated into one
stepping motor revolution. With the LSB set to .005 the max-
imum number of revolutions that can be programmed is:

005 (LSB) » —32767 (max neg 16-bit value) = —163.835
~and
.005 (LSB) x +32767 (max pos 16-bit value) = + 163.835

or
- 163.835 to -+ 183.835 revolutions

Chapterb
PROGRAMMING ESSENTIALS

51 This chapter covers the fundamentals of programming
the Multiprogrammer system using a 9825, 9835, or 9845
Desktop Computer. Included is an overall description of the
instruction set, instruction syntax conventions, basic
processing modes of the 6342A, and detailed descriptions of
twenty one of the basic instructions that are most often used
in programming the 6842A. The remaining eleven instructions
of the 32-instruction set are desctibed in Chapter 6. These
eleven instructions are for more advanced or special purpose
use,
-2 INSTRUCTION SET

63 Table 5.1 lists all 32 instructions. The opcode and
name of each instruction is given, together with a brief

description of the instruction and the paragraphis} where a
more detailed description can be found.

5-4 As indicated in Table 5-1, the instruction set can be
subdivided into five functional groups: system control,
output, input, card control, and system timing. A bref
description of these five groups is presented in the following
paragraphs.

5.5 System Control Instructions

5-6 These instructions establish the basic operating modes
of the Multiprogrammmer system. Many of the instructions in
this group control the way in which the Multiprogrammer se-

quences the other instructions that it receives from the HP-IB
computing controlier.

b-7 When the Multiprogrammer is first switched on, it
“wakes-up” in the serial mode of instructions sequencing. In
serial mode, most instructions are processed cne-at-a-time
and the next instruction cannot start untit the previous one has
completed. Example 5-1 shows how to place the
Multiprogrammer in the paralel mode of instruction
sequencing using a 9825 Desktop Computer.

Example5-1. Sample System Control Instruction

wrt 723, “GP"
o —
L Go Paralief Instruction

Multiprogrammer HP-1B Address

Output Statement

5-8 in paraliel mode, the Multiprogrammer aflows different
instructions to run concurrently (in parallel). This mode is
useful when controlling processes that are relatively
independent of each other and it is necessary to reduce
execution times.

5-9 Output Instructions

5-10 These instructions are used to program the
Multiprogrammer’s various output type cards. Example 5-2 il
lustrates the Qutput Paralle! (OP) instruction. The OF instruc-
tion sends data to a group of output cards and then instructs
them to begin simultaneously processing the data. The in-
struction completes when all addressed cards are producing
an output that is equivalent to the data sent by the instruction.
In the example, a 69720A Voitage D/A card in siot number 1is
instructed to produce a 5 Volt output and a 69731A Digitat
Output card in slot 2 is programmed so that it's 16 output bits
are ali togical 1's.

Example 5-2. Typical Qutput Instruction

Datato Card 1 Card Address
Card Address Datato Card 2
Output Parailel Terminator

Instruction

wrt 723, “OP,1,5,2,65535 T"
I——w Multiprogrammer HP-1B address

Output Statement

511 Input Instructions

512 These instructions apply to the input cards.
Obtaining data from an input card is a two-step process. First,
one of the input instructions is sent to the Multiprogrammer
directing a card, or group of cards, to capture data from the
external world and store it in the 6942A’s memory. Next, an
input statermnent is used 1o read back the data to the controlier.

5-13 In Example 5-3, an Input Paraliel {IP) Instruction

commands two input cards, in slots 5 and 6, to take
simultaneous readings. After the cards have completed, the
input data is stored in 6942A memuory jocations for immediate

Table 5-1. Instruction Set

Described in
Opcode Name Brief Description Paragraph

SYSTEM CONTROL

GP Go Paraliel Sets system to parallel mode of operation. In the parallel mode in- 5-67
structions having different opcodes are executed simulianeously.

GS Go Serial Aestores system to the serial mode of operation in which all instructions {except 5-57
Ol and i} are executed one-at-a-time.

Gl Go Immediate Sets system 1o immediate mode of operation which suspends ali currently run- 6-52
ning instructions and aflows a specified subset of instructions to run im-
mediately. The Gl instruction is used whenever an immediate response 1o an
emergency situation is required.

GN Go Normal Returns system to the mode of operation that existed prior to execution of the Gl 6-58
instruction.

CG Clear Group Clears user defined group instructions from system memory, Group
instructions provide a programming convenience. 6-9

SE System Enable Enables the cutputs of all output cards in the system. The SE is used to 6-67
enabie the system after an S0 was executed.

S0 System Disable Disables the outputs of ail output type cards in the systemn setting them to a 8-63
“safe’” state. The SD could be used in conjunction with the Gl instruction o
respond to an emergency condition.

ouTPuUT

(634 Qutput Parallel Simultanecusly programs a group of output cards. Instruction completes when 5-63
all cards have completed.

08 Qutput Sequential Sequentially programs a card or a group of cards. As each card completes, 5-70
the next card is programmed. Instruction completes when last card com-
pletes.

OB Cutput Bit Simultaneously sets or clears specified bits on an output card without affec- 577
ting the other bits, Instruction completes when card completes,

8] Output interrupt Same as OP, except that it always runs in paraliel with other instructions. As B5-183
each Ol card completes, its adresss is stered in 6942A memory and SRQ is
set.

wWC Write and Cycle Same as OP, except WC completes immediately {does not wait for cards to 5-87
complete).

W Write First Rank Sends data to first rank storage on a card or group of cards, The WF 5-92
provides “low level” control of a card and is used in conjunction with other
instructions.

MO Memory Qutput Loads data word inte a memory card, 1t then cycles the card to allow the next
data word to be loaded into the next memory location. 8-71

INPUT

P Input Parallel Simultaneously programs a group of input cards to take readings; waits for card 5-106
to complete; and then reads each card and stores the data in 6942A memory. if
desired a repeat factor can be used to take muitiple readings from the input cards.
Alse, a wait time can be specified between readings,

IE Input External Same as {P except the {E waits for an external trigger from user’s process 5-148
to initiate the take reading cycle, The repeat and wait
factors can also be used with the IE instruction.

52

Table 5-1. Instruction Set {Continued)

Described in

completed.

Opcode Name Brief Description Paragraph
INPUT (continued)
Il Input Interrupt Same as IP, except it always runs in parallel with other instructions and does not 5201
allow repeat and waits, As each card compiletes, its data and addresses are
stored in §942A memory and SRQ is set.
MI Memory Input Specifies the address of the particular memory card to be read. 675
RV Read Value Reads the current data value on a card {or group of cards) and stores the 5.163
data in 8942A memory. The RV does not initiate a take reading cycle. Conse-
quently, the values read are the current value {values abtained from last take
reading cyciel.
CARD CONTROL
AC Arm Card Selectively “arms’’ a card or group of cards. Armed cards can be used in 6-21
conjunction with external triggering techniques,
DC Disarm Card Selectively “disarms” a card or group of cards, This instruction is used if the 6-33
programmer decides to disarm a card he had previousty armed with an AC in-
struction.
cy Cycle Card “Cycles” the cardis} without sending data or arming the cardsis). The term 5-08
cycle means 1o '‘cause the card to perform its function”,
CC Clear Card Clears the timing circuits on a card or a group of cards. For exampie, a GC 6-45
can be used to clear the gate/flag circuit on a card that is waiting for a flag signal
from an external device.
RS Read Status Obtains a data word that gives the date transfer status of the card and the $-30
identity of the instruction {if any} currently being used to program the card.
RF Read Format Reads card data format, Five variables (card iD, data type, LSE, size, limit) 52973
are returned,
Sk Set Format Allows the card(s) data format to be changed. Al ar some of the parameters 5-236
{data type, LSB, etc) can be changed.
SYSTEM THWRING
SC Set Clock Sets the Multiprogrammer real time clock to predetermine values of days, 5254
hours, minutes, and seconds.
RC Read Clock Reads the internat real time clock values. 5-260
WA \Wait Cause a pause between two instruction sequences. In parallel mode, it set 5-267
SRQ when the specified time has elapsed and can be used as a imer.
Wi Wait Until Causes a sequence of instructions to start at a programmable time. In 5.224
the parailel mode, it sets SRQ when the programmed time is reached.
CwW Clear Wait Clears all WA or WU instructions from the system. 5.287
IN Interrupt Now Sets SRQ 1o indicate that all previously programmed instructions have 5-215

or future readback. The read back statement {red} causes the
data from the cards in slots b and 6 to be stored in variables A
and B, respectively.

5-14 Notice that an extended talk address is added to the
Multiprogrammer’s main address in the input statement. HP-
I8 extended addresses are provided to allow identification of a
particular source inside a bus device. The Multiprogrammer
System utilizes this extended addressing scheme whenever
reading back data or status to the controfler,

Example 5-3. Typical Input Instruction

Input Parallel Instruction for

CardsB8and6

wrt 723, 1P 5,6 T"
red 72301, A,B

1T L

—Extended Talk Address for iP Instruction

Variables to store Input Data

ultiprogrammer Main Address

e OOt Statement

5-15 Card Control Instructions

5-16 The card control instructions altow access to various
circuits on the /O cards to enable close control and
monitoring of their various operations. The following example
shows how to change the data format of an |/O card using a
Set Format (SF) instruction.

5-17 The Multiprogrammer allows the 1/0 cards to send
and receive data in several different forms e.g; binary, 2's
complement, and BCD. This enables you to program in a man-
ner that is convendent for your particular application. In the ex-
ample, a card in slot 10 is reformatted so that it can be pro-
grammed with a decimal number having a resolution of 1 {(LSB
= 1} and with a maximum bit size of 12.

Example 5-4. Sample Card Control Instruction

No. of changed
parameters

card address ________’

wrt 723, “SF,10,3,3,1,12T"

Set Format _~.........._l

Instruction

Data Type = 3
{decimal)

LSB = 1 Size = 12 bits

5-4

5-18 System Timing Instructions

5-19 These instructions permit sequencing events and
measuring elapsed time. All but one of these instructions {the
IN instruction) utilize the Multiprogrammaer'’s real time clock,
which has a resoclution of 0.1 second and a maximum range of
about 1.5 % 10% hours.

5-20 In the foliowing example, a Wait (WA) instruction is
used 10 establish a time delay between an analog stimulus and
an associated response.

Example B-5. Sample Timing Instruction

Qutput - 5 Volts —, [——-Waét 10 Seconds

Take reading

i U A
wrt 723, “OP,1, — BT, WA, 10T, IP,2T"
red 72301, A

[—

L__ Readback data from

IP Instruction

b-21 First, an QP instruction commands & D/A card in slot
1 to provide an analog stimulus { — 5 Volts}, This is followed by
a WA instruction that directs the Multiprogrammer to wait 10
seconds before taking the associated reading from an input
card in siot 2. Finally, the input data is read back to the con-
troiler

§-22 High Level And Low Level Instruc-
tions
5-23 The instruction set containg both “high’ and “low"”

tevel instructions to provide flexibility in programming the
6942A. The high level instructions {such as the "OP"" and "'IP"
instructions described previously} simplify programming by
delegating the tasks of instruction processing and sequencing
to the Multiprogrammer. The 0P’ instruction, for example,
automatically initiates many operations within the
Multiprogramemer. First, it “arms’’ the addressed output card
so that i can generate an internal microprocessor interrupt
after the card compietes its operation. At the same time, it
ioads the data included in the instruction into the card’s “first
rank’’ of storage. Next, the card is “cycled” so that it pro-
duces an output that is proportional to the programmed data.
After a gate/flag data transfer, the card's EOP (End of Pro-
cess) signal will generate a microprocessor intesrupt o in-
dicate compietion of the instruction. The microprocessor will
then disarm the card and, if the Multiprogrammer is in the
serial mode, allow the next instruction to be processed. if the
Multiprogrammer is in the parallel mode of instruction pro-
cessing, the HP-IB Service Request (SRQ) line will be set
when the “"0OP” instruction completes, Note that all of these
operations are accomplished automatically, and the user does
not have to be concerned with the internal workings of the

Muitiprogrammer when using a high level instruction. The
OP,05,0B,01,IP IE, and 1l instructions are all high level in-
structions.

5-24 In many instances, the high level instructions provide
the most convenient and effective means of solving your ap-
plication prablems. However, for certain situations, the low
level instructions may prove useful. These instructions allow
you to access the Multiprogrammer 1/0 functions directly,
without alf of the controf that the high level instructions pro-
vide. Moreover, low level instructions complete immediately
and, therefore, provide faster access to the {/0 functions.

5-26 All of the card control instrugtions of Table 5-1 are
low levet instructions as well as the “"WF” and “WC" output
instructions and the “RV" input instruction. Some of the
capabilites provided by these instructions are, as follows:
a. Data can be transferred to and from [/O cards
without cycling them.
The cards can be cycled without transferring data.
c. The microprocessors interrupt system can be used,
or ighored, at the discretion of the User.

5-26 Proper use of the low level instructions requires a
more detailed knowledge of the internal operations of the
6942 and its 1/0 cards. Therefore, be sure to read Chapter 4
{especially “1/0 Card Operations”} before attempting to use
the low level instructions.

5-27 INSTRUCTION SYNTAX
CONVENTIONS

5-28 Before describing specific instructions or processing

modes, the syntax conventions that apply to the 32

Multiprogramimer instructions will be outlined. With a few
minor variations, all of the instructions take one of these four
hasic forms:

{1 XX

(2) "XX,A1,D1,A2,D2,...7"
{31 XX,A1,A2,.. T

(4) "XX,P1,P2..T"

XX = Instruction opcode
A1, AZ = card addresses
D1, D2 = card data

P1, PZ, = control parameters
T = Instruction terminator

where:

5-28 Form (1) instructions consist of just an opcode. Ex-
amples of this type are the system control instructions ('GP,
"G, ete,}. The output instructions (0P, “08”, etc.), are
examples of form (2) instructions. The input and card controt
instructions are formatted as form {3) types and most of the
systern timing instructions follow the form (4) format.

5-30 Opcode

5-31 Alf instructions begin with the opcode, a two-letter
mnemoni¢ that specifies which one of the 32 instructions is to

55

be executed. If the opcode is entered incorrectly, the
Multiprogramimer will set the SRQ line and report a program-
ming error.

5-32 Card Address

5-33 tnstructions that communicate with an 1/0 card (i.e.,
output, input, or card control instructions) must specify the
address of the card. As shown in Figure b-1, the card address

specifies the frame {unit) number, the card slot number within
that frame and a subaddress number.

Frame Card Slot
Number Number Card Subadciress
X X XX
Figure 5-1. Card Address Structure
5-34 The frame number selects the unit number {from 0 to

7} in which the card is located. If no frame number is specifed,
frame zero is automatically selected. As indicated in Chapter
2, a frame address switch seiects the frame number assigned
to each unit. Each 6842A is shipped with its frame address
switch set to zero, and each 6943A with its switch set to one.
Most of the instruction examples in this User’s Guide are sent
to the 6842A at an assumed frame address of . However,
when addressing frames 1 through 7, the frame number rmust
be multiplied by 100 to enable the Multiprogrammer to distin-
quish the frame number from the slot number, This is descrip-
gd in Paragraph 5-37,

5-3b The card slot number designates a specific siot
number (from 00 to 18) within the addressed frame. A slot
number must always be included in the instruction; even for
siot 00.

5-36 As shown previously, in Table 4-2, the card subad-
dress selects a specific register (or circuit area) on the address-
ed 1/0 card. Write subaddresses {from O to 3} apply to cutput
instructions while read subaddresses {0 to 3) are for input in-
structions. If no subaddress is specified, it defaults to the main
write or read subaddress of 0. Subaddresses 1, 2, or 3must be
preceded by the decimal point shown in Figure 5-1.

5-37 In summary, the following examples shows how to
send card addresses to frame 0 and frame 1:

Frame =

Slot = 7 Send 7

Subaddress =

Frame = 1

Slot = 3 Send 103.1

Subaddress = 1

5-38 The following list shows all the possible card ad-
dresses for a complete Multiprogrammer system that includes
frames 0 through 7.

000 - 015 {or Specify |/0O Cards 0-15 in Frame 0
0-16}:
100 - 115: Specity [/O Cards 0-15 in Frame 1
200 - 215: Specify |/O Cards 0-15 in Frame 2
300 - 315 Specify 1/0 Cards 0-15 in Frame 3
400 - 415: Specify |/0O Cards 0-15 in Frame 4
800 - 51b: Specify 1/0 Cards 0-15 in Frame §
600 - B1b: Specify /O Cards 0-15 i Frame 6
700 - 716 Specify 1/0 Cards 0-15 in Frame 7
5-39 Card Data
5-40 Card data is numerical information sent to a card by

an output type instruction. The kind of data sent to the card
depends upon its type and data format. Table 4-3 shows the
wake-up data format of each 1/0 card. Note that all of the
cards wake-up to accept a fixed point decimal number with
the maximum ranges indicated on Table 4-3. The
Multiprogrammer will accept but ignore more than three digits
to the right of the decimal point. Just as with the card ad-
dress, leading and trailing zeros are allowed and ignored.

5-41 The cards will aiso recognize whole octal numbers,
provided that they are reformatted to the octal data format
first, with a Set Format (SF) instruction.

b-42 Control Parameters

5-43 Controt parameters specify control information for
the Multiprogrammer system or a specific 1/0 card. Control
parameters are neither card data nor card address information.
The system timing instructions that are associated with the
real time clock are one exampie of instructions that use control
parameters.

5-44 Parameters are either whole or fixed point decimal
numbers, depending upon the instruction type. As aiways,
teading and trailing zeros are allowed but not required.
5-45 Instruction Terminator

5-45 The terminator (T) is used exclusively 1o indicate the
end of an instruction. A “T" is always required at the end of
any instruction that contains numerical data {(card addresses,
card data, and control parameters). If the “T" is omitted or in-
correctly placed in an instruction, an efroris reported. A" T is
allowed but not reguired after instructions that do not contain
numerics; i.e., instructions that consist of an opcode only.

5-47 Delimiters
5-48 Delimiters are required to separate one numeric quan-}"
tity from another within an instruction. The Multiprograrmmer
accepts either a comma or a space as a delimiter. Afthou;;’h

they are only required between numeric quantities, delimifers
can also be used between any parts of the instruction. Exam-
ple 5-6 shows three valid ways to send the same instruction.
Number one shows maximum use of delimiters with a comma
between each segment of the instruction. Number two is ex-
actly the same except that spaces are used rather than com-
mas. The third example shows the minimum required usage of
a delimiter; placed between the address and data values of the
instruction, Note that if a delimiter was not included in this in-
sfruction, the Multiprogrammer would be unable to
distinguish between the address and data values.

Example 5-6. Three Valid Uses of Delimiters

stot 12
card address (Frame 0
Subaddress 0

card data

Terminator

\

purtEY

(1) "OP,12,10.2,T"

ﬁ

Delimiters

(2) “OP12 10.2T"

(3) "OP12,10.2T"

5-49 When spaces are used as delimiters, the
Multiprogrammer will aliow more than one space between the
varicus parts of an instruction. With commas, however, an er-

struction. Commas and spaces can be used together as
delimiters,

5-50 INSTRUCTION PROCESSING

MODES

5-51 The Multiprogrammer provides three different in-
struction processing modes which are designed to give the
user maximum flexibility when writing programs for his par-
ticular application. The three modes are the Serial, Parallel,
and Immediate modes.
Serial Mode - The serial mode is provided for user
applications that require a series of dependent se-
quential operations. in the serial mode, most instruc-
tions are executed sequentially {one-at-a-time} and the
next instruction cannot start until the previous one
has completed. The majority of user applications will

probably reqguire the seriai mode of instruction pro-
cessing. For this reason, the Mukiprogrammer
“wakes-up’’ in the seriai mede when it is first switch-
ed on or when it is reset {clr 723/RESET 723).

Paraliel Mode - The parallel mode is provided to
sirmultangously program two or more independent
functions. In the parallel mode, most instructions run
concurrently (at-the-same-time). Another significant
feature of the parallel mode is that the “high level” in-
structions {|E, iP, OB, 08, OP) will each set service
reguest upon completion. Thus, in the paraliel mode,
the user is notified when an operation is complsted
allowing him to do his own instruction seguencing. In
the paraliel mode, instructions run about 5% faster
than instructions in the serial mode.

Immediate Mode - The immediate mode allows an
instant response to an emergency condition. When
the immediate mode is invoked, it suspends all cur-

rently active instructions and allows a selected subset
of instructions to run instantly and resclve the
emergency condition. After the condition has been
resolved, the user can return to the normal mode
(serial or paraliel} and continue where the program
was suspended.

552 The Multiprogrammer deccdes instructions in the
same sequence that they are sent by the controller. The in-
structions are processed by the firmware according 1o the in-
struction type and the processing mode that is in effect at that
time. Table 5-2 summarizes how each of the Multiprogram-
mer's 32 instructions is affected by the serial, paraliel, and im-
mediate modes. As indicated in the table, certain instruction
types are not affected by the processing modes and are ex-
ecuted instantly as soon as they are decoded. The following
paragraphs provide detailed descriptions on how instructions
are processed in each mode. The mode control instructions
are also described.

Tabie 5-2. Instruction/Processing Mode Summary

PROCESSING MODES

SERIAL
(Paragraph 5-53)

INSTRUCTIONS

PARALLEL
{Paragraph 5-55)

IMMEDIATE
{Paragraph 5-59)

High Level Instructions

{Instructions that compiete

when cards complete)
Input Externai (IE}

Input Parallel (1P) Run Run c.oncurre.ntly. Not .
Output Bit {OB) sequentially Each instruction permitted
Output Sequential (0S) generates service
Output Parallel (OP) request when it com-
pletes
Low Leve! Instructions
{Instructions complete immediately
-do not wait for cards to complete)
Arm Card (AC)
Cycle Card {CY)
Disarm Card {DC) Run '
Read Vaiue (RV) sequentially Run instantly Run instantly

Write and Cycle {WC)
Write First Rank (WF}

Card Control instructions
Clear Card (CC)
Read Format {RF)
Read Status (RS)
Set Format {SF}

Run instantly

Run instantly Run instantly

57

Table 5-2. Instruction/Processing Mode Summary {continued}

INSTRUCTIONS

SERIAL

PROCESSING
MODES
PARALLEL

IMMEDIATE

Systemn Control
Clear Group (CG)
Go Immediate {GI}
Go Normal {GN}
Go Parailel {GP)
Go Serial {GS}
System Disable (SD}
System Enable {SE}

Runs instantly
Runs instantly
Not applicable

Rurn sequentially

Run sequentially

Runs instantly
Runs instantly
Not Applicable

Run sequentiaily

Run instantly

Not permitted
Not applicable
Runs instantly

Not permitted

Run instantly

Interrupt Instructions

Input Interrupt (11
Output Interrupt {Ol)

Interrupt Now (1IN}

Start in seguence,
but once started

rir concurrentiy
with a sequential
string of instructions
Service request

is generated when
any card in an
interrupt instruction
completes.

Runs sequentiaily
and generates service
request when
executed.

Run concurrently.
Service request

is generated when any
card in the

interrupt instruction
completes.

Separates two
groups of parailel
instructions by not
allowing second
group to start untit
first group cormpletes,

Generates service request

when encountered.

Run instantly

Not permitted

Memory Instructions
Memory Input (M)
Memory Output (MO}

Run instantly

Run instantly

Not permitted

System Timing
Clear Wait {CW)
Read Clock (RC)
Set Clock (8C)
Wait (WA)

Wait Until (WU}

Runs instantly
Runs sequentially
Runs sequentially

Run sequentially

Runs instantly
Runs concurrently
Runs concurrently

Run concurrently.
Generate service
request when
instruction completes

Runs instantly
Runs instantly
Not permitted

Not permitted

5-8

5-53 Serial Mode

5-54 Figure B-2 illustrates the execution sequence of five
instructions in the serial mode. The instructions are executed
in the sequence that they were sent out by the controller. In
the example, |, was the first instruction sent; i, was the se-
cond; etc. Also, |2 wili not be executed unti lq completes; |
will not be executed until 12 completes; etc.

3

INTRUCTIONS "OP. .. T, 08 . T, P T, WF___ T CY_ . ..T"
SENT Iy In I3 ia 15
EXECUTION Iy 12 1 H i
SEQUENCE | £ " 2 2
T e

Figure 5-2. Instruction Execution in Serial Mode

Instructions that run Differently in Serial Mode:
1. The Il and Ol interrupt instructions are started in se-
quence but once they start, they run in parallel with the
remaining instructions in the sequence. Figure b-3 -
lustrates the execution of six instructions in the serial
mode where the third instruction (laJ in the sequence is
an 0!, Notice that §3 is started sequentially; however as soon
as it starts, it allows instruction l4 o start even through 33 has
not completed. Note also that when any card in the Ol instruc-
tion (|3) completes, service request is generated. The Ol and il
instructions are described in detail in paragraphs 5-187
through 5-220.

INSTRUCTIONS "OP .o T, 0S v T, TP _ T, IN"
SENT } : 1 1
¢ 2 3 4 GENERATES

SERVICE
REQUEST

EXECUTION . iy , 12) 13 1

SEQUENCE L t ¥ J

P ——-

Figure 5-4. Interrupt Now Instruction in Serial
Mode

3. Certain instructions run instantly and are not affected
by the mode of operation (see Table 5-2). Figure 85 i-

lustrates an SF (which runs instantly} programmed as the
third instruction in a sequence sent from the controller.
The diagram illustrates that each instruction is decoded
in sequence. lq, EZ, and 34 then are executed sequentially
with I2 starting when I! completes with 14 starting when

52 completes. Note however, that 13 is unaffected by

serial mode and is executed while it is decoded independently

of the other instructions.

INSTRUCTIONS OP e T, 08 e T SF LT P T
SENT 1 T i 1
1 2 3 4
!] 1 P
INSTRUCTIONS 0 2 3 4
DECODED ; i | I *
| |
| 131
o]
EXECUTION ; Iy , 2 ‘4 :
SEQUENGE ! y t t
LR

Iz (SF) INSTRUCTION S EXECUTED INSTANTLY
(WHILE 1T 15 DECODED)

Figure 5-5. Instructions that are Executed Instantiy

5-55 Parallel Mode

INSTRUCTIONS “OP een T, OS e T Ol T P L T WF LT, CY LT
SENT
1y 1z Tz 1a 133 ig
SERVICE.
REQUEST
’ Ty ; Iz 13 l
; L } 3 |
EXECUTION _|
SEQUENCE . ; .
1 4 ! 5 . L |
k T T 1
e

Figure 5-3, Interrupt Instruction in Serial Mode

2. The Interrupt Now {IN} instruction runs sequentially in
the serial mode and sets service request when it com-
pletes. Since most instructions do not set service request
in the serial mode, IN can be used as a completion in-
dicator. Figure 5-4 illustrates an IN programmed as the
fourth instruction in a sequence. When the IN instruction
is encountered, it will set service request indicating that
the previous instructions have compieted. Use of the IN
instruction is described in greater detail in paragraphs
5-187 through 5-200.

b-b& Figure 5-6 ilustrates the execution of four instruc-
tions in the paraliel mode. Note that when the "high level” in-

structions “1' 13, | 4} comptete, they generate service reguests.
INSTRUCTIONS TOR e Ty WO T, 08 T, TPl T
SENT y I I3 1a
; b ;
; t o o
b—z—-! GENERATE
EXECUTION | e o o o oo o o o —} SERVICE
SEQUENCE 1 REQUEST
l——i—i -
\ I t
13
A

Figure 5-6. Instruction Execution in Parallel Mode

59

Exceptions in Parailel Mode:

1. Only one instruction of each type {except Ol and I)
can be running at any one time. Thus, instructions of
the same type run in sequence. Figure 5-7 illustrates
how two OP’s and two Ol's would run i the parallel

mode.
INSTRUCTIONS "OP. . Y OP. T, 0l T, .7
SENT 1 I L Iy
[- lg el 12 F|
F ¥ 1
EXECUTION . Iz .
SEQUENCE ' i
ig
L —
t————
Figure 5.7. Like Instructions in Parallel Mode

2. Only one instruction can be active for any one card
at the same time. Multiple instructions (like or unlike}
that address the same card will run in sequence. The
following instructions are affected by this restriction;
£, 15, IP, OB, O, OP, 0S8, and WC. Note that, even
though two or more Ol {or i} instructions can be ex-
ecuted in parallel, the same card restriction applies
since one card cannot be busy in two or more 01 {or
I} instructions at the same time. Figure 5-8 illustrates
how four instructions affected by this restriction i, Y
I, and 1.} and twa that are not (Lyand 1) are ex-
ecuted in the paraliel mode. In the example six in-
structions are addressing card 7.

INSTRUCTIONS HOT P TV OR T T RV, T T WG, T LTy CY Ty TOLE T
SENT
I 1z E3 Ia 15 16

. I) in ‘ 34 16
EXFCUTION '3
SEQUENCE

Lg
o]
¥ g
Figure 5-8. Same Card Restrictions in Parallel Mode

INSTRUCTHONS

SENT I, i I3 i4 1g 1g 17
4y {4. Is
EXECUTION . e tg
SEQUENCE
Iy Iy
§ —rr——
Figure 5-9. Interrupt Now Instruction in Paraliel Mode

instructions that run differently in Parallel Model:
1. The interrupt Now (IN) instruction separates two
greups of parallel instructions by not allowing the se-
cond group to start until all instructions {except Ol
and 1} in the first group have completed. Figure 5-9 il-
lustrates an IN instruction {1,} separating two paraflel
groups {Iq, 12, 13 and 15, !6, 17). When the last instruc-
tion in the first group completes(l2 in this example), by
executes and allows the next group I5,) to rur
concurrently.
2. In the serial mode, only the interrupt instructions, {H,
tN, and Ol generate service requests. in the parallel
mode, the interrupt instructions, the "high level” in-
structions (IE, IP, OB, Q8S, and OP), and the wait in-
structions (WA, WU) all generate service requests
when they complete,

I &

5-10

a. The high tevel instructions may be used to program
/0 cards that require a flag from an external
device to complete the operations. In the parallel
mode a high level instruction will generate a ser-
vice request when all cards addressed in the in-
struction have compieted. The controller can
menitor service request and determine which in-
struction(s) have completed. This feature allows
the user to sequence high level instructions in the
parallel mode.

b. The wait instructions {WA, WU} do not hoid up
execution of later instructions in the paraliel mode
like they do in serial mode. In parallel mode, WA is
used as a timer generating 8 service reguest when
the specified time has passed; and W1 is used as
an alarm clock generating a service request at the
specified time,

5-57 Serial-Parallel Mode Control
Instructions

5-58 The Go Serial {GS) and Go Parallel (GP} mode in-
structions place the system in the specified mode for &l subse-
quent instructions. Since the Multiprogrammer “wakes-up'’ in
the serfal mode, the G8 instruction is only used to restore the
Multiprogrammer to the serial mode after a GP instruction has
been executed and the user wants to return 1o the serial mode.
In any case, GS and GP instructions will not run until ail
previous instruction sent by the controller have compiated.
The only exception to this rule is that a GP given in the parallsl
mode (with no previous GS1 is ignored. Figure 510 illustrates
how these instructions can be used to change from one pro-
cessing mode to another.

0P e T 08 TP TGP P LT 0P LT OB T,
INSTRUCTIONS ¥ Iz [T R g Ty
SENT 7
B e, 88, 0P T, D8 L TP T
oy Ip Iy T
i iz I s g fg h iy Lz
Ig
EXECUTION _| GR G35
SEQUENCE 13
lg
|prereee——

Exampies:
9825: wrt 723, "GS”
8835/9845: QUTPUT 723; “GP”

5-59 Immediate Mode

5-60 Figure 5-11 illustrates using the immediate mode to
respond to an emergency condition. The instruction sequence
starts off in the serial mode with the main line program instruc-
tians {i, through lg) controlling a series of dependent sequen-
tial operations. nstruction i, is an interrupt instruction running
in paraliel with the main program and is used {o monitor an
alarm condition. If the alarm is triggered it wili be detected by
the interrupt instruction which will generate a service request
causing the program to jump to 1, (the Gi instruction). The Gi
instruction will suspend the currently active instruction “5 in
this exampte) and allow 512 to I16 to run immediately. These in-
struction {I,,-1,) will resolve the alarm condition and will be
executed as soon as they are decoded and in the same se-
guence that they were sent by the controlier. The GN instruc-
tion (|15) will return the Multiprogrammer back to the mode
that existed prior to executing the Gi In our example the
system returns to the serial mode. The program will now con-
tinue where it left off completing | and sequentially executing

Iy through 1,,. Note that when |, {IN instruction is executed, a
service request is generated 10 indicate that all instructions
have completed. As noted in Table b-2 all instructions are not
permitted in the immediate mode. Also, since the CC, CW,
RF, RS, and SF instructions always execute immediately
regardless of mode, it is not necessary 10 go to the immediate

Figure 5-10. GP and GS Mode Controf Instructions

Syntax: Since only the opoode is sent the terminator “T" is
not reguired but will be accepted if it is sent.

“Gs” or “GST" mode when using these instructions. Refer to Chapter 6 for a
“GPY or "GP more detailed description of operations and restrictions in the
immediate mode.
" Ty 08T, TP LT, 08 LT 1P T
I, 1, Iz s Ig
‘oP ____T,0B___ T, IE____T,OP____TI____T,IN"
INSTRUCTIONS s 1y 1g ig o I
SENT N
NOTE: WHEN 1111,) GENERATES A4 SERVICE
REQUEST, INSTRUCTIONS Typ THROUGH 11
ARE EXECUTED INSTANTLY.
"GY, WO T, RV T, CY____T,GN"
Iz hz 4 s ke
- T SR - e iy lg ig Lp by
Iy \15 1S SUSPENDED
EXECUTION _| 11 DETEGTS ALARM AND GAUSES
SEGUENCE JUMP TO IMMEDIATE MODE.
Lig—l1g
s IMMEDIATE MODE
b et

Figure 5-11. Use of Immediate of Mode

511

5-61 BASIC OUTPUT INSTRUCTIONS

5-62 The following paragraphs describe three of the most
commonly used high level output instructions.

5-63 Output Paraliel (OP) Instruction

5-64 ‘The OP instruction, as stated previously, is used to
simubtaneously program a group of output cards. The syniax
of the OP instruction is as follows:

“OP.A1,D1,AZ,D2,...T"

The card addresses and associated data are specified by each
address/data pair {A1/D1, A2/D2 etc,). Of course, an OP in-
struction can also be used to program one output card.

5-65 As shown in Figure 5-12, the OP instruction first
sends the data simultaneously to the specified subaddress
(usually subaddress 0, first rank storage) on all cards. 1t then
cycles the addressed cards and the instruction does not com-
plete until the last card has signaled completion with its end-
of-process {EOP) signal.

TOP, 1,123, 2,123, 3,123 T"
E0P
UK N - —
|
‘ EQp
CARD 2 .,,,.._,,.,E e
: :
! ECP i
—
CARD 3 __.__E“w——] w
! |
1 t
| |
H
L 0AD CYCLE INSTRUCTION
150 RAKNK aii COMPLETE
ONALL CARDS
CARDS

Figure 5-12. Typical OP instruction

5-66 Processing Modes. After an OP instruction com-
pletes, the next instruction can begin if the Muitiprogrammer
is in the serial mode of instruction processing. In the parallet
mode, service request is set when an OP instruction com-
pletes. The OP is not permitted in the immediate mode.
{Paragraphs 5-50 through 5-60 outline the effects of the
Multiprogrammer modes on each type of instruction.}

5-67 Restrictions and Error Checking., Because alt
cards are cycled in parallel in an OP instruction, a single card
can only be addressed once in a specific instruction. This
restriction also applies to subaddresses. Two differant subad-
dresses on the same card cannot be programmed in a single
OP instruction. If either of these restrictions is violated, the
Multiprogrammer will set SRQ and report a programming er-
ror.

568 Besides checking for the two restrictions deseribed
above, the Multiprogrammer performs other error checks on
each OP instruction before it is executed. The data is checked

to make sure it is in the correct format and within the range
allowed by the card. If a programmable limit was specified, the
data is also checked 1o ensure that it doesn’t exceed the limit.
Additional checks ensure that there are no iliegal characters,
that a legal card address was specified, and that a terminator
(T} was given. These "standard error checks” are performed
on all of the instructions that are received by the 6242A.

5-69 Sample OP Instruction. Example 5-7 uses two OP
instructions to program two different data vaiues to a D/A
Converter card in slot 1 and one data value to a Digital Qutput
card in slot 2. The first line programs the D/A card to a 1.51
Volt output by sending a ""constant” data value. The second
OP instruction sends “'variable’” data to both cards.

Exampie 5-7. Using Two OP Instructions

9825 Controller

woa ki Y

N
sa na

-d QUTPUT T238"0F "« 1o Pa 2o B 77"

5-70 Output Sequential (0S) Instruction

5-71 The OS instruction is useful when it is necessary to
program a group of cards, or one card, in a sequential manner.
Although the same operations could be executed with a series
of OP instructions, using a single OS instruction is more effi-
cient. This is hecause a single instruction is processed faster
and uses much less buffer memory. When programming only
one card, the 0S and OP instructions are equally efficient.

5.72 The syntax of the OS instruction is the same as that
of the OP with address/data pairs foliowing the opcods.

"08,A1,01,A2,D2,...T"

08, 1,123,2,123,3, 123 7"

CARD 3 J =

i
| !
i

| ! | i
LOAD AND CARD 1 TARD 2 INSTRUCTION

CYCLE COMPLETE~ COMPLETE- COMPLETE
CARD 1 LOAD AND LOAD AND

CYCLE CYCLE
CARD 2 CARD 3

Figure 85-13. Tygpical OS Instruction

612

5-73 As indicated in Figure 5-13, each card is pragrammed
in sequence in accordance with its position in the instruction.
Card 1 receives its data first, which is loaded into first rank
storage, and then the card is cycied. When card 1 completes
its data transfer and generates an EOP signal, the second card
addressed in the instruction is programmed. The OS5 instruc-
tion completes when the last card listed has completed.

5-74 Error Checking and Processing Modes. The 0§
instruction undergoes the “'standard error checks” described
for the OP instruction except that a single card can be
referenced as many times as desired in ene O3 instruction.

5-75 The OS instruction is affected in the same manner as
the OP instruction by the 6842A processing modes, ltrunsin a
serial fashion with the other instructions in the seriai mode and
sets SRQ when it completes in the paraliel mode (refer to
Paragraphs 5-50 through 5-60).

5-76 Sample 08 Instructions. Example 5-8 shows how
to use an 0 instruction to ramp the output voltage of a D/A
Converter card in five sequential steps. Example b-9 uses an
0S instruction to ensure that an analog output voltage { — 3.64
Voits from a D/A Card) is stable before programming a Digital
Cutput Card. The D/A card is assumed to be located in slot 1,
frame 0, and the Digital Output Card in stot 2, frame Q.

Example 5-8. Using an OS instruction to obtain a Ramp

9825 Controller

[P AP W P S AT N B R

["
R N

5%:

Wy T

9835/45 Controllers

Example 5-9. Using an OS Instruction to Sequence Two

Events
9825 Controller
Biosart ToEs sl - e D
9835/46 Controllers
g GUTRUT 7238 "08s L~ ad 2y 19477
5-77 QOutput Bit (OB) Instruction
5-78 tn some applications, a single card {such as a Relay

Qutput Card) is used to cdntrol several independent output
channels. In these instances, it is often convenient to change
the state of some of these channels (bitsi without affecting
any of the others, This is the function of the OB instruction; it
alows the user to simultaneously set or clear individual bits to
"1 or 0", without affecting the other output bits on the card.

5-79 The syntax of the OB instruction is shown betow.

1st Bit Value 2nd
{1or Bit
No.

Tst
Bit No.

o e 2nd
Card Bit Value
Address

posty

“OB A B1.D1.B2.02,...T"

5-80 Special Conditions. Several special conditions and
restrictions apply when using OB instructions. One is that only
onhe card address per instruction can be specified. Another is
that only subaddress 0 (the main address) can be specified.
Subaddresses 1, 2, and 3 are illegal and will result in an error.
Ali bit values must be either a 1" ora "0"’, Because all bits are
updated simultaneously, no hit can be specified more than
once in the same instruction. The OB instruction should not
pe used to program the Memory or Input type cards {Models
B89790A, 69751A, and 69771A).

5-81 The user need not be concerned with the data format
of the card. Using up to 16 bits, it is programmed exactly as in-
dicated previously, regardiess of the data type.

5-82 Figure 514 shows a typical OB instruction that
changes bits 3, 5, and 6 on a card in sfot 1, 10 70", 1", and
"1 respectively. When the Multiprogrammer receives the in-
struction, it reads the last data stored on the card {from read
subaddress 3), merges in the three new bit values, and then
loads a new data word into the card's first rank of storage. it

T* then cycles the card and waits for it to complete.

Y08, 1,3,0,5 L,6,1T"
EOP
.
CARD 1§ W
s H i
' : 1
/ ; |
]

LGAD CYCLE INGTRUCTION
f5r RANK CARD CcomeLETE
PER ONEW

DAY FROM
NG TRUCTION

Figure 5-14. Typical OB Instruction

5-83 In addition to the restrictions described in Paragraph
5-80, the Multiprogrammer provides standard error checking
{described with the QP instruction) of each OB instruction.

5-84 Sample OB Instruction. In exampie 5-10, an OB in-
struction is sent to a Digitai Cutput card in slot 1 that was
originally programmed to ail 0’s. The new output bit values,
atier the OB is executed, are shown below the instruction.

Example 5-10. Changing Output Bits

89825 Controiler
ot YOG TOBE s aEa 1By fa V1T
Card 1 = 0 000 000 010 100 001 = 56110
9834/45 Controller

EREE PSR TR RN SR

1 GUTHUT Tzoy

Card 1=0 000 000 010 00 001 =161,

5-85 Low Level Output instructions

5-86 The following paragraphs describe three of the most
often used low level output instructions. Unlike the three high
level output instructions just described, these instructions are
executed faster because they do not wait for the cards to com-
plete their programmed operation.

5-87 Write and Cycle (WC) Instruction. The WC in-
struction is the same as the OP instruction {Paragraph 5-63}
except that it does not wait for the card(s} 10 complete. The
syntax of the WC instruction is identical to that of the OP.

5-88 Figure 5-15 Hlustrates how the WC is executed. The
data is written to the specified subaddress {usually the first
rank of storage) on all cards addressed by the instruction. All
cards are then cycled in paraliet and the instruction completes
immediately. Assuming that the Multiprogrammer is in the
serial mode, the next instruction after the WC will begin pro-
cessing even though ali the card may not have completed. The
WC is very useful when programming an Output card that re-
quires a long completion time and the application can not wait
for it. One example of this is using a Pulse Train card {69735A}
to program a stepper motor. Under certain conditions, the
card could take an hour to complete turning the stepper
motor. A WC could be used to start the operation, and then
subsequent instructions could begin to implement other
operations,

“WC, 1,123, 2,123, 3,123 7"

14 i
LOAD CYCLE
is1 RANK ALL
ON ALL CARDS -
CARDS INSTRUCTICN

COMPLETE

Figure B-15. Typical WC Instruction

5-89 Because of the parallel cycling of the addressed
cards, & single card can be specified only once in each WC in-

struction. If this restriction is violated a programming error will
result. The WC instruction is subjected to the standard error
checks described previously.

5-90 The effects of the serial, parallel, and immediate
modes on the WC instruction are described in paragraphs 5-50
through 5-80. This instruction, when run by itself, will not set
SRQ in either the serial or parallel modes.

5N Example 5-11 uses two WC instructions to send two
different data values to a D/A card in slot 1 and one data value
to a Digital Output card in slot 2. A “constant” (1.57} is sent
first, followed by two “variable’ values.

Example 5-11. Using Two WC Instructions

9825 Controller

o

iz

o tr
9835/45 Controllers

1 GUTHUT T8 "Hos 11,8770

11 12 T B

12 i= !

o GUTFUT 7 y T

5.92 Write First Rank {WF) Instruction. This instruction
sends data to a card, or group of cards, without cycling the
card{s). The subaddress specified in the WF instruction wilt
often be main subaddress Offirst rank storage). However, on
the more compiex output cards, other write subaddress (1, 2,
or 3) can be specified to establish control conditions.

5-893 Like the other low level instructions, the WF com-
pletes immediately; as soon as the data is loaded into the cards
subaddress. After this, no other action is performed by the
card, unless it receives another instruction (such as a Cycle in-
struction}.

594 The syntax of the WF is as follows:
“WF,A1,D1,A2,D2...T"

Like the WC and OP instructions, the card addresses and
associated data for a WF instruction are listed in pairs (A1/D1,
A2/D2, etc,).

585 The WE instruction is checked for the standard errors
described previously. Note that the same card can be specified
maore than once in a single WF instruction, because the card(s}
are not cycled by the instruction.

5-14

5-96 Sample WF Instruction. The following example
(5-12 shows how to send a WF instruction 1o two cards in
stots 1 and 2, unit §. Note that main subaddress 0 {first rank
storage) is specified for both cards.

Example 5-12. Sending a CY Instruction

“WF,1,123,2,664T"

5-97 As stated previously, the WF can be sent to the con-
trol subaddresses of the more complex cards 1o set up controi
conditions. Example 6-13 programs a 69735A Pulse Train out-
put card {assumed to be in slot 6} to generate 100 pulses with
periods of 10 milliseconds each. The subaddress list for the
Pulse Train card is shown below. In the first iine of Example
5-13, @ WF instruction is used to set up a pulse width of 10ms
using subaddresses 1and 2. In the second line, an OP instruc-
tion is sent 1o subaddress 0 to obtain 100 ocutput pulses from
the card.

Pulse Train Write Subaddresses

Subaddress Function
0 No. of Output Pulses
1 Period Multiplier {1,10, or 100}
2 Period Magnitude (in psec)
3 Not Used

Example 5-13. Sending a WC to Control Subaddresses.

"WF,6.1,1,6,2,1Q000T” {Set up pulse width)
“QP,6,100T" (Generate 100 pulses)

5-88 Cycie (CY} Instruction. The only function of the CY
instruction is to cycle & card or group of cards. The output of
a card, after it has been cycled, is proportional to the data that
was stored on the card prior to the execution of the CY in-
struction. H this instruction is sent to an input card, it causes
the card to take a reading.

5-99 The syntax consists of the opcode followed by & card
address list.

“CY,AT A2 A3,...T"

‘e, 1,2,3T"

CARD £ 1! |

|

i
CARD 2 m

H

;

1
CARD 3 _______J_——_m.—wl____..____

3

i

|

|

CYCLE
ALL CARDS —
INSTRUCTION
COMPLETE

Figure 5-16. Typical CY Instruction

515

5-100 As shown in Figure b-16, the CY instruction cycles
all addressed cards in parallel, and then completes immediate-
ly, without waiting for the cards to complete.

5-101 The CY is subjected to standard error checking. [t
allows cards to be specified more than once in the address list,
however since all the cards are cycled in parallel, additional
references to the same card are ignored.

5-102 The effects of the operating modes on the CY in-
struction are described in Paragraphs 5-B0 through 5-60.
When run by itself, this instruction will not set SRQ in either
the serial or parallel modes.

5-103 Sample CY Instruction. The CY instruction allows
the user to cycle a card using whatever data is currently in its
first rank of storage. The appiication just described for the WF
instruction sets up a Pulse Train card (in slot §) to generate
100, 10ms-wide, pulses. After Example 5-13 has been ex-
scuted, a CY instruction could be sent to the Pulse Train card
to regenerate these 100 output pulses. Example 5-14 shows
how this instruction would be sent.

Exampie 5-14. Sending a CY Instruction

“CY,8T"
5-104 BASIC INPUT INSTRUCTIONS
5-105 This section describes three of the most often used

input instructions: consisting of the high level IP and IE in-
structions and the low level RV instruction.

5-1086 input Parafiel {IP) Instruction
5-107 The IP is, perhaps, the most commonly used input
instruction. As indicated previously, the I[P instruction

simultaneously initiates a “'take reading” cycle on a group of
input cards. The syntax of the |P consists of the opcode
followed by a card address list. Of course, the IP instruction
can aiso be used to program one input card.

“1P,A1,A2,A3,..T"

5-108 Figure 517 iflustrates a typical IP instruction sent to
three input cards. The instruction "cycles’” the cards in parallel
and when all cards have taken readings {completed] it stores
the data from each card in 6942A system memory locations.

5-109 Normally, the IP instruction specifies read subad-
dress 0 to obtain the data stored in the input latch on the card.
However, on the more complex cards (e.g., the 63776A Inter-
rupt Card) control data can be read from the other read subad-
dresses (1,2, or 3}.

Y11,
EOP
CARD ' coeeeeereoemend
i
! !
H .
£oP |
CARD 2 ! 1= !
! |
1 £
P
CARD 3 ..________4 L-—r——
! {
i i
i ;
CYCLE LAST CARD COMPLETES
ALL CARDS STORE DATA FROM ALL
I TAKE THREE CARDS N 89424
READINGS) MEMORY ~ INSTRUCTION
COMPLETE

Figure 5-17. Typical IP Instruction

5-110 Processing Modes. After the [P instruction com-
pletes, the next instruction can begin if the Multiprogrammer
is in the serial mode of instruction processing. in the parallel
mode, service request is set when an IP instruction completes,
The IP is rot permitted in the immediate mode. {Paragraphs
5-50 through 5-60 cutline the effects of the Multiprogrammer
‘modes on each type of instruction.)

5-111 -Restrictions and Error Checking. Because all
cards are cycled in paraliel in an IP instruction, a single card
can be addressed only once.in.a specific instruction. This
restriction also supplies to subaddresses. Two different subad-
dresses on the same card cannot bie specified in a singte IP in-
struction. If either of these restrictions is violated, the
Multiprogrammer will set SRQ and report a programming er-
ror. Besides these two restrictions, each P instruction is ex-
amined for the standard errors described for the output in-
structions.

5.112 Reading Back Data From an IP Instruction. As
described previously, once the data from an IP instruction has
been stored in Multiprogrammer memory, it can be read back
to the controller immediately or at a later time.

5-113 Immaediate Readback. Data can be read back to the
controller as soon as the |P instruction has completed by im-
mediately following the P with an input statement {“red” or
ENTER, see Example 5-15}. As described previously, extended
talk address 01 specifies the |P instructions as the source of
the requested data. Note that the card data is always sent
back in the order that the cards were specified in the instruc-
tion and not in the order that the cards completed. in Example
5-18, variable A contains the data from the first card specified
in the address list {card 1). Variable B contains the data from
card 2, and Variable C contains the data from Card 3.

Example §-15 Reading Back Input Data

8820 Controller

9835/45 Controliers

ig QUTRUT V2357 IF
28 EHWTER 7 :

5-114 Delayed Readback. In time-critical applications, it is
often desirable to store the data from one or more [P instruc-
tions in Multiprogrammer memory and then read the data back
after the process has completed. Before readback, data can be
stored in 6942A memory for as iong as necessary and does not
ordinarily interfere with the execution of successive instruc-
tions. However, if you will be using very farge IP instructions
that contain many readings, you must keep in mind that each
data reading will require a ceriain amount of memory space
and that the size of the 63942A memory is not infinite.
Paragraph 5-1286 discusses memory and its proper utilization in
detail.

5-115 Multiple IP Readbacks. The Multiprogrammer re-
quires that a separate input statement be used for each [P in-
struction that was issued. Only the data from one instruction
is returned with each red/ENTER statement. Data from input
instructions is always read back in the order that the instruc-
tions were programmed. Data from the first instruction issued
is received first, data from the second instruction is received
next, etc,.

5-116 Example B-16 indicates the correct way to read back
data from two P instructions. The first red/ENTER command
will store the data from cards 1, 2, and 3in variables A, B, and
C, respectively. The second command stores the data from
cards 4, B, 6in D, E, and F, respectively.

Example 5-16

Using Separate Input Statements

8825 Controlier

[
re

Sa FE

B RS R
TaHafne

Gt Tis e

P -~
EHUE e P |
% E= ue

9835/45 Controllers

14 DUTPUT 7255 " 1 HTaiPads By VT
28 EHTER T22.8158
24 EHTER 723.813 0

516

5117 Observe caution if your program is haited before all
of the data from multiple |P’'s has been read back. If the pro-
gram is re-started and any IP instructions are re-executed,
your readbacks will contain data obtained from the first [P{s}
that were sent (before the program halted) and not the latest
IP's. Thus, vour readbacks will be out of syncronization with
the instructions. To avoid this problem,you can clear memaory
by executing a clear message (clr 723/RESET 723) prior to
restarting your program, An alternative way is to read the busy
instruction siatus on extended talk address 13 to determine if
there is active |P date still available in memory. if there is, you
can read back this data on extended talk address 01. Keep
checking the status and reading back the data unti the IP in-
struction is no longer active,

5118 Specifying Too Many Variables with 8835/9845
Controliers. |ln the preceding examples, the number of
vatiables specified in each input statement correctly matched

the number of readings taken by the associated 1P instruction,
Now consider the following example:

P12, T

9825
red72301,A,8,C.D

9835/45
ENTER 723.01;A,B,C.D

5-119 As indicated above, the number of variables re-
quested exceeds the data readings available from the IP in-
struction. For 9826 Controilers, this does not present a pro-
blem. Variables A and B will contain the data from cards 1 and
2 and variables C and D will remain unchanged. 9835 and 9845
Controllers, however, will report an 1/0 error 159 and halt ex-
ecution of the program whenever the data received is less than
that requested. Paragraph 5-135 " Additional Readback Con-
siderations’’, shows a sampie way to avoid this problem. This
Paragraph also describes the data throw-away that occurs, if
you specify fewer variables than the data available from the
Multiprogrammer.

5-120 Sixteen-Channel Scanning Application. For this
application example, assume that we have an environmental
control systern that must monitor the temperatures in each 16
zones in a factory, The temperature valves are available to the
B942A as 16 analog voltages in the range of + ¥0V.For this ap-
plications, we can use a Relay Qutput card as an analog scan-
ner, feeding the selected channel to an A/D input card, This
application assumes the input signals are all singie-ended. One
side of all the realys are tied to the analog input pin of the A/D
input card and the other side of each relay is tied to one of the
analog channels, Remember, with a single ended scanner, all
channels must have their commons tied together, and this tie
point must be connectad to the A/D card’s isolated common
(see Figure 7-3 in chapter 7). Assume that the relay card is in-
stalled in slot 0 and the A/D card in slot 1. Example 5-17 will
take readings from 16 channels and store them in array, B. ltis
assumed array R is dimensioned R{16} in the main routine.
Note that ali the relays are opened {"08",0,0} before selecting
the next channel to avoid shorting adjacent channels.

5-121 The first method in Example 5-17 takes the data, one
instruction at-a-time, as $00n as the [P completes. The second
method waits until all the IP's have campleted and then reads
the data all at once. With the Multiprogrammer in the serial
mode, it is guaranteed that the data wili be stable on each
channel before an input is performed.

Example 5-17. Sixteen-Channel Scanning Application

9825 Controlier

o
} ! FE ST T O G
OR
B for I=8 1o 19
To gt P50y "D e Ea B Gy 27 T P 1T
oF pmewt
S o for I=1 oto 18
48 ped ToEEILRII
B opment 1
9835/45 Controliers
1@ FOE I=%
o8 QUTRLIT Teass
jeyE] EHTER 72
4 MEST 1

186 FOR I=0 TO 15
28 OUTPUT TR3:705" @ ils by 3
3@ NENT I

N i

|

i

FOR I=1 TO 16

ENTER TE3.@13R0I0

NEXT I

[+ SR 4 I AR RL
o 50 D L Tl et

5122 Using Repeat Factors with the [P Instruction.
The repeat factor is very useful for applications that involve
taking multiple readings from one or more input cards. As
showr next, the repeat factor (Rn) is simply placed between

TLe " T IRl 7"

the opcode and the card addresses. Note that n is a positve in-
teger that specifies the number of readings to be taken from
each card addressed by the instruction,

“IPRn, A1 A2, T

5-123 Figure 5-18 shows an {P Instruction with a repeat
factor of 3. The first reading is initiated by cycling all three
cards in parallel, just fike the previously described [P instruc-
tion. When all cards have completed, the data from each card
is stored in Multiprogrammer memory and the first reading is
complete. The second and third readings are performed in an
identical manner and the instruction completes after the data
from the third reading has been stored in memory.

"IP, 73,1, 2, 37"
EOP
CARD 4 —] EGP ..u]_] ‘w’
! t | i
! ECP | EGF |
i
CARD 2 o] L i = .
i EQR EOP
N ;
; /] I g
L
o3] L L]
! i f i
| i H |
! i ! I
CYCLE COMPLETE COMPLETE COMFL
ALl CARDS REACING |~ START READING 2~ RE -
{START READING 2 STARY {NSTRUCTICN
READING 1} READING 3 COMPLETE
Figure 5-18. IP instruction with Repeat Factor

5-124 Reading Data Back. {P's with repeat factors are read
back in a manner identical to that of a normal IP instruction.
The extended talk address is stili 01 and the data can be read
back immediately or at a later time using the previously shown
input statements,

B-125 During readback, all of the data for the first ad-
dressed card (n readings} is received first, followed by all of
the data for the second addressed card, and so on. Referring
back to Figure 5-18, reading number 1 for card one is received
first, reading number 2 for card one is received second, etc,. In
most cases, a storage variable must be set aside within the
cantroller for each data reading. if the number of readings is 1o
be large, “continuation lines” can be used (9825 controllers
only) or an array can be set up (refer to “Additional Readback
Considerations’” later in this section). With large readings you
must also be careful to avoid overflowing memory {refer to
next paragraph).

5-126 Memory Utilization, General information. The
number of instructions, of any type, that can be stored in the
69424 depends upan the amount of available memory, Every
instruction in the system requires a certain amount of
memory, which it keeps while it is active. An active instruction
is defined as an instruction that is waiting 1o execute, ax-
ecuting, or one that has compieted executing but still has data

5-18

to be read back to the controiler. An output instruction {such
as an OP} remains active until the instruction completes, at
which fime i relinquishes its memory, An input instruction
{such as an [IP) remains active after it has completed untii the
controlier has read back alt of the data {or it has been thrown
away), at which time it relinquishes its memory.

5-127 Note that i your application program attempts to
store maore active instructions then will fit into memory, your
system will hang up. If this occurs, the only recourse is to send
a device clear {ckr 723/RESET 723) which clears all of memory
and ali the [/O cards. Because the Multiprogrammer does not
monitor the amount of available memory, you shouid have an
idea of how much memory space your instructions will require
in order to avoid potential hang-up problems. Chapter 6
describes how to compute the axact amount of memory that
each instruction uses and the following paragraph provides
some general rules-of-thumb,

5-128 The 8342A memory can store up to about 80
minimum size instructions that specify a single card. As a
general rule, if you keep the number of active instructions
below 35, you will avoid coming close to filing system
memery and any resultant hang-ups. However, special
precautions must be observed when using very large input in-
structions, especially those with a large number of repeats.
The B942A memory can hold approximately 1300 readings; so
if you specify a repeat factor of 1300 to one input card you will
be using all of memory, with no room for any other active in-
structions. Of course, memory limitation can also be exceeded
by using several smaller instructions. If you execute three suc-
cessive input instructions that each require 600 readings and
do not read back the data from the first instruction, you will
again overfiow memory and cause a hang-up. To avoid this,
the data readings from each instruction should be read back
immediately,

5-129 Without calculating exactly how much memory you
are using, it is suggested to never fill more than one-third of
memory {approximately 450 readings) with input instructions
unless they are the only active instructions.

5-130 IP's with Repeat Factors and Waits. In some in-
stances it is desirable to take a series of readings that are pac-
ed by a clock; e.g., take a reading every minute, or every 0.5
second. The IP with a repeat factor and a wait time has this
self pacing capability. As shown below, the wait time {Wm) is
placed directly following the repeat factor, where m is the wait
time in the range of 0.1 seconds to 6,636.5 seconds, in in-
crements of 0.1 second.

1P Rn, Wm ALLAZ, . T"

5-131 As shown in Figure 5-19, this instruction is the same
as the IP with a repeat factor except that there is a specified
wait time between readings. All cards are cycled at the beginn-
ing of the first reading. As each card completes, the data is
read from tha card to the 8942's memory. At the completion of

the first reading the instruction pauses for the specified wait
time (5-seconds). When the wait time has elapsed, the 1P per-
forms the second reading just lke the first. This process con-
tinues until the last card has completed and the instruction
completes.,

“P,R3, W5, 2, 3T"

EOP

CARE 4 __J

i EOP
t

/

¥

CARD 2 _.r——l
E0P

] ;

CARD 3 __.! lf
|

START
READING ¢

L

H

—

gop
v

]

|

!

i

i

|

1
!
i
}
[e
I
.
I
i

|
| | | |

COMPLEYE START COMPLETE START COMPLETE LAST
READING 1 READING READING 2 READING RELDING
2

] 1 3 MSTRUCT ION
i i 1 £ COMPLETE
?‘*| “1 [A
i I 1§ 3
5-SECOND 5-SECOND
WAIT WA

Figure 5-19. IP with Repeats and Waits

B-132 Motice that the IP instruction is executing during the
entire instruction sequence, including the wait time between
readings. Thus, in the serial mode, no other instruction will
run until this IP completes,

5133 Sample Applications. The most common applica-
tion using repeats and waits is for a self-paced analog input
(see Example 5-18). This application assumes that seven chan-
nels must be read {using seven A/D input cards} once every 10
minutes for 24 hours.

Example 5-18. Sel-Paced Analog Input Readings
9825 Controller

By T

VT i
i e]

NOTE

In this Chapter, alf 9835/45 examples that
nclude dimension {DIM) or redimension
{REDINMI statements, will use QOFTION
BASE 1. OPTION BASE 1 specifies a fower
fimit of 1 finstead of the default base of 0}
for the array variables in DIM or REDIM
staternents, If OPTION BASE 0is used, you
must subtract T from any DIM or REDIM
statements in this Chapter.

§-134 Note that this instruction will take 24 hours to com-
plete and no other instructions can be executed. If you are in
serial mode. The interrupt Now {IN) instruction can be used at
the end of this routine to set the SRO line and thus notify the
controlier that the instruction has completed (refer to "inter-
rupt Instructions” later in this Chapter}. If you cannot tie up
the Multiprogrammer for 24 hours, you may be able to utilize
the paraflel mode (refer to Paragraphs 5-50 through 5-60). In
parallel mode, the SRQ line is set whan the P instruction com-
pletes.
5-135 Additional Readback Considerations
5-136 The following paragraphs provide an in-depth
discussion - of some of the particulars of data readback,
Although we have only discussed the IP instruction up to this
point, the following material applies to most input type in-
structions that send data back to the controller,

5-137 Specifying Too Many Variables. As described
previously, in Paragraph 5-118, if a 9835/45 controller specifies
more variables than the 6942A has to offer, it will reportan I/0
error 159 and halt exscution of the program. This represents a
potential problem in cases where you are unsure of the
number of data readings that will be read back or when you
want to use a standard readback routine that must specify
enough variables in its ENTER list to cover all situations.

5-138 The way to avoid this problem is to use the 8835/456
“ON FRROR GOSUB” statement, and then write an error
recovery routine (see Example 5-18). The “ON ERROR
GOSUB” statement in the first line, will cause the 8835 or 9845
to perform a subroutine branch to an error trap routine instead
of stopping the controller, whenever any controller error is
detected. The subroutine then checks the error code. If the er-
ror was not 159, the subroutine prints out the error message
and halts, as the systern normally does, if the error was 159,
the routine executes a subroutine return, which returns con-
trol to the statement after the ENTER statement. All of the
variables that had received data from the Multiprogrammer
will still contain valid data and ail the variables that had not yet
received data will retain their original values. The result is now
exactly the same as that which occurs on & 9825 when too
many variables are specified in a ""red” statement.

Example 5-18. 9835/45 Error Recovery Routine
10 ON ERROR GOSURB Ertrap

Main hody
of program

-
.

1999 STOP
9900 Ertrap: IF ERBRN = 153 THEN RETURN

9210 PRINT ERRMS$
9920 STOP

5-139 Using Continuation Lines on 3826 Controllers,
When reading back many data values from an instruction, it

Example 5-20. Using Continuation Lines on the 8825

TR

SETETEL FRENRC IR PR TR §

may not be possible for a 9825 Desktop Computer to read back
ali of the data with one “red” statement. In these cases, addi-
tional “red’’ statements may be given to input the rest of the
data, provided that no other instructions or “red”” commands
with a different extended talk addresses are given until all of
the data has been taken. These additional commands are call-
ed continuation fines (see Example 5-20}. As many continua-
tion lines as desired may be given,

5-140 9835/45 Controllers. Continuation lines are not us-
ed with the 9835 or 9845, These controllers read all of the data
that the Multiprogrammer sends regardless of how many
variabies are specified in the ENTER list these controllers
automatically throw away any additional data that was not
specified in the ENTER list. Thus, all of the data from one in-
struction must be readback with a single ENTER statement.
When reading more than 10 variables, it is suggested that an
array be used {example 5-21).

5-141 Specifying Too Few Variables. In some in-
stances, the user may find that data that was stored in the
Multiprogrammer with an input instruction is worthless. If this
is the case, the 6942 requires that the controller only specify
one variable, take the first data word, and the rest of the data
can be thrown away. If you are using a 9835 or 9845, it will
always read back all of the data associated with an instruction
and throw away any additional data received after the ENTER
variable list has been satisfied.

5-142 For 9825 Controllers, throw away must be done by
the Mubtiprogrammer and not the controlier. This is ac-
cormnplished as foliows. After data has been read back that is
sufficient to satisfy the ''red'” variable list, the Multiprogram-
mer must receive another instruction {any type} or another
red”” statement with a different extended talk address. Once
this is done, the Multiprogrammer assumes that the user does
not want the data associated with that specific input instruc-
tion, and throws it away. Remember, if your next operation is
a "red” statement with the same extended talk address,
the Multiprogrammer will assume that you have requested a
continuation line and send back the data that you want it to
throw away.

5-20

5-143

External Triggers

5-144 When the Multiprogrammer cycles an /0 card, the
card is cycled when the controlier specifies i, not necessarily
at the optimum time for the external device. Many applications
require taking inputs, or performing an operation at a precise
time determinad by an external signal {for example, taking &
reading from an A/D when a external strobe pulse is received).
Because of the nature of the signal {(a single pulse, not a two-
wire handshake}, the gate/flag circuitry included on some
cards is not an acceptable interface. This problem could be
solved using a series of IP's to monitor the strobe line, or a
combination of muiltiple instructions, but these sciutions
would have a response time of approximately 10 milliseconds
or longer.

5-145 To solve this problem, every 1/0 card was designed
with the capability of being cycled externally. When a pulse is
applied to the External Trigger Input of any card, it causes the
card to perform a cycle, just as if a CY instruction had been ex-
ecuted. The response time of the external trigger {from leading
edge of the pulse until the cycle is started} is guaranteed to be
under 20 microseconds {under 10 microseconds if the card is
not being cycled simultaneously by the Multiprogrammer},

5-146 With an external trigger, the A/D will respond to a
read strobe within the 20 microseconds, however, the
Multiprogrammer is unaware that the card was cycled. Recall
in Chapter 4 the discussion of card cycling and the EOP signal.
It was stated there than when a card completed a cycle, it
generated the EOP signal back to the microprocessor in the
Multiprogrammer, which then found the instruction
associated with the card, and based on the instruction, did ad-
ditional processing.When a card is cycled with an external trig-
ger, although the same EOP signal is generated, it is inhibited
from signaliing the microprocessor. This is done so as not to
clutter the microprocessor with many interrupts that require
no processing {(no instructions associated with them). The

control that determines if the EQP signai will be sent to the
microprocessor or not is calied the “arm’’ flip-flop. If the card
is armed {(the flip-flop set), ECP will be sent to the
microprocessor. [f the card is disarmed {the fiip-flop clear},

EOP is inhibited. All of the high levei instructions that wait for
the card to complete, arm the card before cycling them so the
EOP signa! will be seen. The WC, and other low level instruc-
tions that do not wait for the card to complete, do not set the
arm flip-flop.

5-147 in summary, with the use of external triggers we can
synchronize the 1/0 cards to the external devices, but in so do-
ing we lose the synchronization with the mainframe. The Input
External, {IE} instruction is provided to allow compiete syn-
chronization, between the external device, the /0 card, and
the Multiprogrammer mainframe.

5-148 Input External (IE} Instruction

5-149 The |E instruction is identical to the 1P, but instead
of arming and cycling the card, it only arms the card and waits

for an external trigger to cycle it. The syntax of the IE is the
same as the |P except for the opcode.

“IEATAZAS LT

5-150 Figure 5-20 shows a typical |E instruction sent to
three input cards. It starts by simuitaneously arming all ad-
dressed cards and then waiting for the application of each ex-
ternal trigger. As each trigger is received, the card is cycled
and when ail cards have taken their readings, the instruction
stores all data in 8942A memory. Generatly, the {E instruction
is very similar to the IP. In serial mode, no other instruction
can run until the IE completes {including the time that it may
be waiting for external triggers), Just like the 1P, the |E does
not aliow specifying the same card (even with different subad-
dresses) twice in the same instruction.

MEt, 23T
o
CARD 1 _ N
i |
E <§pp
CARD 2 E I
! '
P I £or
CARD 3 __+__F____I | Fk_
A | %
i ; ! | |
INSTRUCTICN EXT. EXT EXT COMPLEYE LAST

STARTS, ARM TRGZ TRG3 TRG.
CARDS -CYCLE -CYCLE -CYCLE
CARD CARD CARD

READNG-STORE
ALL DATA-

INSTRUCTION
COMPLETE

Figure 5-20. Typical IE Instruction

5-151 Reading Back Data. Reading back data from an IE
instruction is performed in the same manner as reading back
data from the IP, except the [E's extended tatk address is 03,
Just as with the IP, data can be read back immediately, or it

can be left in the Multiprogrammer memoary for readback at a
later time. Delayed readback follows the same procedures as
P delayed read back: i.e., instructions are readhack in the
order they were programmed.

Example 5-22. IE Instructions and Input Statements

9825 Controller

ia]
ZH EHTEER
o EHTER
40 EMTER
5-162 IE Application Example. This example assumes

that an operators panel in an industrial heating control system
atllows the operator to specify a desired temperature range for
each of one of 16 zones. The operator specifies the zone
number, and the desired temperature range on a series of
Thumbwheel switches and then presses the execute hutton,
which automaticaily updates the control system with the new
information.

5-153 To implement this, we wili use-one 16-bit Digital In-
put card instalied in siot 1, that is connected to the Thumb-
wheel switches. The execute button is connected to the exter-
nal trigger input of the card. The subrouting shown in Exampie
5-23 waits until the button is pushed, and then reads the infor-
mation into variable A.

Example 5-23 External Trigger Application
9825 Controller
£ Fa il LT
1

9835/45 Contrallers
GUTEOT 7

5-154 Special Considerations. The special considera-
tions for the IE instruction are identical to those associated
with the {P. Included are: specifying too many or too few
variables, continuation lines, memory utilization, etc,.

5-155 IE Instruction with Repeats. Multipie readings
may be required with the iE instruction just as they were with
the IP instruction. As shown in Figure b-21, the IE begins the
first of two readings by arming all cards and waiting untii the

cards have been cycled by external triggers. When all three
cards have completed, their data is read back into memaory and
the second reading is started by re-arming the cards. The se-
cond reading is performed in a similar manner until the Jast
card completes, whereupon the instruction completes.

e, RZ L2, 3T
EXT TRIG EQP
. B R
SARD]
ext
TRiG Eop EOP
i
CERD 2
PENT.
b oraig EoP
[N]/ |
CARD 3 b
| i |
| { |
I i i
ARM ALL COMPLETE COMPLETE LAST
CARDS- READING - RE ADING
START START NSTRUCTION
READING 1 READING 2 COMPLETE

Figure 5-21, IE instruction with Repeats

bh-156 As shown on Figure 5-21, it is possible for two exter-
nal triggers to occur during a single reading interval, This will
cause the card to cycle twice and take two readings, as shown
for card 2 during the first read interval, If this occurs, the data
stored in the Multiprogrammer at the end of the reading will be
the data obtained from the last cycle (on Figure 5-21, the se-
cond cycle of card 2 that occurs during the first reading).

5-157 Reading the data back from an IE with repeat factors
follows the same rules and procedures as a normal IE instruc-
tion. The extended address is still 03. The order in which the
data is read back is the same as that for an [P with repeats;
i.e., all data from the first addressed card is sent back first; all
data from the second card next, gic,.

b-158 The same precaution that applied to IP's with large
repeat factors aiso applies to E's with large repeats.
Remember, there is only room for a maximum of 1300
readings in sysitem memory. The general recormmendation
given for the IP, which suggests not using more than one-third
system memory for all active 1P’s {unless they are the only ac-

tive instructions), also applies to 1£'s, and combinations of IP's
and |E's.

5-159 IE with Repeats and Waits. There are occasions
when an appilication calls for a mixture of self pacing and ex-
ternal pacing. For example, a series of externally triggered
readings spaced at least five minutes apart. The IE instruction
supports a self pacing mode just like the IP. The syntax for this
instruction is the same as that for an 1P with repeats and waits,
except for the opcede.

“IE, R, Wm, AT A2 A3..T"

Again m is within the range of 0.1 second to 65653.b seconds,
in increments of 0.1 second.

5-180 As indicated in Figure 5-22, the |E with repeats and
waits operates very similarly to the IE with repeats, They both
arm all cards in the address list to start the first reading, and
then wait for ail the cards to be externally triggered and com-
plete. They then both readback the data to the 6942 at the end
of the reading. The only difference in operation is that the |E
with repeats starts the next cycle immediately, while the IE
with repeats and waits pauses for the specified time before
starting the next cycle. This process continues untl all the
cycles have completed.

g, B3, W2ER,1, 2, 37"

[

CARD 1 ,___,___i————.‘k j E f L_.
H 5 ‘ BOHANT M H
i . :;E | con CYCLE ‘
i kel B0l
CARD 2 ; s L] i : _f.—“l_i._
| ! ; :
‘f £up| ! | i ;
LA | H
GARD 3 w . : 1 ; I {
i | i | |
H i ! | |
AN AL COMPLETE STERT COMPLETE START COMPLETE
CARDS- READING { FEADING2 RLAUNGZ FEADING 3 LAST
£ IART ' : : : %
READING! i | [[mcsgaa?ﬂt?g
)] MPLE
?‘_[i b
5-MIN, SoMIN,
WA WAT

Figure 5-22, IE with Repeats and Waits

5-161 Just as with the |E with repeats {Figure 5-21} it is
possible for two external triggers to occur during one reading
interval, In the example of Figure 522, two external triggers
are received during the second read interval by card 2.
Because card 2 happens to complete during the b-minute wait
period, its data for that cycle is lost {referred to as a phantom
cycle on Figure 5-22).

5-162 The following table compares the IE and IP instruc-
tion capabilities. :

5-22

INST. | Normal Repeais Reps. and Wts,
Single Read Multiple Read { Multiple Read

P No Pacing’ No Pacing Ciock Pacing
Single Read Multiple Read | Multiple Read

1E Ext Pacing Ext Pacing Clock -+ Ext

Pacing
5-163 Resad Value {RV) Instruction
5-164 This low level instruction allows you to read the cur-

rent data on a card, or group of cards, and stores the data in
Multiprogrammer memory. The RV does not cycle the card{s}

and, thus, the data that is read is the value that was stored on

the card prior to the execution of the RV instruction. This in-
struction completes immediataly and there is no restriction on
reading the same card more than once in a single instruction.

5-165 This inétruction, along with the WF instruction, can
be useful in setting-up and then verifying the controi sub-
addresses of some of the more advanced cards.,

5-166 Readback. The RV's data is read back from HP-IB
extended talk address 06. As usual, the data comes back in the
order that iﬁ?was programmed. Example 5-24 shows a typical
RV instruction, sent to cards in slots 1, 2, and 3, followed by
the associated input statement. Variable A will contain the
data from card 1, B the data from card 2, etc.:

Example 5-24. RV Instruction and Input Statement
5825 Controller

9835/45 Controllers

T

5-167 The RV instruction, just fike the IP and IE, provides
two options for reading the data back: take the data im-

mediately, or wait until a later time and read back the data from

multiple RV’s at once. The same rules apply for the RV: in-
structions are read back in the order that they were programm-
ed, and only one instruction’s data ¢an be read back with a
single input statement from the controller.

5-168 The RV operates in the same manner as described
for the IP with respect to to0 many variables on readback,
continuation lines on the 8825, throw away mode, and
memory utilization. Because the RV instruction compistes im-
madiately, it can't hold up the controlier from reading back its
data. However, in the serial mode, if an instruction sent out
before the RV is hoiding up the system, and an attempt is
made to read the RV's data, the 6942 will wait until the other
instruction {or instructions) complete, execute the RV, and
then send the data back to the controlier. Although the RV is
similar 1o the P and IE in many respects, it does not allow
repeats or waits,

5-169 SYSTEM STATUS

5-170 Many tasks can be going on inside the
Multiprogrammer at any given instant during the execution of
a program. Because of this, detailed status information must
be available to the controller at all times. The Multiprogram-
mer provides different types of status information on HP-1B
extended tiak addresses 10 through 13, To obtain the status
information the applicable extended talk address is appended
to the Multiprogrammer HP-1B address (723} in a controller
read statement (e.g. red 723/ENTER 723.10) as described in
Chapter 4,

5-23

5-171 Certain conditions, such as completion of self test,
completion of sorme instructions, or detection of errors, will
cause the Multiprogrammaer 1o set the SRQ (service request)
line to the controller (see paragraph 4-10). Extended talk ad-
dresses 10, 11, and 12 are used to report all of these condi-
tions. Extended talk address 13 is used for reporting which in-
structions are busy. The specific status information associated
with each extended talk address is summarized in Table 5-3.

5-172 Muitiprogrammer SRQ Status Infor-
mation
5.173 As described in Table 5-3, extended talk address 10

is used to read back status words inta variables to indicate the
conditions that generated a Multiprogrammer service request.
These conditions are: instruction completion, self test comple-
tion, errar detection, and detection of armed card interrupts.
Also as indicated in the table, extended talk address 11 is used
to read back error codes when errors are detected and extend-
ed tatk address 12 is used to read back the addresses of armed
cards that interrupted.

5-174 When any conditions described above are detected,
the Multiprogrammer performs the following operations:
generates the appropriate SRQ status words (and if ap-
plicable, compiles a error list and/or armed card interrupt list),
sets the HP-1B SRQ line to the controlier, and sets the status
byte equat to 84 to indicate that the Multiprogrammer is re-
questing service, This sequence of operations will be referred
to as “'generating a service request” in the following discus-
sion.

5-175 Once the controller detects that the SRQ line is set,
the controlier must perform a serial or parallel poll to deter-
mine which device(s) on the HP-IB require service. Serial and
parallet poiling are described in paragraphs 4-10 through 4-18,
When the Multiprogrammer requires service, the specific con-
dition{s} that generated the service request can be determined
by reading back all six variables (A-F} from extended talk ad-
dress 10 {red 72310,A,B,C,D,E,F/ENTER 723.10;A,B.C,-
D,E,F). As noted in Table &3, the last four variables (C,D,E,F}
provide status information on armed card interrupts and inter-
rupt instructions. f these features are not being used, just
read the Multiprogrammer SRQ and error status words into
the first two variables (red 72310,A,B/ENTER 723.10:A,8B).
Reading the status from extended talk address 10 will reset the
Muttiprogrammer status byte as well as clear the SRQ line.
Reading the six status words {variables A through F} is
described in the following paragraphs.

5-176 Instruction/Self Test Completion. The first
status word (variable A) read back from extendad talk address
10, indicates if any instructionis} or self test compieted and
generated a service request. Depending upon the mode {serial
or paraliel}, some instructions will generate a service request
when they compilete. The controlier can use this information
to help it sequence through its control program. For instance
the controller can wait for a service request to indicate that a
sequence of instructions completed before continuing the pro-
gram,

Table 5-3. System Status Summary

Status information

Extended
Talk Address
10 Muttiprogrammer SRQO Status -
9825: red 72310,A,B,C,D,EF
0835/9845: ENTER 723.10;A,B,C,D,E,F
A - Instruction/self test completion.
B - Number of errors. {see extended talk address 11}
E - Address of card reported in variable D.
11 Error List -
9825: red 72311, [Up to 11 Variables)
9835/8845: ENTER 723.11; [Up to 11 Variables]
be read. The exact number of variabies required to store the error codes is
specified in variable “B" from extended talk address 10.
12 Armed Card Interrupt List -
9825: red 72312, [Up to 128 Variables]
9825/9835: ENTER 723.12; [Up to 128 Variables]
ing all 128 card addresses in the system.
13 Busy Instructions List -
9825: red 72313,A,8
9835/9845: ENTER 723.13;A,B
structions are busy,.

Six words are read into 6 variables {A thru F in examptes above) to indicate the following:

C - Number of armed card interrupts. (see extended tafk address 12)
D - Indicates the first card completed in an O/l instruction.

F - Data from card reported in variable E (applicable only if instruction is 1),

Gives error codes and may also include card addresses and instruction identifica-
tion codes (see Appendix B). A maximum of eleven words of error information can

Gives adresses of cards that generated armed card interrupts, The list has space for stor-

Two 16-bit words, read into variables A and B in the examples above indicate which in-

5-177 Whenever self test completes, a service request is
generated to let the user know that the system has been in-
itialized. If, in the middle of an application, the system in-
dicates that it has completed self test, it means that there was
either a momentary power failure, or that the controller sent
the HP-IB device clear message {cir 723/RESET 723).

5-178 One bit in the status word {variable A) is assigned to
each of 11 conditions. Any bit on indicates a service request
has been generated, As shown in Table 5-4, 10 different in-
structions and seif test can generate a service request when

5-24

they complete. Note that for Il and Q1 instructions, a service
request is generated when any card in the instruction com-
pletes. In paraliel mode, all ten instructions can generate a ser-
vice request. However, in serial mode, only three of the ten
generate a service request upon completion. Seif test comple-
tion always sets service request regardiess of mode; however,
the system is always placed in serial mode after a self test.
How the bits in the status word are set and how service re-
quests are implemented depends upon the specific instruction
involved.

Table 5-4, Instruction/Self Test Completion Status Word {Variable A}

Bit No. Bit Value Instruction Service Request Generated
0 1 oB Inst complete (parallel mode)
1 2 P Inst complete (paraliel mode)
2 4 OoP Inst complete (paraliel mode)
3 8 it Card complete {seriat or parallel)
4 16 0s inst complete (paraliel mode)}
5 32 IE inst complete (paraliel mode)
6 64 - -
7 128 - .=
8 256 o1 Card compiete{serial or parallel}
9 512 WA Inst complete (parallel mode)
10 1024 wi) Inst complete {parallel mode)
1 2048 - -
12 4096 - —
13 8192 IN Inst complete {serial or parallel}
14 16,384 Self Test Self Test complete {always leaves system in serial
mode}
15 32,728 —_ —

08, OP, 08, WA, WU, IN, Instructions or Self Test Com-
pletion:

in the paraliel mode, these instructions generate a service re-
qguest and set the associated status word bit each time an in-
struction of this type completes. The bit is cleared after the
next read from extended talk address 10 is performed.

IP and [E Instruction:

In the parallel mode, these instructions generate service re-
quests and set the assoicated status word hit, each time an in-
struction compietes and has data available to read back to the
controlier. The bit remains set until alt available data has been
read back, however, the service request is reset as soon as the
status word is read from extended talk address 10. Therefore,
it is possible for the status word bit to be set and the service
request to be reset, when a second instruction of the same
type completes. in this case, the bit remains set, and the ser-
vice recquest is reactivated, There are two conditions that wili
cause the service request to be reactiviated when the status
word bit is already set, They are:

1. A second instruction of the same type com-
pleted (as described above).

2, The data from multiple 1P or IE instruction is be-
ing read back and all the data from one instruction
was taken, but there is additional data available
from another instructioni{s) for readback. Service
request is regenerated 1o inform the controller that
there are other instructions ready for readback,

5-25

NOTE

If you are sure that the cause of the service
request is an IP or IE completion, you may
read back the data from the appropriate ex-
tended talk address (07 for an 1P, 03 for an
IE). When all of the data is taken, the ser-
vice request is reset and the bit in the status
word /s cleared, even though no read from
extended talk address 10 or HP-1B serial poll
was performed.

Ol and |} Interrupt Instructions:

These instructions generate a service request and set the
associated status word bit whenever a card programmed in
the instruction completes. The bit stays set untit ali available
data has been read back. However, the service request is reset
as soon as the status word is read from extended tatk address
10. It is possible for the status word bit to be turned off and on
multiple times for a singie instruction. This can occur if the in-
struction programs multiple cards, sore cards complete, and
the data is read back before the other cards complete.
Remember the bit in the status word is cleared as soon as all
available data is taken (even if ail cards in the instruction have
not completed). There are two conditons that can cause the
service request to be generated when the status word bit is
already set:

1. An additional card associated with the instruction
type completes,

All of the data available for readback is not taken,
in which case the service request is generated
again to inform the controlier that there is more
data available.

2.

5-179 Error Detection. The second status word (variable
B} read back from extended talk address 10, gives the error

status. It indicates the number of error words {0 to 11] present
it the error buffer {error list), If the status word = 0, no errors
were detected. A non-zero value indicates that errors were
detected and a service request generated. The specific value
{1 to 11) indicates the number of error variables to read back to
the controlier. Not that the error list can inciude card ad-
dresses as well as error codes (see description below). The er-
ror status word always gives the current number of error
words in the error buffer and is updated whenever more errors
are detected or whenever errors are read back from extended
talk address 11 {see description below}. The error buffer has
the capability of storing up to 18 error codes. f more than 10
arrars are detected, the later errors are lost, Because of this,
whenever the controller detects Multiprogrammer errors, all
errors are detected, the later errors are lost. Because of this,
whenever the controlier detects Multiprogrammer errors, all
etrors should be read back. If a partial read back of the error
list is performed, the service request will be reset and will not
be set again until another error (or instruction completion,
etc.) is detected. Consequently, alt errors should be read back
as soon as they are detected or they could be lost.

Error List:
The error codes can be read from the error list {error buffer) by

addressing extended talk address 11 (red 72311/ENTER723.11).

As stated above, the error status word can specify up to 11 er-
ror codes to read back. Three types of error codes can be read
back from extended talk address 11: hardware errors, general
programming errors, and programming errors refated to a
specific instruction. The error codes are reported as negative
decimal numbers. A detailed desription of alt error codes is
given in Appendix B. The following examples are given to aid
you in understanding the error codes.

Examples:

Hardware errors are usually detected during self test. They are
reparted as codes — 11 through - 24. Self fest operating and
troubleshooting procedures are provided in Chapter 2. General
programming errors are reported when the Multiprogrammer
is unable to identify the specific instruction where the mistake
occurred. For instance, error — 1 indicates that a non-existant
extended talk address was specified. Another common efror is
typing the wrong opcode. Typing “OR" instead of "OP”" will
result in a — 2 error, ilegal opcode. (See Appendix B}

If the Multiprogrammer detects an error while it is decoding an
instruction, it will report it as an instruction error. When an in-
struction error is reported, there are two pieces of information:
what instruction was involved, and what the specific error
was. The error code reported will be the sum of the specific
error code { — 30 or 98 and the instruction identifier { — 100
to - 3300, in increments of ~100}.

Example: —332is —300 + (- 32} or unrecognizable
card address for an QP instruction.
—230isa —200 + (- 30} or number of
cards incorrect for an [P instruction.

For some instruction related errors, the card address program-
med is also indicated, When error codes —33, -34, - 35,
—40, —41, -42, and —43 are reported, the card address
associated with the error is also reported,

5-26

If a card address is reported, it is given as a second error
variable, directly following the error code. To distinguish bet-
ween error codes and card addresses, the card address is
always reported as a positive number, white the grror code is
reported as a negative number.
Example: 334
7
Meaning: Data error in an OP instruction
to Card 7.

The above error would ccour if you tried sending the value 88
1o the card in slot 7 which is formatted to accept octal data.
Another example would be programming a larger number than
can be represented by the number of bits in the card.

Additional error examples are as follows:

Exampie Error Code Meaning

“0b,1,1, 7" -2 lliegal opcode

“OP1,T” —334,1 Data error in OP instruction for
card in slot 1. Inr the example, no
data is specified.

“OP,1.0,1P, 8T —331 The OP instruction decoding is

not completed because the T
was not sent, Conseguently, the
| in the IP instruction is an iliegal
character. Once an error is
found, all additional characters
are ignored untit a " T" is decod-
ed. Thus, in this example,
“P,1, T is ighored.

Error Code Printout Routines:
The following routines will read the error buffer and printout
the resuits.

4

LER
9835,/9845 Controllers

Hif g
EHTE
IF BB
FEIMT "M
COTD Erd
Errors:
FEDIM
EHTER
Fop =
FEIHT
MEXT
Bt -
EMI

RN

En
I

S

1T 55]
B

oy

1Y T f

&
&
e
|
3

fret b et ke ek

Faon
o%

5-180 Armed Card interrrupt Detection. The Arm Card
{AC) instruction allows /0 cards to generate service requests
when they are cycled by external trigger signals, the Write and
Cycle (WC} instruction, or the Cycle (CY] instruction. When
an "armed’’ card is cycled, it will interrupt the microprocessor
when it completes causing the Multiprogrammer to generate a
service request 1o the controller. This type of service request is
called an “armed card interrupt”. More details on armed card
interrupts are provided in Chapter 6.

&-181 The third status word {variable C) read back from
extended talk address 10 indicates the armed card interrupt
status. If C=0, no cards generated armed card interrupts. A
non-zero value indicates that armed eard interrupti{s} were
detected and a service request generated. A list containing the
addresses of the interrupting cards can be read back from ex-
tended 1atk address 12 {red 72312/ENTER 723.12). When an
interrupt is detected, the associated card address is placed on
the list, the status word {variable C) is incremented, and a ser-
vice request is generated. The service request is generated
every time a new armed card interrupt is detected, and after a

readback of the list, if al the data isn't taken. Reading back the
entire list clears the status word {variable C}, and the service
request. The armed card interrupt list, read back from extend-
ed talk address 12, indicates which cards generated armed
card interrupts. The interrupts are listed in numerical order by
card address. The list does not indicate how many times & par-
ticular card interrupted or in what order the interrupts ocour-
red. Thus, if a card generates armed card interrupts multiple
times it will only be in the list once, and will only generate ser-
vice request once. Reading the card addresses back to the
controller clears the addresses cut of the list and allows therm
to generate another armed card interrupt,

5-182 The armed card interrupt list has space for storing ali
128 card addresses possible in a maximum system. The card
addresses are read back in numerical order, starting with card
0, regardiess of the actual order that the interrupts were
received. Sample programs that read the armed card interrupt
list and print out the card addresses are provided in Chapter 8.

5.183 interrupt Instruction Status. The last three status
words (variables D,E, and F}, read back from extended talk ad-
dress 10, can be used to obtain data and/or the address of the
first card that completes in an Ol or li instruction. This feature
allows the controiler to respond quickly to a single card com-
pletion in an Ol or H instruction. If the card was programmed
by an Ol instruction, the card address is read back. If the card
was programmed by an H, both the card address and data
from the card are read back. Only one card address can be
read back. If both an ll and an Ol instruction are active, the ad-
dress of the first card that compieted is read back,

5-27

Exampie:

9825: red 72310,A B,C,D,EF
9835/9845: ENTER 723.10;A,B,C,D,EF

i i

f

These variables indicate
special O/l status

Variable D contains 400 (I} or 900 {Ol} indicating the instruc-
tion type associated with the first card that completed in an in-

terrupting instruction. Contains 0 # no card compieted in an H
or Ol instruction,

Vartable E contains the address of the interrupting card. Only
the slot and frame number are indicated, not the subaddress.

Variable F contains the card data if the instruction is an H. If
the instruction is an O, variable F contains 0.

5-184 The information returned in these variables does not
in any way affect the normat readback from 1l and O} extended
talk addresses 02 and 08, respectively. The data and/or card
address of the first interrupting card will be stored in the
Muttiprogrammer memory for these extended addresses also.
For this reason, care must be exercised when using variables
D.E, and F of extended talk address 10. Performing a read
from extended talk address 10 clears the SRQ status data
stored in Multiprogrammer memory for variables A and [
through F. However, the || and O readback data stored in
memory for extended talk addresses 02 and 09 is not read’”
Thus, if readbacks from extended talk addresses 02 and 09 are
not performed, it is possible for the Multiprogrammer memory
to be eventually fitled with Il and O] read back data. Use of Ol
and If instructions are described in paragraphs 5-187 through
5-200.

5-185

5-186 In the process of executing a control program, there
may be instances when the controller might want to know the
status of all instructions in the system. For example, when the
Multiprogrammer is in the serial mode, the controller may
need to know which instructions are still active (busy) before it
can begin the next stage of the test. The busy instruction
status is obtained by reading two variables from HP-IB extend-
ed talk address 13 (red 72313 A, B/ENTER 723.13;A,8). Each
instruction is assigned to a single bit in one of the two
variables. The values read back are the summation of all the bit
values set. If the bit = 1, thers are instructions of this type ac-
tive in the system. If the bit = 0, there are no instructions of
this type active in the system. The busy instruction status
does not indicate the number of instructions of each type ac-
tive in the system, Table 5-5 lists the variables and the bit
assignments.

Busy Instruction Status

Table §-5.

Busy Instruction Variahles:

Bit No, Value VAR. A VAR. B
0 1 0B RF
i 2 B DC
2 4 oP AC
3 8 i CY
4 16 05 wy
5 32 IE -
& 64 - WF
7 128 - RS
8 256 0l RV
2] 512 WA GS
10 1024 wu GP
11 2048 - sC
12 4096 - RC
13 8182 N SE
14 16,384 cC SD
15 32,768 - -

The following routines wilt read the busy instructions status

and print out the results.

red
if
if
if

aw wm

I T e e i PR s PR 1 B SO S e e
Pl

b T L0 O uf ST 0T fe L Pl e (T e ke

) bitfl Di=tliprt
oAf bkitd2eld=ieprt
R bl‘{-i.-,uD.-“-l!}--?t-
1¥ bitedaDid=lipet
1f bit(SeDi=itpry
If biti@sDi=itery "1
Pt o bBitd%eDd=liert WA Qs
i bitdi@cBi=liper MU
Poif Bitd1ZeDdsliprr CIH

9825 Controlier

TEAI DS E
DeE=Bimrt
D=8 gt
hitigboslipr

Tnn
“nexche

1f kitdidsNe=liprt "0
t Trewchek Ti1E E=85ato
HE O 4 bxtuUsEb=l§mrt
i BitdisEr=limre
oAt hitidsBEr=laprt
Vi BitoSsEleliary
Poif bitidsEa=is
PoiF bRit g
Vi bitdPs
SR I BRIt iEs
EZE i bit o9
if kbitoif
i bitCileEn=]
1f bitidlZaEasm]
it bitiolG
it bBitdlde E
=

5-28

9835/9845 Controliers

18 ENTER

26 IF D+E

28 FRINT

48 GoTo Az

Sl Fsvyr IF D=
£ 4 IF BEIT<Dstn

TH IF BIT Ha1n

24 IF BIT<D: 2

20 IF BITODe 3

T8 IF BEITO(R.d0

g IF BITOD:S)

128 IF BIToD:0Y

138 IF mITOD-90

T4 IF BIToDs 18
19 IF BIToDa 13
168G IF BITOD: 140
178 Hewchek: IF
188 IF BITOE .6

tAm IF F'I? l-_ 1E

200 i

5-187

INTERRUPT INSTRUCTIONS

5188 Although the serial mode {instructions are executed
ong-at-a-time in sequence) frees the user from controlling in-
struction sequencing, it is restrictive because each instruction
must wait until all preceding instructions have completed. The
parallel mode canceis this one-instruction-at-a-time restric-
tion, but requires the user to monitor the compietion of each
instruction in order to control the execution sequence. Inter-
rupt instructions provide a means of programming some
parallel operations while stil maintaining the automatic se-
quencing of the serial mode.

5-189 The Output Interrupt {Ol} and Input Interrupt (11} in-
structions are executed in parallel with other instructions.
After an interrupt instruction has started executing, it allows
other instructions following it in the sequence to begin ex-
ecuting without waiting for the interrupt instruction to com-
piete (see paragraph 5-53}. The controlier can keep track of
witich parallel operations have completed because the
Multiprogrammer will generate a service request after each

card programmed in an interrupt instruction completes. As
soon as any card completes, service request is set and the
controller can read back the card address {and card data if in-

struction is an H} from the applicable extended talk address.

5-190 As described in Table 5-2, the interrupt instructions
are the only instructions that generate a service request when
they complete in the serial mode. In addition to the Of and |}
instructions, the Multiprogrammer instruction set also in-
cludes the Interrupt Now {IN} instruction which also sets ser-
vice request and is used to indicate that a group of instructions
{e.g. OP's, OS's, IP's, etc.) has completed. Each type of inter-
rupt instruction is described in the following paragraphs.

5191 The OF and H interrupt instructions are used
whenever specific paraliel operations are required in an other-
wise serial sequence of instruction. For example, an Il instruc-
tion can be used to monitor an abort button or a series of limit
switches, while a control program of sequential instructions
is running. With a pure serial sequence, it would be impossi-
ble to provide a fast response under ali conditions. The paraliel
Il instruction can detect if the button is depressed or if the

switch is closed and generate a service request aliowing the
system to determine the cause of the problem and respond.

5-192 Figure 5-23 illustrates five instructions {1 2through ls)
executed sequentially to control a unit under test. Although
the control is completely serial, the operator has an abort but-
ton which he can push at any time to stop the test instantly. |,
is an il instruction that monitors this abort button, [, through 1
are the five sequential steps of the controf algorithm, and E? is
an IN instruction, that will cause a service request to be
generated when the test is over. Once the test has begun, the
controiler can go inactive simply monitoring or waiting for an
interrupt from the SRQ line. SRQ will be set by one of two
conditions:

1. The abort button is pushed in which case immediate
action is taken by the cantrolier to abort the test.

2. The IN instruction is executed indicating the test is
over.

INSTRUCTIONS PRl e T OP T, 05 T OB T, 080T, TPan T, INT
SENT

1t iz 2 la Is g 7

EXECUTION
SEQUENCE

Iy MONITORS THE ABORT BUTTON
[n-lg NORMAL INSTHUCTICNS i SERUENCE
Ty SIGNALS COMPLETION OF THE SEQUENCE.

Figure 5-23. Use of Interrupt Instructions

5-193 Output Interrupt (Of) instruction
5-194 The O} instruction simultaneously outputs data 10
output cards and allows the addresses of the completed cards
to be read back from extended talk address §9. The Of always
runs in parallel with other instructions. As each Ol card com-
pletes, its address ig stored in 6842 memory and SRQ is set.
The syntax for the Ol instruction is as follows:
“OlL,A1,D1,A2,D2,...T"
The card addresses and associated data are specified by each
address/data pair {A1/D1,A2/D2,etc). H desired, an O can be
used to program one output card.

5-196 As shown in Figure 5-24, the Ol first sends the data
simultaneously to the specified subaddress (usually subad-
dress 0, first rank storage} on all cards. The O! then cycles all
cards simultaneously. Although the instruction does not com-
plete until all cards addressed in the instruction have com-
pleted, once started it does not prevent other instructions
from starting in the serial mode. As soon as any card program-
med in the instruction completes (EOP) the Multiprogrammer
generates a service request and the controller can read back
the address of the completed card{s), even though the entire
instruction has not yet completed. The controlier can also
determine the sequence of card completion because the list of
completed cards is sent back in the order of completian, the
first card to complete is read back first and the last card to
complete is read back last.

"O1,1,123,2,123,3,1237"

EQs

ewot .
B
|

] EQP

:
i
]
T P
CARD 2 v.._.___._? E
E
i ‘ !
{ £op i
CARD 3 —_— T l
i 1 ; I
1 1 ; I
oL
, i
LOAD 15t €7 skr sevsmo
FANK AND SRG SAG INSTRUCTION
GYCLE ALL COMPLETE
CARDS

Figure 5-24. Typical Ol Instruction

5-186 Processing Modes: The Ol instruction is affected
by the parallel and serial modes. In both modes, the instruc-
tion is started according to the rules of the specified mode, but
once started, regardless of mode, the instruction runs in
parallel with the rest of the system. In either serial or parallel
mode, when any card completes a service request is
generated. The Ol will also run in the immediate mode.
Paragraphs 5-50 through 5-60 outline the affects of the pro-
cessing modes on each type of instruction.

5-197 Restrictions and Error Checking. The same
restrictions and error checks apply to Ol instruction as were
described for the OP instruction in paragraph 5-67.

5-198 Sample Ol Instruction. Example 5-25 uses an Ol
instruction to send the data value “123"” to Digital Quiput
Cards in slots 1, 2, and 3. A particular card can only be pro-
grammed once in a single 01 instruction. This restriction aiso
applies to different subaddresses on the same card. As each
card completes, its address is stored in Multiprogrammer
memory and SRQ is set.

Example 5-25. Using An Ol Instruciton to Program
Three Cards
9825 Controller

5

WEL V3 U0l Ly LEE R

89835/8845 Controliers
DUTEUT FERE 0

5-199 01 Data Readback. When a card associated with
an Ol instruction completes, a service request is generated and
the address of the card that completed can be read back. As
mentioned before, the card addresses are sent back in the
order that the cards completed. Only the slot number and
frame number are returned; the subaddress is not returned.
The addresses of cards that completed in an Q| instruction can
be read back to the controller from extended tatk address 09
{red 72309/ENTER 723.09}). A single variable containing the
card address is returned for each completed card.

5-200 If multiple cards are specified in an O instruction, it
is impossible to tell how many cards have completed when
service request is set. Thus, the number of variables reguired
for readback is unknown. This is called a variable length read-
back and depending upon the specific controller used, re-
quires processing in a special mannet.

Variable Length Readback on the 9825 Because it is
unknown how many cards in an Ol instruction have com-
pleted, the readback variables should be initialized to some
value which cannot be a card address, such as — 1. Normally,
a sufficient number of variables are specified to handle ali the
card addresses programmed, in case all the cards had com-
pleted. The following example programs 4 cards with a single
Ol instruction.

Wit PEEs 0L 1w BRI e lEEeds Laat

i service request was set because of an QI card completion in
the above instruction, up to the maximum of 4 variables will be
returned, If 2 variables were returned, A and B contain the
card addresses and C and D contain — 1's. The next example
initilizes four varlables, reads back the variables, and checks to
see how many cards completed and then goes to the ap-
propriate line to handle them.

5-30

—12AAE+C+T

red FZS3A9:f800 0
if DN#-1iatc
i¥ CH-tiato
if EB#-iisto
“luagprsi

When reading more than 10 variables, it is suggested that an
array be used. Again, because it is unknown exactly how
many addresses will be read back, initialize ail the variables to
-1 before readback, and check the values after readback.
Unlike the other instructions that send data back tc the con-
trolier, the Of requires that all the data must be taken. if a par-
tiai read is performed, the data not taken will be sent back the
next time a read from extended talk address 08 is performed,
even if other instructions or readbacks are executed before the
read from 09 can be continued. The following example sets up
an array to read back 100 variables and initializes each variable
to — 1 before executing the read statement.

for I=1 to 8@
~1+R[T1]

red VEINSAL1]

it AlIl=~itata “pyt”
next I

Taut

Variable Length Readback on 9835/9845. The 9835 and
9845 controllers are not designed to handle variable length
readbacks. If the Multiprogrammer does not send data for
every variable specified in the enter statement list {e.g, ENTER
723.09;A,8,C,D}, an 1/0 error 159 is indicated on the con-
trofler and the controller program stops. To avoid this pro-
blem, use the “ON ERROR GOSUB' statement and write an
efror recovery routine exactly as described in paragraph 5-138.
This method allows the controllers to correctly process the
cass whete fewer variables were returned than were requested
with the ENTER statement. Remember that this method is on-
ly for the case where fewer variables were sent back than were
requested.

If the Multiprogrammer sends more variables than were re-
quested in the enter list, the 9835/9845 controllers will still ac-
cept the additional variables but then throw them away. All
the data must be taken with a singie ENTER statement {if there
are too many variables, use an array). Just as with the 9825, ali
variables must be initialized to —1 before executing the
ENTER statement. The following example utilizes the “ON ER-
ROR GOSUB” in the event that there is less data than
variables specified, then sets up an array to read back 100
variables, and initializes each variable to — 1 before executing
the ENTER statement,

9835/98456 Controtlers

DH ERROR

GUnHE Lrp

5-201 Input Interrupt (1} Instruction
5-202 The Hl instruction simultaneously programs a group
of input cards to take readings. The |l always runs in parallel
with other instructions. As each card specified in the 1l com-
pletes, its data and address are stored in 6942 memory and
SRQ is set. The data and addresses can be read back from ex-
tended taik address 02. The syntax for the H instruction is as
follows:

“N,A1 A2 A3, T
Card addresses are specified by A1,A2,A3, etc.

5-203 As shown in Figure 5-25 the H instruction cycles all
cards specified in the address list simultaneously. As each card
completes, the specified subaddress {usually subaddress 0, in-
put data storage} on all cards is read into the 6942's memory.
Although the instruction does not complete until aff the cards
in the address list have completed, once started the |l does not
prevent other instruction from starting in the serial mode. As
each card completes {EOP), service request is generated and
the controller can read back the data and address of the com-
pleted card. The card address and card data are sent back to
the controller in the order of completion. In the example of
Figure 5-25, the order of completion is: card 2, card 3, and 1.

", 1,2, 3T
0or
CARD 1 _ i | L
? i
; £OP |
CARD 2] 1 i
£ 3 E
3 1
! o £ |
erpr] | E/_.f_____
T
s | ; E
i
SRQ
CYCLE SR i
R, I LAST CARD COMPLETES-
A{“}: :;?gm Froh AR | STORE DATA FROM CARD |
TR
A o) | INSTRUCTICH COMPLETE

SRQ
STORE DATA
FROM CARD 3

Figure 5-28. Typical §i Instruction

5-204 Processing Modes. The |l is affected by the modes

. of vperation in the same manner as the Ol

5-31

5-205 Restrictions and Error Checking. The same
restrictions and error checks apply to the i instruction as were
descrébegfor the 1P instruction in paragraph 5-111 and the O]
in paragraph 5-197 e -

5-208 Sample Il Instruction. Example 5-26 uses an Il in-
struciton to take readifigs from Digital input cards in slots 1, 2,
and 3, As was described for an Ol instruction, a particular card
can only be programmed once in a single Il instruction. As
each card completes, its address and data are stored in
Multiprogrammer memory, and SRQ is set.

Example 5-26. Us'ing H Instruction to Program Three
Cards

9825 Controller

A3

o ap T
oy [
DR i

WET

—

9835/8845 Controllers

14 UTHUT

5-207 Il Data Readback. When card(s) associated with
an il instruction completes, service request is generated, and
the card addresses and data can be read back from extended
talk address 02 {red 72302/ENTER 723.02). The card address
followed by the card data are always read back in the order of
card completion. Thus, two variables are returned, the first
containing the address and the second containing the data,
for each card that completed. If multiple cards are specified in
an I, it is impossible to determine how many cards have com-
pleted when service request was set. For this reason, the same
procedures used for the O must be used for the Il instruction.
The controller's variables should be preset to -1, an illegal
card address value. The — 1 value is not necessarily an illegal
data value, however. As the values are read in, they should be
processed as pairs of data, checking the card address value o,
seeifitisa ~ 1. f the card address is — 1, no data was return-
ed for that particular pair. If the address is not — 1, there is
valid data in both variables,

5-208 The procedures described previously for reading
back data on the 9825 and 9835/9845 controilers in the Ol in-
struction should also be followed for the 1l instruction. The
9825 allows a readback to be continued, whereas the
9835/9845 controllers do not. With an il {and OI) all data must
be taken, However, the 9835/9845 controilers wili throw away
data values read hack if enough variables are not specified in

the ENTER Hist, The following examptles illustrate using arrays
to | read back data from {l instructions on extended talk
address 02

9825 Controller

5-209 Multiple Of and 1l Interrupt
instructions
b-210 Another feature of Interrupt Instructions is that

multiple interrupt instructions of the same type will run in
paraflel with respect to each other. Thus, multiple indepen-
dent applications ¢an run in parallel using the interrupt instrug-
tigns, Figure 5-26 illustrates three Of instructions { Iz,i 4.'5) runn-
ing in paraliel. Note that at t,, 34 will not start until 13 {an OS)
has completed. At iy, the three Ol instructions are all running
in paraltel.

INSTRUCTIONS MOP e T, 08, 1,123, T, 0%T, O, 5, 4587, 01,4, 4587"
SEN? 1y Ia Iy Iq Iy
iy i
13)
EXECUTION L 4
SECRENCE
1
S A
TIME
T 2 T3

Figure 5-26. Multiple Interrupt Instructions

B-211 Restrictions. As noted in Figure 5-26, once the O}

instructions get started, they run in parallel, There are a few
restrictions:

1. Interrupt Instructions run in parailel only after they
have been started. The Of and ll instructions are started
following the rules of the current mode. In the serial mode, no
other instructions can be executing (except other interrupt in-
structions that were already started) when an Ol or I instruc-

tion is started. Thus in Figure 526, 14 will not start until after i3

has completed.

2. Because it doesn’t make sense to have a single card
executing in more than one instruction simultaneously, when
an Ol or ll instruction is started, all the cards asscciated with
the instruction are checked to see if they are busy with any
other instructions (in the serial mode they could only be busy
with other interrupt instructions). If any card is busy, the inter-
rupt instruction must wait until the card completes before the
instruction will start. In the serial mode, white the interrupt in-

truction waits, no later instruction can be started. Figure 5-27
illustrates two Il instructions (11 and !2) addressing card 1. Note
that instruction Ez will not start untif card 1in I1 has completed,
Since [, hasn't started, no fater instructions can start.

INSTRUCTIONS “IL, 1, 2T,11,1,3T,11,5,6TF"
SENT Y I Iy
CARD 4
SR
i
i I -
EXECUTION 12
SEQUENCE
I3
b e
b Ty

Figure 5-27. Same Card Restriction in Interrupt
instructions

5212 Readback of Multiple OFs and il's. Unlike multi-
ple IP and IE instructions, readback of the data from muttiple
Ol and H instructions is accomplished with a single input com-
mand. When multiple’s O1's or il's are running in parallel, the
Multiprogrammer mergers all the insiructions together into
¢ne big instruction. thus, all of the data can be read back with
one command. As described previously, this reguires a
variable length readback. Be sure to initialize all of the
variables to — 1. On the 8825, the user can take the data all at
once, or use continuation lines, With the 9835 and 8845, the
user must 1ake ali the data back with a single ENTER, or else
the controller throws the remaining data away.

5-213 When a single Ol or |l is active, the card addresses
are sent back in chronological order. This is not the case with
multiple Ol's or V's, When the readback is performed, all the
cards that have completed in all the instructions are available
for readback. The cards inside a specific instruction will stil be
read back in chronological order, however, the data from the
different instructions are sent back in a non-deterministic
order with respect 10 the sequence of the instructions.

Example: Assume all cards complete in the order
programmed

“01,1,123,2,123,3,1237,01,4,123,5,123,6,1237"

In the above example, the card addresses could be returned
{but nat necessarily} in the following order from extended talk
address 09: address 4,5,6,1,2,3.

5-214 Note also that because of the way that instructions
are processed by the firmware, one large Ol or 1| will run
somewhat faster than multiple smaller ones.

Example: "11,1,2,37" will run faster than:
“HAT 2T L3T
5-215 Interrupt Now (IN) Instruction
5-216 The IN instruction is used to generate a service re-
quest to indicate that all previous instructions have com-
pleted. The syntax for the IN instruction is as follows:
“IN or INT”

The terminator “T" is not required but will be accepted if it is
sent.

5.217 in the serial mode, most instruction types do not
generate service request when they complete. When a group
of instructions of this type completes, a completion indicator
might be heipful. An IN instruction placed at the end of a
routine can be used as a completion indicator. The instruc-
tions will be automatically sequenced and executed by the
Multiprogrammer whiie the controller is free to perform other
operations. At the completion of the sequence, the IN ex-
ecutes and seis service request indicating that the
Multiprogrammer has completed its task and is ready for addi-
tional service. The effects are described in paragraphs 5-55.

5-218 Interrupt instruction Application
Program
5-219 Example 5-27 illustrates a program that utifizes an O!

and an IN instruction. The Ol is the first instruction and will
run in parallel with the remaining instructions, Assume that
the Ol instruction programs a Digtial Output card in slot 1
which in turn arms an external abort detector device. The ex-
ternal gate/flag handhsake from the Digital Output Card is ex-
tended to the abort detector device. if the device detects an
abort conditions, the flag will be returned to the Digital OQutput

card resulting in a service request and a jump to the “Olint”
routine which will abort the test.

5.220 The next five instructions {OP,08,etc.} will be ex-
ecuted in sequence to control the unit under test. The last in-
struction in the sequence is an IN which when executed sets
service request causing a jump to the "Done” routine in-
dicating that the control sequence was completed. Note that
the program includes a serial poll, rds {(723)/STATUS 723, 10
determine if the Multiprogrammer requested service. Extend-
ed talk address 10 is read (red 72310,A,B,C/ENTER
723.10;A.B,Cl} to detemrine if the Ol or IN instruction
generated the service request,

Exampie 5-27. Interrupt Instruction Application Program
Using Ol and 1N Instructions

9825 Controller

clpin

ER

DiberInt

9835/9845 Controllers

M IHT &7
COHTRG
CRED Eb
OUTFUT
OUTRUT
OLUTFUT
GLTRUT
DLTFUT
E GUTFUT
iEg BITRUT

LR

Pt o ek
TR I A} |
RN]

w
v O 6

5-221 Example 5-28 is a sample program that
demonstrates how interrupt instructions aliow three indepen-
dent contro! tasks to run simultaneously. Each task is assigned
a sequence of six Ol instructions to output data. In each task,
instructions are executed sequentially and the next instruction
can not start until the previous one has completed. The in-
structions for each task (A, B, and C) are stored in string arrays
A$, BS, and C% as shown in the example. Note that the output
cards for each task are installed in separate frames.

Example 5-28. Using Ol Instructions to Control Independent Tasks.
9825 Controller

U B0 3 DE[0 2

8835/9845 Conftroller

FESEERET

T oano Twoat

instruction Arrays
Task B

T

Explanation:

9825 9835/45 Functional Description
1 Set up error recovery routine for variable length readback.
2 Set up Base 1 for arrays.
0 10 Bimension arrays for Ol instructions.
1 20,30 input Ol instructions from a data file.
2 40 Call "Cheker” to clear SRQ line and check for any errors before test starts,
3 50 Display message
4 60-80 Initialize the variables that keep track of the next instruction to be sent out for each
task.
5 80 Send the first instruction for each task.
6 100,110 Wait for SRQ.
7-9 120-140 See if a card fram an Ol completed, if not, go back and wait for SRQ again,
10 150 Check if the card that completed is from the first frame (Task A).
H 160 It is Task A. If we have not sent all 6 Ol instructions, send the next one.
12 170,180 Point 1o the next instruction for Task A.
13-15 180-220 Task B operations. Same as described above (lines 10-12/150-180) for Task A.
16,17 230-240 Task C operations. Same as described above for Task A,
18 250 Check if all instructions have been sent {see note below).
19 260 Test completed.

Note: Checks only if all instructions have been sent. Does not check if all instructions have completed. To check if ali instruc-
tions have completed, change the '7"'s to "B"s. If all have not completed, ioop back or print the ""test done’’ message and
stop.

5-34

5-222 1/0 CARD FORMAT INSTRUCTIONS
5-223 Chapter 4 introduced the concept of 1/0 card data
formats and described the five format parameters: data type,
least significant bit {LSB) value, size (number of bits}, an op-
tional programmable limit, and a card identifier. These
parameters specify how the Multiprogrammer will process the
data it sends to or receives from a particular card. Whenever
ihe system is run through self test, every card in the system is
accessed, and a "wake-up’” word for each card is read and
stored in Muttiprogrammer memory. The card “wake-up”
word specifies the values of alf five data format parameters.
Table 4-3 summarizes the "wake-up” vatues for each type of
1/0 card. The following paragraphs describe the Read Format
{RF) instruction which reads the current value of all five
parameters and the Set Format (SF} instruction which can be
used to modify one or more of the parameters.

5-224

5-225 The RF instruction reads the current value of the
data format parameters of a card or group of cards. The syn-
tax for the RF instruction is as follows:

YRE,ALAZAS,.. TV

5.226 The RF Instruction stores five variables of informa-
tion for each card specified in the address list. If the card is a
functional card (no errors detected), it returns, in the following
order, the card identifier, data type, LSB, size, and the value
of an optionat limit. If a hardware error was detected in the seif
test routing, or if there is no card in the slot, a single variable
consisting of an error code, followed by four variables with 0
in them, will be returned. The error code will be between — 50
to —61. See Appendix B for a description of the errors.

Read Format (RF} Instruction

5-227 Processing Modes. The RF instruction executes
immediately as soon as it is decoded by the Multiprogrammer.
Thus, it is unaffected by the modes (serial, parallel, or im-
mediate} and can be executied at any time.

5-228 Errors. The RF instruction detects and processes
the following errors: sending an illegal character in the middle
of the instruction (error code — 1831}, forgetting to send the
“T”, or sending an iegal card address (error code — 1832},
Note that forgetting to send the “T" will be reported as an il-
legal character (error code — 1831) when the first letter of the
next instruction is detected. i any errors are detected, the en-
tire instruction is thrown-away {not executed}. Card related er-
rors such as "'no card in stot” {error code -B0) or “"card not in
system’’ {error code -51) will be reported when data from the
RF instruction is read back,

5-229 Sample RF Instruction. The examples below il-
lustrate sending an RF instruction to read the format
parameters of the cards installed in slots 1,2, and 3.

9825 Controller

9835/9845 Controllers

CGUTFUT

5-35

5-230 Data Readback. Data from the RF instruction is
read back on HP-IB extended talk address 04 (red
72304/ENTER 723.04). Five format parameters are read back
for each card in the address list. H no errors ate detected, the
five parameters are read into five controller variables in the
following order:

Variables Parameter
1 Card identifier Code {0-63}
2 Data type code {1-7}
3 LSB/Range
4 Size {12 or 186)
5 Limit

Each of the parameters is described in detall in Chapter 4.

5-231 Example 5-29 uses an RF instruction to read the
parameters of the cards in slots 1,2, and 3. After the RF is ex-
ecuted, the daia is read back to the controller from extended
talk address 04. Fifteen (5 for each card} controlier variables
are specified to receive the data. The 9825 example uses
r-variables while the 9835/9845 example uses an array 1o store
the data.

Example 5-29. Reading Back Data from an RF Instruc-
tion

6825 Controlier

il

PEEa RFa LeEa 0T
15

B-232 Assume i the example above the slot 1 contains a
Digital Output card, stot 2 3 Voitage D/A card, and slot 3 is
empty. For this card configuration and assuming the standard
card wake-up values, the following date would be stored in
the conftroiler variable ri-r15 for 8825 and A1-A15 for
9835/9845) specified in the read back from extended talk ad-
dress 04. Note that the data is read back in the order that the
cards were addressed in the RF instruction.

Card 1 parameters read back:

ri/AT=42.0 12/A2=30 1r3/A3=1.0 r4/A4=16.0
B/ AE=0.0

Card 2 parameters read back:

B/AB=48.0 T17/A7=1.0 B/AB=.006 B/A9=12
riQ/A10=0

Card 3 parameters read back:
/A1 =-81 r12/A12=0
r16/A15=0

FI3/A13=0 r14/A4=0

The readbacks above indicate that the cards are
configured as follows:

Card 1 is a Digital Output card {code 42), with data
type 3 (unsigned binary), an LSB =1, 16-bit size, and
ne programming limit set (0).

Card 2 is a Voltage D/A card {code 48}, with data type

1 {2's complement), an LSB = .00V, 12-bit size, and
no programming lirnit set {0).

Slot 3 is empty (error code -50). The remaining four
variables in this case contain zeros.

5-233 it a hardware error is detected on a card during self
test, if there is no card in the slot, or if the card slot address is
not used in the system a single error code followed by four
zeros is returned. Error codes are negative numbers in the

range from -50 to -61. The error code -50 in the previous exam-
pte indicated “no card in slot”’. Appendix B gives a complete
description of all error codes.

5234 Only one RF instruction can be active in the system
at a time, If a second RF is sent before data from the first RF
has been read back, the Muhtiprogrammer wifl throw away the
first instruction’s data. Also, when reading back data from an
RF, ensure that a sufficient number of variables is specified to
avoid losing the data. Readback methods using the 8825 and
9835/9845 controllers are similar o those described for the 1P
and I instructions.

B-235 Example 5-30 and 5-31 are programs that print out
data returned from an RF instruction, Example 5-30 is for the
9825 controller and Example 5-31 is for the 9835/9845 con-
trollers, Sample printouts are provided with each program.
Note that card errors are not printed out and only frame 6 ad-
dresses (0 to 15} are read back.

Example 5-30. 9825 Program for Printing Out Data Format Parameters

Program

Sample Printout

i

e 053 PN £

HY
s

Fore

FA ¥ 3

7Y A
M

b

=

Ty
Ea0) L)

o

,...

O

iy
-

i
o
U3 I pe
U R A
SN

ot

,.
-
L

k3
oot

o

=
T
¥

-

i

RN
e,
.

=%

Pt RV §54
o
e L5007
L)

i1 e
1
BEE
fte
SOV R
M
LGN
I

.,._
.
o

oy

e
i
1

5-36

Exampie 5-31. 9835/8845 Program for Printing Out Data Format Parameters

st St s BeBa Py B i 0 Tl e L b 10T

N |
e R R D

P s RN
e wn e sk ke s e w s L

_TLF I%

Sample Printout

shav

CHED FLER . Wnn e
DATH TYPE T@ #......, - ‘o A
L‘:'E‘v H?f ERMGE CODE 4] Ca e s 1
I S 5 S . , . 1
T, . - . &
PR e . , i)
. - 43
T ;F% AN ke e s o
IR ORFAHGE LODE W e ke !
P T T T I T 1

TDENTIFEER # (5., ..o iooois, ??i-:zg
mmjr.r_f; IS #uneine e . -

5-37

5-236 Set Format {SF} Instruction

5-237 The SF instruction aliows the user to change one or
more of the data format parameters on one 1/0 card or a
group of |/0 cards. It also provides a means by which the user
can respecify certain system parameters. The syntax for the
SF instruction is as follows:

“SF,A1,#P data type, LSB,size limit,card 1D, A2 #P,

5-238 The SF instruction sets up the data format
parameters for each card in the address list as specified by
each card’s parameters. Multiple cards can be addressed but
each card requires #ts own set of parameters. The #P value in-
dicates how many parameters are being specified for the card.
For example, #P =0 indicates that no parameters will be
specified; #P =2 indicates that two parameters {data type and
LSB) will be sent; #P =4 indicates that four parameters {data
type, LSB, size, and limit) will be sent. The actual processing
for each I/ O card is determined by the #P value. The allowable
vajues are 0 to 4, -1, -2, and -5, The -1, -2, and -5 values in-
dicate that the SF instruction will perform some special pro-
cessing.

P

0: The I/0 card’s wake-up word is read and all
parameters are returned 1o their wake-up
conditions. No additional parameters are
specified.

With one parameter, only the octal data type
{type 7} can be specified,

#P=1;

P With two parameters, a data type and an
L.SB/Range code can be specified. For data
types, 1, 2, 3, and 6, a non-0 LSB must be
specified. For data type 4, a range code
must be specified. Data type 7, octal, may
not be specifed with #P =2 (since it doesn't

have an LSB}.

With three parameters, a data type, LSB,
and size are specified. This is processed
sirmilar t0 the #P =2 except octal data type
{7} can be specified, but its L$SB value

must be programmed = 0.

With four parameters, the data type, LSB,
size and limit are specified. Data types 4 and
7, timer-auto and octal, do not allow limits,
50 they cannot be specified with #P =4,
Allows the user to specify the maximum rate
of interrupts the system will respond to.

Allows the user to specify the AC line fre-
guency for the real time clock.

#P

Allows the user to format a defective 1/0
card specifying all five parameters (the four
programmable parameters and the card iden-
tifier).

5-239 The data type, L.SB, size, limit, and card identifica-
tions parameters are the actual values that determine how the
Multiprogrammer will process the data it sends to or receives
from a specific I/0 card. Refer to Chapter 4, paragraphs 4-64
through 4-92 to determine what values to specify for the var-
ious parameters. The following is a brief review of the
pararneters.

5.240 Data Type Codes. These codes specify what con-
version routines the data will be processed with. This
parameter requires a code from 1 to 7, as foliows:

Code User Programs In Card Data

*Decimal

¥*Decimal

*Decimal {pos. only)
*Decimal + Range
Not Used

*Decimal {pos. only)
Octal integer

2's Complement Binary
Sign/Magnitude Binary
Unsigned Binary
Timer-Auto Range

Unsigned BCD **
Unsigned Binary

~N G BN

*Fixed point decimal number with a maximum of 3 places 1o
the right and 7 piaces to the left of the decimal point.

** Additional information on using the BCD Data Type is pro-
vided in paragraph 5-252.

5-241 LSB Value. When programming data types 1,2,3,
and 6 (see list above}, a non-zero {positive number between
001 card 66.535) 1.S5B value must be specified. The octal data
type {code 7) must not have an LSB value given (specify 0}.
The timer-auto range data type (code 4} must have a range
code specified in place of an LSB value. The range codes are:

CODES ENGINEERING UNITS
“1or YUY Microseconds
" or MY Milliseconds
"3 or 'S" Seconds

Additional information on using the Timer-Auto Range Data
Type is provided in paragraph 5-248.

5-242 Size. Any card can be programmed to be a 12 or
16-bit card. The Multiprogrammer must know what size the
card is so it can perform the correct data conversion. The only
allowable values for this parameter are 12 or 16.

5-243 Limit. As described in Chapter 4, the Multiprogram-
mer supports the use of programmable timits. When limits are
used, the absolute value of every rumber programmed is com-
pared 1o the limit. If the programmed value is larger than the
fimit, a limit exceeded error is reported. The fimit is a positive
engineering units number that must be within the range allow-

" ed for the specified 1/0 cards’ format. Limits cannot be set for

5-38

cards using the timer auto range or the octal data types (types
4or7).

5-244 Processing Modes, The SF instruction is executed

immediately. All output instructions given before the SF, even
if they have not been executed yet, are processed with the old
data format. All output instructions, given after the SF, are
processed withing the new format, For input instructions, the
numeric conversions are made as the data is read back to the
controller, thus even though an input instruction may have
completed before the SF was given, if the data is read back
afterwards, it will come back in the new format. For these
reasons, it is recommended that the SF instruction {and RF})
be used as off line instructions, programmed either before pro-
cessing begins, or after it completes and all the data has been
read back. The SF instruction runs immediately in the serial or
paraliel mode. It also runs in the immediate mode.

5-245 Hestrictions and Errors. The SF instruction does
extensive error checking for any illegal or ambiguous com-
mands. Only the main address of an 1/0 card can be format-
ted. Trying to format a subaddress {other than zero) will
cause an error. If an error in the specification of a parameter is
detected, it will be reported as a Set Format parameter error,
~1640, followed by the card address where the error was
made. When this error is detected, the card is always returned
to its wake-up condition, just as if it was programmed with a
P =0. Other errors, such as no card in stot {-1643), or
unrecognizable card address (-1632), or illegal character
detected (-1631) are also possible. Because the SF is executed
immediately, when an error is found, all cards that were pro-
cessed correctly before the error is encountered, witl be cor-
rectly updated. The current card (if the error code is -1640),
will be reformatted to its wake-up condition. Al later cards will
be left unchanged. For this reason, when an SF error is
detected, it is strongly suggested that the entire SF com-
mand be retransmitted, with the errors corrected.

5-246 Sample Programs. The examples shown below il-
lustrate using the SF instruction to change various 1/0 card
data format parameters.

Data
Type

Card

Size D

Card Address

“SF,A1#P,P1,P2,P3,P4,P5 A2 #P,---T"

No. of Parameters LSB LIMIT

#

5-39

Exampie Deascription

“SF,1,0T"
“SE,1,1,7,2,1,7T"

Card one is configured to default.

Cards one and two are configured
to octal data code.

“SF,1,3,2,.5,12T" Card 1 is configured to sign and
magnitude {data type 2) with LSB =

.b and size = 12.

""SF,1,4,6,1,16,500
2.2.1,.007"

Card one is configured toc BCD
{data type 6) with LSB =1, size =
16-bit, limit =500;

Card two is configured to two's
complemant (data type 1) with
LS8 = .001.

5-247 Special Processing Formats. As stated previously
when the #P parameter in an SF instruction has a value of -1,
-2, or -5, special processing is indicated. #P =-1 and #P =5,
are advanced features that give the user additional control
over the system that is not normally provided or required.
The -2 and -5 values should be used with caution. The third
value, #P = -2, is used when the system has difficuity deter-
mined the AC line frequency.

P=-1 (Backplane irterrupt Rate): Under very heavy
system loading when many 1/0 cards have been
armed and interrupts are coming in at a very high
rate, it is possible for the system to spend so much
time processing backplane interrupts that other
processing hangs up. The firmware’s backpiane in-
terrupt processar runs at & higher prigrity than the
instruction parser, Because of this, under heavy
foading, all available microprocessor time could be
spent processing backplane interrupts and the cur-
rent instruction never completes processing. The
result is that additional instructions do not get ex-
ecuted. To avoid this situation, the maximum
number of backplane interrupts recognized in a 100
millisecond period defaults to 300, which leaves ap-
proximately 20% of the microprocessor time
avaiiable for other processing, In certain applica-
tions it may be desirable to change this value. The
SF instruction with #P =-1 alows specifying a
number between 0 and 400 which becormes the
maxitum number of irterrupts processed in each
100 millisecond period. When using the SF with
#P =1, specify card address 0. The instruction ter-
minator “T" must foliow the variables specified.

Example: “8F.6,-1,nT"

where n =the number of interrupts

NOTE

A number greater than 350 affows the
system to spend all jts time processing
backplane interrupts, thus making it possi-
ble to lockout all instruction processing.
Programming O will turn off alf backplane
interrupts; however, everylime an instruc-
tion Is started, backplane interrupts are
turned on to Jet one interrupt through,
Thus, an occasional interrupt will stilff oc-
cur.

#P = -2 [AC Line Frequency}: When self test is invoked, it
measures the ac line frequency-to determine the time base for
the real time clock. i the frequency measured is between 52
and 58Mz, a real time clock frequency error {-16) is reported,
and the clock is set to 80Hz, The user can adjust the time base
to 50Hz or 80Hz by issuing the SF instruction with #P = -2. The
data type variables contain sither a 50 or 60 to specify the time
base. Card address 0 should be used, and the instruction ter-
minator, “T" must follow the 50 or 60.

Example: "“SF.0,-2,nT"
Where n is equal to B0 or 60;
Use the above sequence exact-
by

#P =-B {Defective Card}: Under certain conditions it may be
desirable to try and communicate with a defective 1/0 card, or
even a empty card slot. When an 1/Q card fails self test, the
system will not allow any communication with the card. There
are rare circumstances when the user might want to attempt
to use the card, even though it is non-functional, {Use of a
non-functional card is not recommended.} Another condition
is communicating with an empty slot. A user might be attemp-
ting 1o develop software before alt of the 1/0 cards have been
received. He might like to simulate the /O card by formatting
an empty card slot. Formatting an empty slot aliows the
Multiprogrammer to perform dummy reads, writes, and
cycles, however an empty slot can never generate an EQOP.
This feature is only recommended for the very advanced pro-
grammer,

The SF instruction with #P = -5 can be used to completely for-

mat a card, including the 4 programmable parameters, and the
card identifier. Once a card {or an empty slot) has been for-
matted, the Multiprogrammer will process data for it accor-
ding to the specifications given, and wilt not be able to dif-
ferentiate it from a functional card. The #P=-8 parameter
works just like the #P = 4 command, except a card identifier is
also required. Data type 7 {octal), and 4 {timer) require the
timit value be programmed to 0, while ail other card types re-
guire that the fimit variable be programmed to a non-zero value
{& limit must be specified). If the timer auto-range type is used,
the card identifier must indicate a timer card (card /D = 1).

5-40

5-248 Using Timer Auto-Range Data Type. The timer
auto range data type {Code 4} is designed to work with only
one specific card, the 89736A Timer card. The auto ranging
format is required on the timer card because the card’s pro-
grammable range, form one microsecond to 65,535 seconds,
is far greater than 16-bits of resclution. The timer card is ac-
tually programmed with two values, a 16-bit period value, and
a 3-bit multipfier. The actual pulse width is determined by
multiplying the period by the power of ten specified by the
mukltiplier.

5-249 The tirmer auto-range data type shields the user from
this calculation, by doing it automatically in the firmware. The
only thing the user need be concerned with is the engineering
units being used, microseconds, milliseconds, or seconds.
The card wakes up being programmed in milliseconds, with
the option of overridding that specification for any single out-
put by specifing an “S”, “M"”, or "'U"”. The override only af-
fects the one output, it doesn’t change the default.

Exampie: "OP.4,238T,0P 4,23U7,0P 4.23T"

The first output is 23 seconds, the second is 23
microseconds, and the third is the default of 23
milliseconds.

5-250 The default can be changed at any time with the SF
command, specifying a data type of 4 {timer), and a Range
Code. This changes the default until the card is reformatted
again, or the system is reset.

Example: “SF 4,2,4,57,0P.4,2357,0P4,23U7T,0P 4,23T"

The first output is 23 seconds, the second is 23
microseconds, and the third is the new default of 23
seconds,

5-261 The timer card does not have to be operated in the
timer data type. An SF can be given that specifies another
data type, in which case the timer is processed just like any
other card. The timer can be returned to the timer data type by
another SF specifying a data type of 4. Trying to program any
other type of card to the timer data type will result in a format
parameter error, -1640, foliowed by the card address.

5-252 Using the BCD Data Type. The Multiprogrammer
interprets data for BCD formatted 1/O cards as three or four
decimal digits. Data for & 12 bit card is interpreted as 3 digits
{12+ 4) and data for a 16-bit card is interpreted as 4 digits
{16 + 4). See Appendix A for discussion of BCD. When pro-
cessing data sent by the controller to an output card, the
Muitiprogrammer generates the BCD values; thersfore, illegal
BCD values will not be generated. However, when processing

BCD data generated by an external device which will be read
by the controller, the Multiprogrammer has no control, so it is
possible for ilegai BCD Codes to be generated and read back.

2-253 Sometimes an external device such as a DVM may
generate illegal BCD values intentionally. Certain types of
DVM's use illegal BCD values to indicate overflow and other
conditions, Because of this, when an illegal BCD value is
received, the Multiprogrammer must inform the controller that
an error was detected but it must also sends the data back
because the illegal value may have been intentionai

5-264 When the Mualtiprogrammer detects an illegal BCD
value, instead of performing the engineering units translation,
it will return four alpha-numeric characters representing the
hexadecimal vaiue of the data inputted. Those digits that have
valid BCD characters wili return a decimatl digit in that posi-
tion. Those digits that have illegal BCD vaiues wilf return a let-
ter from A to F representing the following binary values:

A=1010
B =101
C=1100
D=1101
E=1110
F=1111

Example: card 1= 1111 0001 0010 0011
Value returned = F 1 2 3

Remember, engineering units translation {scaling} is not per-
formed on the data, i.e., the fowr alpha numeric values are
returned as shown above.

5-255 When an illegal BCD value is detected, beside retur-
ning the data in the above format, the Multiprogrammer will
report an error { -5, illegal BCD value, foliowed by a second
variable containing the card address). The determination of
whether the value is legal or illegal is not made until the datais
converted, which does not occur until the instant before the
data is sent back to the contrelier. Thus, when a read is per-
formed, the controller does not know whather tha data will be
read back as a number, or as a string of a alpha-numeric
characters. If it is possible for the input device 0 return an il-
legal vatue, the controller should read the data back into a str-
ing. The foltowing example illustrates using a string array store
four BCD digits from a Digtial Input Card in sito 2. If errors are
detected (red 72310,A,B/ENTER 723.10;A,B), the program
branches to a subroutine labeled “iflegal” to process any illegal
BCD values. H no errors are detected, the numeric value of the
string can be cafculated.

9825 Controller

9835/45 Controliers

5-256 SYSTEM TIMING INSTRUCTIONS

5-257 The 6942A Multiprogrammer contains a real-time
clock that is synchronized to the ac line frequency. The clock
has a resolution of 0.1 second and a maximum range of 65,534
days, 23 hours, 89 minutes, and 59.9 seconds (or approx-
imately 179 years). The clock is always running, guaranteeing
the accuracy provided by the ac line frequency, regardless of
whatever else is happening in the system. Even under heavy
loading or when the system is waiting for card(s) to complete,
the Multiprogrammer will guarantee the accuracy. Consult
vour local power company to determine the accuracy of the
power system in your area. The foliowing paragraphs describe
the instructions that affect or use the real time clock. These in-
structions are: Set Clock {SCJ, Read Clock {(RC}), Wait (WA,
Wait Usntil (WU}, and Clear Wait {CW). The four parameters
{days, hours, minutes, and seconds) of the real time clock can
be set with the SC instruction and read back with the RC in-
struction. When the Multiprogrammer is switched on, it is run
through self test where the ac line frequency is measured to
set the clock base frequency at 50 or 80 Hz. If the measured
frequency is in the range of 52 Hz to B8BHz, a real-time clock
frequency error (-18} is reported and the system defaults to
60Hz. The user can program the clock base frequency to 50 or
60Hz using the SF instruction as described in paragraph 5-247.
After a self test, the clock is always reset 10 0 days, 0 hours, ¢
minutes, and 0.0 seconds.
5-258 Set Clock (SC) Instruction
5-269 The SC instruction can initialize the real time clock
to any legal value. The syntax for the SC instruction is as
foliows:
“8C, days, hours, minutes, seconds, T
where the legal range for each parameter are:

Parameter Range
days 0 to 65,634
hours 0to 23
minutes 0 to 53
seconds 0to 588
5-260 Processing Modes. The SC instruction is affected

by the serial and parallel modes of operation. In the serial
mode, it won't update the clock until all the preceding instruc-
tions have completed. In parallel mode, it is executed instant-
ly. The SC instruction is not permitted in the immediate mode.

5.261 Errors. All four parameters must be specified in the
SC instruction. If all are not specified or if any parameter is
outside the legal range, an SC data error (-2934) will be
reported, Note for this error, no card address is returned. The
5S¢ instruction is examined for standard errors, such as iflegai
character (-2931).

5.262 Sample Programs. The following examples il-
lustrate using the SC instruction to initialize the real time cfock
to various legal values. Note that four parameters are specified
in each exampie.

days minutes

"“SF,P1,P2,P3,P4"

hotrs seconds
Exampj_i Description
*5C,0,0,0,0T" Resets time to 0.

"$C,1,12,30,1.0T" Sets time to day 1, 12:30:01:0

“SC,37,4,26,42.5T" Sets time to day 37,
04:26:42:5

5-263 Because the SC is affected by serial mode, it must
wait for a previous sequence of instructions to complete
before it can execute. The following example, initializes the
real time clock to zero (SC,0,0,0,0T") after one sequence of
instructions has completed but before the second sequence is
started.

9825 Controller

5-264 Read Ciock {RC) Instruction
5-265 The RC instruction is used to read the real time
clock. When it executes it saves the current values (days,
hours, minutes, seconds} for readback at a later time on HP-IB
extended talk address 14, The values saved are the values at
the instant the RC was executed. The syntax for the RC in-
struction is as follows:

“RCT or “RCT
Because no parameters are specified, the terminator 7" is
not required, but it is allowed.

5-266 Processing Modes. The RC instruction is affected
by the serizl and parzllel modes of instruction processing. In

5-42

the seriat mode, RC instruciton run sequentially and can be us-
ed to cajculate time intervals of instruction sequences (see
sample programs that foliow}, In the parallet mode, an RC ex-
ecutes instantly. An RC is permitted in the immediate mode.

5-267 Errors. The only error possible when programming
an RC instruction is typing an incorrect opcode.

5-268 Sample Programs. The RC instruction reads back
four wvariables from HP-IB extended talk address 14 {red
72314/ENTER723.14} in the following sequence.

Variable Valye
1 days {0 to 65,534}
2 hours {0 to 23}
3 minutes {0 to 58)
4 seconds {0.0 to 59.9)

The following program example illustrates using RC instruc-
tions to calculate the interval time of the instruction “1P,1,2T",
in this example, the time is calculated by subtracting the time
obtained in the second reading {variables E,F,G,H} from the
time obtained in the first reading {variables A,B,C,D).

9825 Controller

5-269 The next example illustrates executing multiple RC's
{in the serial mode} to take time interval measurements to
determine how much time is spent performing each instrue-
tion in the sequence. Assume it won't take more than 1 hour
for each instruction to complete. At the completion of the ex-
ample, variable r1/R1 gontains the time it took for the first OP
to execute, and r3/R3 contains the IP execution time, and
r3/R3 contains the time it took for the second OP 1o execute.
The times are all in seconds with a resolution of 0.1 seconds.

9825 Controller

1

EH

g

]

=

7 FEEldsHaHy r

B p3#ER+rd-d] #f

I roealtre-ir

1By r7#E3+rE-(rEB%E8+ 8

9835/9845 Controllers

OUTRUT ¥
QUTERUT

5.270 Readback Notes. The data from an RC instruction
can be read back {red 72314/ENTER 723.14) immediately or st
a later time. Either way, the RC readbacks should foilow the
same procedures outlined for the IP and IE instructions (see
paragraphs 5-104 through 5-160}. For delayed readbacks, the
data is obtained in chronological order with each read state-
ment returning the data from a single RC instruction. Because
four variables are read back for each RC instruction, all four
should be specified in a single read statement
5-271 Wait (WA] Instruction
5-272 The WA instruction aliows the controller 1o execute
a programmable pause between two instruction sequences.
The syntax for the WA instruction is as follows:
WA, Nt
where n is between 0.0 seconds and 6,553.5 seconds.

5.273 Processing Modes. The execution of a WA in-
struction is dependent upon the processing {serial or parallel}
mode that is in affect. Once the instruction is started, it con-
tinues to execute until the programmed wait time elapses. WA
is not permitted in the immediate mode.

5-274 In the serial mode, the WA instruction provides &
pause between instructions. While it is executing, the other in-
structions can not run. In the following exampie, the WA
causes a 10.3 second pause after the IP completes and before
the OP is started. The WA's resolution as with all instructions
that use the real time clock, is 0.1 seconds.
Example: “1PIT, WA, 10.3T,0P,1,123T"

5275 in the parallel mode, the WA will execute im-
mediately if there are no other WA instructions executing. H
multiple WA's are active in the system, they will execute one-
at-a time in sequence, the same as other like instructions (ex-
cept Ol ad 11} in the paraltel mode. Because unlike instructions
run in paraliel, the WA cannot stop other instruction from star-
ting. At the completion of the instruction, SRQ is set to inform
the controller that the WA completed. Thus, in the parallel
mode, WA acts as a programmable timer, setting SRQ upon
completion.

5-276 Errors, Specifying a value outside the legal range
{0.0 to 6,863.5 secs} will generate error code -1034. No card

543

address is specified with this error. The WA is also tested for
standard errors such as illegal characters or forgetting to
specify the “T"".

5-277 Sample Programs. In the following example, a
WA is used to make the program pause for 10 seconds bet-
ween a stimulus and the associated response. In the example
the OP instruction programs the stimulus and the [P instruc-
tion is used to take the reading. An IN instruction sets SRQ at
the completion of the sequence to inform the controller.

9825 Controller

31k -

8835/9845 Controllers

5-278

Wait Until (WU) Instruction

b-279 THe WU instruction provides the capability of star-
ting a sequence of instructions at a programmable time. The
syntax for the WiJ instruction is as follows:

WU, [days,] [hours,] [minutes,] seconds T"

Where the legal ranges for each paramaeter are:

Parameter Range
days 0 to 65,534
hours 0 10 23

minutes 0 1o B9
seconds 0.0 to 58.9

5-280 Adl four parameters need not be specified. The
parameters are evaluated by the Multiprogrammer from right
to left {seconds to days} and any missing parameters default
to the current setting of the real time clock. i only two
variables are sent, the WU defauits to the current day and
hour, and the two variabies specify the minutes and seconds.

Example Description
WL 1,237 Wait until today, this
hour, one minute
and 23 seconds.
WU, 37.2T" Wait until today, this

hour, this minute,
and 37.2 seconds.

5-281 Processing Modes. The exeuction of the WU in-
struction alse depends upon the processing modes {serial or
parallel} that is in affect. WU is not permitted in the immediate
mode. In the serial mode, no other instructions wilt start ex-
ecuting until the WU completes. Thus, it can be used to

schedule a sequence of instructions to run at a later time. In

the following example, the 1P instruction will start executing

exactly at midnight on day number 1.
“Wi,1,0,0,0T,1P,1,2T,0P,3,456T"

5-282 in the next example {serial mode in effect}, the IP is
synchronized to start running at completion of the current
minute.

"WA),59.97,1P1,2T"

5-283 Note that “WU,0T" or "WL,1,0T" will not syn-
chronize to the nearest minute, "WU,0T" will always com-
plete instantly, and “'WU,1,07" will complete the instant the
minutes value is greater or equal to 1 (will complete instantly
B8 minutes out of an hour),

5-284 In the parallel mode, the WU cannot inhibit other in-
structions from starting and it will set SRQ upon completion,
Thus, WU acts as an alarm clock setting SRQ upon comple-
tion. Only one WU can be executing at a time in the parallel
mode. In the example below, the WU instruction will complete
at midnight on day one. The exeuction of OP and IP wili not be
delayed, the WU will run normaliy.
“WuU,1,0,0,0T,0P,3,456T,1P1,2T"

5-44

5-285 Errors. Specifying an illegal value for any of the
parameters will cause a WU data error, -1134. No card address
is specified with this error. The WU is also tested for standard
errors such as iHlegal character or a missing terminator,

5-286 Clear Wait {CW)} Instruction

5-287 The CW instruction clears all WU or WA instruc-
tions from: the system. This instruction could be used if WA or
WU instructions with extremely long delays are inadvertently
programmed. In the serial mode, this would cause subsequent
instructions to wait for the WA or WU to complete before the
sequence can continue. The syntax for the CW is as follows:

“CW"” or "CWT"
The terminator '"T" is not required but it is accepted.

5.288 Processing Modes. The CW executes instantly in
all modes: serial, parallel, and immediate. When executed, the
CW erases all WA and WU instructions active in the system.
This includes those currently running and those that are
awaiting execution. For this reason, the CW shouid be used
with caution since all WA's and WU's, not just the one that
caused the problem, are erased.

5-28% Errors. The only error possible when programming
a CW instruction is typing in an incorrect opcode.

Chapter 6

SPECIAL PURPOSE
PROGRAMMING INFORMATION

8-1 This chapter provides special purpose programming
information that will extend your programming capability
beyond that provided by the basic programming information
in Chapter 5. The topics and the associated instructions
covered in this Chapter include the following:

Topics Instructions

Group Instructions Ctear Group (CG}

Armed Card Interrupts

/0 Card Status
Clearing 1/0O Cards
Disabling and Enabling

Arm Card {AC)
Disarm Card (DC}

Read Status {RS)}
Clear Card {CC})
Systemn Disabie (5D}

170 Cards
immediate Mode

System Enable {(SE)

Go immediate {(Gl)
Go Normal {GN}

Memory Output (MO}
Memory Input (M}

Memory Instructions

Multiprogrammer Memory
Utilization

NOTE

As in Chapter 5, all 3835/9845 examples us-
ing arrays assume that the controfler is
operating in OPTION BASE 1. If you prefer
to use OPTION BASE 0, you must subtract
T from any dimension {DIM] or redimension
{REDIM) statements included in 9835/9845

programming examples given in this
Chapter.

§-2 GROUP INSTRUCTIONS

6-3 Group instructions can be used to minimize the

number of characters sent over the HP-IB and decrease in-
struction execution time for applications that require ex-
ecuting identical instructions numerous times. When group in-
structions are used, the original instruction s tagged with a

"group number”. To re-execute the instruction, you need oniy
specify the opcode, group number, and a terminator, For ex-
ample, assume that data readings must be taken periodically
by 35 input cards. If & group instruction is used you will only
have to send the entire instruction containing the card ad-
dresses once. Each additional time the readings are required,

you will only have to specify the opcode and group number,
Group instructions can be used with most of the input and
output instructions available with the Multiprogrammer.
Group instructions are permitted in the serial and parallel
modes but are not allowed in the immediate mode, The
following paragraphs describe how to use groups, what the
timitations are, and what the advantages are in terms of execu-
tion speed and memory utilization.

6-4 As mentioned above, not all instructions can be used
as groups. The following tabulation lists the instructions that
are and are not permitted. Attempting to define a group using
an instruction that is not permitted or a group number other
than 0-9 will cause the Multiprogrammer to generate an error
message and set SRQ. See instruction error codes -37 and -38
in Appendix B.

Group Instructions

Permitted Mot permitted
AC CG
ccC cw
Cy Gl
DC GN
IE G?P
It GS
IP tN
Ol Mi
CP MO
0s OB
RS RC
RV RF
WC sc
WF SD

SE
SF
WA
wu
8-5 Defining a Group Instruction
6-6 An instruction can be defined as a group instruction by

specifying a group number immediately after the opcode the
first time the instruction is programmed. Up to 10 group in-
structions {0-9) are permitted at any given time and are
specifiet as GO0-GY) when the group is initially defined. A
delimiter {comma or space) is always required after the group
number. Example 8-1 illustrates defining an 0P’ and an “IP"

as group instructions. Executing example 6-1 will define the
“OP" instruction as group number 1 and program output
cards in slots 4 and 5 with a data value of 123, The IP instruc-
tion will be defined as group number 9 and 100 readings
{repeat factor "R100"”} each will be taken by input cards in
slots 12,13, and 14.

Example §-1. Defining Group Instructions

982BA Controller

8-7 Lising Group Instructions

6-8 Once an instruction has been defined as a group in-
struction, it can be rerun by specifying the instruction opcode,
the group number receded by a “U”, and a terminator. The
opeode used to rerun a group instruction must correspond to
the opcode used when defining the group instruction or the
Multiprograrmmer will generate an error message and set SRQ.
Example 6-2 illustrates rerunning the group instructions defin-
ed in Exampie 6-1.

Example 6-2. Rerunning Group instructions

8825 Controller

CUFLEET s TR

9835/45 Controllers

A UOFULT. TRURT

TRUT

6-9 Clear Group (CG) Instruction

6-10 When a group instruction is no longer required, i can
be cleared out of the Multiprogrammer with a Clear Group
(CG) instruction. Since a group instruction {even when it is
not active ties up a portion of system memory, it is a good idea
to clear out group instructions when they are no
longer needed. The syntax for the CG instruction is as follows:

“CG NN, N --T”
where N’,i\!z,N3 are the group numbers to be cleared.

6-11 As indicated above, the CG instruction consists of an
cpcode, the number(s} of the group(s} to be cleared, and a
terminator. CG instructions always execute immediately
regardless of whether the Multiprogrammer is in serial or
paraltel mode. If any group instructions are currently active in
the systern either executing or waiting to execute, they will not

be affected by the clear group instruction except that they will
in effect become standard {non-group) instructions. In any
case the CG instruction will clear out any group definitions
specified in the instruction. Example 8-3 illustrates clearing
group instruction numbers 0 and 5.

Example 6-3. Clearing Group [nstructions
9825A Controiler

EMEERIERE I

6-12 Redefining Group Instructions

6-13 If & group definition is no longer needed but there is
another instruction that must be defined as a group, it is not
necessary to clear the old group definition before defining the
new group. This operation can be accomplished in one step by
simply redefining the group. When a group is redefined, the
old instruction associated with the group number is replaced
with a new one. The new instruction need not be related to
the old instruction in any way. Redefining a group is ac-
complished in exactly the same manner as the initial definition,
using the new opcode, card addresses, and data. Example 6-4
illustrates redefining group number 9, previously defined in Ex-
ample 6-1 as an "IP" instruction using ¢ards in slots 12,13, and
14, to a "WC” instruction which sends data (777} to cards in
slots 0 and 1.

Example 6-4. Redefining a Group Instruction

58254 Controlier

6-14 Instruction Execution Time and Memory
Utilization
6-15 Without using group instructions, every instruction in

the system requires & block of memaory, called a context block,
during the period that the instruction is active {i.e. waiting to
execute, executing, or an input instruction that has completed
execution but whose data has not been read back by the con-
troller). Normally, the memory reserved for an instruction is
released to the system after the instruction goes inactive.
When an instruction is defined as a group instruction
however, the context block is saved until the group definition
is cleared or redefined. Saving a context block containing all
the information required to run an instruction increases the
speed of the instruction since the system is not required to
allocate memory and decode addresses and data sent by the
controller before rerunning an instruction.

6-16 In terms of memory utilization, each group instruc-
tion reduces the amount of free memory available by an
amount equal to what the instruction would require if it were
active but not a group instruction. This of course will vary with
the size and type of the instruction. As & few examples, an
"OP instruction using 5 cards would require approximately 27
words, and an “IP" using 2 cards and a repeat factor of 10
would require approximately 41 words., Depending on the
number of frames in the system, a total of approximately
1300-1400 words of memory are available in the system (see
paragraph 6-80}.

6-17 ARMED CARD INTERRUPTS

6-18 For certain application’s, the cycling of 1/0 cards will
be eontrolled externally by the user via the EXTERNAL TRIG-
GER input on the card’s edge connector. Other applications
may require that the cycling be accomplished internally with
the Cycle {CY) or Write and Cycle {WC} "low level” instruc-
tions. The application may also require that the confroller be
informed via the SRQ line when each 1/0 card is cycled and
completes data processing. This can be accomplished i the
1/0 cards are enabled prior to being cycled. The Arm Card
{AC]) instruction can be used to enable the 1/0 cards that will
be eventually cycled by an external trigger, & CY instruction,
or a WC instruction. As each armed card is cycled and com-
pletes processing its data {generates an EQP), it will interrupt
the microprocessor and set SRQ. This type of service request
is referred to as an “armed card interrupt”’. Since an
understanding of the Multiprogrammer interrupt system as it
pertains to 1/0 cards is required to enable you to visualize the
use of armed card interrupts, a brief review follows.

6-19

6-20 Whenever any Multiprogrammer 1/0 card is cycled
and completes its data processing operations, an end-of-
process (EQOP) signal is generated. If the card is also armed
when it is cycled, the resulting EOP signal wiil generater an in-
tefrupt to the microprocessor. Note that ait "high level’” in-
structions {OB,IP,0P .11, 0S,IE, and Ol automatically arm /O
card(s), consequently each card addressed in the instruction
will generate a microprocessor interrupt when it completes.
When the micropocessor receives the interrupt, #t will deter-
mine the instruction that the card is assgned to, disarm the
card, and continue the processing according to the type of in-
struction and the processing mode that is in effect. For exam-
ple, if the interrupting card is the only card spegified in an 0S5
instruction and the serial mode is in effect, the microprocessor
will atlow the next instruction in the sequence to start. If the
parailel mode is in effect and the interrupting card is the only
card specified in an OS instruction, the microprocessor will set
both the SRQ line and the appropriate Multiprogrammer
SRQ status bit.

Multiprogrammer Interrupt System

6-21 Low level instructions however, do not arm 1/0 cards
when they are executed. The WC is a low level instruction that
sends data to the card{s) then cycles the card(s). The CY is

another low level instruction that simply cycles the card(s}. As
mentioned previously, 1/0 cards can also be cycled by apply-
ing an external trigger input on the card. The effect of cycling
a card will depend on the type of card, but in general cycling
an output card will transfer data from first rank storage on the
card to the output of the card. Cycling an input card will cause
the card to read in and store external data on the card.
Although the card will process the data and generate EOP
when it completes, since the card is not armed, it will not in-
terrupt the microprocessor and the controller will not be
notified that the card has completed. In order to use the
microprocessor interrupt system and notify the controller,
these }/O cards must be "armed” before they are eycled.

6-22 Arm Card {AC) Instruction

6-23 The AC instruction can be used to enabie cards that
are being externaily triggered ar programmed with a "WC” or
"CY" instruction to interrupt the microprocessor upon com-
pletion of their data processing. The AC instruction will run se-
quentially with other instructions when the Multiprogrammer
is in serial mode or concurrently with other instructions when
the Multiprogrammer is in parallel mode. it can also run in the
immediate mode. The syntax for the AC instruction is as
foliows:

"AC A1 A2 ASZ--TY

Card addresses are specified by A1, A2, A3, etc.

Example 6-5 ilustrates use of an AC instruction to
arm the cards in siots 0 through 5. An armed card interrupt will
be generated when each of the cards programmed in this ex-
ample are cycled and complete (generate EQP). When an arm-
ed card interrupt is detected, the third Multiprogrammer SRQ
status waord {variable C, see Table 5-3} will be incremented and
SRQ will be set. Thus, the number of cards that have
generated armed card interrupts is stored in the third variable
read back from HP-IB extended talk address 10 (red
72310,A,8B,C,DE F/ENTER 723.10:A,B,C,D,E,F). Refer to
the Multiprogrammer SRQ status discussion in paragraphs
5-172 through 5-181.

Example 6-5. Arming Cards

98254 Controller

. 1)

.,...
it}

Pl TR E T B B

R

9835/45 Controllers

6-24 Armed Card Interrupt List Readback

6-25 The list of cards that generated armed card interrupts
can be read back from HP-I1B extended talk address 12 (red
T232/ENTER 723,12}, As mentioned previously, the third
variable read back from HP-IB extended talk address {red
72310/ENTER 723.10) indicates the number of cards that in-
terrupted. When more than 10 armed card interrupts are read
back, it is suggested that an amay be used, The following
paragraphs describe reading back armed card interrupts on the
applicable controfler.

6-26 9825 Controller. If you read back fewer variables
than were specified by the third Multiprogrammer SRQ status
variable or additional card interrupts occur before reading ex-
tended talk address 12, the Multiprogrammer will update the
third SRQ status variable and set SRQ again. If you attempt to
read more variables than were specified by the third SRQ
status variable (from extended address 10}, the Multiprogram-
mer will respond to the additional requests for data by sending
carriage return/line feeds which will not change the state of
the additional variables requested. The procedures described
in paragraph 5-199 for reading back data on the 9825 Con-
trofler for the Ol instruction should also be followed when
reading back the armed card interrupt list,

6-27 9835/9845 Controllers. When using a 9835 or 9845
cantroller, the third Multiprogrammer SRQ status variable
read back from extended talk address 10 can only be used as
an indication that armed card interrupts have occurred. If the
value of the third SRQ status variable is used to determineg
how many variables to read from extended talk address 12, it
becomes possible to miss interrupts that occurred after the
status variable was read. i your program requests less data
than is available, due to these additional card interrupts, the
controller will throw out the additional data available. For this
reason, you should always assume that ali cards have com-
pleted and read the entire array each time armed card inter-
rutps are detected, By presetting alf variables in the array 10
—1 before reading the array, you will then be able to inspect
the contents of the array to determine which cards have inter-
rupted, Positive vaiues in the array after reading extended talk
address 12 are the addresses of interrupting cards,

6-28 Atternpting to read an entire array of data into a 9835
or 8845 controller from extended talk address 12 will frequently
result in a controlier error 169 since the Multiprogrammer will
not always have enough data available to fill the array. The er-

6-4

ror trapping subroutine, described in Appendix C, allows the
controller to attempt to read more data than is available
without the resuliing error stopping your program. Assuming
that the array has been preset to negative values it can then be
inspected to deterrnine the address of the interrupting card.
The procedures described in paragraph 5-199 for reading back
data on the 9835/9845 controllers for the Ol instruction should
also be followed when reading back the armed card interrupt
list.

5-29 Sample Program. Example 6-5 iliustrates arming
cards in slots 0,1,2,3,4, and 5 to generate armed card inter-
rupts. This example assumes the cards in slots 0,2, and 4 are
Digital Output cards and the cards in slots 1,3, and 5 are
Digital Input cards. All cards will be externally triggered,
Remember, cycling the cards with a "CY'" instruction would
have the same results as an external trigger.

§-30 The program in Examgple §-6 includes a serial poll, rds
{7231/ STATUS 723, to determine if the Muliiprogrammer set
SRQ. i the Multiprogrammer requested service, extended talk
address 10 is read (red 72310,A,B,C/ENTER 723.1G;4,B,C)
and the third variable is checked {variable C) to determine the
number of cards that interrupted. The program then reads the
addresses of the cards into an array. Refer to the line-by-line
description that follows the program listings,

6-31 t is very important to read back the addresses of the
interrupting cards when armed card interrupts are detected, If
the address of an interrupting card is not read by the con-
trodler, subsequent interrupts from the same card will not
cause the Multiprogrammer to increment the third status
variable or set SRQ. An important point to keep in mind s that
the third Multiprogrammer SRQ status variable contains the
number of cards that have generated armed card interrupts. it
does not contain the number of interrupts that have been
generated since one card can interrupt many times.

6-32 As mentioned previously, cards that are assigned to
instructions that automatically arm the card also automatically
disarm the card once the card has completed data processing
and interrupted. Cards that are armed by an arm card instruc-
tion and cycled however, are not disarmed after they generate
an interrupt. EOP is reset {cleared) and they will continue to in-
terrupt the microprocessor when they are cycled and com-
plete. As long as the addresses of the interrupting cards are
heing read back by the controller SRQ will be set when one of
these cards interrupts,

Example 6-6. Reading the Armed Card Interrupt List

98254 Controler 9835/35 Controliers

]
GLITELE
& MEFTE 11
]
. &
' o by
[

[

et bs sk St o ud hads

RETURH

Explanation:
9825 9836/45 Functional Description
0 10,20 Dimension a 6 word array for reading armed card interrupts.
30 Establish linkage to error processing subroutine to allow handling of variable length read-
backs.
1 40 Read Multiprogrammer status and clear any outstanding SRQ.
2 50-70 Establish interrupt linkage between HP-IB interface 7 and subroutine labeled “'multi’’;
enable interface 7 for interrupts.
3 80 Write first rank data to oufput cards.
4 S0 Arm cards in slots 0-b,
100 1000, When an HP-tB SRQ is detected the controller branches to a subroutine named
1010 "multi’’. If a serial poll of the Multiprogrammer determines that the Multiprogrammer was

not the device that set SRQ the program branches to another routine where it polls other
devices 1o determine which device set SRQ.

101 1020 I the seriat poll determines that the Multiprogrammer was the device that set SRQ the
Mukiprogrammer status variables are read into controller variables A, B, and C. This also
ciears the SRQ status bit,

102 1030 If armed card interrupts had not set SRQ the controlier returns execution to the main pro-
gram. Normally, further processing would be done to find out why the Multiprogrammer
had set SRQ.

6-6

For/next loop is set up to determine which card interrupted and proper processing path to

Tests are made to determine which card{s} interrupted. When controller determines
card that interrupted program branches to appropriate subroutine for processing (For ex-

ample, if an input card interrupted, you may want to use an “RV" instruction to read the

103 1050 The armed card interrupt list is read into array A"
104 1060
take.
105- 1070-
110 1120
card data into the controlier}.
133 1130 Go and read next address from interrupt list.
112 1140, Renable HP-IB interface for further interrupts and return,
1150
8000, Subroutine to allow variable length readbacks on 9835 and 9845 controllers.
8020

6-33 Disarm Card (DC) Instruction

6-34 The DC instruction can be used to disarm any card in
the system, thereby preventing the card from generating a
ricroprocessor interrupt when it is cycled and completes.
Although it is intended to complement the arm card instruc-
tion, it can also be used to disarm a card programmed by any
instruction that normally arms the card. If it is used to disarm a
busy card that has been programmed by an instruction that
normally arms the card, it will appear as if the card has com-
pleted unless the instruction is an Ol or “1I"” instruction, in
which case, the card will appear to have been removed from
the instruction. Use of the DC instruction on cards that have
been programmed by 1P’ or “IE” instructions that use repeat
factors is not recommended. The DC instruction will run se-
quentially with other instructions when the Multiprogrammer
is in the serial mode or concurrently with other instructions
when the Multiprogrammer is in the paraliel mode. It can also
run in the immediate mode. The syntax for the DC instruction
is as follows:

“DC,A1,AZ A3, ---T"
Card addresses are specifed by A1,A2,A3, etc.

6-35 Example 6-7 illustrates using a DC instruction to
disarm the cards in siots 0 through 5. Once disarmed, the
cards are prevented from generating a microprocessor inter-
rupt when they are cycled by an external trigger, a CY instruc-
tion, or a WC instruction.

Example 6-7. Disarming Cards

9825 Controller

bt TEEs TDCa e La e B ds BT

DR
835/45 Controliers
ITPLT 7 IR

s H

Sag

6-36 170 CARD STATUS

6-37 Knowing the status of an 1/0 card can be an effective
aid in isolating programming or hardware problems that may
occur in your system by allowing you to determine which |/0
cards in the system are busy. The following coded values in-
dicate whether the card is armed, busy, or has compieted pro-
cessing and generated EOP.

6-6

Coded Card

Value Status
0 inactive
1 EOP set
2 Armed
4 Busy

5-38 Card status may appear as any single value or com-
binations of the values listed above. For example, coded value
6 indicates that the card is armed and is busy. If the card is cur-
rently active in high level instruction (OB,IP,OFP H,0S,1E, or
Ol} that reguires an interrupt from the card to complete, the
status aiso includes a coded value representing the instruction
that is being used to program the card. The following is a list
of coded vaiues of high level instructions that require an inter-
rupt to complete.

Coded Instruction
Value Opcode
100 0B
200 P
300 OF
400 il
500 0Ss
600 IE
800 Ol
6-39 Read Status (RS8) Instruction
6-40 The RS instruction can be used to obtain the current

status of an [/O card at any time. It will always execute im-
mediately regardiess of whether the Multiprogrammer is
operating in the serial or parallel mode. When a read status in-
struction is executed, the status of the card will be added to a
coded instruction value if applicable and stored in the
Multiprogrammer. The status of the |/ O card may then be read
into a controiler variable by using HP-|B extended talk address
08 (red 72308/ENTER 723.08}. If a second read status instruc-
tion is sent to the Multiprogrammer before the data from the
first instruction has been read back, data from the first instruc-
tion wil be thrown away. The syntax for the RS instruction is
as follows:

"RS,ATAZ A3 T
efc.
where A1,A2,A3, etc. are the |/0 card addresses.

6-41 Sample Program

6-42 Example 6-8 iliustrates reading the status of /0 cards
in slots 5 and 8 into controller variables A and B. Assume that
variables “A" and “B" contained values of 206 and 1, respec-
tively. This would indicate that the card in slot 5 was program-
med by an “IP"” instruction and is armed and busy. The card in
slot 6 is not assigned to any instruction, but EQP is set in-
dicating that an unarmed card was cycled and has completed
processing data. The card in siot 8 could have been program-
med by a "WC' or “CY"" instruction or it could have been ax-
temnally triggered. If a card is cycled (WC, CY, or external trig-
ger) without first being armed, the EOP signal is set indicating
that the card completed its operations. For these conditions,
EQP will not be reset until the card is disarmed or a high level
instruction addressing the card is programmed.

Example 6-8. Reading Status of /D Cards

98254 Controlier

1K GUTRUT 7
A EHTER V-

6-43 CLEARING I/O CARDS
6-44 It is possible through improper programming or im-
proper or open connections {o the gate/flag lines on some 1/0
cards to program an /O card into a busy state under condi-
tions that will either resuft in the card taking a long time to
complete or not completing at all. If the card has been pro-
grammed by an instruction which requires card interrupt to
allow the instruction 1o complete, other than an Ol or !l in-
struction, the instruction will remain busy and unavailabie for
programming other cards unti the busy card programmed by
the instruction completes. If the Multiprogrammer is in serial
mode all subsequent instructions, with the exception of in-
structions that run immediately, will be forced o wait for the
busy instruction to complete before they are allowed to run.
The clear card instruction (CC) is provided to allow you 1o ter-
minate the busy state of the card, and therefore the instruec-
tion, if desired,
6-45 Clear Card (CC} Instruction
6-46 The CC instruction can be used to clear the arm, busy
{timing}, and EOP circuits on any 1/0 card. It will always ex-
ecute immediately regardless of whether the Multiprogrammer
is operating in the serial or parallel mode. The syntax for the
CC instruction is as foilows:

"CC,ATAZAS, T

where A1 ,AZ A3, etc, are card addresses.

67

6-47 Only the OB, IP, OP, 08, IE, O, and 0 instructions
are affected by the CC instruction. The Clearing a card affects
the instruction that has programmed the card as follows:

1. if a clear card instruction is used to clear a busy card
that has been programmed by an OB, IP, OP, 05, or
Ik instruction, it will appear as i the card has
completed normaly. Data from an IP or IE instruction,
that contains a card that has been cleared, must still
be read back, although data from the card that has
been cleared should then be discarded. As a few ex-
amples, clearing the only card that is busy in an OP
instruction will complete the instruction, thereby
alilowing subsequent instructions te run if the
Multiprogrammer is in serial mode or setting SRQ and
the appropriate status bit if the Multiprogrammer is in
parallel mode. Clearing the only card that is busy in
an [P or IE instruction will have the same effect on
the Multiprogrammer and data may then be read back
from the appropriate extended talk address.

NOTE

Clearing a card programmed by an “IP” or
“IET instruction that uses a repeat factor
and possibly a “wait” can be complicated.
To clear the card from an instruction of this
type, it must be prograrmmed by a number
of clear card instructions equal to the
repeat factor. The time between sending
each clear card instruction to the card must
be greater than the longest ime required
for each ser of readings to be taken by alf
the cards in the instruction including a
“wait’" if it is specified.

2. If a clear card instruction is used to clear a busy card

that has been programmed by an Ol or "Il instruc-
tion, it will appear as if the card has been completely
removed from the instruction. SRQ wili not be set, if
the card is part of a group instruction it will remain in
the group and will be reprogrammed whenever the
group instruction is reprogrammed,

5-48 Sample Program

6-49 Example 8-9 Hiustrates clearing 1/0 cards installed in

slots 5 and 8. The read status (RS} instruction discussed

previously can be used to verify that 1/0 cards have been
cleared.

Exampie 6-9. Clearing 1/0 Cards
98254 Controller

9835/46 Controllers
i@ GUTEUT

s

6-50 IMMEDIATE MODE

6-51 The immediate mode of operation is provided for use
whenever an immediate response 1o an emergency situation is
required. Upon entering the immediate mode the system
suspends all currently active instructions and aliows selected
instructions to run immediately. Attempting to execute an in-
struction that is not permitted in immediate mode will result in
an error being reported. Upon returning to the normat mode of
operation the system will be restored to the same conditions
that existed prior to entry into the immediate mode. The
following tabulation lists the instructions that are and are not
permitted in the immediate mode.

immediate Mode Enstruction Summary

Permitted® Mot Permitted***
AC CG**
CC** GP
cY GS
Cwws IE

De IN
Gi** P
GN** M
il MO**
O OB
RC OoP
AF** 0s
RG*¥ sC
RV WA
SD WU
SE

SF**

WC

WE

* Group instructions (see paragraph 6-2} are not permitied in
the immediate mode.
**These instructions execute instantly,

% Attempting to execute an instruction that is not permitted
in the immediate mode will result in error code -3 being
reported,

8-52 Go Immediate (G} Instruction

6-63 The Gl instruction is wused to program the
Mubktiprogrammer to the immediate mode of operation. An ex-
ample of using the immediate mode to respond to an alarm
condition is given in paragraph 5-59. The syntax for the Gl in-
struction is as follows:

“GIY or “GIT”

6-54 Since only the opcode is sent, the terminator “T" is
not required but will be accepted if it is sent. Example 6-10 il-
lustrates programming the immediate mode.

Example 6-10. Programming the immediate Mode
98254 Controller

B owrs FE3eUGLT

Thor e

6-8

9835/45 Controllers
i GUTHUT Fzostgne

8-55 While operating in the immediate mode, the
backplane interrupt system is turned off preventing |/0 cards
from interrupting the microprocessor. However, if an 1], 01,
CC, or DC instruction is programmed, the backplane interrapt
system is temporarily turned on. This will allow any cards
which have interrupts pending {arm and EOF set) to interrupt
the microprocessor. Suspended instructions that were waiting
on these cards to complete will be allowed to complete nor-
mally, setting SRQ if the Multiprogrammer is in parallel mode
or the interrupting card had been programmed by an H or O
instruction.

6-56 Restrictions

6-57 Aithough cards will be permitted to interrupt and
suspended instruction will be permitted to compiete when H,
0i, CC, or DC instructions are programmed in immediate
mode, data from IP, 11, IE, and Ol instructions can not be read
back from their associated HP-1B extended talk addresses until
the Multiprogrammer is returned to normal (serial or parallel)
mode. Data from RF, RV, and RS instructions, programmed
in the immediate mode, can be read back on the appropriate
extended talk address; however, the data must be read im-
mediately. If a second instruction of the same type is executed
before data from the first instruction is read back, the first in-
struction's data is thrown away. Data from these instructions,
stored in the Multiprogrammer bsfore the Multiprogrammer
was programmed to immediate mode, can not be read back
until the normal mode of operation is restored. The data read-
back restrictions in the immediate mode are summarized
below. '

Data Readback from HP-IB
Extended Talk Addresses in Immediate Mode

Permitted Mot Permitted*®
04 (RF}* 01 {IP)

05 (Mi*~ 02 {Ii)

06 (RV)* 03 (IE}

08 (RS)* 09 (Oh

10 {SRO STATUSH*

11 {ERROR LIST}**

12 (ARMED CARD INT. LISTH~
13 (BUSY INST.}**

14 (RC) **

*Data may only be read back from these extended talk ad-
dresses in immediate mode if the corresponding instruction
has been programmed while in immediate mode.

**Data from these extended talk addresses is unaffected by
immediate mode of operation.

***if an attempt is made to read data from an extended talk
address that is not permitted the Multiprogrammer will only
send back a carriage return/line feed.

6-58 Go Normal (GN} Instruction
6-69 The OGN instruction is used to return the
Multiprogrammer back to the mode (serial or parallel}) of
operation that was in effect before the Gl was programmed.
The syntax for the GN instruction is as follows:

"GN or “GNT"

6-60 Since only the opcode is sent, the terminator “7T" is
not required but will be accepted if it is sent. Example 8-11 il-
lustrates programming the GN instruction. When the
Muhiprogrammer is returned t¢ normal mode, the following
actons are taken:

1. All data taken in RV, RS, or RF instructions in the
immediate mode, that has not been read back, is
thrown away.

2. All suspended instructions are allowed to continue,

3. Backplane interrupts are turned back on.

Example 6-11. Programming the GN Instruction
98254 Controller
Ve TLH

Be ot
9835/45 Controllers

14

6-61 DISABLING AND ENABLING
OUTPUT CARDS

6-62 When a 6942A/6943A Multiprogrammer system is
first turned-on, all output cards with the exception of the
69730A Memory Card are disabled (i.e. preset to a "'safe’” con-
dition). The system enable {SYE) line that runs throughout the
Multiprogrammer system is reset at power turn-on to ensure
that all cards are disabled. The first time a card is pregrammed
by an instruction that cycles the card it will also enable the
card, allowing the desired output to be programmed. Two in-
structions are available which will allow you 10 subsequently
disable and then enable all output cards in the system at one
time; the system disabie {SD} and system enable {SE) instruc-

tions. Table 6-1 lists the output cards affected by the SD and
SE instructions and the effect of the SD instruction on each
cards output,

6-63 System Disable (SD) Instruction

6-64 The system disable instruction is provided to allow
you to program an emergency shutdown of outputs from all
output cards in the system except the memory card. Executing
a system disable instruction will set the output cards in the
system to a predetermined (safe) condition as shown in Table
6-1. The syntax for the SD instruction is as follows:

"SD" or "SDT”

6-65 Since only the opcode is sent, the terminator "T" is
not required but will be accepted if it is sent. Example 8-12 #l-
lustrates programming the SD instruction.

Exampie 6-12. Programming the 8D Instruction

9825A Cantroller
e qurt FTodsUmpe

9835/45 Controllers
18 DUTEHUT Przsmape

6-66 if the Muftiprogrammer is in serial mode an SD in-
struction will not be executed until all preceding instructions
have completed. In parallel mode, the SD instruction will
always be executed immediately. An immediate response to a
SD instruction can be obtained when the Multiprogrammer is
in serial mode by programming the Multiprogrammer into im-
mediate mode before sending the SD instruction:

“Gl, 5D, GN”

6-67 System Enable {SE) Instruction

6-68 The SE instruction is used to enable outputs of /0
cards that were previously disabled by a SD instruction. When
a SE instruction is executed, outputs from the cards listed in
Table 6-1 wili return to the state that existed prior to executing

Table 8-1. Output Cards Affected By SD and SE

instructions

Effect of an SD instruction

Quiput resistance goes to zerg
{+ calibration resistance of card).
QOutput voltage goss to zero.
Cutput current goes to zero.

All relay outputs open

Gutput lines go 1o logicat zero,

Model No. Output Card
69700-06A Resistance QOutput
B9720A D/A Voltage Converter
B89721A D/A Current Converter
69730A Relay Qutput

69731A Digital Output

69735A Pulse Train Qutput
69736A Programmahie Timer

6-9

Qutput stops at end of current pulse.
Output stops immediately

a system disable instruction. Timed outputs such as those
from the 69735A Pulse Train and 69736A Timer cards will con-
tinue where they left off. The SE instruction is affected by the
serial, parallel, and immediate modes of operation in the same
manner as the SD instruction. As with the SD instruction, in-
clusion of a terminator is optional. Example 6-13 illustrates
programming a system enable instruction.

Exmaple 6-13. Programming the SE Instruction

9825A Controller

1t DUTHFLT 723

6-69 MEMORY INSTRUCTIONS

6-70 Memory instructions are basically intended for sen-
ding or reading large quantities of data words to or from
69790A Memory cards. They can, however, be used with
other cards providing that you have a thorough understanding
of the instructions and feel that they are suited to your re-
quirements. Two memory instructions are available; the
memory output (MO} instruction and the memory input (M)
instruction. The Mi instruction is used in conjunction with HP-
IB extended talk address 05 to read data back into the con-
troller. No user available Multiprogrammer memory is utilized
by either the MO or M| instructions. The MO and Ml instruc-
tions run instantly regardiess of serial or parallel modes. They
are not permitted in the immediate mode.

6-71 Memory Output (MO} Instruction

6-72 The MO instruction is used to set the Memory card to
the FIFO output mode and send a string of data words to the
card, The Memory card has various operating modes, in-
cluding the FIFO output mode, which are described in
paragraph 7-132. Data sent with the MO instruction is read
from the Multiprogrammer input buffer, translated to an inter-
nal format, and sent directly to the card where it is stored.
After each data word is sent to the Memory card the card is
cycled. Cyeling the Memory card in an output mode causes an
internal {write) pointer on the card to advance, resulting in in-
coming data being stored in sucessive locations on the card. If
a card other than a Memory card is programmed by a MO in-
struction, each data word will be trans ferred to the output of
the card as it is received. The syntax for the MO instruction is
as follows:

"MO,A,D1,D02,D3, T
\mm..‘..m..mm/

CARD DATA WORDS
ADDRESS

6-10

6-73 The MO instruction consists of an opcode, card ad-
dress, string of data words, and a terminator. Since it is im-
possible to distinquish between a card address and a data
waord, only one card address can be programmed at a time in
an MO instruction., Example 6-14 illustrates programming a
Memory card in slot 6 with an MO instruction. Five data values
{1,2,3,4,5} are sent {o the card. Since only a small number of
fixed data values are sent to the card in this example, the data
is sent 1o the card as constants in a literal field. Executing ex-
ample 6-14 will result in these data values being stored in suc-
cessive locations on the card.

Example 6-14. Using a Memory Output instruction

9825A Controlier

Baowrt I INER N R

9835/45 Controtlers

1 CHATRELT

3 T Za Zada BT

6-74 For many appiications you will find it convenient to
send large guantities of variable data to the Memeory card. Ex-
ample 6-15 iilustrates sending 1000 words of variable datato a
Memory card in siot 6. In this example, the data to be sent to
the card is contained in an array designated “A"'.

Example 6-15. Sending Variable Data Values Usmg a
Memory Qutput Instruction

88254 Controller

6-75 Memory Input (M) Instruction

6-76 The Mi instruction is used to set the Memory card to
FIFQO input mode and specify the slot address and number of
data words to be read back from the Memory card (see
paragraph 7-132}. This instruction consists of an opcode, card
address, word count {nrumber of wards that will be read back},

and a terminater:

“MIA, Word Count, T"

6-77 Example 6-16 illustrates using an Mi instruction to
specify a 1000 word readback from a memory card in siot 6,
The actual data readback from the card is accomplished by
means of HP-IB extended talk address 05 (red 7230b/ENTER
723.05). When a read from HP-IB extended talk address 05 is
detected, a data word will be read from the Memory card, con-
verted to an ASCH format and sent to the controlier. After
egach data word is accepted by the controlier, the card is cycl-
ed. Cycling the Memory card in an input mode causes an inter-
nal (read} pointer on the card to advance to the next location
allowing data to be read from successive locations on the
card. if a card other than a Memory card has been programm-
ed by the Ml instruction, the card will be cycled after each data
word is sent back to the controller, thereby storing fresh data
on the card.

Example 6-18. Using a Memory Input Instruction

9825A Controfler

SRR

8835/45 Controllers

6-78 Generally it is best to read data from the Memory card
into an array within the controller. This array should be equal
in size to the number of words that you intend to read from the
Memaory card. Example 8-17 iilustrates reading the data from
the Memory card in example 6-16 into a controlier array
designated "B".

Example 6-17. Reading Data From & Memory Card

88254 Controtler

b
=ANRES B ER ST

9835/45 Controllers

6-7% When using a 9825 controlier you should read the
maximum number of variables possible with each "‘red” state-
ment as this will increase-the data transfer speed between the
Multiprogrammer and the controller. For example, by chang-
ing the read loop in exampie 4 to "for J=1 to 993 by 8" and
reading into 8 array elements instead of 4 with each pass
through the loop, the number of times the Multiprograrmmer
must be addressed fo talk is cut in half resulting in a significant
increase in data transfer speed.

6-80 MULTIPROGRAMMER MEMORY
UTHIZATION
6-81 The following paragraphs describe the way in which

6-11

the user memory area {RAM) is utilized. With this information,
the user can calculate how much memory his program re-
quires so he can take full advantage of the available memory.
A brief review of instruction processing is included along with
descriptions of how memory is allocated and what happens i
memory becomes filled. In most instances, if the memory
becomes filled, the system will simply wait until more memory
becomes available. However, under certain circumstances,
problems wili occur if the memory is allowed to fiff and
overflow. Methods for avoiding and recovering from memory
overflow are provided in the following discussion.

§-82 Memory Usage

6-83 The Multiprogrammer contains 2048 words of RAM;
586 are used by the firmware for system functions, leaving
1462 words avaitable to store user instructions and other func-
tions. Out of the 1462 words, the following functions will
dynamically take memory as it is needed.

Additionai Frames

Special Card Configurations
Instructions

Instruction Wait Blocks
Group Instructions
Immediate Mode

Memory Fragmentation

§-84 Additional Frames. The 1462 words available
assumes that there is only a 6942A mainframe in the system.
Each additional 6943A frame requires 24 words of memory.
The Multiprogrammer determines the number of frames in the
system by searching for the highest frame address. It assumes
that all frames with a lower frame address are connected.
Thus, in a mainframe only system, if the frame address switch
is set t0 7, the Muitiprogrammer will assume there are seven
additional frames, and allocate: 7 x 24 = 168 words.

6-85 Speciai Card Configurations. If an 1/0 card is
reformatted, the additional information requires three words
of RAM. When a card is returned to its default parameters
{eitier with an SF with 0 parameters, or with a system reset},
the additional memory is no longer needed, and it is returned.
If b cards were reformatted, 5 x 3= 15 words are required.

6-86 instructions. When an instruction is active in the
systemn, it requires an instruction module, made up of a block
of memory. For the purpose of computing memory utilization,
there are 5 classes of instructions:

Class Dascription
1. Instructions that are executed immediately
out of the bhuffer, and thus don’t require
any memory.
2. Normal instructions, which consists of

most of the Muitiprogrammer's instruc-
tions. These instructions require a 17
word base, plus two words for every card
address {regardless of whether its a input
or output instruction}. Example: an OP
with B cards, 17 + (B x 2} = 27 words

3 Interrupt instructions (Ol and H} require &
17 word base and three words per tard.
Thus an [with five cards requires:
17 + {6 x 3) = 32 words

4 Instructions with repeat factors {IP with
R's and R's + W’s, |E with R's and R's
+ W’s) require a base of 17 words, plus
two words per card, plus one word per
card per reading. Thus, the following:
“1P,R20,1,2,3,4,6T"; requires:

17 + {6+ 2) + {6 + 20) = 127 words

b, Special instructions use a fixed amount of

memaory.

6-87 Table 6-2 specifies which one of the five classes
described above pertains to each of the 32 instruction types.
Note that for the Class B instructions, the amount of fixed
memary required for each instruction type is also included.

Table 6-2. Instruction Memory Utilization

inst. Inst.
Opcode Class Opcode Class
AC 2 il 1
cC 1 MO 1
CG 1 OB 5 (20 words)
Cw 1 O 3
cYy 2 opP 2
DC 2 0s 2
Gl 1 RC 5 {21 words)
GN 1 RF 2
GP 5 {3 words) RS 2
GS 5 {3 words} RV 2
IE 2 sC 5 (21 words)
iE* 4 sSb 5 (3 words)
H] 3 SE 5 {3 words)
IN 5 (3 words} SF 1
P 2 WA § {18 words)
P 4 WC 2
WEFE 2

Wil 5 {21 words)
*With Repeat Factors

6-88 Instruction Wait Block. Any instruction which is
not started immediately in either the parallel or serial mode,

must be placed on an instruction waiting 1o execute list. Each
instruction placed on an instruction waiting to execute list.
Each instruction placed on the list requires an additionat three
word block.

6-89 Group Instructions. As was described earlier, the
advantage of group instructions is that their instruction
modules are saved for reuse. Thus, when the group is invoked
later, the system does not have to regenerate the instruction
module, and it saves time. Once defined, group instructions
do not relinguish their memory until they are cleared {CG in-
struction!, redefined, or the system is reset.

6-12

g-90 lmmediate Mode. When a Gl instruction is ex-
ecuted, the Multiprogrammer requires 40 words of memary to
store the previous state of the system. This memory is raleas-
ed when a GN instruction is executed.

§-91 Memory Fragmentation. The memory re-
quirements described above assume that all of the memory us-
ed by the function is contained in ONE contiguous block. In a
heavily loaded system, it is possible for memory to become
fragmented, broken up into many small blocks of available
memory. Although there is still enough memory avaiiable for
the function, it might be contained in several small blacks. In
this situation there is an overhead of two to four words
{depending on the function} for each block of memory. Since
i is impossibie to compute the amount of fragmentation in the
system at a given time, when making memory calculations a
certain amount of memory should be reserved for fragmenta-
tion. Reserving 100 words will probably cover 95% of all
fragmentation situations.

6-92 Summary. Taking all of the uses of memory describ-
ed above, the following formula can be used to compute fotal
memory utilization:

24 x ladditional frames) + 3 x {reformatted cards) +
Active Instruction Modules: non groups only + Active
Instruction Modutes: Only groups of the following types:
IE,ILIP, Q1L RS RV + Al Group Definitions + 3 x (ali active
instructions: inst wait blocks} + 40 {only if in immediate
mode} + 100 {reserved for memory fragmentation} =

Total Number of Words {not to exceed 1,462}

8-93 Memory Fuill Condition

6-94 Because memory is dynamically aliocated, when an
instruction is parsed, memory space is allocated, and when
the instruction goes inactive the memory is returned, i is
possible for all of the Multiprogrammer's memory to become
full. When this happens, no additional instructions or further
HP-IB extended talk commands will be processed until the
memory has been partially emptied. To understand the
memory full condition, a quick review of instruction process-
ing follows.

6-95 Al data coming from the HP-1B, both instructions
and extended talk address commands, go intc a 128 byte buf-
fer. The instruction parser, which decodes and parses the in-
structions, and aiso detects extended talk commands, pulls
data out of this buffer one byte at-a-time. As the parser
detects new instruction opcodes, it allocates a block of
memory and then parses the instruction. When it detects an
extended talk address, it passes control to the appropriate
module that will send the data back t¢ the controiler, Blocks of
memory are returned to free memory as the instructions go in-
active. instructions that do not send data back to the con-
trofier {typically output instructions) go inactive when they
have completed all communications with the /O cards. In-
structions that send data back to the controlier go inactive
after all of the data has been sent back, or the Multiprogram-
mer has thrown i away.

6-96 H, at any time, the input parser tries to allocate a
block of memory for an instruction being parsed, and there is
no memory available, a memory full condition has cccurred.
The input parser can not complete processing the current in-
struction until it gets the required memory, thus it is suspend-
ed. With the input parse suspended, no additional isntructions
or extended talk commands can be processed, The
Multiprogrammer will continue to take bytes from the HP-IB
untit it has filled up its 128 byte buffer, at which time it will
stop accepting data from the HP-IB. In a memory full con-
diton, the Muitiprogrammer is unable to send data back to the
controller, hecause any extended talk commands wili remain
in the huffer, unseen by the input parser.

6-97 Although memory is full, and the HP-IB suspended,
the Multiprogrammumer has not stopped executing instructions.
As those instructions that were already in the memory go inac-
tive, they will de-allocate their memory, making it available to
other instructions. The instruction parser will then wake-up,
completing the processing of the instruction it was working on
and as bytes are taken out of the buffer, the HP-1B will start
operating again. The entire process of memory filling, HP-1B
communications stopging, memory unfilling, and HP-IB com-
munications resuming, is normally transparent to the user and
the controlier.

6-98 Avoiding Memory Overflow

6-99 Because the Multiprogrammer is inhibited from sen-
ding back data to the controller in a memory fuli condition, no
instruction that returns data will be able to send back its data
and go inactive. Thus, the only way memory will become
available is if an output instruction completes. H, for some
reason, no output instruction can complete, the
Multiprogrammer will permanently hung-up in a memory
overflow. The only way to recover from a memory overfiow is

6-13

to reset the Multiprogrammer with a HP-IB Device Clear com-
mand, which throws out all the data stored in the
Muitiprogrammer.

Example: If 100 IP instructions are sent out before
trying to read back any of the data, memory will become full
before the extended tatk command is sent, thus it will not be
seen. Since there are no output instructions that can release
some memory, a memory overflow has occurred. This could
have been avoided if after sending 50 instructions, all of the
data from these instructions was readback before sending the
next 50 instructions.

6-100 Memory overflow can also oceur if an /0 card
hangs up. For example, assume that a sequence of 100 OP in-
structions is sent out. Normally this would not be a problem,
because even though memory fills up, as the earlier instruc-
tions complete, they will release their memory, making room
for the later instructions. However, if the first instruction pro-
grammed & card that doesn't compiete {a defective card, a
defective external device, or just a broken gate/flag hand-
shake line), the next 99 instructions will cause a memory full
condition. Eventually the user will detect that everything has
stopped, and he will try and read the Multi;)rogrémmer status
or possibly send a Clear Card (CC} instruction. Since the
memory is already full, no other instructions or readback are
allowed, thus there is no way the user can clear out the card,
and again, there is a memory overflow,

6-101 The above problem coutd have been avoided if the
program had sent out 50 instructions followed by an IN in-
struction, and then waited until the SRQ from the IN occur-
red, SRQ would indicated that the first 80 instruction com-
pleted before sending the additional 50 instructions. If a card
hung-up, there would always be plenty of memory left to read
the card status (RS instruction) and clear the busy card.

Chapter 7

PLUG-IN CARD DESCRIPTIONS AND PROGRAMS

71 This chapter provides a brief functional description
and programming examples for each type of plug-in I/O card
that can be presently used in a 6942/43 Multiprogrammer
System. The cards are presented in numerical sequence ac¢-
cording to the model number, Block diagrams, connector
diagramns and sample test programs are also provided as pro-
gramming aids. Typical measurement applications using dif-
ferent card types are provided after the individual card pro-
grams. All of the procedures in this Chapter assume that you
have read Chapters 4 through 6 and have a working
knowledge of the Multiprogrammer’s instruction set and basic
operating modes.

7-2 The sample fest programs in this Chapter may yieid er-
roneous results, if card was programmed incorrecty prior to
the test. Therefore, it is recommended that the Multiprogram-
mer be cleared first; by executing a “cir 7237 (9825} or
“RESET 723" {9836/45). A listing and description of
subroutine “cheker’”’, used to read Multiprogrammer status
and test for errors in the sampie test programs, can be found
in Appendix C.

73 All 9835/45 program examples in this chapter use OP-

TION BASE 1t when setting up and redimensioning data ar-
rays. Where required, a deseription of the program changes
required to use OPTION BASE 0 is provided.

7-4 INDIVIDUAL CARD PROGRAMS

7-5 Resistance Qutput Cards, Models
697004 -GI706A

7-6 These cards provide a programmed value of resistance
as their output and are generally used for programming option
040 power supplies. Twelve magnetically shielded, mercury-
wetted, reed relays select the resistance valugs by modifying
the value of a series string of high-accurary, binary weighted
resistors. Data transfer from internal storage circuits on the
card to an external device can be initiated by a controller com-
mand or by external triggering. Internal timing circuits prevent
the card from being reprogrammed until the resistance output
has stabilized {approximately 6 msec).

1. Mode! 83700 is supplied without output resistors
so that customers may select and load their
own resistors as desired. Jumpers on this card
are factory set for decimal programming using
integer values in the range of 0-4095 with an
LSBof 1.

2. Models 68701, 68704, and 69705 are intended
for programming option 040 power supplies

which have a maximum output voltage rating of
40 volts. For ease in programming, the power
supply and resistance card are considered to be
one unit. This aliows programming an output in
volts rather than resistance. As shipped from

T
e o

69700A-69706A Block Diagram

(TPS} TRIGEGE 8 POl AR Y

[£ER SURRY

| CLETELT ML

L THIGGER EXT)
{ECH
MABLE (R

69700A-65706A Connector

the factory jumpers on these cards have been
set to allow programming an output voltage
from the power supply in the range of 0-40.95
volts with a minimum step change {LSB) of .01
volts (10mV}

3. Models 68702 and 69706 are intended for pro-
gramming option 040 power supplies which
have a maxirnum output voltage rating that is
greater than 40 Volts, Again, the power supply
and resistance card are considered 1o be one
unit for programming purposes, allowing pro-
gramming in volits rather than resistance. Asg
shipped from the factory, jumpers on these
cards have been set to allow programming an
output voitage from the power supply in the
range of 0-102.375 Volts with a minimum step
change of 0.025 Voits (2bmV).

77 Table 7-1 lists the maximum resistance output and
resolution of each card.

Table 7-1. Maximum Output Resistance and Resolution

Maximum

Resistance Resolution Resolution
Model in chms in ohms in volts™®
69700** | s
69701 8180 2 010
69702 3072.5 7.5 025
69704 40950 10 00

69705 81900 20 010

69706 204750 50 025

»

Resolution in volts is specified for resistance card/power
supply combination.

** Resistance vaiues and resolution on the 89700 are determin-
ed by the user.

7-8 Example 7-1 illustrates using two Resistance Qutput
Cards, installed in slots 4 and 110, to program two option 040
power supplies to 30.02 and 75.475 volts, respectively. Since
addresses and data are both fixed in this example they are sent
out as constants in a literal field. When the QP instruction
completes, the next instruction (if any) can begin if the
Multiprogrammer is in the serlal operating mode. if the
Multiprograrnmer is operating in the parallel mode, SRQ will
be set when the OP instruction has compieted.

Example 7-1. Programming Two Option 040 Power
Supplies ’

9826A Controller

NOTE

The Quiput Paraflel {OP) instruction used in
examples 7-1, 72 7-3, and 7-5is a typical
instryction used to program these cards.
The actual instruction to use will he deter-
mined by the application. For example, a
White and cycle (WC) instruction can be us-
ed if the Multiprogrammer is in paralfel
mede and you do not request an SEQ from
the Multiprogrammer when the prograrmm-
ed card completes its dats transfer. Or, as
another example, cards that are to be exter-
nally triggered would first be programmed
by a Write First Rank (WF} instruction to
foad output data into first rank storage on
the card. Then, when an external trigger is
subsequently applied to the card, dats will
be transferered from first rank storage to
the output of the card.

7-8 Data values above or below the maximum range of the
cards will be rejected and an error messsage generated, There
may be instances where you will find it convenient to program
these cards using a different data range {and LSB). For in-
stance, you may need current programming of an option 040
power supply rather than voltage programming. In these
cases, you may either reformat the card using a set format (SF
instruction or permanently select a different format by chang-
ing jumpers on the card {see 88700-69706 card manuat}.

7-10 Another point to consider when programming option
0490 power supplies is the maximum output of the power supp-
ty. Since the cards are 12 bits it is possible to program 4095
LSB’s, thereby making it possible for you to attempt to pro-
gram more output voltage (or current) than the power supply
can provide. If you feel that this is a possibie problem for you,
you shoutd use an “SF”’ instruction to reformat the card and
specify a limit. If you then attempt to program an output that
exceeds the limit, the Multiprogrammer will set SRQ and
generate an error message to notify you that a limit has been
exceeded. |n this case the card will not be programmed.

7-11 Example 7-2 illustrates reformatting a 69701A
Resistance Output Card installed in slot 8 to allow programm-
ing in ohms, then programming the output of the card to 400
ohms. Reformatting the card to allow programming in ohms is
simply & matter of using an “SF" instruction to change the
LSB of the card fo the resclution of the card in ohms (2). Once
the format of the card has been changed it will remain that
way until: {1) it is reformatted, (2) a system clear (i.e. cr 723 or
RESET 723} is sent to the Multiprogrammer or {3} the
Multiprogrammer system is turned off.

Example 7-2. Programming a Resistance OQutput Card in
Ohms

9825A Controller

TR

7-12 Exarnple 7-3 ilustrates using a 69701A Resistance Out-
put card installed in slot 8 to program a current output of 400
Amps from an HP 6464C option 040 power supply. Since the
minimum step change when current programming this supply
is 2 Amps, and the maximum current output of the supply is
1000 Amps, a set format instruction is used to change the LSB
of the card to 2 Amps and set a limit of 1000 Amps before pro-
gramming the card.

Example 7-3. Programming a Current Output and
Setting a Limit

89825A Controller

7-13 Data contained in first rank storage on the resistance
programming card can be read back from sub-address 3 at any
time by using a read value {RV} instruction. If the card has
been cycled, either by an instruction such as an “0B", "0OP”,
"OsT, O, Y, "WCY, or by an external trigger, the first
rank data will be the same as the data present at the output of
the card. Example 7-4 illustrates reading first rank data from a
card in slot 4 into variable A" in the controller.

Example 7-4 Reading First Rank Data

9825A Controller

v H

9835/46 Controllers

7-14 Example 7-5 is a sample test program which i-

lustrates programming with variable data values and is intend-
ed to give you some hands-on experience in programming &
Resistance Output card. This exampie assumes the resistance.
output card is installed in slot 4. You may either connect an
aption 040 power supply to your resistance card and measure
the output voltage of the supply or you may simply program
the card and, using the formula in step 4, Paragraph 7-16,
calculate what the output resistance should be and measure it.

7-15 The fixed 3 number format used in the 9825 controiter
program is required whenever an option 04G power supply is
being programmed with a 69702 or 69706 resistance program-
ming card to ensure that voltage output data with 3 decimal
places is not truncated. When programming a 69701, 69704,
or 89705 resistance programming card with a 9825 controller a
fixed 2 number format is required to ensure that voltage out-
put data with 2 decimal places is not truncated. Since fixed 2is
the normal wake-up format of the 9825 it is unnecessary to
specify a fixed 2 format unless your program has changed the
number format of the controller for other reasons.

7-16 Perform the following steps when using the sample
program..

1. Load the program, including subroutine
“‘cheker”, into the controller.

2. Depress RUN on the controlier. The conirolier
will stop with “enter voltage' displayed. Enter
the output voltage you would like to program
and depress CONTINUE.

3. If the program has been correctly entered into
the controller, the controller will stop with “test
output” displayed. At this point you may either
use a volimeter 10 check the output voltage of
your option 040 power supply or an chmmeter
to check the output resistance of the resistance
output card between pins “A' and “'C"".

4. If a resistance check is made the output
resistance of the card may be compared with a
nominai vaiue which is determined by the equa-
tion "“"Rnom= Vout/Vish x Rish"’, where Rnom is
the nominal resistance, Vout is the programmed
output voltage, Visb is the resolution (LSB) of
the card in volts and Rlsh is the resclution
{LSB) of the card in ohms. For example,
assume that a 20 volt cutput has been program-
med from a power supply connected to a 69701
resistance output card. Since Vout is 20, Visb is
0.01, and Risb is 2, our equation becomes
“Rnom =20/0.01 x 2" which yields a nominal
resistance value of 4000 chms. When compar-
ing the actuat resistance value against the
nominal value you must take into account the
accuracy specification of the card.

717 If errors are detected by the Multiprogrammer, an er-
ror message wiill be printed {9825) or displayed (9835/45) and
the program wilt terminate.

Exampte 7-5. §9700-69706 Sample Test Program
9835/45 Controllers

8826A Controller

7-18 D/A Voitage Converter Card, 69720/
7-18 This card ia a twelve bit bipolar digital-to-analog con-
verter which may be programmed to cutput a voltage in the
range of — 10,24 through + 10.2356 volts with a minimum step
change of 0.005 volts. Data transfer from internal storage cir-
cuits on the card to the D/ A voitage converter can be initiated
by a controller command or by external triggering.

7-20 As shipped from the factory, the data format of the
D/A voltage card has been set for programming in volts,
Votlage values more negative than —10.24 volts or more
positive than + 10.236 volts will be reiected and an error
message generated. Voitage values that are in range but not
an increment of .005 volts {the Isb) will be rounded off to the
nearest value that is an increment of .005 valts. If you desire to
program this card using a different format you may either use
a Set Format (SF) instruction to reformat the card or per-
manently select a different format by changing jumpers on the
card {see B9720A card manuall.

mAS

b

ISOLATED GCONMON

e +
BRTERNAL »{ ISOLATED CCRMCN

1195} TAIGGER PORARITY SELECT

1w

e

)

ol

v
LATED COMMON E

L ENTERNAL
o
INPLITS

WO PAGE QUTPUT

SULATED COMBMOR

. EXTERNAL
i BIAS

EXTERNAL GaTA SELECT

LANTERMAL TRIGGER EXT
LD OF PROCESS (ECP)
EXRTEANAL ENABLE (REN)
COMMON

§9720A Connector

GhD SECOND HANK

EXTERNAL TRIGCER

HTERNAL =
SOLATED od L—J)
— #1 SUERLIES e | EXTERNAL
-—:;or}»-i-uw_mo _0 g e sy-a
AT POWER |
FOR [AC Dwt:»i
=5 EXTERNAL
EXTERNAL TATA T AT
- -, WRETS
SEELT
- EXTERRAL
SEEfeT
READ RETURN \
M < Nsvmonress s | aurren 3
i g ¢ SECOND
L 5 ; ENABLE
L i RANK nac =
! H - i STORAGE> BATES ot
5 A p— FIRST 9
H H RENK
R t | sumantrsse] K 8 .
g ¥ Ecomm
A H LR RABLE
¥ s
El
§
AT
APUT TS | |SOLATGRS]
8
A
4 L
: a1 WARUAL t2n
L BusEe o Lof k_—“‘m &
Q FLA ONE-SHOT SWITLHES
‘ [
1 Exr

CARD ENABLE

END OF PROCESS

BUSY

e e e

TRGGER POLARITY SELECT

68720A Block Diagram

7-4

7-21 Example 7-6 illustrates using an OP instruction to pro-
gram a D/A voltage card in slot 1 to +5 volts and a D/A
voltage card in slot 2 to — 5.235 volts. Since addresses and
data are hoth fixed in this example they are sent out as con-
stants in a literal field. After the OP instruction has completed,
the next instruction {if any} can start if the Multiprogrammer is
operating in the serial mode. If the Multiprogrammer is
operating in the parallel mode, SRQ will be set when the OP
instruction compiletes.

NOTE

The Qutput Parallel {OP] instruction us-
ed in examples 6 and & is a typical in-
struction used to program this card. The
actual instruction to use will be deter-
mined by the application. For example, a
Write and Cycle (WC/ instruction can be
used if the Multiprogrammer is in paraflel
mode and you do not require an SRQ
from the Multiprogrammer when the
programmed card completes fts data
transfer, Or, as another example, cards
that are to be externally triggered would
first be programmed by a Write First
Rank (WF] instruction to load output
data into first rank storage on the card.
Then, when an external trigger is subse-
guently applied to the card data will be
converted to the programmed output
voftage.

Example 7-6. Programming Two D/A Voltage Converter
Cards

9825A Controller

Example 7-7. Reading First Rank Data

98256A Controlier

7-5

7-22 Data contained in first rank storage on the D/A
Voltage Converter card can be read back from sub-address 3
at any time by using a read value (RV) instruction. If the card
has been cycled, either by an instruction such as an “0B”,
“OPT, OST, 0IT, UCY”, "WC”, or by an external trigger,
the first rank data will be the same as the data present at the
output of the card. Example 7-7 illustrates reading first rank
data from a card in slot 1 into variable “A'" in the controller.

7-23 Example 7-8 is a sample test program which is intend-
ed to give you some hands-on experience in programming a
D/ A voltage card. This example assumes the card is instalied
in slot 1 and allows you to program any voltage within the
range of the card. Voltage output data is sent out in the form
of a variable.

Example 7-8. 69720A Sample Test Program
9825A Controiler

7-24

The fixed 3 number format used in the 8825 con-
troller program is required whenever the D/A voltage card is
being programmed by the 9825 controller to ensure that
voltage output data with three decimal places is not truncated.

7-25 Perform the foliowing steps when using the sample
test program.

1. lLoad the program, including subroutine
"cheker”, into the controiler.

2. Depress RUN on the controiler. The controller
will stop with “enter voltage” displayed. Enter
the cutput voltage you would like to program
and depress CONTINUE.

3.l the program has been correctly entered into
the controlier, the controller will stop with “test
voitage’ displayed. At this point you may use a
voitmeter to check the output voltage betweaen
pins W and Y {common}.

7-26 If errors are detected by the muliprogrammer an er-
ror message will be printed {9825) or displayed (9835/45) and
the program will terminate.

7-27 D/A Current Convarter Card, 89721A

7-28 This card is a twelve bit bipolar digital to analog
converter which may be pregrammed to output a current
in the range of —20.48 through +20.47 miliiamps with a
minimum step change of .01 milliamps {10 microamps).
Data transfer from internal storage circuits on the card
to the D/A current converter can be initiated by a con-
troiler command or by external triggering.

7-29 As shipped from the factory the format of the
D/A current card has been set for programming in
milliamps. Current values more negative than -~20.48
milliamps or more positive than +20.47 milliamps will
be rejected and an error message generated. Current
values that are in range but not an increment of 0.01
milliamps {the Isb) will be rounded off to the nearest
value that is an increment of 0.01 milliamps. H vou
desire to program this card using a different format you
may either use a Set Format instruction (SF) to reformat
the card or permanently select a- different format by
changing jumpers on the card (see 68721A card manual).

Ciga| T AL
INFPUTS

MS'{

CURRENT GLITRUT VOLTAGE QUTPUY

ESCLATED COMMON

e + 1y
EXTERNAL Lo ATED COMA
BIAS o

oY ISCLATED SOMMON

+3f
20 Conmnin L ECTERNAL
LATED C0 wo% T

{TPS) TRIGGER POLARITY SELE
{55y} B

EXTERMNAL TRIGGER 57X
NG OF PROCESS (FOF)
ENTEANAL SMABLE [T EN)
COMMON

COMBON

| O]

69721A Connector

ISOLATED
] | SUPPLIES
2
T s5OLATED
SN ¥ 4 POWER

EXTERNAL DATA

A REAG RETHRE

AE;
SUBADDARSS 3| BUFEER

— FRsT
FI sk
sennRrssg] A
CUTRT 3
Gadl} STATUS

GAT
P gusec

FLA E-SHOT

71 20 5 e £y 2 T et

NI Sy £ AT e T

& &

TRemm
{

=T

SELECY

LOAD SECOND RANK

5
SECOND ENABLE

FAN : ,
STORAGE > GHTES

LOAR ENAELE

T

CIISCLATED
~czn COMMON
o

CURREMT
AP

[sosiees |
4

—H.’.DEWT

dme M{ L———-—wc:-; 2]
N \ e

T EXTRRNAL TRIGEER

L

CARD ENARLE

o EHD OF PAGLESS

By o

- I5Y
TRIGELR FOLARTY SELAT

697214 Block Diagram

7-30 Example 7-8 Hlustrates using an OP instruction to pro-
gram a D/A current card in slot 0 to - 20 millliamps and a D/A
current card in slot 15 to 10.24 milliamps. Since addresses and
data are both fixed in this example they are sent out as con-
stants in a literal field. After the OP instruction has completed,
the next instruction (if any) will run if the Multiprogrammer is
operating in the serial mode, If the Multiprogrammer is
operating in the paraliel mode, SRQ will be set when the OP
instruction completes,

NOTE

The Qutput Parallel (OP] instruc-
tion used in examples 9 and 11is a
typical instruction used to program
this card. The actual instruction to
use will be determined by the applica-
tton. For example, a Write and Cycle
{WC instruction can be used ff the
Multiprograrnmmer is in paraltel mode
and you do not require an SRQ from the
Muttiprogrammer when the programmed
card completes its dats transfer. Or
as another example, cards that are to
be externally triggered would first be
programmed by a Write First Rank
{WFJ instruction to lead output data
into first rank storage on the card.
Then when an external trigger is subse-
quently applied to the card data will
be converted to the programmed output
current.

Example 7-9. Programming Tweo D/A Current

Converter Cards

98264 Controfler

9835/45 Controllers

7-31 Data contained in first rank storage on the D/A
Current converter card can be read back from sub-
address 3 at any time by using a read value (RV) instruc-
tion. If the card has been cycled, either by an instruction
such as an "OB'", “OP”, 08", "0, "CY", "WC", or by
an external trigger, the first rank data will be the same
as the data present at the ocutput of the card. Example
7-10 Hustrates reading first rank data from a card in slot
0 into variable “A” in the controlier.

-7

Example 7-10. Reading First Rank Data

8825A Controller

7-32 Example 7-11 is a sample test program which is
intended to give you some hands-on experience in pro-
gramming a D/A current card. This example assumes
the card is installed in slot 0 and allows vou to program
any current output within the range of the card. Current
ouiput data is sent gut in the form of a variable.

7-33 The fixed 2 number format used in the 9825
controller program.is required whenever the D/A current
card is being programmed by the 9825 controller. Since
the 9825 controller wakes-up in fixed 2 format when it is
turned on, there is no need to be concerned with line 0
unless your program changed the number format of the
contreller prior to this.

7-34 Perform the following steps when using the
sample program.

1. Connect a 100 ohm load resistor between
pins 19 and 21 {common} of the 68721A out-
put connector.

Load the program, including subroutine
“cheker”, into the controller.

Depress RUN on the controller, The con-
troller will stop with “enter current”
displayed. Enter the output current {in
milliamps) you would like to program and
depress CONTINUE.

if the progranm has been correctly entered
into the controfler, the controlier will stop
with “test current” displayed. At this point
you may caiculate the output current by us-
ing a voltmeter to measure the voltage
across the load resistor and dividing the
voltage reading by 100. Keep in mind that
the result wilt only be an approximate value
unless the exact resistance value is known
and used in the calculations.

7-35 If errors are detected by the Multiprogrammer
an error message will be printed (9825} or displayed
{9835/45) and the program wili terminate.

Example 7-11. 697214 Sample Test Program
9825A Controller

8835/45 Controliers

7-36 Relay QOutput Card, 69730A

7-37 This card provides 16 independent SPST normaily -
open {Form A) relays. Output data will be in the form of con-
tact closures. Data transfer from internal storage circuits on
the card to an external device can be initiated by a controlier
command or by external triggering. Internal timing circuits on
the card prevent the card form being reprogrammed until ail
relays have stabilized (approximately 6 msech.

RELAY
- CONTAGT
OUTPUTS

7-38 As shipped from the factory the data format of the
refay output card has been set for decimal programming using
integer values in the range of 0-65535 with an LSB of 1. Data
values above or below this range will be rejecied and an error
message generated. H you desire to program this card using a
different format or data range you may either use a Set Format
instruction {SF) to reformat the card or permanently select a [race
different format by changing jumpers on the card (see 89730A
card manual}.

(TP5} TREGGER POLARITY SELECT
{851 BL

CORMON

89730A Connector

&
bl
=
o

RETURN

RE,
BUFFER _\ 44,
FIRST SECOND
RARK RANK ENABLE
STORAGE STORAGE

EY
ENABLE

&

SUBADDRESS 3

e

3 -
SUBADDRESS @

@ MM — Mo Ewm—

[T a = T TS - ¥ aad 15 P=

INPUT

IRt

MZErr-grop® TMEEPDOODID—ACCR

STATUS S

O B [Dl 0y

LOAD SECOND RANK EXTERNAL

CTARD ENABLE - ENABLE £EN
END OF PROCESS SESEGR
BUSY - SCORSY
EXTERNAL TRIGGER . CSEXT
TRIGGER POLARITY SELECT g TS

% COMMON

69730A Biock Diagram

7-8

7-38 Exampie 7-12 #llustrates using an OP instruction to
program all the relays closed on a relay output card in slot 7
and programming all the refays open on a relay card in sfot 12.
Since addresses and data are both fixed in this example they
are sent out as constants in a literai field. After the OP instruc-
tion has compileted, the next instruction {if any) can start pro-
vided that the Muliprogrammer is operating in the serial
mode. i the Muitiprogrammer is operating in the paratlel
mode, SRQ will be set when the OP instruction completes.

NOTE

The Cutput Parallel (OP} instruction us-
ed in examples 12 and 15is a typical in-
struction used to program this card. The
actual instruction to use will be deter-
mined by the application. For example, a
Write and Cycle {(WC/ instruction can be
used if the Multiprogrammer is in paraflel
mode and you do not require an SRQ
from the Multiprogrammer when the
programmed card completes its data
transfer. Or, as another example, cards
that are to be externalfy triggered would
first be programmed by a Write First
Rank {WF) instruction to load output
data into first rank storage on the card.
Then when an external trigger is subse-
guently applied fo the card, data will be
transferred from first rank storage to the
output of the card closing the ap-
propriate relays.

Example 7-12. Programming Two Relay Output Cards

9825A Controller

P kL

Example 7-13. Programming Individual Relays

9826A Controller

7-40 In some cases you may find that you wouid prefer to
have control over individual relays on the card rather than
calculating a data value for the whole card. The Output Bit
{OB} instruction provides an exceflent means of achieving this

7-9

by allowing you to open or close any relay(s) desired. Exampie
7-13 illustrates using an OB instruction to open the LSB relay
{bit 0) and close the MSB relay {bit 15} on a card in slot 7.

7-41 Data contained in first rank storage on the relay out-
put card can be read back from sub-address 3 at any time by
using a read value (RV} instruction. f the card has been cycl-
ed, either by an instruction such as an “OB", “OP", 05",
“ObFT, YT, WCT, or by an external trigger, the first rank
data will be the same as the data present at the output of the
card, Example 7-14 illustrates reading first rank data from a
card in siot 7 into variable A" in the controller,

Example 7-14. Reading First Rank Data

9825A Controller

7-42 Example 7-15 is a sample test program which is in-
tended to give you some hands-on experience in programming
a relay output card. This example assumes the refay card isin-
stalled in slot 7 and allows you to specify an ocutput bit number
and program a contact closure with the associated relay. Data

‘is sent out in the form of a variable,

7-43 Perform the following steps when usirig the sample
program.

1. Load the program, including subroutine
“cheker”, into the controller.

2. Depress RUN on the controlter. The controller
will stop with “enter bit number” displayed.
Enter an output bit number form 0 1o 15 and
depress CONTINUE.

3. If the program has been correctly entered into
the controller, the controlier will stop with “test
bit"” displayed. At this point you can use an
ohmmeter to check the contact resistance of
the relays. Relay outputs can be measured bet-
ween odd numbered pins from 1 to 31 and cor-
responding fettered pins (i.e. 1-A,3-C,31-k} as
shown in the 69730A output connector diagram.
Al relay contacts should be open except for the
contacts that correspond to the bit number that
was entered in step 2.

7-44 If errors are detected by the Multiprogrammer an er-
ror message will be printed (9825} or displayed {9834/45) and
the program will terminate.

Example 7-15. 69730A Sample Test Program

7-45 Digitat Cutput Card, 697314

7-46 This card provides 16 bits of TTL/DTL/CMOS-
compatibie logic levels as its cutput. As shipped from the fac-
tory, all output bits are positive true (high = logical 1).
Jumper W51 on the card can invert the logic sense of all 16
cutputs. Data transfer from internal storage circuits on the
card to an external device can be initiated by a controller com-
mand or by external triggering. Jumper (W13 on the card is
removable to allow an externai timing circuit to control the
gate/flag sequence of the card.,

OUTPLT
= DATA

J
EXTERNAL BIAS

7-47 As shipped from the factory the data format of the
digital output card has been set for decimal programming us-
ing integer values in the range of 0-65535 with an LSB of 1.
Data values above or below this range wiil be rejected and an
error message generated. f you desire to program this card

using a different format or data range you may either use a Set oy THEER P A
Format {SF) instruction to reformat the card or permanently
select a different format by changing jumpers on the card {see
89731A card manual).

ATE (GAT

LAG (FLA)

EXTEFIAL TRIGGES (EXT)
END OF PROG: (EOP)
EXTERNAL SNABLE (ERN)
COMMON

ELT|C

(BSY)

] ~= =

69731A Connector

REAT RETURN irEsa 18 w5
v I\ gibaoress 5 | Rorren g, +5v—d’\1—?—o :H:;Ex'rﬂmm
i R - % S pucLp g 3 as
3 A 2 RESISTORS
T N "
! 3 J. .
8 we il SECEAD ENABLE J\ IRYERT 3
e FANK HANK GATES BVENT . DEG\TAL
8 <:> i ws“”["‘“‘“; SEOREGE STORAGE eaTts GATES © {Gutdts
i ¢ s i T #e3)
3 E JHVERT]
@ A R £0A9 EMABLE} wsl .04t
M § SENSE
¥
<: H P
~—
&
H
_— L EXTERNAL. ENAELE
5 ECAD SECOND RAMK,]f EtER
o i ERED enmie — 7
i g END OF PROGESS .
3 i BU5Y
¥ >
R
<:> b GATE
SATESFLAG
§ LG JUMPER (‘:W‘D
H & EXTERNAL TRIGGER Bt
’ TRIGBER PULARITY SELECT tes
o FLAG POLARTTY SELECT ¥ iy
: CAFES

89731A Block Diagram

7-10

7-48 Example 7-16 illustrates using an OP instruction to
program all bits high on a digital output card in slot 8 and all
bits low on digital output card in slot 11. Since addresses and
data are both fixed in this example they are sent out as con-
stances in a literal field. After the OP instruction has com-
pleted, the next instruction {if any} can start if the
Multiprogrammer is operating in the serial mode. H the
Multiprogrammer is operating in the paraliel mode, SRQ will
be set when the OP instruction completes. The time taken for
instruction completion is mainly determined by the internal
timing circuits on the card if jumper W) is installed, or by an
external device f W10 is removed and the gate/flag lines are
connected to the device.

NOTE

The Cutput Parallel {OP) instruction us-
ed in examples 16 and 18 is a typical in-
struction used to program this card. The
actual instruction to use will be deter-
mined by the application. For exarnple, a
White and Cycle (WC) instruction can be
used if the Multiprogrammer is in serfal
mode and you do not require subse-
guent instructions to want until the pro-
grammed card completes fts data
transfer. Or, as another example, cards
that are to be externally triggered would
first be programmed by a Write Frist
Rank (WF} instruction to load output
data into first rank storage on the card.
Then when an external trigger is subse-
quently applied to the card, data will be
transferred from first rank storage to the
output of the card and a gate/flag se-
guence will be initiated.

Exampie 7-16. Programming Two Digital Output Cards

§826A Controller

I

Lt

7-48 Data contained in first rank storage on the digital out-
put card can be read back from sub-address 3 at any time by
using a Read Value instruction. If the card has been cycled,
either by an instruction such as an "OB”, “OP”, 08", “0I",

"CY”, “WC", or by an external trigger, the first rank data will
be the same as the data present at the output of the card. Ex-
amples 7-17 iustrates reading first rank data from a card in
slot 8 into variable A" in the controlier

Example 7-17. Reading First Rank Data

9825A Controlier

7-50 Example 7-18 is @ sample test program which is in-
tended to give you some hands-on experience in programming
a digital output card. This example assumes the digitsl output
card Is installed in slot 8 and allows you to specify an output
bit number and program a logic levef from the associated bit.
Jumper W10 should either be instafled when running the sam-
ple program or you may connect pins “k” and 1" on the out-
put connector. Data is sent out in the form of a variable. Any
attempt to program a data value that is out of range will result
in an error message being printed {9825} or dispiayed
{9835/45) and the program will be terminated.

7-51
program.

Perform the foliowing steps when using the sample

1. Load the program, inciuding subroutine
“cheker”, into the controiler.

2. Depress RUN on the controller. The controller
will stop with “enter bit number” dispiaved.
Enter a bit number from 0 to 15 and depress
CONTINUE.

3. |f the program has been correctly entered into
the controller, the controller wili stop with “test
bit"”" displayed. At this point you may use a
voltmeter to check the output leve! of the in-
dividual bits. The voltage measured between the
lettered pin corresponding to the bit number
entered in step Z {as shown on the 69731A out-
put connector diagram) and pin 1" {commaon)
should be approximately + 5volis. The voltage
measured between the other lettered data out-
put ping and pin " should be approximatety
0.1 volts.

Example 7-18. 89731A Sampie Test Program

9826A Cantrolier

9835/45 Controllers

7-52 Puise Train OQutput Card, 69735A

7-83 This card can be programmed to generate from 1 to
32767 square wave cycles of programmable duration and out-

put pulses of fixed lor user selectable widths at programmable
intervals. The square waves and pulse outputs are switched
between two sets of output terminals as a function of the
polarity of the output pulses programmed. The starting time of
the output can be determined by a controller command or by
external triggering. When applied to a stepping motor
transiator, these pulses are converted to clockwise and
counterclockwise drive pulses for an associated stepping
motor. The square wave or pulse outputs can also be used for
pulse-frain update of supervisory control stations.

7-54 Three sub-addresses are used fo program an output
from this card.

1. Sub-address 0 (the main address) is used to
specify the number of output pulses and select
the appropriate output terminals. Decimal values
between - 32767 and + 32767 are accepted.

{TPS} TRIGGER POLARITY SELE
By

EXTERMNAL PULL-UF

)y B

COMMON

[
.

(SR

Hi-FLAGE

J
S INTE:

SARACIT

g 7w O —

RESISTOR/CAPACITIR

EWaVE

Firdf £XTERNAL

P
)NID f?'%
o8 | SELECSTION

+MSH +5Y W W2
READ RETURN usa f‘ EXTERMAL
SUBAIDRESS 3 | BUFFER LATEH —MsB i BiAg
RESIHTORS
FIRST ZERO T-EIJLRE
WRITE NUMBER GF 15 8T N Sk
5 RANK e COUNTER LCOUNT ™ WANE
<:> SUBROORTSSE Y s copace | e ok sEcToR L ¢ E
0UTPU> t;” FR LGeD Foouns powk E
. SCUBAE
% ,‘} FY b Wk
INVERT :
;I' Z e | EERD + S CLUTPUTS 11 j
PUT WHITE FERIOD e i fLip
£ L amancarss 2 X STORAGE COUNTER) FLOP e IVERT/
@ | r OE TECTOR! ! RVERT +
g Y EMABLE % BATES - PuLse
A H CONT i - T
i p S G |
" jwarte iy . [y
¢ suBpoRess) | PLER } Y shor
k i, XD, P -
120 — —D—“ e
B TERO BETECT Ly b
5
é iy K h
g sTaTus § | CevsTAL
@ oLt
i
A hued
N
¥

]
- e
=

i
0

ZERO DEYECT

EXTERNAL EXABLE

T me O Boamoe

y SEEN
o SHR0 LARLE —C_J"(
e A
4 LEAD SECOND AN it Y_G? SXTERMAL TRSGER SERT
;ggvoF FROCESE :_A-:jgg\f
TAIGGER POLARETY SELEGT - S
w3
T umon

<‘7-_m

65735A Block Diagram

7-12

Positive values will generate square wave out-
puts from pin A and pulse outputs from pin E,
while negative values wili generate square wave
outputs from pin C and pulse outputs from pin
H.

Sub-address 1 is used to set an internat period
multiplier used in conjunction with sub-address
2 to determine the programmable period (from
tusec to 6.5538s) of the output square wave {or
time interval between pulses), Data values of 0,
1, or 2 sent to this sub-address wili set the

period multiplier to 1, 10, or 100, respectively. At
system turn-on time, the card will wake up with
the period multiplier preset to 1 and sub—address 1
need not be programmed at ait unless you requ:re
a different multiplier.

Sub-address 2 is used to specify the period
magnitude of the output square wave in
microseconds. Decimal values between 1 and
66535 will be accepted. The actual program-
mabte period is determined by the period
magnitude sent to sub-address 2 multiplied by
the period multiplier stored in sub-address 1.

7-55 When programming this card, data values above or
below the maximum range altowed for the particular sub-
address being programmed, except for sub-address 1, will be
reiected and an error massage generated. Sub-address 1is an
internal octat register which will accept any octal value up to
177777 but should only be programmed with 2 0, 1, or 2 as
noted previously.

7-66 Example 7-19 illustrates programming square wave
and puise outputs from the positive output terminals of a pulse
train card installed in slot 8. The output from pin “A” will be
30000 square wave cycles with a period of 200 microseconds
each and the output from pin “E” will be 30000 one microse-
cond pulses at 200 microsecond intervals. Sub address”1" is
not programmed since the period multiplier used for this ex-
ampte is 1. Since the address, period, and number of output
pulses are fixed in this example, they are sent out as constants
in a literal field.

7-57 Notice that a write first rank instruction, “WF”, is us-
ed to program sub-address 2 and an “OP” instruction is used
to program the main address. Generally, the way to program
this card is to use & “WF" instruction to program sub-
addresses 1 and 2 and an “OP"", 08", or "WC" instruction to
program the main address. The "OP”, “0S”, or “WC" in-
structions serve the dual purpose of ioading the number of
cutput pulses into sub-address 0 and cycling the card.

7-58 Although the output from the card programmed in
example 7-19 will take only 6 seconds to complete, it is possi-
ble to program an output from the pulse train card that would
take over 59 hours to complete. Rermember, if the puise train
card is programmed by an “OP” or an 08" instruction, and
the Multiprogrammer i is in senal mode ali subseguent instruc-

tions sent to the Multiprogrammer must wait until the pulse
train card completes before they are executed! If the
Multiprogrammer is operating in parallel mode, subsequent in-
structions of a different type will be allowed to run concurrent-
ly with the instruction that has programmed the card. in
parallel mode an “OP" or “0S" instruction will set SRQ to
notify the contruier when the pulse train output has been
completed. In either seriai or parallel mode a “WC" instruction
may be used to initiate a pulse train output when you do not
want to hold up subsequent instructions and you do not re-
quire a service request upon completion of the pulse train.

Example 7-19. Programming Qutputs From the Positive
Terminals

9825A Controller

7-56% Exampie 7-20 ilustrates programming square wave
and pulse outputs from the negative output terminais of a
pulse train card intstalied in siot 8. The output from: pin “C"
wili be 100 square wave cycles with a period of 5 seconds
each and the output from pin “'H’ will be 100 one microsecond
puises at 5 second intervals. In this example the output
period/pulse time interval is determined by multiplying the
period value in sub address 2 (60000 microseconds} by the
range multiplier stored in sub-address 1 (data value of 2 = in-
ternal multiplier of 100}.

Exampie 7-20. Programming Cutputs From the Negative
Terminals

9826A Controller

7-13

7-60 After the sub-addresses of the pulse train card have
been programmed with the required data the output pulse
train may be re-initiated at any time by sending a Cycle instruc-
tion to the card {i.e. CY,BT for the previous examp!es) or ap-
plying an external trigger between pins “m’” and """ {com-
mon}. This is possible because data that has been sent 1o the
main address (sub-address 0}, sub-address 1, and sub-address
2 will be stored until {1) the sub-address is reprogrammed, {2}
a system clear is sent to the Multiprogrammer, or (3} the
system is turned off. The technique of sending data to the
sub-addresses then using a “CY” instruction or an external
trigger to start the pulse train is similar o using the “WC" in-

struction described earlier in that subsequent system instruc-
tions will not be held up in seriat mode and SRQ will not be set
upon completion of the pulse train in parallel mode. If this is
the approach you would like t¢ use, note that the "OP" in-
structions used in the previous examples can be replaced with
“WEF" instructions. This will load the sub-address registers
without actually starting the puise train. The pulse train can
then be started at any time by the Cycle instruction or by an
external trigger.

7-61 One final method of programming the pulse train
card is to use an Output Interrupt (Ol) instruction. Ol in~
structions run concurrently in serial or parallel mode, always
set SRQ when a card assigned 1o an P instruction com-
pletes, and never hold up subsequent instructions. Therefore,
changing the “OP’" to an O instruction in the previous ex-
amples wiil allow you to use the Multiprogrammer in serial
mode if desired, run other instructions while the pulse trainis
being sent out, and receive an S0 upon completion of the
pulse train. When an "0} instruction sets SRQ you should
read back from extended talk address 09 to determine the ad-
dress of the interrupting card and release the internal memory
reserved for the ""Ol”. For exampie, red 72309,r3,r2,r§,étc
(6825) or ENTER 723.09;R1,R2,R3, etcl8835/45).

7-62 Example 7-21 is a sample test program which is in-
tended to give you some hands-on experience in programming
a Puise Train Output card. This example assumes the card is
installed in slot 5 and allows you to program from 1 to 32767
ten millisecond output cycles from either the positive or
nagative output terminals. it will be up to you to provide a
means of monitoring the pulse train. Data to program the in-
ternal period multiplier and magnitude vatues is sent out as a
constant in a literal field and the number of output puises is
sent out as a variable. Since we will be monitoring the service
request line to determine when the “OP"" instruction has com-
pleted, a Multiprogrammer status read is done to clear SRQ, if
necessary, before we program an output from the card.

7-83 Parform the following steps when using the sample
program.

1. Load the program, including subroutine

“cheker’’, into the controller.

2. Depress RUN on the controller. The controlter
wifl stop with “enter no. of pulses” displayed.
Enter the number of output pulses you would
like to see programmed and depress CON-
TINUE.

3. The Puise Train Qutput card will transmit a pulse
train approximately +5 voits in amplitude which
can be measured as follows.

a. If a positive value has been entered in
step 2, a square wave output witha
period of 10 milliseconds {100 Hz) carl
be measured between pins “A” ar]dl
“r" {common) and aseriesof 1
microsecond wide positive puiées at 10
millisecond intervatls can be'measured
between pins “E" and ",

b, i a negative value had been entered in
step 2, the square wave output can be
measured between pins "C” and"'r”
and the pulse outputs can be
measured between pins "M and"'r".

4, In example 7-21 the Multiprogrammer is pro-
grammed to parallel mode before programming
an output from the puise train card. This will
cause SRQ to be set upon completion of the
QP instruction. In this example we wait for
SRO to be set then display “done’” on the con-
trolier. Since the frequency of the output is 100
Hz the time interval between depressing CON-
TINUE in step 2 and displaying “done” wili be
approximately 1 second for every 100 pulses
entered in step 2 (unless errors are detected).

7-64 If errors are detected; such as, an attempt to program
more than 32767 output pulses, an error message will be
printed (9825} or displayed (9835/45).

Example 7-21. 69735/ Sample Test Program

98254, Controller

8835/45 Controllers

.65 Timer/Pacer Card, 697364 Table 7-2. Programming Ranges and Symbols
7-66 This card can be programmed to generate crystal- Time Period Symbol Programming Range
controlted output pulses from 1 microsecond to 65535

seconds (18.2 hrs) in duration. The card operates either in the Seconds S 0.001-65535
one-shot mode (single cutput pulse} or the recircufate mode Milliseconds M 0'(}0‘14294836 295
(eontinuous train of output puises). An autoranging capability Microseconds U ' 1.4294836 '
designed into Mutliprogrammer firmware ensures the best

possible resolution for any output pulse width programmed.

The starting time of the output pulses(s) can be determined by

a controller command or by external triggering. 0y

7-67 As shipped from the factory the format of the timer
card has been set for programming in milliseconds. This for-
mat may be changed in one of two ways:

Appending on “S", “M"”, or “U" ta the data
that is being sent cut will override the inteenal
format and cause the data to be interpreted as
seconds, milliseconds, or microseconds, respec-
tively.

You may use a Set Format (SF} instruction to
reformat the card or permanently select a dif-
ferent format by changing jumpers on the card
{see 63738A card manual).

7-68 Table 7-2 is a list of the standard programming time
periods, their associated symbols, and the range of data
values that may be programmed for each time period.

{TPS} TRIGGER POLARMTY SELECY

LOHANON

Tz EC

T ot

ERSEEETE -4

O

£ OOMMON

MAL TRIGEHR XT3

69736A Connector

WRHTE Mors | sEcmcuLan -
SUBAGDHESS 7] STORAGE o i &2
- . PP $3
o RESISTORS
w3 c
. RETHRN /L)
SUBACERE S5 5 | BUFFSR Reg, BOP
o __
SOUTEAUT M 1 } — A el
! P aiee e~ e LA I — e |
T s N B I Lt i 2 e) "{> Lacep
(i ;<:>§ TOUNTER -
i : H v
n | Lo
G ¥ s | [4080
£ fwaiTs -
i [stmnorRess - sy o
k FLl B o
9 5 2ERG ws
H HAELE § 2, oo 3. b 5T
ERAHLE
B .
A W
i
8 ity
i STATYS CrgTa
A CLOCK
i
¥]
. Bal
FLa 7 e SHTERNAL ENABLE "
¢ ZERO DETECT { : o
S - CARD ENABLE od
1
R MENAL ’i'” R,
o SWTCHES o8 o\
C1_ Lonp sroonD Rass 7 LC 1 SXTORNAL TRIGOER ot
GLENboFpRocEss .| BCREOP
£ |, resser poussery seLeoT =P
Wi
LT o

69736A Block diagram

7-15

7-6% One-8hot and Recirculate Modes. This card
“wakes-up’” in the one-shot mode. Recirculate operation
{continuous square wave) can be obtained by using a Write
First Rank {WF) instruction to program sub-adress 2 with a
data value of 1 before programming the output pulse. if thisis
done, the period between puises will be the same fength of
time as the period of the pulse, thereby enabling you to obtain
square wave output frequencies of from 0.00000763Hz to
500kHz. Reprogramming sub-address 2 with a vaiue of O will
cause the timer card to revert back to the one-shot mode of
operation,

7-70 Example 7-22 illustrates programming one,
10-millisecond pulse from a timer card in siot 7. Since both the
address and data value in this example are fixed, they ars sent
out as constanis in a literal field. To program a continuous
output of 10 millisecond pulses change the literal string in ex-
ampie 7-22 to read "WF,7.2,17,0P,7,107"".

Example 7-22. Programming a 10 Millisecond Pulse
Qutput

98254 Controller

LR

7-71 Although the cutput from the card programmed in
exampte 7-22 will take only 10 milliseconds to complete, it is
possible to program an output from the timer card that would
take up to 18.2 hours to complete. If the timer card is program-
med by an "OP” or an "0S8" instruction, and the
Multiprogrammer is in serial mode, ali subsequent instructions
sent to the Multiprogrammer must wait until the timer card
completes before they are executed. If the Multiprogrammer is
_operating in paraliel mode, however, subsequent instructions
of different type wilt be allowed 1o run concurrently with the
instruction that has programmed the card. In parallel mode an
“OP" or "08" instruction will set SRQ to notify the controller
when the pulse output has been completed. In either serial or
parallel mode, a “WC" instruction may be used to initiate a
pulse output when you do not want to hoid up subsequent in-
structions and you do not require a service request upon com-
pletion of the pulse output.

7-72 If the timer card is used in the recirculate mode, pro-
gramming of the card will be considered to be finished as soon
as the card receives output data. Therefore, subsequent in-
structions will not be held up if the Multiprogrammer is in
serial mode. In paraliel mode, SRQ will be set immediately
after output data is received.

7-73 Example 7-23 iilustrates programming one 50
microsecand pulse form a timer card in siot 7 and a 20 second
pulse from a timer card in slot 8. This example illustrates pro-
gramming in migroseconds and seconds by using symbols to
override the internal format of the card.

Example 7-23. Programming a 50 Microsecond and a 20
Second Pulse

98254 Controlier

7-74 After a Timer/Pacer card has been programmed with
the required data, the cutput pulse may be re-initiated at any
time by sending & cycle instruction to the card li.e. "CY, 7T in
example 7-22) or applying an external trigger between pins
“m” and "t {commen). This is possible because data sent to
the card will be stored until {1) the card is reprogrammed, {2) &
system clear is sent 1o the Multiprogrammer, or (3} the system
is turned off, The technique of sending data to the card then
using a "CY'" instruction or an external trigger to start the out-
put pulse is similar to using the “"WC" instruction described
earlier in that subsequent system instructions will not he held
up in serial mode and SRQ wili not be set upon completion of
the puise in parallel mode. If this is the approach you would
like to use, note that the "OP" instructions used in the
previous examples can be replaced with “"WF” instructions.
This will load the output data register without actually starting
the pulse. The pulse can be started at any time by the cycle in-
struction or an externat trigger,

7-75 One finat method of programming the timer card is to
use an Output Interrupt {O) instruction. 01" instructions run
concurrently in serial or paraliel mode, always set SRQwhen a
card assigned to an "O{" instruction completes, and do not
hold up subsequent instructions. Therefore, changing the
"OP" 1o an Ol instruction in the previcus examples will
aliow you to use the Multiprogrammer in serial mode if
desired, run other instructions while the puise is being sent
out, and receive an SRQ upon completion of the pulse. When
an 01" instruction sets SRQ, read back from extended talk
address 09 to determine the address of the interrupting card
and to release the internal memory reserved for the “0l”; {ie.
red 72308,71,12,r3,etc (9825) or ENTER 723.08;R1,R2,R3,etc
(9835/45).

7-76 Example 7-24 is a sample test program which is in-
tended to give you some hands-on experience in programming
a timer card. This example assumes the card is installed in siot
7 and aliows vou to program a puise output from one microse-
cond to 6553b seconds long. It will be up to you to provide a
means of monitoring the output puise. The width of the out-
put puise will be sent gut as a variable. Since we will be
monitoring the service request line to determine when the
"OP” instruction has completed, a Multiprogrammer status
read (i.e. red72310,r1,r2/ENTER 72310;R1,R2) is done at the
beginning of the program to clear SRQ, if necessary, before
we program an output from the card.

7-77 The fixed 3 number format used in the 8825 controller

program is required to ensure that cutput pulse data with 3
decimal places is not truncated.

7-78 Perform the following steps when using the sample
program.

1. Load the program, including subroutine
“cheker”, into the controller.

2, Depress RUN on the controller. The controlier
will stop with “enter pulse width” displayed,
Enter the width of the desired output pulse in
milliseconds and depress CONTINUE,

3. The timer card will transmit an ottput pulse ap-
proximately 5 volts in amplitude lasting as long
as you specified in step 2. The output pulse
may be observed by connecting an oscilloscope

between pins “A” and """ (common} of the
timer card output connector.

4. In example 7-24 the Multiprogrammer is pro-
grammed to parallel mode before programming
an outpirt from the timer card. This will result in
SRQ being set upon completion of the “OP" in-
struction. In this example we wait for SRQ to
be set then display “done’’ on the controlier.
The time interval between depressing CON-
TINUE in step 2 and displaying “done’ will be
approximately one second for every 1000
milliseconds entered in step 2 {unless errors are
detected).

7-79 If programming errors are detected by the

Multiprogrammer, an error message will be printed (8825} or
displayed (9835/45}.

Example 7-24. 69736A Sample Test Program

780 A/D Converter Card, 69751A

7-81 This card is a 12 bit, analog-to-digital converter used
to measure bipolar voltages. Data transfer from the input edge
connector to internal storage circuits on the card can be in-
itizted by & controller command or external triggering.

7-82 As shipped from the factory, the A/D card has been
set to read — 10.24 to + 10.235 volts with an LSB of 0.005
volts. Three aiternate voltage ranges are also available
{2 100mV, +1V, and £ 100V). The +100mV and t 1V ranges
are selected by on-card switches while the + 100V range is ob-
tained by connecting the input to an internal divide-by-ten
gltenuator. If you are using this card in a range other than the
standard range (+ 10V) you should change the LSB of the
card to correspond to the range you have set {e.g., 100 volt
range requires an LSB of 0.08). This may be done either by us-
ing an “SF” instruction or “permanently’” by changing
jumpers in the card (see 69751A card manual).

7-83 Example 7-25 shows how to use an “IP" instruction
to program two A/D converter cards, located in slots 3 and 5,
to take readings. Data obtained from the readings is then read

»

FRTERNAL
LGITAL
CUTPUTS

106 WOLT INPLET
GUARD
DSy

GUARD

ARALOG INPLFT
GURRG [V

ES0LATED COMMO

HIAF
SOLATED COMBON

136 s :
150, ATED cowoﬂﬂxgﬂfg\m*
b

- UEXTERNAL 415
g
Ex;sg‘“{:somm DO
A i

END GF CONVERE| END OF COMVERSION

[TES) TRIGGER FOLARITY SELED
(8] BUS

EXTEANAL TAIGGER ExY)
EHNL OF PROCESS (B8

COMMO: L COMMAT

7-17

697514 Connector,

INTERKAL L
— 1SCLATED - CWED
SUPPLIES g0 g w2]E TEENA
W e XTERNAL
- g e T Ry
; ¥ BOLATED
b niwblSOl ATED POKER e SHFFLIES
FOR A7 6 AMPLIFIERS W =}
AP) EXTERNAL
REAL) DATA [ATA
SUBADDRESS 3 REA/:}% STORAGT, SUTPLTS
% { - T T2 BYTEN,
P
HI SL R 5
» H . SELE BLAROE <, L em
4 | snroonesse) giten 1
T % 11
| H EA';RLEL ol i S ATTEN, GUT
P £ BOREL wELY —
R i s [PEAZY 412, SNFC, AMPL/’I v eed Lo e GUARD
] | |/ 5Ea0 RETURN SHIE PROTE wo el H S AALOG
g ¥ NgiBanongsss | surreR [N | REGISTER SOLATERS| giay | - [N, o ity
A i 73 Hl BLARD
" 5
» Twwea‘.
g & } ML,
! Tai . NGE
7 //L— e PUL SE Eai SWITCHES
g sTaTus A I563LATOR
£ A]
#
£ ™ o
i . MANUAL sl
% 2T SWITCHES \I?
g) e < £XTERNDL TRIESER PR
/LJ> ﬁ m{ }xntﬁ'&
T o - -
\I"L i ENE OF COAVERSION U
¢ EXTERNAL TRIGEER
t ENG 5F FHCLESS cop
i T BESY
! & PLLARR Y SELECT - —
. W
? " omnon

B9751A Block Diagram

back into variables “A” and “B" in the controller. If the
Multiprogrammer is in serial mode, the data can be read back
immediately after the IP instruction has completed, as shown
in the example. Or, another instruction can start and the data
can be read back at a later time. If the multiprogrammer is in
parallei mode, SRQ will be set when the P instruction com-
pletes.

Example 7-25. Programrﬁing Two A/D Cards

8825A Coniroller

9BI5A Controllers

TEUT

7-84 When an “IP” instruction is used to take a voltage
reading, the voltage present at the input of the card is con-
verted to a digital value that is stored on the card. This value is
also stored in the memory of the Multiprogrammer and will re-
main there until read back from the appropriate extended talk
address {01). By using a read value (RV) instruction, data
stored an the card can be read back at any time without caus-
ing the card to take a new voltage reading. This is particularly
useful when an external trigger is used to initiate a voltage
reading. When an external trigger is applied to the A/D card,
or the card is programmed by a Cycle (CY) instruction, it will
convert the input voltage to a digital value and store it on the

card. It will not, however, store this data in the memory of the
Multiprogrammer. The data can be read back from the card by
an "RV" instruction as shown in example 7-26, which il-
lustrates reading back data that is stored on an A/D card in
siot b,

Example 7-26. Reading Data without Taking a New
Voltage Reading

%8254 Controfler

7-85 Example 7-27 is a sample test program which is in-
tended to give you some hands-on experience in programming
an A/D card. it ailows you to apply an external voltage to the
input of the card then read in and display the value of the
voltage. This example assurmes the A/D Card is installed in
siot 3.

7-86 For test purposes, subroutine "cheker” is executed
immediately after sending the input instruction to check for
programming errors before reading back the data.

7-87 Perform the foliowing steps when using the sampie
program.

7-18

1. Load the program, including subroutine
“cheker”, into the controlier.

Apply the voltage to be measured between pins
19 (+) and 21 (common) on the input connec-
tor.

3. Depress RUN on the controller. The voltage will

be measured and displayed.

7-88 If errors are detected by the Multiprogrammer an er-
ror message wiill be printed (9825) or displayed (9835/45) and
the program will terminate.

Example 7-27. 69751A Sample Test Program

98254 Contreller

9835/45 Controllers

7-89 Isolated Digital Input Card, 887704

7-80 This card allows the controller to read 18 bits of data
that is isolated from ac earth ground, thereby eliminating
ground loop problems in automatic test and control systems.
Data transfer from the input edge connector to internal
storage circuits on the card can be initiated by a controller
command or external triggering. Although the gate/flag tim-

ing sequence of this card is normally controlied internally by
the card, jumper W6 on the card may be removed to allow the

external device to control the gate/flag data transfer sequence
{see B9770A card manual),

7-91 As shipped from the factory, the format of the
Isolated Digital Input card has been set to decimal. Values read
from this card will be integers in the range of 0-65535 with an
LSB of 1. If you perfer to read this card using a different for-
mat or input data range, you may either use a Set Format in-
struction {SF) to reformat the card or permanently select a
different format by changing jumpers on the card {see card
manual}.

READ
SUBAUDRESS 2

I& DLITFLF[BITS

GUT oo
BUFFER
OU' 0

N 28

iNVE&‘T.’
TVERT
GATES

16 INPUT BiTS

7 READ
S\ SHBADCRERS BT

S IMvERT
2 huslc

o

4 D oL e MCHN 2= e A

5y EXT

ISOLATED
GATE

HCOM
%—*DH.A +

>
AT
AT
i

o3

ME IO AR MR =0 o0 DT A T

INPYT

F*W

FLAG :
st FLA =

» EXT+
e
Xy -

’ sTATes

]

GATE

P PO GAT
ﬁ éws
FLAG -
L T — - £FLA
. EXTEANAL TRIGEER g7
9 END GF PROCESS L EOP
BUST > BSY
4 o FLAG EDGE sth' CFES
H
! FLAG POLARITY SELECT T orPs
“ i T IR :
Pl TRIGBER POLARITY SELECY 1t =TS
WP W4 WS WG W3 COMMON

89770A Block Diagram

7-19

£ OLT EXTERNAL
1soLATED- B FXTERRAL

QUTELT

@ (AR

89770A Connector

7-92 Example 7-28 shows how to use an "“IP" instruction
to program two 69770A cards, located in slots 7 and 8, to take
readings. The data is then read back into variables A" and
“B". if the Multiprogrammer is in serial mode, the data can be
read back immediately after the “IP” instruction has com-
pleted, as shown in the example. Or, another instruction can
he executed and the data can be read back at a later time. |f
the Multiprogrammer is in parailel mode, SRQ will be set when
the “IP" instruction completes.

Example 7-28. Programming Two Isolated Digital Input

Cards

88254 Controller

9835/45 Controllers

QUTPUT 7E3S"IPs 78T
EWTER VZ3.81i0E

7-93 When an “IP” instruction is used 10 take an input
reading, data present at the input of the card is latched into in-
ternal storage circuits on the card. This data is also stored in
the memory of the Multiprogrammer and will remain there un-
til read back from extended talk address 01. By using a Read
Vaiue (RV) instruction, data stored on the card can be read at
any time without causing the card to take a new reading. This
is a particularly useful when an external trigger is used to in-
itiate a data reading. When an external trigger is appiied to the
card, or the card is programmed by a cycle {CY) instruction, it
will store the input data on the card. it will not, however, store

this data in the memory of the Multiprogrammer. The data can
he read back from the card with an "RV"’ instruction as shown
in example 7-29 which ilustrates reading back data that is
stored on a card in slot 7.

Exampie 7-29. Reading Stored Data from a 69770A Card

98254 Controller

9835/45 Controllers

wa g
)

CBEE

QUTPUT
FRTER 723

7-94 Example 7-30 is a sample test program which is in-
tended to give you some hands-on experience in programming
an Isolated Digital Input card. It allows you to apply an input
signal to an input data line, read in the resulting data, then
calculate and display the pin number associated with the input
signal. This example assumes the isolated digital input card is
instailed in slot 7. Jumper “"W8E" {factory connected for inter-
nal gate/flag completion) must be installed when running the
sample program.

7-95 For test purposes, subroutine "‘cheker” is execuied
immediately after sending the input instruction to check for
possible errors before reading back the data.

7-96 Perform the following steps when using the sample
test program.
1. Load the program, including subroutine
“cheker”, into the controller.

2. From an external power supply, select a voltage
level which corresponds to the high state of the
option to be tested as specified in the 69790A
manual.

3. Connect an input vohltage to the input connector
of the isolated input board as follows:

a. Connect the high {positive) side of the in-
put voltage to any pin, “A” through “T".

b. Connect the low side of the input voliage
to the numbered pin which corresponds
to the lettered pin selected in step a (i.e.
A-1,B-2,16-T).

4, Depress RUN on the controller. The controller
wiil display the number of the pin connected to
the low side of the input voltage. |f an input
voltage is not connected or is applied to more
than one data line the program wili end without
displaying anything. In this case, you may look
at the data that has been read back by display-
ing variable "A” on the controller.

7-97 if errors are detected by the Multiprogrammer, an er-
ror message witl be printed {9825) or displayed (9835/45} and
the program will terminate.

Example 7-30. 69770A Sample Test Program

8825A Controller

9835/45 Controllers

7-98 Digital Input/Analog Comparator
Card, 63771A

7-99 This card is used to monitor and read back 16 bits of
logic level or contact closure data that is referenced 1o logic
common (ac earth ground). it can also measure 16 anatog
signals and read back an equivalent 16-bit data word. Data
transfer from the input edge connector to internal storage cir-
cuits on the card can be initiated by a controller command or
external triggering. A factory installed jumper (W52} can be

removed to allow an external circuit to control the gate/flag

sequence.

7-100 As shipped form the factory the data format of the

Digital Input Card has been set to decimal. Values read from
this card will be integers in the range of 0-65535 with an 1L.SB
of 1. #f you prefer to read this card using a different format or
input data range you may either use a Set Format {SF) instruc-
tion to reformat the card or "permanently’’ select a different
format by changing jumpers on the card {see 68771A card
manual}.

NPT

&

Mz g ROBE DARE bBO0 T T O

3 I e MO B D

DT e — S

11

Y-
—l2v:

COMPARATOR BIAS

EXTERNAL

ot
BiAS

o=}

BUFFER

DIGTAL DUTPUTYS

WHISE 3
SUBADDRESS @ a

+I2Ve,, S
+ave %
W34 3
IHPUT 0%

HELD
SUBADDRESS @

i

16 COMPRRRTORS

{t

INTERNAL

REFERENGE £tpmnmem————— 5

5
AlJBST
-ay

BusY

e ENTERNAL
REFERENGE

INPUT 4G

EXTERNAL
REFERERCE

¥f
ANPLIFER

+ [MO%
aILs

END OF FROCESS

GATE

JFLAG

o FLAG FOLARITY SELECT

g FLAG EUGE SELECT

o TRIGGER POLARITY SECECT

LEXTERNAL TRIGGER

E9771A Block Diagram

7-21

O

aion LER

ke

geeae

A a2 0y

LB

LB AFATOR
GUTPLTS

COMPARNTOR
TRITPUTS

05

€33

o7 _|

GATE {GAT}

FLAG {FLA)

! ECOMMON

O]

63771A Connector

7-101 Example 7-31 shows using an “IP” instruction to
program two 69771A cards, located in slots 4 and 6, to take
readings. The data is then read back into variables "A” and
"B, if the Multiprogrammer is in serial mode, the data can be
read back immediately after the “IP” instruction has com-
pleted, as shown in the example. Or, another instruction can
be executed and the data can be read back at a later time. If
the Multiprogrammer is in parallel mode, SRQ will be set when
the "IP" instruction completes. The time required to compilete
the instruction is mainly determined by the internal timing
circuits on the card, if jumper W52 is installed, or by an exter-
nal device if W52 is removed and the gate/flag lines are con-
nected to the device.

Example 7-31. Programming Two 69771A Cards

9825A Controller

7-102 When an “IP” instruction is used to take an input
reading, data present at the input of the card is latched into in-
ternal storage circuits on the card. This data is also stored in
the memory of the Multiprogrammer and will remain there
until read back from extended talk address 01. By using a Read
Value {(RV) instruction, data stored on the card can be read
at any time without causing the card to take a new reading.

This is particularly useful when an external trigger is used to

inititate a data reading. When an external trigger is applied to
the digital input card, or the card is programmed by a cycle
{CY} instruction, it will store the input data on the card. It will
not, however, store this data in the memory of the
Muttiprogrammer. The data can be read back from the card
with an “RV" instruction as shown in example 7-32 which il-
lustrates reading back data that is stored in a Digital Input card
in slot 4.

Exampie 7-32. Reading Stored Data From a 89771A Card

98254, Controller

7-103 Example 7-33 is a sample test program which is
intended 1o give you some hands-on experience in pro-
gramming a Digital Input card. it aliows you to short-out
an input data line, read in the resulting data (see note),
then calculate and display the pin number associated
with the shorted line, This example assumes the card is
instalied in slot 4. Jumper W52 must be installed when
running the program.

NOTE

Since leaving all data input lines to the
card unterminated results in an input
data word of 65535, the data word read
in by the card will equal 65535 minus the
value of the shorted bit.

7-104 For test purposes, subroutine “‘cheker” is executed
immediately after sending the input instruction to check for
possible errors before reading back the data.

7-105 Perfarm the following steps when using the sample
test program.

t. Load the program, including subroutine
“chekar’', into the controller.

2. Temporarily install a jumper wire between pin
“r'" and any data input pin (A through T} on the
input connector.

3. Depress RUN on the controller. The controlier
will display the number of the pin physically op-
posite to the lettered pin shorted to pin “r". if

na pin has been shorted to pin "'r"’ or more than
1 pin is shorted to pin “'r" the program will end

without displaying anything. In this case you
may look at the data that has been read back by
dispiaying variabie A" on the controller.

7-106 if errors are detected by the Multiprogrammer an er-
ror message wil be printed {9825) or displayed (9835/45) and
the program wiill terminate,

Example 7-33. 697714 Sample Test Program,

98254 Control;er

i:

AECE SIS S

9835/45 Controllers

7-107 Counter/Totalizer Card, 69775A

7-108 This card is used to count pulses, contact closures,
or analog transistions in the range of 0O to 65535. Up-down
counting may be done simultaneously or individually. A carry
or borrow pulse is generated as the count goes above 65536 or

beiow 0, allowing muitiple Counter/Totalizer cards to be
cascaded for greater counting capability,

7-108 As shipped from the factory, the card has been
preset for counting positive trug input pulses. Both enable
lines are” aiso positive true and therefore, pulses will be

e BTFE %,
P
a - Eetad o
N[RRE LT | PR 0

Frbing
CAUNTER

& {sumamenese 2.2 LB
¢> Y
i

[CUTRLT)

e

I ok VD T R I i 0 — e OF

HIFLT

| TP,
. s

- {;}7 i

s s T

otz REE
Wl

e (L ENAGLY

69775A Block Diagram

7-23

ETEFNAL CHE 8T R

ORI (1

69775A Connector

counted when a positive signal is applied to the appropriate
enable input. Through the use of switches on the card many
options are available to you. For instance, counting may be
disabled in either direction, edge-sensitive operation may be
selected and the active polarities of the enable and disable in-
put signals may be reversed. For a complete description of all
the options available, see the 69775A card manual. All pro-
gramming examples and descriptions in this section will
assume the card is being used In the mode preset at the fac-
tory.

7-110 Programming the Counter/Totalizer card consists of
three basic steps, (1) presetting the count, (2) cycling the
card, and {3} reading the count. Presetling and cycling the
card may be done separately or combined in one instruction.

1. Presetting the count loads a reference count in-
1o a preset register on the card. The reference
count may be any data value within the range
of the card (0 to 65,635).

2. Cycling the card copies the data from the preset
register to the main counter. The card may be
cycled by an instruction from the controfler or
by an external trigger.

3. Reading the count retrieves data from the card's

counter,

7-111 Example 7-34 illustrates presetting and cycling a
counter card in slot 2. A Write First Rank {(WF) instruction is
used 1o load a data value of zero into the preset register and a
Cycle instruction {CY} is used to cycle the card. The cycle in-
struction can be omitted if an external trigger is used to cycle
the card.

7-24

Example 7-34. Presetting and Cycling a Counter Card

98255 Controller

7112 As mentioned previously, presetting and cycling the
card may be combined in a single instruction. Example 7-35il-
justrates using a Write and Cycle (WC} instruction {6 preset
and cycle a Counter card instalied in slot 2.

Example 7-35. Presetting and Cycling With Cne
Instruction

9825A Controiler

o
e

7-113 Once the card has been preset and cycled, it is ready
1o begin counting. As shipped from the factory, positive
pulses applied to the count up or count down inputs of the
counter card will be counted whenever a positive signal is ap-
plied to the appropriate count enable input(s). You can read
the contents of the counter at any time. Example 7-36 i-
lustrates reading the contents of the counter into variable "A”
of the controller.

Example 7-36. Reading the Counter Card

98254 Controller

7-114 In example 7-36 the contents of the counter are ob-
tained by reading from the main address {sub-address 0) of the
card. If required, the preset value of the card can also be ob-
tained simply by reading sub-address 3, Changing the literal
string in the first line of example 7-36 to "RV, 2.3T" would read
the preset register instead of the counter. This value would
then be stored in the controlier by the red/ENTER statement
in the second line of the example.

7-115 You have probably noticed that instructions that
await card completion were not used in the first three ex-
amptes. This is because the counter card completes when the
counter overflows past 88535 and generates a carry or when it

underflows past zerp and generates a borrow. Since instruc-
tions that require a card to complete will be tied up untl the

borrow or carry occurs you should avoid using this type of in-
struction unless you expect the overflow or underflow to oc-
cur within an acceptable period of time. There may be occas-
sions when you are operating the Multiprogrammer in serial
mode and you would ke to have the system wait untit the
counter card generates a borrow or carry before allowing
subsequent instruction to run, There may also be occasions
when you are operating the Multiprogrammer in parallel mode
and you would like a service request to let you know when the
counter card has generated a borrow or carry. In both of these
instances you can substitue an "OP" for the WC' shown in
Example 7-35.

7-116 Exampie 7-37 is a sample test program that allows
you to feed external pulses to the counter card’s count-up in-
put and then reads the counter and displays the number of
puises that were received. You must either provide the exter-
nal pulses to be counted from a good external source {not
switches or mechanical relays) or, if you have other
Multiprogrammer cards available, you can use tha “BUSY"”
signal available on pin "'34" of the appropriate edge connec-
tor. Multiprogrammer cards that can be used to provide a
puise via the "BUSY" signal are the 69700-69706A, 697204,
69721A, 69730A, 68731A, 69751A, and the 69771A. Program-
ming these cards with a cycle {CY) instruction will cause their
"BUSY" signat to toggle, providing a pulse that can be
counted. The counter card is installed in slot 2 and if another
card is being used to provide a pulse via the "BUSY" signal it
should be installed in slot 3.

7117 For test purposes, subroutine “cheker’” is executed
immediately after sending the input instruction to check for
possible errors before reading back the count.

7-118 Perform the following steps when using the sampie
program.

1o be counted, connect the output from the
puise source to pin A" on the counter card
edge connector and the pulse source common
to pin “C"” on the edge connector. The
amplitude of the external pulse should be ap-
proximately + 5 volts.

When using the "BUSY" signai from a card in
slot 3 to generate the pulses to be counted con-
nect jumper wires from pins “34” and 36" on
the edge connector of the card in slot 3 to pins
“A" and “C", respectively, on the edge connec-
tor of the counter card.

NOTE

The count enable finres normally float
high when no input is applied thereby
enabling the counter inputs. For this
reason, no connections are made to the
enable lines when running example 7-37.

Depress RUN on the controller. The controtler
will display “‘enter puises”. Send from 1 to
66535 pulses from your external source 1o the
counter card, or if using the “BUSY" signal
from a card in slot 3, type wrt 723,”CY,37" on
a 9825 controller or QUTPUT 723;”CY,3T" on a
9835/45 controller. Depress EXECUTE, RECALL
as many times as desired. Each time EXECUTE
is depressed the “BUSY" line on the card in
slot 3 will be toggled resulting in a pulse that
wifl be counted. {Although the "BUSY” line
goes low when the card goes busy the pulse
will be counted when the card compietes its cy-
cle and the “"BUSY" line returns to #s high
state.}

Depress CONTINUE on the controller. If no er-
rors are detected the controller will display the
number of pulses counted in step 4.

1. Load the program, including subroutine 7-119
“cheker”, into the controlier.

2. When using an external source to supply pulses

If errors are detected by the Multiprogrammer an er-
ror message will be printed (9825} or displayed (9835/45) and
the program wili terminate.

Example 7-37. 69775A Sample Test Program

2825A Controller

9835/45 Controllers

7-25

7-120 Interrupt Card, 697764

7-121 This card compares an internal 16-bit reference
word with an externally applied input word and generates an
interrupt when a pre-determined relationship exists. This inter-
nal {microprocessor} interrupt can be programmed to occur
when the input word is unegual to, equal 1o, greater than, or
tess than the reference word. in addition, a mask word may be
sent to the card to remove 1 or more bits from the comparison
without changing the reference word.,

7-122 Alt four sub-addresses are useful when programm-
ing this card. The functions of these sub-addresses will vary
depending on whether you are sending data to, or reading
data from the card. When sending data to the card:

1. Sub-address O {the main address) is used 1o
send a reference word to the card. The
reference word must be a decimai integer bet-
ween 0 and 65535.

2. Sub-address 1 is used to program the interrupt
mode. Data values of 1, 2, 4, or 10 will select
an interrupt mode of "not equal 10", equal to”,
“greater than”, or “less than”, respectively.

3. Sub-address 2 is used to send a mask value to
the card. The mask value is used to remove lor
rastore} selected bits from the comparison that

takes place between the reference word and the
external input word. Setting & bit {or bits) to a
valug of one in the data sent to sub-address 2
will remove the corresponding bit on the card
from the comparison. Conversely, setting a bit to
a value of zero in the data sent to sub-address 2

{EPS) TRIGGER POLARITY
18

| pirsal
NPT

e

1 ERTERNAL TRIGOER (EXT)

1 BUS B0 OF PROCESS 1EQH)

LOMNON COMIOR

89776A Connector

REAL INTERALFT]
SLRROCRESES | WORD

£XTLRASL
WORS

KPUT DATA

i T — M B —

MASK DATA

REUT

E N RO SRR B O 0 T AT R

frmegTT EOTE

WRETE
SUBADDRESS §

A

o EXTERKAL THGGER

MAGNITLDE
COMPARATOR

Lz

DIGITAL
FILFER
&

HOCE
CONTRIL

e

e R R

N

SIGRAL
COHGITIONING

RIE: [
W~c<]--mr_':>
Y l 15

DiGITAL
INFUTS.

R ME-EEJ
e
A J—
% = W53 INPLT

TAIGGER_POLARETY SECECT

ERE OF PROCESS

BLST

RS TSR Eaa] [

{
|

69776 A Block Diagram

7-26

will restore the corresponding bit on the card to
the comparison. At system turn-on, the value in
sub-address 2 is preset to zero, thus allowing alf
input bits to be included in the comparision. Since
a mask value will generally not be & calculated
value, sub-address 2 is formated to accept octal
values 1o allow you to easily visualize the bit you
would like to remove or restore to the com-
parison, Data sent {0 sub-address 2 must be an
octal integer between 0 and 177777.

When sending data to this card, data values
above or below the range aliowed for the par-
ticular sub-address being programmed, except
for sub-address 1, will be rejected and an error
message generated. Sub-address 1 is an internal
octal register which wilf accept any octal value
up to 177777 but should only be programmed
with a 1, 2, 4, or 10 as previously noted,

7-123 When reading data from the card:

Sub-address 0 is used to read the value of the
external word that caused the interrupt,. This
value is stored on the card at the time the inter-
rupt ocours.

Sub-address 1 can be used to read the input
word present on the edge connector at any
time.

Sub-address Z can be used to read the value
currently in the mask register.

Sub-address 3 can be used to read the
reference word that was previously sent to the
card.

7-124 Example 7-38 illustrates programming an interrupt
Card in slot 4 to interrupt whenever the vaiue of an external in-
put word being monitored is greater than a reference value of
1000. Notice that a Write First Rank (WF) instruction is used
to program the reference word {1000) and the mode of the
card {4). Generally, the way to program this card is to use a
WE" instruction to send reference, mode, and mask data to
sub-addresses 0,1, and 2, followed by an Input Interrupt {iI)
instruction to sub-address 0 to allow the card to set SRQ as
soon as the selected mode comparison occurs and generates
the interrupt. {If you are planning to program two or more
cards with an "Il instruction, be sure to read Chapter 5,
“Interrupt Instructions’.}

7-125 Since the siot address, reference word, and mode
are fixed values in this example, they are sent out as constants
in & fiteral field. There will be some instances, however, when
you may want to send out one or more of these values as a

variable. For example, vou may find that your reference word
needs to be a variable. In this case, changing the cutput string
in example 7-38 to "WF 4", A,""4.1,4T 147" would allow you
1o send out a variable reference word value. As indicated the
vaiue of the reference word is contained in variable "A’".

7-27

Example 7-38. Programming an Interrupt Card

498254 Controller

CHE ke TR LabT s D laet T

9835/45 Controliers

e mE o P i
AP S A AL R

fuv

IS]
7-128 As mentioned previously, you ma\"f"’remove sefected
bits from the reference word/input word comparison by pro-
gramming sub-address 2 with a mask value. Example 7-39 il-
lustrates programming a mask to remove bit 0 (LSB} from the
comparison set up in Example 7-38. Since bit O will no longer
be included in the comparison, the interrupt card programmed
in the first example will now interrupt whenever a value of
1001 is exceeded. To restore bit 0 to the comparison it is only
necessary to change the data value in Example 7-39 from a one
10 a zero.

7 A\‘

Exampie 7-3%. Programming a Mask Value

9825A Controller

GRS T
LR

9835/45 Controllers

7-127 Referring back to Exampie 7-38, when the value of
the external input word becomes graater than 1000, the Inter
rupt card generates an internal intarrupt to the Multiprogram-
mer microprocessor. Because an "IF' instruction ' was used
to program the card, the Multiprogrammer will then set SRQ
to notify the controller that & card programmed by an “'li” in-
struction has completed. By use of the proper extended talk
address (02) you may then read back the data from the “1II”" in-
struction, which will consist of the address of the interrupting
card followed by the data value of the external word that caus-
ed the interrupt. Example 7-40 illustrates this read back pro-
cedure. After the SRQ line has been set by the Multiprogram-
mer, SRQ status is read back to the controller from extended
talk address 10 and stored in variables "A” and "B". If bit 3,
{decimal value of 8} of variable "A"” is set, it indicates that a
card in an “'l{" instruction has interrupted and the address and
data associated with the card are read back from extended talk
address 02 and stored in variables "“'C”" and "D"', respectively.

Example 7-40. Reading interrupting Data from an Inter-
rupt Card.

98254 Controller

9635/45 Controllers

7-128 By using a Read Value (RV) instruction you may
read back data from any sub-address on the card. Example
7-41 iHlustrates reading the data contained in sub-addresses 0,
1, 2, and 3 into controiler variables A, B, C, and D.

Example 7-41. Reading Sub-addressses 0, 1, 2, and 3

9825A Controller

7-129 Example 7-42 is a sample test program which is in-
tended to give you some hands-on experience in programming
an Interrupt card installed in siot 4. The data input lines to the
card are left unterminated resuiting in an input data word of
66535, The card is programmed with a reference word of
65635 and an interrupt mode of 1 (unequal). Momentarily
shorting any data input line to common wili change the value
of the input word and generate an interrupt.

NOTE

In Exampie 7-42, permanently connec-

ting a data input line to common wilt
result in an immediate interrupt when
you run the program. Since subroutine
“cheker”, used to detect programmm-
ing errors, reads Multiprogrammer SRQ
status and clears the SRQ line, the
Multiprogrammer “‘completed instruc-
tion status’™ variable returned by
"cheker” is tested to see if an "I in-
struction has completed. i it has, the
program immediately reads and displays
the card address and interrupting word.

7-130
program.
t. Load the program, including subroutine

“cheker”, into the controlier,

Depress RUN on the controlier. The controlier
will display "‘waiting for interrupt”,

Momentarily connect a jumper wire between pin
“r'" {eommon) and any input pin {A through T)
on the edge connector of the word interrupt
card. The controller wili display the card address
and interrupting word and the program will end.,

Perform the following steps when using the sample

2.

7-131 if errors are detected by the Muliprogrammer, such
as an attempt to program an empty card siot, an error
message will be printed (3825) or displayed (9835/456} and the
program wili terminate.

Example 7-42. 69776A Sample Test Program

98954 Controller

8835/456 Controllers

7-28

7132 Memory Cards, 697%0A

7-133 The 69790A Memory is a bidirectionat device used to
store a number of 16-bit digital words. The cards can store
1024 16-bit words (standard model), 2048 16-bit words {option
002), or 4096 words {option 004}, The cards can operate in the
output or input mede. In output mode, data from a controller
is stored in the memory cards and then transferred to an exter-
nal device. In input mode, data from an external device is
stored and ther read Back to the controller. In both output and
input modes, data transfer with an external device is controll-
ed by means of 6 handshake lines on the edge connector of
the card {3 for output and 3 for input). Data can be transferred
to or from an external device at rates up to 125 KHz.

7-134 Physicaily, the 89720A Memory consists of two

separate cards connected together as a card pair. The cards
g b T

must be installed in adjacent slots and will be referred to as
“Memory car afv mory card 2 throughout this discus-

sion. Memory card 1 must be installed in the slot with the
lowest number (immediately 1o the left of Memory card 2},

7-135 Memory Card 1- General Information. Memory
and mode control circuits are located on Memory card 1. As
noted previously, the size of the memory depends on the card
option. Five modes of operation can be programmed via
Memory card 1; FIFO input, FIFO output, recirculating input,
recirculating output, and external lockout mode. An automatic
lockout protection feature is provided in both FIFO modes.
This lockout feature will prevent an external device from
writing over data that has not been read by the controlier in
the input mode and will prevent the controller from writing
over data that has not been taken by the external device in
output mode.

1. FIFO input mode is used to read and store a list of
data words from an external device in the order that
the data is received and to allow the controlier to read
this data in the same order,

FIFQ output mode is used to send a list of data words
from the controller to the Memory card and to
transfer this list from the Memory cards to an external
device in the same order that the data was received.

Recirculating input mode is used by the controller to
read data from selected memory locations on the
card. It is aiso used to read and store data words
from an external device into selected locations on the
card.

Recirculating output mode is used to send data words
from the controller to selected memory locations on
the card and to transfer data from selected memory
tocations on the card into an external device.

External lockout mede is usually used in conjunction
with one of the other four modes to prevent an exter-
nal device from reading or writing on a memory card.

729

CHTEY U

i R OTI T | R AT e e 0 2T o

BEMORY LARS #E

IEEE

P w A MMIE G e E R b me:

T ome, Cop

B697%0A Block Diagram

X

| DHGITAL
IRPUTS

DedilTAL, |
cLYeUTS

£ SE

1
CORIMUN |1

COMAON

DUTPUT DATA AVAILAE

s | COMBAON

1
1BET) B n | Bl OF PROCESS (ROP)

COMMON COMMON

O

69790A Connector

7-136 Memory Card 2 - General Information. Memory
card 2 contains; (1) & reference register, {2} a differential
counter, {3} a write pointer, and {4) a read pointer, which have
the following functions:

tHa). In the FIFC input mode the Memory card will
generate an interrupt when the number of words read
in and stored is greater than the value in the reference
register. This interrupt can be used as an indication to
the controller that it is time to read back the data
from the Memory card.

{b). In the FIFO output mode the Memory card will
generate an interrupt when the number of words left
in memory is equal 10 or less than the value in the
reference register. This interrupt can be used as an in-
dication to the controlier that it is time to send a new
series of data words to the Memory card. '

{c). In the recirculating output mode the reference register
is used to truncate the size of the memory available to
an external device by acting as a pointer 1o the last
memory location that data may be read from. After
data has been taken from the memory address that
equals the value in the reference register, the read
pointer in the Memory card returns 1o address 0 to .
continue the output sequence. This aliows you to
continually send a repetitive sequence of output
words. Note: since the first address in the Memory
card is 0, the number of words available to the exter-
nal device will equal the value in the reference
register + 1.

2(a}. In the FIFO input mode the differential counter con-
tains the number of words read from an external
device and stored in memory but not yet read by the
controller.

(b}, In the FIFO output mode the differential counter con-
1ains the number of wards stored in the Memory card
by the controller but not vet taken by the external
device,

3{a). In the recirculating input mode the write pointer is us-
ed to specify the address in memory where an exter-
nal device will begin storing data.

{h). In the recirculating output mode the write pointer is
used to specify the address in memory where the con-
troiler will begin storing data.

4a}. In the recirculating input mode the read pointer is us-
ed to specify the address in memory where the con-
trofler will begin reading data.

{b). In the recirculating output mode the read pointer is
used to specify the address in memory where an ex-
ternal device will begin reading data.

7-137 Sub-address. Table 7-3 lists the sub-addresses and
associated functions that they perform on both Memory
cards.

7-138 Example 7-42 illustrates storing variable data values
in a Memory card in the FIFO output mode. The Memory cards
are assumed to be installed in slots 8 and 7. A Memory Output

(MO} instruction is used to ioad 1000 data words from an array
designated “A" into the memory. {The array must have been
previously dimensioned and loaded with data). After data has
been stored in the memory, a Write First Rank {(WF} instruc-
tion is used 1o set the reference register to zero and an Arm
Card (AC) instruction is used to "arm’’ the card to interrupt
{see paragraph 7-140}. Notice that the Arm Card instruction is
sent to Memory card 2. Arm Card, Disarm Card, Clear Card,
and Read Status instructions must always be sent to Memory
card 2. In this example, the card will interrupt the 6942's
microprocessor and set the SRQ line when an external device
has taken all of the data (1000 words) from the Memory cards.

7-139 The “MOQ" instruction used to send data to the
Memory card in example 1 is the fastest way to transfer data
from the controller to the Memory card in FIFC Qutput mode.
It can not be used in recirculating output or lockout mode
because the "MO" instruction automatically sets the memory
card to FIFQ Quiput mode.

Example 7-42. Storing Variable Output Data in FIFO
Cutput Mode

88254 Controller

7-140 The interrupt that will occur when the Memory card
in example 7-42 transfers all of its data to an external device is
defined as an “Armed Card Interrupt” (see Chapter 6). This
type of interrupt does not come from an instruction that is cur-
rently active and waiting for an interrupt to complete, but in-
stead comes from a card that has been previously armed by an
Arm Card {AC) instruction. Whenever an Armed Card Inter-
rupt occurs, the Multiprogrammer wiil set SRQ and increment
the third Multiprogrammer SRQ status variable from extended
talk address 10. When Armed Card Interrupts are detected,
you must read from extended talk address 12 to obtain the ad-
dress of the interrupting card. If this address is not read by the
controlter, further interrupts from the same card will not set
SRQ. Once you have determined the interrupting card is the
Memory card you should disarm the card by sending a Disarm
Card {DC) instruction. The card can then be reprogrammed.
Of course if you do not want to set SRQ after the transfer is
complete, you must eliminate the "AC” instruction from Ex-
ample 42,

7-141 Example 7-43 illustrates a method used to test for an
Armed Card Interrupt and disarm the Memory cards if it is
determined that they generated the interrupt., This example
assumes an SRQ has been detected by the controller and

7-30

Table 7-3. Memory Card Sub-addresses and Functions

Memory Sub-address Functions
card

Used to send data from controlier to Memory card or read data from Memory card to con-
troller. {1}

Used to set operating mode of Memory card. ‘
1 1= FIFO input, 2= FIFO output, 4= recirculating input 10 = recirculating output,
20 = external lockout

0 ~ Used to set the reference register or read the address of the read pointer. {3)
1 Used to set or read back differential Counter {2},
2
2 Used to set or read back the address of the write pointer. (2 and 3)
3 Used to set the address of the read pointer or read back the reference word. (2)
Notes:
1. When sending data to the Memory cérd_s, the card shouid be in an output mode and data values must be decimal

integers between 0 and 655358, Whan reading data from the Memory cards, the card shouid be in an input mode.
Data read from the cards, will also be decimal integers between 0 and 65535. f you prefer to use a different data
format {e.g., 12 or 16-bit two's complement) you may either use a set format (SF} instruction to reformat Memory
card 1 or permanently select a different format bry changing the self-1D jumpers on the card (see 69790A card
manual).

2. Whenever the address of the write of read pointers is changed, the differential counter must be programmed equal
to the difference between the addresses of the write and read pointers before resuming operation in FIFO mode.

3. The address register for the write and read pointers can store up to 4096 addresses. Therefore, an address of 0
may be represented by a value of 0, 1024, 2048, or 3072 on a standard card (1024 words of memory} and 0" or
2048 on an option 002 card (2048 words of memory}. To obtain the actual address of the write or read pointer on
a Memory card containing 1024 or 2048 words of memory, simply select the highest zero reference value that is
below the value of the address and subtract it from the address that has been read back,

7-31

subsequent serial poll has identified the Multiprogrammer as
the device that has requested service {i.e. rds {723)=64 on a
9825 controller or STATUS 723=64 on a 9835 or 9845 con-
troller,

7-142 in example 7-43, the Muitiprogrammer SRQ status is
read back from HP-1B extended talk address 10 and evaluated
to determine if an Armed Card interrupt had set SRQ. If an
Armed Card Interrupt has occurred, as determined by variable
"W’ having a value greater than zero, the controller reads HP-
IB extended talk address 12 into variable “A’"'. Variable "A" is
then tested to see if it contains the address of the Memory
card that had been programmed in example 7-42. If this is the
address, a Disarm Card instruction is sent to prevent further
interrupts from this Memory Card.

NOTE

If you are using a 9835 or 5845 controfler
and are expecting more than one Armed
Card Interrupt to occur, your program
should dimension and use an array for
reading back the adddresses of the inter-
rupting cards. When using the 9826A
controfler, the addresses of the interrup-
ting cards may be read inte simple
variables, r” variables, or an array.
Regardless of the controller type, an ar-
ray should always be dimensioned equal
to, or greater than, the maximum
number of armed card interrupts you ex-
pect to receive. Please read the descrip-
tion of “Armed Card Interrupts” in
chapter 6 before attempting to use more
than one card in this manner.

Example 7-43. Testing For an Interrupt and Disarming
the Card

98254 Controller

7-143 Example 7-44 illustrates storing data values into a
Memory card in recirculating Output mode and truncating the

7-32

Qutput memory available to an external device to 10 words. In
this example the “"WF” instruction is used to program the card
to recirculating Output mode, set the reference register 10 8,
the address of the write pointer to 2, and the address of the
read pointer to 0. Data from the controller is sent to the card
using a write and cycle {WC) instruction and is stored in
memory addresses 2 through 6. Since the reference register
has been set to 9, an external device reading data from the
Memory card will continuaity read data from memory ad-
dresses 0-9 (0,1,2,3,4,5,6,7,8,9,0,1,2,3,etc}). To lockout the
external device while date is being programmed to the
Memeory card, the operating mode must be changed from
recirculating output {10} to recirculating output with external
lockout. {10+ 20 = 30}. Hence, you must send a mode value of
30 to address 6.1 to attain lockout. After new data has been
programmed, iockout can be removed by sending a Write First
Rank instruction to set the mode back to recirculating output
without lockout. (i.e. "WF,6.1,10T""}.

Example 7-44. Storing Data in Recirculating Output

88254 Controller

NOTE

When the Memory cards have been pro-
grammed to a recirculating output or in-
put mode and data has been read from,
or stored on the card, it is necessary to
program the differential counter to a
value equal to the difference between
the addresses of the write and read
pointers before resuming operation in
the FIFO output or input modes. This
can be done in one of rwo ways, One
way is to read the address of the write
and read pointers with an "RV’ instrue-
tion and calculate the difference bet-
ween the two. The other way is to simp-
ly set the write pointer, read pointer, and
differential counter to 0 f{ie.
YWFZ.1,07.207.3.07T"). This method
is useful only when you no longer re-
guire the data currently stored on the
cards.

7-144 Example 7-45 illustrates programming the Memory
cards in FIFO Input mode to store 1000 data words from an ex-
ternal device and to generate an armed card interrupt when all
of the data is stored in memory. A Memory Input (M1} instruc-
tion is used to specify the address of the Memory card and the
number of words that will be read by the controller after the
card has interrupted. The “M{” instruction will also
automatically set the Memory cards, to FIFQ Input mode. A
Write First Rank instruction is then used to set the reference
register to 999 and an Arm Card instruction is used to arm the
card and allow it to generate an interrupt, thus setting SRQ.

Example 7-45. Storing Deta from an Extarnal Device in
FIFO Input Mode

9825A Controlier
T

I

7-145 After the card has generated an interrupt it should
be disarmed. The method for detecting the interrupt and disar-
ming the card is the same as that previously described for pro-
gramming a Memory card in FIFO Output mode, After the
card has been disarmed, data can be read back to the con-
troller by means of the appropriate HP-18 extended talk ad-
dresses.

7-146 Exampie 7-46 illustrates a method that can be used
to read data from an external device and store it in the Memory
cards in recirculating Input mode. A Memory Input instruction
is sent first, to specify the address of the Memory card and the
number of words that the controller will read back at a later
time. A Write First Rank instruction is then used to set the
card to recirculating input mode and the wiite and read
pointers to memory address 100. Data that is stored in
memory after the write pointer has been set, will be stored at
locations beginning at address 100. Likewise, when the con-
troller begins to read data from the Memory card, it will start
reading the data from memory address 100.

Example 7-46. Storing Data From an External Device in
Recirculating Input Mode

982648, Controlier

e

L

7-147 By use of HP-IB extended talk address 05, data can
be read back to the controller at any time. In FiFQ input mode,
however, it is advisable to wait until the Memory card interrupt
has been detected before reading back data. Attempting to
read back more data than is available wilt lock out the card,
resuiting in data from the memory location immediately above
the location containing the last data word stored, being read
repeatedly. In the recirculating Input mede data can be read at
any time. Generally it is best to read data from the Memory
cards into an array within the controller. This array should be
equal in size to the number of words that you intend to read as
specified by the '"M{” instruction. For example, to dimension
an array on a 3825 controller to read back the data from exam-
ple 7-46, you would use the statement “‘dim A{1000})". To
dimension an array on a 9835 or 9845 controller you would use
the statemant “DIM A{899) or “DIM A(1000}" depending on
whether you have specified OPTION BASE 0 or QPTION
BASE 1. Note that all 9835/45 examples in this guide use OP-
TION BASE 1. '

7-148 Example 7-47 illustrates reading 1000 words back
from the Memory cards that had been programmed in ex-
amptles 7-45 and 7-46. If desired, you may program the cards
1o external lockout mode to prevent an external device from
storing fresh data in the Memory cards while the data is being
read back by the controller. In this case a Write First Rank in-
struction specifying the appropriate Input mode and lockout
would be inserted at the beginning of this example
{"WF,8.1,217" for FiFO input mode with lockout or
“WF,6.1,24T" for recirculating input mode with lockout). H
lockout mode is programmed, you must remember to
reprogram the card to the appropriate input mode without
lockout when you require fresh data from the external device.

Exampile 7-47. Reading Data from a Memory Card

inta an Array

7-149 As previously mentioned, the wvalues of the
reference register and differential counter, as well as the ad-
dresses of the write and read pointers can be read at any time.
A Read Value {RV) instruction is used to read these values. In
example 7-48 the address of the read pointer, value of the dif-
ferential counter, address of the write pointer, and value of the
reference register are read into controller variables A,B,C, and
D, respectively.

Example 7-48,

8825A Controlier

7-150 A Read Value instruction can also be used to read
back the Memory card data word currently addressed by the

Reading Registers,

Counters, and Pointers

9835/4b Controllers

\ i

read pointer without incrementing the pointer to the next
word.,

7-151 MULTIPLE CARD PROGRAMS
7-152 External Triggering Output and Input
Cards

7-183 Example 7-49 shows how to use the "WF" and

AL instructions in conjunction with externat triggers. in the
example, an external trigger initigtes an output pulse from a
69736A Timer/Pacer card and causes a 69751A A/D card 1o
take a voltage reading. Note that the cards used in these pro-
cedures are intended to serve as representative examples only
and could be replaced with virtually any other type of output
of input card. Example 7-49 makes use of "armed card inter-
rupts’” to set SRQ when the card has completed a data
transfer as a result of the external trigger. Armed card inter-
rupts will set SRQ in either the serial or parallel operating
modes and are described in more detail in Chapter 6.

7-154 When using external triggers with an input card,
note that the input External {E) instruction can be used rather
than the ""AC" instruction of example 7-48. The "1E"” instruc-
tion arms the card and waits for the external trigger to cycle i.
It does not, however, set SRQ unless the Multiprogrammer is
operating in the paraliel mode (refer to Chapter b for a com-
plete description of the "’IE” instruction).

7-155 Connections to the cards of Example 7-48, are
shown in Figure 7-1. As shipped from the factory, both cards
will respond to “high true'” external triggers having a duration
of at least 1usec. {The trigger polarity can be reversed, if
necessary, by connecting the TRIGGER POLARITY SELECT
pin, 33, to ground.)

7-156 In Exampie 7-49, data is first sent top & timer card in
slot 2, but no output pulse will be generated until the card
receives an external trigger. Next, the timer card, and an A/D
card in stot 3, are armed to enable them to generate interrupts.
i an externat trigger is now applied to the timer card, it will
generste an output pulse, five seconds long. The
Multiprogrammer will then set SRQ and increment the third
SRQ status variable (“W' in this example). If an external trig-
ger is applied to the A/D card, the voltage present at its pins
will be converted to a digital value and stored on the card.
Again, the Multiprogrammer will set SRQ and increment the
third status variable.

£37 364 E9754
TR APACER CARD ALD CARD
Ly | QUTPUT (
A COM PULSE
° I
+
Wy
bV
Y p————
m m
n
P
oM 1 — CoOM v
COMMON COMMON
gt e
EXTERNAL EXTERNAL
TRIGGER TRIGGER
It Ju

" Figure 7-1. External Trigger Connections

7-157 Whenever an SRQ is detected, Multiprogrammer
SRQ status {extended talk address 10) shouid be read back to
determine the reason. If an armed card interrupt had set SRQ
the third status variable will be greater than 0, and the ad-
dressles} of the card(s} that had interrupted can be read back
from extended talk address 12 to determine the proper action
to be taken. in this example, the controller will merely print
“timer output compete’” when the timer card output pulse is
complete, If the A/D card is externally triggered, the voltage
value stored on the card will be read into variable "A” and
printed by the controlier.

7-158 Additional Consideration. Here are some addi-
tional facts about using armed card interrupts:

1. Cards may be externally triggered without being arm-
ed. However, SRQ wili not be set when the card
completes its data transfer.

2. Cards that are armed and then externally triggered are
not automatically disarmed after they interrupt. A card
can be disarmed at any time by using the Disarm Card
(DC} instruction.

3. Once a card generates an armed card interrupt and

sets SRQ, it cannot generate another interrupt unti its
address is read back from extended talk address 12.

Example 7-49. Externally Triggering the 69736A and G69751A Cards

9826A Controller 9835/45 Controllers

Explanation:

9825 9836/45 Description
10 Set 8835/45 to OPTION BASE1
20 Dimension 11 word array to allow subroutine “Cheker" to read any error variables that

may occur and a 2 word array for use when reading back addresses of cards that
generated armed card interrupts.

30 Establish linkage to error processing subroutine to allow handling of variable length read-
backs.
0 40 Set up timer card to program a B second output pulse when externally triggered, then arm
timer card and high speed A/D card to allow them to generate armed card interrupts.
1 50,60 Wait for SRQ
2 70 Clear SRQ, put Multiprogrammer status in variables U,V,W, and check for programming
errors,
3 80 if programming errors are detected, terminate program.
4 80 if no “armed card interrupts” have been detected, wait for another SRQ.
100 Initialize array used to read back armed card interrupts to — 1.
5 110 Read addresses of cards that have generated armed card interrupts.
6 120 Establish far/next loop with fine 9/150 to interpret list of “armed card interrupts” and
determine proper processing path.
7 130 if timer card has generated an interrupt process it.
8 140 It A/D card has generated an interrupt process it.
9 150 Get next variable from armed card interrupt list and process it.
10 160 Allinterrupts are processed. Go wait for another one.
11 170 End of main program: subroutines follow.
12 180 Timer card has interrupted. Controller prints ‘timer cutput complete'’.
13 190 Return and process next variable on armed card interrupt jist.
14 200 A/D card has interrupted. Read data from the A/ D card into Multiprogrammer memory.
15 210 Read A/D data from the Multiprogramemer into controller variable “A’",
16 220 Controller prints voltage measured by A/ D card.
17 230 Return and process next variable on armed card interrupt list.
240- Error trapping subroutine used to altow variable length data readbacks on 9835/45 con-
260 trolier. For a description of this subroutine see Appendix C.

7-35

7184 Resistance Measurement

7-160 Exampie 7-50 illustrates use of a 69721A D/A cur-
rent Converter card in conjunction with & 68751A A/D Con-
verter card to measure the value of a resistor. This example
assumes that the 68721A D/ A card is installed in slot 2 and the
B9751A A/D card is installed in sict 3. Connections between
the cards and the resistor being measured {(RX} are shown in
Figure 7-2.

7-161 In the example, the current output from the D/A

card is programmed in two steps, 1 miliiamp, and 10
mijiamps. After each current step, the A/D card is programm-
ed 10 take a voltage reading across the rasistor. If the voltage
measured across the resistor is between 1 and 10.235 volts, or
both readings have been taken, the resistance is calculated
and displayed on the controller. The maximum resistance
value that ean be measured by this program is approximately
10,000 ohms. If an atfempt is made to measure a resistance
value that is too high the controller will display “'resistance too
high".

Example 7-50. Measuring Resistance

9825A Controller

Explanation:

9835/45 Controllers

9825 9835/45 Description
10 Set 9835/45 to OPTION BASE
20 Dimension 11 word array for use by subroutine "'Cheker”
4] 30 Multiprogrammer is programmed to serial moda. This statement is not required unless the

Multiprogrammer had been previously programmed to paraliel mode.

Value used to calculate current output from D/A current converter card is initialized.
Current output is programmed from D/A card and A/D card is programmed to read the
Check for programming errors. i programming errors are detected, terminate program.
Read the voltage value measured across the resistor into controller variable B.

it measured voltage is less than 1 volt and current is less than 10 miilliamps, increase cur-

If voltage value is maximum of A/D card, resistance is too high too measure with this pro-

This statement is only executed if resistance is too high to measure with this program.

1 40
2 50 Value of output current is calculated.
3 60
voltage across resistor being measured.
4.5* 70,80*
6 90
7 100
rent by a factor of 10 and take another voltage reading.
8 110
gram.
g 120 Calculate and display resistance.
10 130 Program is done, go 1o end
11 140
12 150 End of program

*Program statements are optional.

637214 BI7 514
DR CURRENT AsD CONMVERTER
CONVERTER CARD CARD

i2 w

2t Y

Figure 7-2. Resistance Measurement Connections

7-162 Voitage Scanning and Measurement
Using the Relay Card
7-163 Example 7-51 illustrates using a 69730A Relay Out-

‘put card in conjunction with a 88751A A/D card to measure

the voltages on 16 channels, The 16 voltages all share a com-
mon reference. All voltage values are stored in an array. When
ali 16 voitages have been measured the controler will read the
array and print the voltage values. By appropriate modifica-
tions to the hardware connections and the program, this same
card combination can be used to measure up to B voltages that

Example 7-51.

are isolated from each other. If desired, additional 69730A
Relay Output cards {and program modifications} can be used
to expand the scanner array.

7-164 Example 7-51 assumes that the 69751A A/D card is
instalied in slot 5 and the 69730A Relay Output card is installed
in slot 6. 1t is further assumed that the voltages to be
measured are in the range of — 10.240 to + 10.235 volts, per-
mitting the use of the standard A/D card. Connections bet-
ween the cards and the voltages to be measured are shown in
Figure 7-3.

657514
AL CONVERTER
CARD

e

EI7ION

RELAY OUTPUT
CARD

mv i

vz
.—V3
.—V4
V5
vy

VIO
Vi

o122
V13
[—— V14
vis
Vig

H

3
5
T

9
H#
5]
15
17

W 19
VN ¥ 2
{com} 23

25
27
29

: 34

16 CHANNELS

xz—mnn«icm‘ﬂix:rmnbl

|

COMMON

Figure 7-3. Voltage Scanning Connections

Voltage Scanning and Measurement

Using Relay and A/D Cards

98256A Controller

7-37

9835/45 Controliers

Expianation:
9825 9835/45 Description

10 Set 9835/45 to OPTION BASE 1
0 20 Dimension 16 word array to store voltage measurements, change number format of 9825A
controller to fixed 3 to allow printing values to 3 decimal places, and dimension 11 word
array for subroutine “"Cheker'” in 9835/45 program.

1 30 Multiprogrammer is programmed to serial mode. This statement is not required unless
the Multiprogrammer had been previously programmed to parallel mode.

2 40 Establish a for/next loop with line B/90 in order to calculate and program the relay
closures required to take the 16 voltage measurements and store them in the proper array
focations.

3 50 Program all relays open to prevent possibility of shorting voltages together. Then program
appropriate relay closure for voltage measurement.

4 60 Program A/D card to 1ake a voltage reading.

5,6* 70,80* Check for programming errors. If programming errors are detected, terminate program.

7 90 Read measured voltage value into appropriate array location.

] 100 Repeat sequence for next voltage measurement.

9 110 Establish another for/next loop with line 11/120 to read and print array variables in order.

10 120 Print array variable.

1 130 Read and print next array variable,

12 140 End of program

*Program statements are optionai.

7-165 Frequency Measurement

7-166 Example 7-b2 illustrates using a 69775A
Counter/Totalizer card in conjunction with a 89736A
Timer/Pacer to measure the frequency of a square wave or
pulse train which is then displayed on the controller. This ex-
ample assumes that the 69778A counter card is instatled in slot
8 and the 69736A timer card is installed in siot 9. The frequen- BEMS WEAGRED 697364

cy of the signal to be me) 697754 TIRER £ PACER
¥ gnal to asured shoutd not exceed 1 MHz counie romaL zen CARD

7-167 In Example 7-52 the timer card is used to provide a COUNT UP- A T ouTeUT A __]
gate to the “up enable” line on the counter card. The frequen-

cy of the signal being measured can then be determined by [ENABLE
multiplying the number of pulses counted by the gate time in 4-{DOWN UF‘J" G
seconds. Connections between the cards and the signal being l:

measured are shown in Figure 7-4.

COMMON— C

& —— COMMON—F

7-168 A primary consideration when measuring frequency
with this technigue is the capacity of the counter card. Care
must be taken to select a time period for the gate that will not
allow the maximum capacity of the counter card {65535
counts) to be exceaded during the measurement perlod. In Ex-] 36 CoMmon
Example 7-46 the program automatically selects gate times as

fotlows:

1. The initial gate time is 10 milliseconds which pro-
duces 10000 counts at the maximum input frequen-
cy of 1 MHz.

2. Whenever the total count is less than 6500 and the
gate time is less than one second, the gate time is
increased by a factor of 10 and a new measure-

ment is made. The maximum gate time in this pro-] .
gram is one second. Figure 7-4. Frequency Measurement Connections

7-38

Example 7-52.

9826A Controller

Frequency Measurement Using 8§9736A and 69775A Cards

9835/45 Controllers

Explanation:
9825 9835/45 Description
10 Set 9835/45 1o OPTION BASE 1
20 Dimension 11 word array for use by subroutine “Cheker”.

0 30 Multiprogrammer is programmed to serial mode. This statement is not required unless the
Multiprogrammer had been previously programmed to paratlel mode.

1 40 Value used to calculate gate time is initialized.

2 50 Duration of gate in milliseconds is calcuiated,

3 60 The Counter card is preset to 0, timer card is programmed 1o output a gate puise, and,
upon completion of the gate pulse, the number of pulses counted by the counter card is
read into the Multiprogrammer memory.

4 5% 70,80* Check for programming errors. If programming errors are detected, terminate program.

4] g0 Read number of pulses counted into controller variable 'B”.

7 100 If less than 6500 pulses have been counted and the gate time is less than 1 second (1000
ms.} increase gate time and take another reading.

8 110 Display frequency of signal being measured.

8 120 Go back and measure frequency again

10 130 End of program.

*Program statements are optional.

7-168 Synthesizing a Waveform

7-170 Example 7-63 shows a program for synthesizing a

waveform in the shape of a staircase. The amplitude of the
waveform ranges from ~ 10 to + 10 volts and consists of
twenty one 1-voit steps lasting B0 microseconds each. A
69736A timey card, a 69720A D/A Voltage Converter card, and
the 69790A Memory cards installed in slots 4, 5, 6, and 7 (the

Memory cards use two slots) are used in this example. Con-
nections between the cards are shown in Figure 7-5,

7-171 In Example 7-53 the Memory cards are loaded with
the data necessary to program the D/A card to the required
output voltage. The timer card is then programmed to the
recircutating (continuous output) mode and to a pulse width
of 25 microseconds. As a result, the timer card produces a
square wave output with a b0 microsecond total period. As

each output pulse from the timer card pulls the data accepted
{DAC} line low on the Memory card, the memory card will set
the data available (DAV) line high. Upon completion of each
output pulse from the timer card, the Memory card transfers
the next available word in memory to the output of the card
and sets its data available fine low. The data available signal
serves as an externai trigger ot the D/A card which then con-
verts' the digital value supplied by the Memory card to an
analog {voltage) output. This output sequence continues for
as long as the timer card is in the recirculate mode.

7-172 By changing the values and amount of data loaded
into the Memory card, it is possible to generate an unlimited
variety of output waveforms by the method used here. The
frequency of the output waves will be determined by the
period of the pulses programmed from the timer card because
each puise from the timer card will cause the next cutput word
from the Memory card to be transferred to the D/A card. The
D/A card then translates this word into an analog output.

637364 ERFE04

FIMER/PACER D8 VOLTAGE 597504
CARD CONVERTER CARD MEMORY CARDS
————— i) o
A ' JIHJI
EXTERNAL | * * @
— DIGITAL
DIGITAL -+ . . {
OUTPUT ¢ MNPLTS |» . . | eUTPUTS o A
N 12 I’f,j‘
M oumn
v,
o QUTRUT
WAVEF ORM
g Bisaliay . WAVEFCRM
EXTERNAL 20 - DAY
DaTA SELECT ™ § 2t - BAC
TRIGGER
33 —POLARITY
EXTERNAL L SELECT
TRIGGER +m EXT. TRIGGER}- tn
INPUT INFUT
36 COMMON r ﬁ 6136 COMMON ri— 36 COMMON . r
JL
EXTERNAL TRIGGER
{OPTIONAL)

Figure 7-56. Connections for Waveform Synthesizing

Example 7-63. Synthesizing a Waveform

98254 Controller 9835/45 Controllers

Explanation:
9825 5835/45 Description
10 Set 9835/45 to OPTION BASE 1
20 Dimension 11 word array for used by subroutine “Cheker”
¢ 30 Reformat Memory card to agree with format of D/A card {data range = - 10.24 to
10.235, LSB = .005, number of bits = 12}.
1,2 40,50 Program Memory card to recirculating output mode, set reference register to truncate
memory to 21 words, set write and read pointers to 0.
35 60-80 Load output data into Memory card.
6 90 Program timer card to recirculating mode {continous output], then program a 25 microse-
cond output pulse,
7* 100* Check for programming errors.
8 110 End of program

*Program statement is optional.

1-1713 High-Speed Analog Data Acqguisition

7-174 Example 7-54 illustrates using an external trigger to
initiate a sequence which will take 1000 voltage readings at 60
microsecond ntervals and store the data in the Memory cards.
The controller will then read the data from the Memory cards
into an array. A 69738A Pulse Train Qutput card, 69751A A/D
Converter card, and the 69790A Memory cards installed in
slots 4, 5, 6, and 7 {the Memory cards require two slots) are
used in this example. If desired, a cycle instruction can be us-
ed to initiate the measurement sequence instead of an external
trigger by adding the cycle instruction to the end of the literal
string in Hine 3/40 (i.e. "AC,7T,WF 4,1000,4.2,607,CY 4T"}.
Connections to the cards are shown in Figure 7-6.

NOTE

As shipped from the factory, the data
conversion time of the 687514 A/D card
" is approximately 80 microseconds. This
includes an A/D conversion time and
controf circuitry delays of approximately
30 microseconds each. When using this
card in an externally triggered mode,
data conversion times of approximately
30 microseconds can be achieved by
proper switch settings on the card.
{switch 82-2 should be on, and 82-1,3,
and 4, should be off; see manuall. In-
structions that would normally cycle the
A/D card {such as, the “IFP” or “CY" in-
structions} wilf not do so when the swit-
ches are set for conversion times of
-30usec.

7-17% When an external trigger is applied to the Pulse
Train Qutput card of Example 7-54 the card wili begin a series
of 1000 pulses at 60 microsecond intervals which serve as ex-
ternal triggers for the A/D card. Externaily triggering the A/D
card wilt cause the card to convert a voltage present at the in-
put of the card to a digital value. This value is sent 10 the
Memory cards via the external digital output connections on
the A/D card. An end-of-cycle pulse (EOC) generated by the
A/D card when it completes its conversion process, is used as
a data available signal 10 the Memory card. When the Memory
cards receive a data available signal they read in the data pre-
sent on the digital input lines and incrernent their write pointer
to the next highest address. When 1000 words have been read
in by the Memory cards, an "armed card interrupt” will be
generated by the Memory cards and the Multiprogrammer wiil
set SRQ.

7-176 Since only one armed card interrupt can occur as a
result of running Example 7-54 the interrupt must have been
generated by the Memory card and it is not necessary 1o inter-
pret the armed card interrupt list to detemrine the address of
the interrupting card. The address of the interrupting card
must stilt be read back, however, to allow future interrupts
from the Memory card to set SRQ. Armed card interrupts and
external triggers are discussed in Paragraph 7-162 and in
Chapters 5and 6.

7-177 With slight modifications to the program, the Pulse
QOutput card used in this example could be replaced with a
B9736A timer card. If this is done, the timer card would be pro-
grmamed to the recirculate {continous output) mode and ex-
ternally triggered. Then, when the Memory card interrupted,
the recirculate mode would be programmed off while the data
was being read back from the Memory card.

697354 697514 BI7504
PULSE TRAIN A/D CONVERTER MEMORY CARDS
OUTPUT CARD carp
ol) P v
SQUARE WAVE] A (A A
QUTPUT (4] | EXTERNAL | o —C
DIGITAL -ie HOTRL
QUTPUTS |=f i -
N N
v -
VOLTAGE PEING DAV X oy
N MEASURED (DAVIX
Y -
EXTERNAL | 28 (EGC)
; EXTERNAL
TRIGGER TRIGGER |- m
INPUT INPUT ;
36 COMMON r) r 36 COMMON ¢ (36 COMMON 1
4

common! | L

EXTERNAL
TRIGGER

Figure 7-6. Data Acquisition Connections

7-41

Example 7-54. High Speed Analog Data Acquisition

9825A Controller 9835/48 Controllers

kgt f T
NI IR
DAy 5, e]

FLE [E IR

Exglanation:
9825 0835/45 Description
10 Set9835/4510c OPTION BASE 1

0 20 Dimension 1000 word array to store data that will be read from Memory card; Dimension
11 word array for use by subroutine "'Cheker’ in 9835/45 program.

1 30 Reformat Memory card to agree with format of A/D card (datarange = — 10.24 10
10.235, LSB = .008, number of bits = 12).

2 40 Program Memory card in sfot 6 to FIFO Input mode and specify 1000 words to be read
back; Set Memory card to interrupt when high speed A/D card has stored 1000 words in
Memory card.

3 50 Arm Memory card for interrupts; Set up Pulse Train output card to send out 1000 pulses
at 60 microsecond intervals after it is externally triggered {or cycled).

4 60,70 Wait for SRQ,

5 80 Clear SRQ, put Multiprogrammer status in variables U,V, W, and check for programming
errors.

8 a0 If programming errors are detected, terminate program,

7 100 If an "armed card interrupt’” was not detected, wait for ancther SRQ.

8 110 Read address of card that has generated an ""armed card interrupt”’.

g 120 Disarm Memory card _

10-12 130 Read 1000 data words from Memeory card into array.
13 140 Controller displays "'data is ready”
14 150 End of program.

7-42

Appendix A
NUMBER THEORY

Al This appendix provides a brief description of number
theory as it relates to the data types used by the
Multiprogrammer System. The decimal, the octal, and the
binary number systems are ali used to define, in numericai
fashion, the data transferred and converted within the
Multiprogrammer System.

A-2 DECIMAL NUMBERS

A-3 Most of us are so familiar with the decimal number
system that we have become largely unconscious of the
underlying principles; at least so far as they relate the decimal
system to other systems such as binary or octal. Any number
systermn has what is calied a "‘base”’, which is the number of
unique symbols used in the particular system. Since it has ten
unique symbols {0,1,2,---9), the decimal system is the base 10
number system. Although it is often omitted since the number
system is usually implied by the context, the base may be
specified by a subscript:

23540 {1)

A-4 This subscript simply tells us that the preceding
number is & unique guantitative value presented in decimal
form. If we examine the individual digits that make up a
decimal number, it becomes clear that the number can be
represented as follows:

2354 =2 10% = 2x 100 = 200
3x101=3x 10= 30
5x1{)0z5>< 1= 5

7%y,

A5 From (2} it may be seen that each digit is weighted by
a power of the base {in this case 10}, and that the power in-
creases by one for each successive digit 10 the left. this rela-
tionship hoids true for number systems 16 any base, and pro-
vides a longhand method for converting to base 10 from any
other base.

A-6 BINARY NUMBERS

The binary system, which is the system of machine language,
is the base 2 number system, and has two unique symbols;
‘O and 1

(3}
11101011,

A-1

A-8 If we change {3) to the form used in (2}, we get:

11101011, =1x 27 = 1 128 =128

1x2%-1% 64 = 65
Tx2P=1x 32 = 2

0x2%=0x 16 = 0 @
1x2-1x 8= 8)
0x2°=0x 4= 0
tx2'=1x 2= 12
1xP=1x 1=_1_
23530
A-S OCTAL NUMBERS
A-10 The octal number system has eights unique symbols

{0 through 7} and functions in a similar fashion:

3534 {5}
and:
3585 =3 x 8% =3 x 64= 192
5x8 =5x 8= 40)
3x8%=3x 1= 3
A-1 The octal number system has another characteristic

which makes it particularly useful to the programmer. Return-
ing to binary numbers for a moment, we see that three binary
digits allow us to represent eight unique values:

M=01x2%+1x2+711x2% =7
110=(1x2%+(1x 2" +0 -6
101 = (1x 22+ 0+ (1x 20) =
100= (1% 22(+ 040 =
011=0+ {1 x 2N+ (1x 2% =
010=0+{1x21+0 =
001=0+0+04+(1x2% =
000=0+0+0 -

(7)

A-12 Since a single octal digit may also represent eight
unique values, we can use octal digits to represent binary
triads for any binary number regardless of its size. Conversion
is by direct inspection: '

11100 011

]

7 4 3 g

111 101
|

‘Ew—.,-ww-«
|
1

|
76

The reverse process is just as simple:

0 2 7 6 1 5g
NN &
0 510 111 Ti0 001 101

A-13 The octal number is clearly easier to remember than
its binary equivalent, yet is also readily converted to or derived
from binary and is therefore more closely related to machine
language than decimai.

A-14 Conversion from binary to octal by inspection is a
particularly useful technigque when relay output cards are used
as switches in a calculator based mutliprogrammer system.
The octal pattern is easily converted to the desired switch
{relay contact) closures.

A-15 DECIMAL CONVERSION
ALGORITHMS
A-16 Integer conversions between the decimal and either

the binary or the octal systems are less obvious and con-
siderably more tedious. Direct conversions from decimal to
binary, and vice-versa, are not usually performed, but instead
conversions between decimal and octal are used in conjunc-
tion with the conversion by inspection techniques shown in (8)
and {9) to achieve the same resuits indirectly.

A-17 Octal To Decimal. Conversion from octal to
decimal may be performed as follows:

1. Multiply the most significant octal digit by 8.

2. Add the next most significant octal digit and muitiply
the sum by 8.

3. Repeat step 2 until the least significant digit is reach-
ed.

4. Add the least significant octal digit but do ro multiply
the sum by 8.

For example: 1757438

BOsC

64480 -+ 3= 644834,

{10)

A-18 IF we put {10} in a more general form, #s relationship
to (6) becomes apparent:

ABCDEF,
xY
AY
+B
AY+ B
XY
AY?4 BY
e
AY21BY 4 C
XY
AY3 i BYZ 1 CY
D
AY3:BY24CY+D

(A Y2 Bx YN+ ICx Yy
1DXY21 4+ (EXY 1) + (FxyY) =

aYS eyt ov3spy2pv104 Fo

XY

av*ey3cy? + py
+E

AY 1 BY3 1 Y2+ DY HE
XY

AYS By o3y DY2 i EY 4 Fyg

A-19 Decimal To Octal. Conversion from decimal 1o oc-
tal may also be reduced to a simple algorithm:

1. Divide the decimal number by 8, and write down
the remainder.

2. Divide the guotient of step 1 by 8 and write down
the remainder,

3. Repeat step 2 untll the guotient is zero (the last re-
mainder is also retained).

A typical example:

81173981
8121747
8)2718
81339
842
85

0

(12}

b
AN WD W s

]

52363 5

A-20 Several operations are implied in (12} and if shown
wouid appear as foliows:

8 173981 10

5x100

8[21747 = 5
8) 2718 3x10) = 30
8) 339————— 6 1o§ = 600 (13)
8]‘“‘}2’"—_—"—3X 104 = 3000
8} B e 2 X 105 = 30000
f—————— 5 x 10 500000

523635

A-21 When used in the form given in {13) this algorithm is
fully reversible:

10523635

10)52363 ——- 5 8 5

10) 6236 ——— 3x 8, 24
10} 523 —— 6x 8,y 384 (14)

10) B2 ——— 3% 8y 1536

10} 5 ————=2x8, 8192

0 5x 8y 163840

17398110
A-22 NEGATIVE NUMBERS

A-23 A number systern is not really complete unless it
makes some provision for negative values. The decimal
system does so through the use of two additional symbols: the
plus { + 1 and the minus () signs. Obviously, these two sym-
bols serve a dual purpose since they not only indicate polarity,
but also act as arithmetic operators. Any value within the
range of ~ o <n< + o may be more or less conveniently
represented by this system of twelve symbuois (i.e., the digits
0-9 and the “+"" and " ~ " signs),

A-24 The relationship between the polarity indicating and
the operative functions of the "+ " and ' — " signs is implicit in
subtractions:

10
-5 or 10-5=5 {15}
5
is the same as:
10 + (-6} =5 (18)

The sum of any number and its true negative is, of course,
ZeF0.

A-25 Two's Complement Numbers. The binary number
system is useful precisely because it has only two symbols,
and as a consequence, polatity cannot be indicated as it is in
the decimal systern without destroying the very property that
permits implementation of binary codes in hardware. This
reality together with the fact that from a hardware standpoint,
it is generally easier to add than to subtract directly has en-
courage use of the two's complement system for representing
negative numbers in binary. The two's complement of any
binary number is formed by:

1. Complementing each digit {changing all "0's”" to
g

s’ and vice-versa),

2. Adding one.

A-3

Thus:
011010011101 =~ Originat Number
{17}
100101100010 One’s Complement
+ i

100101100011 ——Two’s Complement

A-26 Subtraction using two’s complement numbers is as
follows:
1299 M0 (Two's complement
______210 +0111 of 1001,
31 0 10011 {18)
{Last carry 001, = 310
is ignored)
A-27 Returning to (17}, we see that adding the original
number and its two's complement produces:
011010011101
+ 100101100011 (19}

1000000?00000
000000000000, = zero

A-28 The result is zero and demonstrates the validity of
treating the two’s complement as a true negative of its root
binary number,

A-29 Sign and Magnitude. The sign and magnitude
code provides another means of indicating polarity. Using this
code, the most significant but {MSB) specifies the sign
{polarity} and the remaining bits represent the magnitude of
the number. For positive numbers, the sign bit is a “0”, and
for negative nubmers, i is a "1". Examples of positive and
negative values using the sign and magnitude code and a
16-bit binary number are;

- pOS. Sign

0111000000000010 = +28,6“7230
neg. sign

1111000000000010 = 28,6724,

—Ppos. sign

00110000000000001 = +32,28930
neg. sign

10110006060000007 = -12,28930

Note with sign/magnitude there are two representations for 0:
OOOOOOOOO{?OOOOOO =}

an
1000000000000000 =0

A-30

A-31

Certain external devices require data to be in binary
coded decimal (BCD) format. BCD uses four binary digits to

represent ten unique values:

1001 = (1% 22+ 0+0+ (1x 29) -9

1000~ {(1x23+0+0+0 =8
0111=0+1x20 4 (1220 1 (1x20 =7
0110=0+{1x2%+(1 x 21y 4+ 0 =6

010T=0+ {1522+ 0+ {1x 29 =5
0100= 0+ (1% 22 +0+0 =

0011=0+0+(1x2h +1x 20 -3-
0010=0+0+ (1x211+0 =2
0001 =0+ 0+ 0+ (1x 2% -1

0000=0+0+0+0 =

BINARY CODED DECIMAL (BCD)

A4

A-32 In BCD, the value of any four binary digits can not
exceed 10019}, Values 1010(10), 1011(11), 1100(12), 1101013},
11160145, 111115} are all illegal, Examples of BCD numbersin a
16-bit binary word and their decimal equivalents are:

1001 0110 0011 0000 = 9630,
0001 0160 0111 1000 = 147844

Appendix B
ERROR CODES

B-1 Error conditions that can be detected and repotted by
the Multiprogrammer can be divided into four categories;
general programming errors, hardware errors, 1/0 card errors,
and instruction errors. A brief description of each category,
followed by a list and description of the associated errors is
given in this appendix.

B-2 GENERAL PROGRAMMING ERRORS

B-3 These error codes indicate programming errors that
are not associated with any particular instruction. If an asterisk
foltows an error code it indicates that a second error variable

containing the address of & card associated with the error
code will be returned.

B-4 HARDWARE ERRORS

B-5 These error codes indicate hardware problems have
been detected in a B6942A mainframe or 6943A extender
unit{s). Descriptions of errors are provided whenever it is felt
that the user may be able to correct the error condition
without a service cali. No descriptions are provided in the case
of error cades that indicate an internal failure requiring a ser-
vice call to correct.

Genera! Programming Error Codes

Code Description

-1 Hlegal Extended Talk Address - An attempt was made to read back data from a non-existent extended talk address. {i.e.
a talk address other than 00-14 was received by the Multiprogrammer).

-2 Hlegal Opcode - The instruction sent to the Multiprogrammer contains an opcode that is undefined. This is generally

caused by a typographical error.

-3 llegal Operation in Immediate Mode - The Multiprograrmmer was in immediate mode and an attempt was made to ex-
ecute an instruction that is not permitted in immediate mode, If this error is encountered, return to normal mode or use
a different combination of instructions to perform the same function.

-5* liegal BCD Code Returned - The card whose address is contained in the following error variable is formatted as a BCD
card but it has read back an illegai BCD value. The value sent to the controller is a 4 character alpha-numeric string
representing the hexidecimal value of the data. Al digits that are legal BCD digits are returned as numbers while ali
digits that are illegal digits are returned as the letters A" through “F indicating the value of the digit
(1010=A,1011=8, 1100=C, 1101=D, 1110=E, 1111=F). In the event this type of data is considered useful by the

program it must be read back into & string variable. Reading alpha characters back into & standard variable will vield er-
roneous data.

Diagnostic Error - This error can ocour during procedures used by the service center to diagnose 1/0 card problems or in
the uniikely event a typographical error results in the controller sending a diagnostic opcode to the controller during nor-

Diagnostic Error - This error can only oceur during procedures used by the service center to diagnose 1/0 card problems.

-B
mal programming.
-7
B-6 1 /0 CARD ERROR CODES

detacted. If an 1/0 card hardware error is reported, substitute

B-7 When g defective I/0O card is detected by self test
{hardware error -18), an error code indicating the type of error
is stored in the Multiprogrammer. These error codes can be
read into the controller using the Read Format {RF) instruc-
tion. The Self Test Error Detection and Card |dentifier utility
program provided in Appendix C illustrates use of the RF in-
struction to read the specific I/0 card error codes. Error codes
-b2 through -60 indicate failures in specific circuits on 1/Q
cards. When one of these errors is reported, it indicates what
the first error detected was. Note that there could be addi-
tional errors in the 1/0 card but only the first error detected is
reported. The Multiprogrammer will not allow communication
with the associated 1/0 card when one of these error codes is

B-1

a new card in the slot and repeat the self test. If the new /0
card passes self test, the problem has been isolated to the
replaced /0 card. Note that in rare citcumstances the user
may desire to communicate with a non-functional card. The
Set Format {SF) instruction described in Chapter 5 can be us-
ed to change the format of a non-functional card so it can
communicate with the system. This feature is not recom-
mended but may be used by the advanced programmer under
very special circumstances.

B-8 Codes -50 through -80 indicate 1/0 card errors. As
stated previously codes -52 through -80 indicate hardware er-
rors in specific circuits on an 1/0 card. Codes -50 and -51 are
reported if an RF instruction is programmed to an empty card
slot or to a card address that is not used.

Hardware Error Codes

This error generally indicates either a defective or loose transmission cable bet-

the way in a 6943A extender, or a

cards were found to be defective when Self Test was executed.

the Seif Test and

- The measured value of the AC line frequency was out of tolerance. 1f this error is

other than a status or error list readback, until the power i restored, at which time

A failure in the transmission systerm cabie was detected after the system had heen

-331 consists of an instruction identification code of -300 and

Code Description

-1t Self Test Error

.12 Transmission System Error In Self Test -
ween any two frames in a system, a transmission system hoard not plugged in al
B943A extender that is not turned on or was turned on after the 6242A.

-13 Self Test Error

-14 Self Test Error

.15 Card Errors Detected In Seif Test - One or more 1/0
This is sometimes caused by /0 cards not being fully inserted in Mukiprogrammer sockets. Running
Card Identifier utility program in Appendix C wilt identify the addresses of the bad cards as well as the error code
associated with the type of failure detected.

-16 Real Time Clock Frequency Error
detected, the multiprogrammer sets the real time clock base to 60 Hz. Sinece the real time clock base does not agree with
the line frequency, however, the clock will not be accurate.

-21 Spurious Interrupt Detected - This error is generally an indication of noise in the system although it can also be caused
by a defective 1/0 card or improper programming of a 69780A Memory Card.

.27 Extender Power Failure - After turning on the systern power normaily, one of the B943A extender units in the systern had
its power removed. This error can also be caused by a transmission cabie that has been pulled off. The Muitiprogrammer
wili not allow any further operations,

a Device Clear must be executed before resuming normal use of the system.

.23 Transmission System Cable Fault -
powered up normalfy and completed seif test. The Multiprogrammer will not allow any further operations, other than a
status or error fist readback, until the cable fault is corrected, at which time a Device Clear must be executed before
resuming normat use of the system.

-24 Mainframe Error Detected

1/0 Card Error Codes

Code Description

B0 No Card in Slot - This code will be reported back to the controller if an RF instruction is programmed to an empty slot.

&1 Card Address not in System - This code indicates that there is no frame connected at the address specified in an RF in-
struction. For example, reading the format of a card in slot address 102 when frame 0 is the only frame in the system
would result in a code of -b1 being returned,

.52 Bad Data Readback - The Multi wrote a test pattern to the card and could not read it back correctly.

-63 Arm and EQP do not Clear - Prohlem with the card’s interrupt system.

54 Data Bus Does Not Float High - Problem with the data paths, possibly a shorted line.

55 Bad Seif-iD - The Multi could not read the card’s wake-up data format parameters, probably a problem with the data
paths.

.56 Failed Memory Card Test - 1D indicates its a Memory Card, and it failed a custom memory card test.

-57 Failed Pattern Sensitivity Test - ID indicates its a Memory Card, and the Multi detected a RAM fallure.

.58 Data Readback Error - Error in reading back data from the card, probably a data path error,

.59 Frame Interrupt Register Bad - Problem with frame’s interrupt system. This error would be detected when checking &
card’s interrupt system.

-80 Arm or EOP Error - Problem with the card’s interrupt system.

-61 Bad Card Interrupt Register - Problem with the interrupt system {I/0 card or frame).

B-9 INSTRUCTION ERROR CODES

B-10 These error codes indicate that programuming errors

have been detected inside instructions sent to the
Muitiprogrammer. Each instruction error code consists of two
parts, an instruction identification code and an error code. The
instruction identification code identifies the instruction that
contained the error and the error code identifies the type of er-
ror detected. The instruction error code reported by the
Multiprogrammer is the addition of the instruction identifica-
tion code and the error code. For example, an error code of

B-2

an error code of -31. The instruction identifcation codes and
corresponding instruction opcodes are listed first followed by
a list and description of the instruction error codes.

B-11 If an asterisk foliows an error code it indicates that
the complete error message consists of two variabies. The in-
struction error code is returned in the first variable and a
positive value representing the address of the card associated
with the error is returned in the second variable.

Instruction ldentification Codes

ID CODE 0P CODE D CODE gp CoDE ID CODE 0P CODRE
-100 OB —1200 Not Used — 2300 GN
—200 P —1300 Gl — 2400 WF
—300 opP - 1400 IN - 2500 RS
—400 it - 1800 cC — 2600 RV
500 0s — 1600 SF — 2700 GS
- 600 IE — 1700 CG ~— 2800 GpP
700 Mi — 1800 RF — 2900 sC
—800 MO — 1800 DC — 3000 RC
—900 Ql —2000 AC --3100 SE

--1000 WA —2100 Cy - 3200 sD

— 1100 WiJ — 2200 wC - 3300 cw

instruction Error Codes

Description

Number of Cards Incorrect

legal Character in the Instruction - An illegal character was detected in the processing of an instruction. This is
generally caused by a typographical error.

Unrecognizable Card Address - A frame address other than 0-7, slot address other than 0-15 or sub-address other than
0-3 was sent to the Multiprogrammer. :

llegal Use of Card Address - This error is caused by attempting to program the same card twice in an instruction that
only permits a card to be programmed once. It can also be caused by attempting to program Memory Card 2 with an
M, MO, or SF instruction.

Data Error - This error indicates that the data sent to a card was either out of range or rllagal for the type of card being programmed.
Limit Exceeded - The programmable bipolar limit specified for the card was exceeded.

lllegal Repeat Factor or Wait in IP/IE - The repeat factor specified was either a negative number or non-integer, or the
wait time specified was out of the legal range (0.0 to 65563.5).

lilegal Use of Group Number - A group number was specifed for an instruction that does not altow groups, the opcode
and group number did not match when re-programming a group instruction, or the program attempted to use a group

that had not been previpusly defined.

Hlegal Group Number - A group number other than 0-9 was specified.

tlegal Ol or Il in Immediate Mode - An Of of H instruction, using an 1/0 card that was already active in another instruc-
tion was programmed in immediate mode.

Set Format Parameter Error - An error was detected with one of the parameters in an SF instruction.

Card Address not in Multiprogrammer System - There is no frame connected at the address specified in the instruction.
For example, attempting to program a card ir slot address 102 when frame 0 is the only frame in the systemn.

Card Address Used has a Faulty Card - The slot address being programmed contains a faulty card and can not be pro-
grammed,

Card Address Used has no Card in Slot - There is no card |nstalied in the slot address spegcified.
Miscellaneous - This error means that the Multiprogrammer c¢an not ?tgufe out what the user wants.

B-3

Appendix C
UTILITY PROGRAMS

C-1 This appendix provides brief descriptions and listings
of the utility programs contained in the 9825 and 9835/9845
controller tape cartridges included with this User's Guide.
Each cartridge contains the following programs:

Program
Mame 8825 9835/9845
Error Checking Fie 0 CHEKER
Error Trapping N/A ERTRAP
Self Test Error File 1 CARDID
Detection and
Card ldentifier
Multiprogrammer File 2 MPSTAT
Status

c-2 CHECKING SUBROUTINE

C-3 Subroutine “cheker” is used extensively throughout

this guide as a programming aid. Inclusion of this subroutine
in your programs will provide you with an indication of pro-
gramming errors that occur when you run your program.
“Cheker’’ will clear SRQ, read the status of the Multiprogram-
mer, and print {9825) or display {9835/45) any errors detected.
it returns to the mainfine program with the Multiprogrammer
status variables contained in variables U,V, W, X,Y,and Z. (The
value contained in variable V is the number of error words
detected before the Multiprogrammer error buffer was emp-
tied by ‘' .cheker ”). The call to the subroutine in the program
ean be located wherever you require Multiprogrammer status
information (such as after an SRQ has been detected) or
wherever you would like to check 1o see if you have made any
programming errors.

C-4 To use “Cheker’” with a 9835 or 9845 controller your
program must first dimension an 11 word array, designated
“R". Since all 9835/45 examples in this guide use OPTION
BASE 1, the dimension statement used in this manual is “DIM
R{11)”. This array will be redimensioned by subroutine
“Cheker” whenever errors are detected, thereby ensuring that
the correct number of variables is read from the error list.
Note: if you prefer to use OPTION BASE 0 on your controller,
lines 9020 and 9060 of subroutine “Cheker’” must be rewritten
as follows

9020 REDIM R(V - 1)
9060 FOR J=0TC V-1

In this case, the Dimension staterment would be written "DIM
R{10})"".

C-1

Program Listings
88254 Controller {File 0}
el FEELE s ey e s

6R35/45 Controllers (CHEKER)

C-5 ERROR TRAPPING SUBROUTINE

Cc-6 Subroutine “Ertrap” is an etror trapping subroutine
used when writing programs on the 9835/45 controllers. This
subroutine will allow a return back to the main program
whenever an attempt is made 1o read more data than the
Multiprogrammer has available. The mainline program must
execute an “ON ERROR GOSUB Ertrap” statement to utilize
this subroutine.

Program Listing
9835/45 Controllers (ERTRAP)

Pl LS5
iF

C-7 SELF TEST ERROR DETECTION AND
CARD IDENTIFIER PROGRAM
C-8 This program is a “stand alone” program used to

verify that the system is functioning properly and to list the
card types that are installed in the card slots. The program first
sends an HP-IB “Device Clear” command to the
Multiprogrammer System 1o reset the system and initiate the
system self test. The program waits 4 seconds for the self test
to complete and then checks if any mainframe hardware or
/O card errors were detected during self test. if no errors were
detected, it prints out (9825} or displays (9834/45) the slot
numbers, the card types, and the card data format parameters
{data type, LSB, no. of bits}. i a card error was detected, the
error code is listed along with the applicabie slot no. H a main-
frame hardware error was detected, the error code is printed
out (9825} or displayed (9835/45) but the card identification in-
formation is not listed.

Self Test Errer Detection and Card Identifier
Program Listings
9825 Controlier (File 1)

1
i
1%
14
i
1
g
I

9835/45 Controflers {CARDID}

: - o
= o

ot cpeed aeed el aed

§835/45 Controllers

CARD

Tl

g
t

! l[EE

il

CRELAT

C-3 MULTIPROGRAMMER STATUS
PROGRAM

C-10 This program is a “stand-alone” program that can be
used when debugging the system and when writing programs.

The program first checks the Multiprogrammer SRQ Status. i
SRQ is set, it prints out the instruction or condition {self test}
that set SRQ. The program then reads the instruction busy
status, checks for any hardware or programming errors, and
finally checks for any "armed card” interrupts.

Multiprogrammer Status
Program Listings

9825 Controller {File 2)

L]

9835/45 Controflers {(MPSTAT)

C-6

Appendix D
DEBUGGING THE SYSTEM

D-1 This appendix contains information which will help
you avoid problems when you are first beginning to program
your system as well as information that will help you isolate
and correct problems if they should occur.

D-2 When the system is initially turned on or is reset {cir
723 or RESET 723, depending on the controlleri a seif test is
automatically performed on the mainframe, extenders (if anyl,
and all 1/0 cards. On completion of the self test the
Muttiprogrammer will set SRQ to notify the controller that self
test is complete. If any hardware errors are detected during
self test, the aerrors will be stored within the Multiprogrammer
and may be read back from HP-IB extended talk address 11. In
the case of /0 cards, specific error codes identifying the type
of failure will also be stored and may be read back by means of
the RF instruction. The Seif Test and Card Identifier utility pro-

gram described in Appendix C will reset the Multiprogrammer
system, read the status of the Multiprogrammer after it com-
pletes self test, and print out any errors detectad. When initial-
ly turning on a new system, you should run this program to be
certain that the system is operating properly before starting to
write programs. Any errors reported by the program shouid be
corrected before continuing.

D-3 Once you have determined that your system hardware
is operational (it passes the Self Test program) the next step is
to begin writing your program. A person totally unfamiliar with
a 6942/43 Multiprogrammer system is likely to make a few
mistakes when first attempting to write programs. These
mistakes will result in error conditions in the Multiprogram-
mer. Error conditions in the Multiprogrammer can be grouped
into twe general categories: &rrors that are reported by the
Multiprogrammer by means of a service request and
Multiprogrammer status variable {reportable errors} and errors
that the Multiprogrammer will be unable to report {non-
reportable errors).

G-4 REPORTABLE ERRORS

D-5 Error conditions that resuft in SRQ being set are
generally very easy to troubleshoot since coded, well defined
error messages (see Appendix B} can be read back from ex-
tended talk address 11, The Self Test and Card |dentifier pro-
gram mentioned previously is an example of a program that
monitors service request and Multiprogrammer status to
determine if errors have been detected and, if they have, it
reads extended talk address 11 and prints the error codes on
the controlier.

D-6 Another example of a program that monitors repor-
table errors is subroutine ‘'checker” in Appendix C.
Subroutine “cheker” is a powerful debugging tool that should

D-1

be included in any program you write to help you during the
debugging phase of program development. The “cheker”
routine reads the status of the Multiprogrammer and prints out
any error messages that have been detected. Once the pro-
gram is operational, "'cheker” can either be remaved from the
program or left in and used whenever a status read of the
Multiprogrammer system is required.

NOTE

Since subroutine “cheker” reads the
Multiprogrammer status and clears SRQ it
should not be called at random in a pro-
gram that normally requires an SRQ to
notify the controller that a process is com-
plete. In this case it can be included in the
routine you write to process SRQ once it
has been detected.

-7 Example D-1 illustrates use of subroutine “cheker” in
debuggging a program. This example assumes that output
cards are installed in slots T and 2 and an input card is installed
in siot B. All other slots are empty. Subrouting "cheker” is not
shown in this example but is listed in Appendix C.

Example B-1. Debugging a Program With Subroutine
“cheker”

9825A Controtler

9835A Coantrolters

DFTION BRZE |
Fip =ma1in
DUTEUT 7
OUTAUT 5
AUTEUT
AUTRUT
SRS UE

= me ume

Explanation {Example D-1}:

Data has been left out of an 0S instruction used to program a card in slot address 2.

8825 9835/45 Description
10 Set Controller to Option Base 1.
20 Dimension an 11 word array for use by subroutine ""cheker’’.
0 30 lilegal opcode sent out {Op instead of OP)
1 40 WC instruction used to program siot 14 which is empty.
2 50 Good P instruction sent out.
3 60
4 70 Check for errors in the program.
5 80 Read back data from input card programmed by IP instruction.
6 90 End of program.

D-8 Executing example D-1 will result in the following error

message being printed on the 9825 controller or displayed on
9835 or 9845 controliers.

Error Message Description

ERROR LIST:

-2 Opcode Error

- 2243 There is no card in the slot ad-

14 dress (14) specified in a WC in-
struction.

- 534 A data error has been detected

2 in an 0% ' instruction when

programming slot address 2
{data word has been left gut in
this example).

D9 Since the error codes reported in example D-1 are fair-
ly self-explanatory, correcting the errors become a simple mat-
ter of correcting the opcode in the OP instruction, installing an
output card in stot 14 {Caution: turn off the power first}, and
adding a data value to the OS instruction. A description of all
error codes is provided in Appendix B.

D-10 NON-REPORTABLE ERRORS

D-11 Error conditions that can not be reported by the
Muitiprogrammer are maore difficult to interpret than those
that can be reported. It is possible, due to improper program-
ming or improper 1/Q card connections, to set the
Multiprogrammer to a state where it is either not ready to res-
pond or unable to respond to the controlier, thereby stalling
the controller. This condition, where the controller is waiting
for a response from the Multiprogrammer but the
Multiprogrammer can not respond will be referred to as a
hang-up condition. Hang-up conditions can be detected by
using the timeout feature of the controller.

D-12 Hang-up conditions result from three specific pro-
blems: an unterminated gate on an |/0 card, an /0 card that
takes a long time to complete, or a memory overflow condi-
tion. Hang-ups due to a card with an unterminated gate or an
I/QO card that takes a long time to complete wilf not prevent ad-
ditional instructions from being sent to the Multiprogrammer
or Multiprogrammer status from being read by the controlier
{red 72310,A,B/ENTER 723.10;A,B). However, harng-ups due
to a memory overflow conditon will prevent further com-

D2

munication of any kind with the Multiprogrammer until the
condition has been corrected.

5-13 An Unterminated Gate on an /0
Card
D-14 By removing a jumper on & B9731A, 69770A, or

69771A1/0 card, an external device can be used to control the
data transfer time of the card. If the jumper has been removed
but the card is not connected to an external device, or the ex-
ternal device is-not turned on or not working properly, the card
will not be able to complete a data transfer. Programming a
card with an unterminated gate using an OB,IP,0,11,0S,IE, or
Ol instruction will cause the instruction that has programmed
the card 1o remain busy indefinitely, waiting for the card to
complete. i the Multiprogrammer is in serial mode and the 1/0
card has been programmed by an OB,IP,0P, 08, or IE instruc-
tion aHl subsequent instructions l(other than CC,-
CG,CW,GI,MILMO,RF,RS, or SF instructions which run im-
mediately) will be forced to wait until the busy instruction
completes before they are started. In parallel mode, alf subse-
quent instructions of the same type as the busy instruction,
other than an H or O, will be forced to wait untii the busy in-
struction completes before they are started. In either mode,
any attempt to read data from an instruction in the system
{other than an Il or Ql) that is busy or waiting to run will force
the controlier to wait for the busy card to complete before be-
ing allowed to read the data. Since a card with an unter-
minated gate will never complets, the controller will be hung-
up. :

NOTE

Since muftiple Il and/or Of instructions can
be running concurrently, a hung-up card in
an It or O instruction will tie up that par-
ticular instruction but atfow other Il or Ol in-
structions to run as long as the other in-
structions do not attempt to use the same
card.

D-15 In the event that a hang-up has occurred due to an
I/0 card with an unterminated gate, you can stop the program
and use a Read Status instruction to determine which card in
the system has caused the hang-up {“RS, card address,T"'}.
The card found to be busy when a hang-up ocours is the cause
of the hang-up.

b-16 After determining which card has caused the hang-
up condition you have four choices:

1. i you do not need the data stored in the
Muttiprogrammer up to the time of the hang-up, turmn
off the Multiprogrammer, correct the problem, turn on
the Multiprogrammer, and rerun the program.

2. If you do need the data already stored in the
Multiprogrammer, it can be read back in a normal
fashion. The problem that caused the hang-up should
then be corrected before the pragram is rerun.

3. If the instruction that contains the hung-up card is
an input instruction and you would like to read the
data obtained by other cards in the instruction, or you
would like other instructions stored in the
Multiprogrammer at the time of the hang-up to com-
plete before you correct the problem, send a Clear
Card instruction {"CC,card address, T} to the card
that is hung-up. This will allow the instruction con-
taining the hung-up card to finish as if the card had
completed normally. Any instructions in the
Muitiprogrammer that are waiting to run will then be
started. Data from the hung-up instructions {assuming
it is an input instruction) as well as data from the in-
structions that were waiting to run can then be read

back, although data from the card that was cleared
shoutd be discarded. The problem can then be cor-
rected and the program rerun.

4. If you would like to continue execution of the pro-
gram without correcting the problem, simply send a
Clear Card instruction 1o the hung-up card. The pro-
gram may then be continued at the line that had
caused the hang-up.

D-17 Example D-2 is a sample program which illustrates
programming two 63771A Digital Input cards, in stots 1 and 2,
to take a reading, and then, print the results on the controller.
The timeout feature of the controller is used to monitor any
timeouts that may occur during execution of the program (the
timeout feature of the controller is described in the appropriate
controlier manual). As shipped from the factory, these cards
will not cause a timeout when example D-2 is executed.
However, disconnecting jumper W52 on a Digital Input card
without connecting the gate/flag lines to an external device,
wili cause a timeout to occur when the pragram is executed. In
this case, the controller prints ""timeout detected” and stops.
If CONTINUE is depressed on the controller the status of both
cards will be printed out and the program will again stop. No
corrective action is taken in this example since you will normal-
ly determine the course of action 1o take as described above.

Example D-2. Detecting a Hang-up Caused By an 1/0 Card

88254 Controlier
o]

1]
B FUTRTFE:
mE

]
I RT-InIR L

Explanation:

EHTER
PRIN

THEH RETLEHN

THITFLY
EHTER
FRINT
PRI
STOF

9825: Error has been detected. If error is not caused by a timeout on Extended [/Q ROM

return to main program (in your programs you would probably want to display the error
messaget, 9836/46; An interrupt has been detected on HP-IB interface. H interrupt was
not caused by a timeout, return to main program {in your programs you would continue

Read the status of the cards that have been programmed into the Multiprogramemer.
Read the status of the cards from the Multiprogrammer into controlier variables C and D.

8825 9835/45 Description
0 10 Set 10 second timeout.
1 20 Establish linkage to timeout subroutine,
2 30 Take a reading from two input cards using an iP instruction.
3 40 Read back data obtained by IP instruction.
4 50 Print data.
5 80 End of Program.
5 70
processing the interrupt}.
7 80 A timeout has been detected. Controller prints “"timeout detected”.
8 80 Program pauses.
9 100
10 10
1 120 Print status of first card.
12 130 Print status of second card.
13 140 Program stops.

D-3

D-18 An 1/0 Card That Takes A Long Time
To Complete
D-19 By their very nature, some cards can take a long time

to complete. For example, a 69736A Timer/Pacer card can be
programmed to output a timed pulse 10 hours long. Or a
10-hour long pulse train can be programmed from a 69738A
Puise Train card. In addition, some cards such as the 65731A
Digital Output card or the 69771A Digital Input card can be
connected to allow an externat device to controt the gate/flag
data transfer time of the card. In some cases the external
device may require a substantial amount of time before com-
pleting a data transfer, tying up the card and associated in-
struction within the Multiprogrammer untii the data transfer
completes. It is perfectly acceptable to program cards in this
manner. However, keep in mind that attempting to read data
from an instruction in the system {other than an Il or Of) that
contains a busy card will force the controller to wait for the
busy card to complete before being allowed to read the data.
In serial mode, attempting to execute succegding instructions
will aiso force the controller to wait until the busy card com-
pletes because succeeding instructions will not run until the
busy instruction completes.

D-20 After attempting to read data from an instruction
containing a busy card, you may decide to stop the readback
and come back for the data at a later time. In this case, you
can stop the program and either manually execute instruction
from the keyhoard of the controlier , or restart the program at
a different line.

D-21 Memory Overflow

0-22 A B942A Multiprogrammer without extenders con-
taing 1462 words of memory available for running instructions.
Each 6843A Extender unit that is used {up to 7} requires 24
words of memory. Therefore, a full system {one 6942A and
seven 6943A's) has 1294 words available for the user’s pro-
gram. Memory utilization information provided in Chapter 6

aliows the user to calculate how much memory his program
requires, so he can take full advantage of the available
memory and avoid memory overflow. I the memory
overflows, no instructions can compiete and the system will

hang-up. Memory overflow will result from any of the follow-
ing conditions:

1. An input instruction is programmed to take more
readings than the Multiprogrammer can store.

2. An unterminated gate exists on an 1/0 card and the
controller continues to send instructions to the
Multiprogrammer after the card with the unterminated
gate was programmed.

3. Data is not being read back from the Multiprogram-
mer after input instructions are programmed.

4. The immediate mode (G instruction) is programm-
ed when the memory is nearly full. Note that when a
Gl instruction is executed, the Multiprogrammer re-
quires 40 words of memory to store the previous state
of the system.

D-23 if a memory overflow condition occurs, no additional
instructions can be processed and no data from an extended
talk address can be read back. The only possible way to
recover is to reset the Multiprogrammer by sending a clear
message {cir 723/RESET 723) or turning the 6342A off and on
When the Multiprogrammer is reset, ali data stored within the
Multiprogrammer will be lost. Example D-3 illustrates memory
overflow condition 1 listed above by attempting to take 300
readings from each of b input cards located in siots 1 through

5, respectively. Since this will require 1527 words of memory
(1800 words of data + 27 words of overhead} a8 memory
overflow condition will result. The next ocutput or input of any
type from the controller to the Multiprogrammer will cause the
controller to hang-up. In this example, the Muitiprogrammer
Status Read (red 72310/ENTER 723.10) which follows the IP
instruction will cause the hang-up. The timeout feature of the
controller is used to detect the hang-up condition.

Example D-3. Causing a2 Memory Overflow Condition

98264 Controller

Eri
i

S

AR

ooy
Wit
Pored
&1
Ttimout
2t U

D-4

9835/45 Controllers

M ITHT

TR
EMTER
EHMD

Timoue s
FRIMT
ST

THEH RETLHH

Explanation:

o WA e O

D

9835/45

10

888588

~
oo}

Description

Set 10 second timeout,

Establish linkage to timeout subroutine.

Take 300 readings from each of b input cards.

Read Multiprogrammer status.

End of program.

9875: Error has been detected, I error is not caused by a timeout on extended |/0 ROM
return to main program {in your program you would probably want to display the error
message). 9836/45: An interrupt has been detected on HP-IB interface. If interrupt was
not caused by a timeout return to main program. {in your program you would continue
processing the interrupth

A timeout has been detected. Controller prints "timeout detected”.

Program stops.

D-5

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions We buy equipment Learn more!

Extend the life of your critical industrial, Planning to,upgrade your/current Visit us at artisantg.com for more info
commercial, and military systems with our equipment? Have/surplus equipment taking on price quotes, drivers, technical

superior service and support. up’shelf'space? Well give'it a new home. specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, represéntative, or authorized distributor for any manufacturer listed herein.

(217) 352-9330 | sales@artisantg.com | artisantg.com TECHNOLOGY GROUP

We’re here to make your life easier. How can we help you today? Vl ARTISAN

