Delta Tau Turbo UMAC-3U

160 MHz CPU

2l ARTISAN

‘ ECHNOLOGY GROUP

$3250.00

In Stock Your definitive source

Qty Available: 1 .

Ne)\l/v I;Iriln‘: Sﬁrplus Stock fDr qUUhTY pre-ﬂwneld
equipment.

Open Web Page

https://www.artisantg.com/62993-5 Artisan Technology Group
(217) 352-9330 | salesaartisantgLom | artisantg.com

Alltrademarks, brandnames, and brands appearing herein are the property of their respective owners.

» Critical and expedited services « We buy your excess, underutilized, and idle equipment
«» In stock / Ready-to-ship « Full-service, independent repair center
Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/62993-5/OMRON-Turbo-UMAC-3U?pdf=62993-5
https://www.artisantg.com/62993-5?pdf=62993-5

Reference Guide

UMAC Quick Reference

Reference Guide for UMAC Products
3A0-UMACQR-XPRX

December 23, 2004

ﬁ A DELTA TAU

~[4 Data Systems, Inc.

21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other
uses are unauthorized without written permission of Delta Tau Data Systems, Inc.
Information contained in this manual may be updated from time-to-time due to product
improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and
amplifiers contain static sensitive components that can be damaged by incorrect
handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid
contact with highly insulated materials. Only qualified personnel should be allowed to
handle this equipment.

In the case of industrial applications, we expect our products to be protected from
hazardous or conductive materials and/or environments that could cause harm to the
controller by damaging components or causing electrical shorts. When our products
are used in an industrial environment, install them into an industrial electrical cabinet
or industrial PC to protect them from excessive or corrosive moisture, abnormal
ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.
products are directly exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

UMAC Quick Reference Guide

Table of Contents

INTRODUGCTIONcoiueiitriieestsesesssssssesssssssesssssssesssssssesssssssesssssssesssssssessssssesssssssessssssessssssessssasssssssassssssssssssssssssssssassesasssssssnes
Motion Control Applications
UMAC Turbo System

IVIOLION PrOGEAIMS......etcutrieicereseesieeseiseseses st se st ss et se bbb st s e E b £ b e £ b e b e ae bbb b an b eb et ettt aes
PLC Programs...............

UMAC TasKS....ocovreerenreneen
S [T LY@ 7= = Toi (= L TR
Commutation Update.....

PMAC EXECUTIVE PROGRAM, PEWIN32PRO
Configuring PEWIN. ..o s sessess s ssessessssees
Establishing COMMUNICALIONSoccureerireriererereasieeseeeesesisesessese st sesess e sssseasbee b seae e s e s b et s b seasbeb et ssessbeeanaes
Workspace Layout
L@ 0 T g (o = (1 =TT
Saving and Retrieving PMAC Parameters
TheWatch and Position Windows...........cccceee...
Uploading and Downloading Files...........cocue.....
Using MACRO Namesand Include FIeS........oovcvercvencenvecseneserereeeens
Downloading COMPIIEA PLCCS.......ccicrerecererirsesieesssssesssssessssesesssssssssssessssssssssssssssssssssssesssssssssssssssssssssssssesssssssssssssesnssess
The PID Tuning Utility
AU TUNING....eereeenenee
Interactive Tuning..........
OUNEN FEALUIES.........e ettt sttt bbb bbb bbbttt

CheCKiNg the FIA0 INPULS ..ottt ettt bbb
Motor Signals Connections
INCremental ENCOOEr COMMECTIONc.cureiurereueteereeeseseaetsessase st sbsesea et b s s bbb se bbb es et s s bt et
Checking the ENCOOEY INPULS.........ccruriiciresieirestsesess s ssessse st es st sssssssss st sssssessssssssssesssssssssssssesssssssssssessssssssssesnns
MLDT Feedback CONNECLION........cvvurererierirereesesiseesesise s essasessesssnens
DAC OULPUL SGNAIS.......creeicirieeeinesieesesiessssssssssesessssssessesssssssssssssesns
CheCKiNg the DAC OULPULS........cveeeereeerereresetsessssesessssssessssssessesssssssssssssssssssssssssessssssssssseseens
Pulse and Direction Stepper Sgnals
Digital Amplifier Connections.........cceevevenene
AMPLITIEr ENADIE SGNAIS... ..ot e bbb

Table of Contents i

UMAC Quick Reference Guide

Amplifier Fault Sgnals.
Digital Inputsand Outputs
Connection Examples

Digital Amplifier with INCremental ENCOTEYc.oirrierirereresisiesse sttt bbbt 26
Analog Armplifier With INCremeNntal ENCOOES ...ttt bbb 27
Analog Amplifier with MLDT FeedbacKc.ceeveneeneeneeneeneeneieesennens

Sepper Driver with Incremental Encoder

SOFTWARE SETUP ...ttt e bbbt nn s

Resetting UMAC................
Motors Setup......ceeverererenenes
Servo Loop Setupeeveeeee.
Programming PMAC
Online Commands
Buffered (Prograrm) COMMBINGSc.cuireririretieesensessesseseseasssessssssesssssessseese st sssseesssesseasssseses st assssseassesssssssssssasasassnes 32
Computationa Festures.
[-Variables..........cooeeneee.

FUMDEr POSITION PrOCESIINGcucvrveuterireesireteseseseasisessesesesssssesssse st sesessssesesssseasses st s s s sessbae e st ss e seb st e s b seasbes e snb s aebebeenssnes 39
PIMAC POSHION REJISIEN'Scuuereaciireacire sttt seas s s st asessb e s s b st ss s b et b e s ee e b e e b b st b b aebeb et an bt eennbaes 39
SUMMArY Of SHECIEA |-V ATADIES. ...ttt bbb 11

MOtOr DEfINITION [-VAIrTADIES ..ot 11

MOLOr SAfELY [-VAITADIES. ..ottt et et st a bR st s s st enanaen 41

SCurveand Linear ACCEEration Vari@hlES..........ceuirriieinieieince sttt sssssessessssssssssssssesssssssssssssssesssssssessssnns 42

Rate vs. Time: Programming the Maximum ACCEleration Parameters..........ocvveveeenererenesenensssesessssssessssesssssssssssssssssees 42

Benefits of Using S-Curve Acceleration Profiles
Motor Movement |-Variables

Servo Control 1-VariableS.......cceerereercssee e
Channd Specific I-Variables
HOMING SEAICH IMIOVES..... ..ottt b ettt bbb bbb E bbbttt
JOQUING MOVES......coceirieerireetrieest st isesis et et
INAEFINITE JOG COMITIANGS.......cevreneeeeeie et sess bt eas s sa ettt a st eseebseeb et E b b s bbb eb et s e bt ee bt
0700 100 RCOT= TS o = o) 1= o 07 o] o TR 45
Jog Moves Poecified DY @ Vari@hl@..........ccucccc sttt naas 45
B (070 L8 [0 11 T = TR 46
CommaNd a0 SENA SEEEIMENES........cueveirierierei ettt bbb bbbt bbbt 46
MOTION PROGRAM S.....co oottt ittt ses st sttt ss s st sttt asss st as s st essessssassssansassessnsassessssasssssnsansassnsas 47
HOW PMAC EXECULES @M OLION PYOGIAM......coivreieereeeceeesessesisessssesessssesssssssssssssessssssessssssssssessssssssnssessssssssssssesssnsssssssssesnssees 47
COONTINGLE SYSIEITIS. ..ottt sttt bbb bbb bbb ettt 48
AXIS DEFINITIONS.vvcereeeeieeseseeesesees st ese e sese e esssssesess s sessss s n s ee s s eese et s asesesee e s s s e s e s se e st eesnbesse e s e s ansebee s sesas et s ennnses 48
AXIS DEfINITION SALEIMIENES. ... ceveeeereeeeeeeeeeeereseseseseeesesesesessesesesssase st ee st esssssee e st se et et e sesssesnses e et esanseseesssesesnsessnnnses 49
WWIItING @ IMOLION PrOGIAIM......c.cuiieeirecieisisie sttt sttt seas e b s bbb e bbb ae bbbt et aes 49
RUNNING B MOLION PIOGIEIMcuctiieitrireaeisieieese st see st ssss st s st s bbb e bbb bbbt et b et nes 50
SUBIOULINES 8NA SUDPIOGIAIMS ...ttt ettt st et bbb bbbt sttt 52
Passing ArgUMENESTO SUDIOULINEScccurieec st sses s ss s s s ss s es st ss b es st st es s s s sssssessssnsssnsesesanses 52
G, M, T, and D-Codes (Maching TOOl Y€ PrOgrams).......ccccccreeeirensreinesienessesssessssssesns 53
NG PIOOUCES. ... ceeeeeeeeeseseeseesessesessess e s ess s s s s bbb e e e bbbt 53
LiNEAr BIENUEO MOVES ...ttt es s e s e e bbbt 54

Table of Contents

UMAC Quick Reference Guide

Linear Interpolated MOVES Char@CLENISCS........vueeuiereeeriereeeset sttt st 55
Circular Interpolation
Splined Moves............c.......

PV T-IMOOE IMIOVES......ccceeeetrieeireets ettt bbb bbb E £ E bbb ettt st bes
Turbo PMAC LOOKBNEBAH FUNCLION........cuceeeieiieicereees st tsiseas ettt ettt bt
Turbo PMAC Kinematic CaCUlaionsS.........cocvereninereneinsinesensesesessessenens
Other Programming FEAIUIES...........ccoceueeereneresinensiessesssessessesssssssssssssesssanes

Rotary Motion Program Buffers.........ccceceeeenee

Internal Timebase, the Feedrate Override

External Time-Base Control (Electronic Cams)cccoveveeeenerrereresenenes

Position Following (EIECtroniC GEAING)ccurerrrerererersseiressseresesesssssresessssessssssessssssssssssssssssssssssssssssssssssesssssssssssssesssees

CUtter RAIUS COMPENSALIONvreeeretreeeesetseeeese sttt ses s ses s st eesssseb s s st sese s bsea s b s bbb s bbb e bt st e et et ennet s

Synchronizing PMAC to other PMACs

AXIS Transformation MatriCeScouvreriurerereesireeieereeieeseesiseseas s

Position-Capture and Position-Compare Functions

LeArNiNG 8 MOLON PrOQraIM........ceuiueureieeereeereseasieeseseseseassessaessesss et sssessessbeeseses st e s b sessbee e st s s e se b st e s b seasbes st et s sesabesanaes

PLC PROGRAMS ..ottt sttt sstssses st sss st ses st ss sttt bbb et e e et st
Entering aPLC Program....
PL C Program Structure
L0 ol 1o g IS = = 107 011
Conditiond Statements.

LevEl-TrigOEr € CONUItIONS.......cceureeeerereecerereeeresses s sesess s sse s ssssessse e ssssssesssee s ssssesssseessssssssssesessssssssssessssnsssnsesasnssnes
EAQE-Triggered CONGILIONS.......c.cuieeeireeeeeireeeeeisee ettt b sttt bbb
WHILE LOOPS....coitirieiitnienesetssisssstsssessstsssessens
COMMAND and SEND Statements

TROUBLESHOOTING
Establishing Communications
HarAdWare RE-INITIAIZAONc.cvieieeeciseie ettt s s e sttt
The Watchdog Timer (REA LED) ...t tssse st tes st sssss s ssssssssssesssssssssssssesssssssssssssesssssssnssessssssssnnns
VS 1= 100 0 1T 101 = (oo

UMAC SyStem SEAUS BitS.......ccuvueeeerecereresinereseressssesesssssessessssssssesessssenes

Direct Accessto Hardware FEAUrES..........c.ovvrereeireneeeneneessesseseseseseeeens

APPENDIX A — UMAC ERROR CODE SUMMARYoitiimtieinritieesnsinssssessssssesssssessssssssssesssssessssssesssesssssssssssssesssesas 81

16, ETTOr REPOIING MOTE.......coeeecereeeirieie ettt seas e et s bbb ae bttt bt 81
APPENDIX B— SELECTED UMAC |-VARIABLES SUMMARYcooiitinirireneeeesesneiseensssstsssssssssss s sssssssssssssssesns 83
APPENDIX C— SELECTED UMAC ONLINE COMMANDS........ccosmrenereereensinsesesssesessesssssssssssssssssssssssssssssssssssssens 89
APPENDIX D — SELECTED UMAC MOTION PROGRAM COMMANDS.........cocnumienerneeneereesseseessssssssesssessseens 93

APPENDIX E— SELECTED UMAC PLC PROGRAM COMMANDS........coooireersse s 95
APPENDIX F—MOTOR SUGGESTED M-VARIABLE DEFINITIONS........cccoinrnissssneses s 97
APPENDIX G — FIRST DIGITAL 1/0 ACCESSORY M-VARIABLES.........cooirenre e 103

Table of Contents iii

UMAC Quick Reference Guide

Table of Contents

UMAC Quick Reference Guide

INTRODUCTION

This manual introduces the most common hardware and software features of the UMAC Turbo system. It
isintended for first-time users as a complement to the UMAC Turbo System manuals and related
accessories. Use this quick reference manual in conjunction with the following manuals:

e Turbo PMAC User Manual

e Turbo PMAC Software Reference

e UMAC Turbo Hardware Reference

e UMAC Turbo Accessory Manuals

Motion Control Applications

A typical motion control application is composed of a computer, a motion controller, a set of amplifiers
and motors, and the machine to be controlled.

o - ——— P |
i[. m""‘."_-’ - .
= = - :
= - s f
Computer Motion Controller Amplifier Electric Motor Automated M achine

The computer is the interface between the user and the machine and it defines the automated tasks
required for the machine as a series of motion program commands written as simple text files.

The motion programs, written as text files, are downloaded to the main memory of the motion controller
for fast and continuous execution. The motion controller interprets the series of commands in the motion
programs and converts them to proper electrical signals for the amplifier and motor to cause the
programmed motion. The characteristics and timing of these signals will determine, for example, the
distance, acceleration and velocity of motion for the different processes.

The use of an amplifier allows the standardization of the command signals from the motion controller to
control virtually any kind and size of motor. The most commonly used command signal from a motion
controller isa+10V analog command signal. Usually, the amplifier interprets this signal as atorque
command, which trandatesinto an electrical current in the windings of the motor that causes the desired
motion. An encoder device, usually placed in the back of the motor and mechanically engaged with the
motor shaft, provides feedback information for the motion controller.

The electric motor is adevice that converts electrical energy into mechanical energy. There are severa
kinds of motorsincluding DC brush, AC brushless and stepper motors. It isimportant to know the
maximum velocity and acceleration that the motor can deliver for the proper selection of the servo loop
parameters in the motion controller. The accuracy of motion is determined mainly by the appropriate
response of the amplifier and motor to the required motion command signals and by the resolution of the
encoder feedback device.

The UMAC (Universal Motion and Automation Controller) is amotion controller system configurable to
control virtually any kind of machine automation application. A single UMAC Turbo system can control
up to 32 axes and thousands of digital I/O points with a great level of accuracy and simplicity of
operation. The UMAC Turbo system can be configured to interface with virtually any kind of amplifier,
motor and feedback device. In addition, the UMAC can use different kinds of communication methods
with the host computer, including USB, Ethernet, RS-232 and PC/104 bus communications.

I ntroduction 1

UMAC Quick Reference Guide

UMAC Turbo System

The UMAC (Universal Motion and Automation Controller) isa
modular system built with a set of 3U-format Eurocards. The
configuration of any UMAC System starts with the selection of the
Turbo PMAC2 3U CPU board and continues with the addition of the
necessary axes boards, 1/0 boards, communication interfaces (USB,
Ethernet, etc.), and any other interface boards selected from the variety
of available accessories. Accessory boards interface with virtually any
kind of feedback sensor or implement almost any kind of
communication method with the host computer or external devices. In
addition, a PC/104 computer can be installed inside the UMAC System
yielding an incredibly powerful system inside a compact industrial
package.

The Turbo PMAC2 3U CPU is based on the Motorola 56k DSP
processor and a sophisticated firmware designed by Delta Tau Data
Systems, Inc. This combination provides a highly accurate, flexible
and powerful motion controller capable of controlling alarge number
of axes and 1/0O with simplicity of operation.

The axes interface boards are based on custom made ASIC gate array
chips designed by Delta Tau Data Systems, Inc. These chips and the
associated circuitry, interface between the Turbo PMAC2 3U CPU and
the machine to output amplifier command signals, to input quadrature
encoder feedback information, and to input flags information including
end-of-travel limits and machine home sensors. Different kind of axes
interface boards can be selected to control analog +10V amplifiers,
stepper drivers and direct digital PWM amplifiers.

The /O boards are based on custom-made ASIC chips that interface
between the Turbo PMAC2 3U CPU and the machine to output or
input alarge number of 1/0O points with different electrical
characteristics from which to choose.

UMAC type boards are mounted inside 3U racks composed of pack
frames and plug into the UBUS backplane. Each accessory board in
the UMAC Turbo system has a unique settable address that maps into
the Turbo PMAC2 3U CPU memory. The UBUS backplane connects
the address and data lines from Turbo PMAC2 3U CPU to the different
accessory boards. In addition, the 5V and £12V lines are transmitted
over the UBUS to power the different accessory boards.

Ty

-
UMAC Turbo

Introduction

UMAC Quick Reference Guide

Features

Up to 32 axes of motion control

Analog £10V, digital PWM or pulse and direction command signals
Quadrature, incremental, encoder inputs

Parallel binary feedback inputs

Laser interferometer feedback devices inputs

Analog feedback inputs

Sinusoidal encoder feedback inputs with 4096 interpolation lines

SSI encodersinputs

Y askawa or Mitsubishi absolute encoders inputs

MLDTs feedback inputs

Thousands of /O points

High-power, sinking, sourcing or OPTO-22 compatible 1/0

Up to 256 analog-to-digital converted inputs (12-bits or 16-bits resolution)
Stand-alone or host commanded operation

PC/104, USB, Ethernet or RS-232/422 communication methods supported

I ntroduction

UMAC Quick Reference Guide

UMAC Products

®
x
B

Turbo PMAC2 3U

ACC-E1, power supply

ACC-24E2S, stepper interface

ACC-65E, protected 24 in/24 out
ACC-14E,48TTL I/O

ACC-28E, analog-to-digital converter . N .
9 9 ACC-51E, sinusoidal inter polator ACC-53E, SSl interface

Introduction

UMAC Quick Reference Guide

Installation and Setup

When ordered from Delta Tau, the UMAC rack is provided aready assembled with the selected boards
internally mounted and configured properly with the appropriate addresses. The boards are installed in
the rack in a particular sequence from left to right as described in the following diagram:

10, 15 or 21-slot rack

0
& 0 8 -
O = =) 3 £ 7 = O w
15 £ 8 Q o o &
Q D = o c]]
c o IS 2 = o)] T
=1 O = c < [a) 5 Q
g @)] @) = 3
o § 8 5| - | & |OoF
O < ®
s
v
ACC-PC/104 Turbo ACC-5E ACC-24E2 ACC-28E ACC-11E ACC-E1
or PMAC23U ACC-55E ACC-24E2A ACC-51E ACC-12E or
ACC-54E ACC-24E2S ACC-53E ACC-14E ACC-F
ACC-69E ACC-57E ACC-36E
ACC-70E ACC-59E
ACC-65E
ACC-66E
ACC-67E

Hardware Setup

On some UMAC accessory boards, there are jumpers (pairs of metal prongs) called E-points. Some have
been shorted together; others have been left open. These jumpers customize the hardware features of the

board for a given application. Check each jumper configuration using the appropriate hardware reference
for the particular accessory board being set. After all the jumpers have been properly set, the UMAC can
be wired to the machine and the host computer linked with a serial cableto it.

The connections to the machine are performed directly to the UMAC rack. Terminal blocks on top,
bottom and front of the rack provide the signals for the amplifiers, feedback devices and 1/0 points.

Software Setup

The Turbo PMAC2 3U has a set of initialization parameters (I-Variables) that determine the personality
of the card for a specific application. Many of these are used to configure a motor properly. Once set up,
these variables may be stored in flash memory (using the SAVE command) so the card is always
configured properly. (PMAC loads the flash I-variable values into RAM on power up.)

The easiest way to program, set up and troubleshoot PMAC is by using the PMAC Executive Program,
PEWIN32-Pro and its related add-on packages, Turbo Setup and UMAC configuration. PEWIN hasthe
following main tools and features:

A termina window — Thisis the main channel of communication between the user and PMAC
Watch window for real-time system information and debugging

Position window for displaying the position, velocity and following error of all motors on the system
Severa ways to tune PMAC systems

Interface for data gathering and plotting

In Pewin, the value of an I-Variable may be queried by typing in the name of the I-Variable. For
instance, typing 1 100<CR> causes the value of the 1100 to be returned. The value may be changed by
typing in the name, an equals sign, and the new value (e.g. 1900=3<CR>). Remember that if any I-
Variables are changed during this setup, use the SAVE command before the card is powered down or
reset, or the changes that were made will be lost.

I ntroduction 5

UMAC Quick Reference Guide

Programming UMAC

Once the UMAC System is wired to the machine and the motors are properly tuned, any /O control and
motion control can be performed. There are three different ways to control I/0 and motioninaUMAC
System, and all these methods require Pewin Pro, the PMAC Executive Software for Windows, for
communications and download to the system.

Online Commands

Online commands allow jogging motors and setting 1/0 points by issuing commands from the terminal
window of Pewin. This mode is convenient for trying move commands and sequences to be included
later in amotion or PLC program.

CTRL+A ; Pressing the control and A keys together stops all motion
; programs and motion commands

CTRL+D ; Pressing the control and D keys together stops the execution
; of all PLC programs

#1J372000 ; Jogs Motor #1 2000 encoder counts in incremental mode. Press

; <Enter> to execute the command.

Motion Programs

Motion programs are entered and downloaded using the text editor of Pewin. A motion program alows
synchronizing the motion of axes and setting of 1/O points with different methods of interpolation, including
linear and circular interpolation.

CLOSE ; Close all open buffers
END GATHER ; Stops gathering feature
DELETE GATHER ; Deletes gathering buffer
UNDEFINE ALL ; Removes al axis definitions
&1 ; Coordinate System 1
#1->2000X ; Motor 1 isdefined as axis X with ascale factor of 2000 encoder counts
OPEN PROG 1 CLEAR ; Open program 1 for editing
TA100 ; Linear acceleration time is 100 msec
TSO ; No S-curve acceleration
TM1000 ; Movetimeis 1000 msec
INC ; Incremental mode
LINEAR ; Linear interpolation mode
X1 : Move axis X one unit. This moves motor #1 2000 encoder counts
CLOSE

To run this program, type B1R in the terminal window.

PLC Programs

PL C programs are entered and downloaded using the text editor of PEWIN and are ideal for controlling
digital 1/O points, to start and stop motion programs, and to perform any function that does not require a
tight axes synchronization.

I5=2 ; Allows enabled PLCsto run
OPEN PLC 1 CLEAR ; Open PLC 1 for editing
PL=P1 + 1 ; Increments variable P1 by one at each scan
IF (P1=1000) ; Reset P1 to zero when it reaches 1000
P1L =0
ENDIF
CLOSE

To run this program, type ENA PLC1 in the terminal window and then press Enter.

6 Introduction

UMAC Quick Reference Guide

UMAC Tasks

Turbo PMAC can handle al of the tasks required for machine control, constantly switching back and
forth between the different tasks thousands of times per second. The major tasks involved in machine
control are summarized here.

Single Character 1/0

Bringing in asingle character from or sending out a single character to, the serial port or host port is the
highest priority in PMAC. Thetime thistask takesis 200 nsec per character, but having it at this high
priority ensures that the host cannot outrun PMAC on a character-by-character basis. Thistask isnever a
significant portion of PMAC’ stotal calculation time. Note that thistask does not include processing a
full command,; that happens at alower priority (See the Background Tasks section of this guide.).

| Input Buffer «——— | E’

L TE[NTA] JPftlci—t]

L T T v]s[=Fo] " Communications —
| Output Buffer ———» | Link ﬂ Ll

Commutation Update

If Turbo PMAC is asked to perform the commutation for a multiphase motor, it will perform
commutation updates automatically at afixed frequency (usually around 9 kHz). The commutation, or
phasing, update for a motor consists of measuring and/or estimating the rotor magnetic field orientation,
then apportioning the command that was cal culated by the servo update among the different phases of the
motor. Thistask occurs automatically without the need for any explicit commands.

Amplifier
¢ R [eeoo] Motor
Commutation 4 DACa W, i
. " [eeoe]
Algorithm l:D ACh N _r.f' N g}_/
o
Encoder ond

Encoder

Servo Update

In an automatic task that is essentially invisible to the Turbo PMAC user, Turbo PMAC performs a servo
update for each motor at afixed frequency (usualy around 2 kHz). The servo update for a motor consists
of incrementing the commanded position (if necessary) according the equations generated by the motion
program or other motion command, comparing this to the actual position as read from the feedback
sensor, and computing a command output based on the difference. This task occurs automatically without
the need for any explicit commands.

Amplifier
Commanded
Position [eooo] Motor
+
o U o
Actual Gnd
Position
T Encoder

I ntroduction 7

UMAC Quick Reference Guide

Real-Time Interrupt Tasks

The real-time interrupt (RTI) tasks occur immediately after
the servo update tasks at a rate controlled by parameter 18
(every 18+1 servo update cycles). There are two significant
tasks occurring at this priority level: PLC 0/ PLCCO and
motion program move planning.

PMAC will scan the lines of each program running in the
different coordinate systems and will calculate the necessary
number of move commands.

The number of move commands of pre-calculation can be
Zero, one, or two, depending on the type of motion
commands and the mode in which the program is being
executed.

Non-move commands are executed immediately as they are
found. The scan of any given motion program will stop as
the necessary number of movesis calculated. It resumes
when previous move commands are completed and more
move-planning calculations are required.

In the execution of a motion program, if PMAC finds two
jumps backward (toward the top) in the program while
looking for the next move command, PMAC will pause
execution of the program and not try to blend the moves
together. It will go on to other tasks and resume execution
of the motion program on alater scan. Two statements can
cause such ajump back: ENDWHILE and GOTO (RETURN
does not count).

Background Tasks

During the time not taken by any of the higher-priority tasks,
PMAC will be executing background tasks. There are three
basic background tasks: command processing, PLC programs
1-31, and housekeeping. The frequency of these background
tasksis controlled by the computational load on PMAC: the
more high-priority tasks that are executed, the slower the
background tasks will cycle through; and the more background
tasks there are, the slower they will cycle through.

Each PL C program executes one scan (to the end or to an
ENDWH ILE statement) uninterrupted by any other background
task (although it can be interrupted by higher priority tasks).
In between each PLC program, PMAC will do its general
housekeeping and respond to a host command, if any.

All
Cs.
programs
checked?,

s Enabled Enabled
PLCO PLCCO

)

No No decrement the
| A watchdog register
by 8

Cs.
program
running?

Yes

End of Interrupt

No
h 4

move
calculations
needed?

Next coordinate

«——No
system

sets watchdog register
to 4095

Y

Yes
v
Read next line of
the motion program

line
contains move
commands?,

¢—VYes end of program? No——p

Execute next
enabled PLC
Execute first
enabled PLCC
Execute next
enabled PLCC

perform safety checks:
end of travel limits

amplifier faults
following error

Yes All PLCCs
checked?
command response

(communications)

Introduction

UMAC Quick Reference Guide

All enabled PLCC programs execute one scan (to the end or to an ENDWH I LE statement) starting from
lowest numbered to highest uninterrupted by any other background task (although it can be interrupted by
higher priority tasks). At power-on\reset, PLCC programs run after the first PLC program runs.

The receipt of acontrol character from any port isasignal to PMAC that it must respond to a command.
The most common control character is the carriage return (<CR>) which tells PMAC to treat al the
preceding alphanumeric characters as acommand line. Other control characters have their own
meanings, independent of any alphanumeric characters received. Here PMAC will take the appropriate
action to the command, or if itisanillegal command, it will report an error to the host.

Between each scan through each background PL.C program, PMAC performs its housekeeping duties to keep
itself properly updated. The most important of theseisthe safety limit checks (following error, overtravel limit,
fault, watchdog, etc.) Although this happensat alow priority, aminimum frequency is ensured because the
watchdog timer will trip, shutting down the card, if thisfrequency getstoo low.

I ntroduction 9

UMAC Quick Reference Guide

10

Introduction

UMAC Quick Reference Guide

PMAC EXECUTIVE PROGRAM, PEWIN32PRO

Pewin32 PRO is the PMAC Executive program for Microsoft Windows”. It isan environment rich with
software tools for the devel opment and maintenance of any application using the PMAC mation
controller. These tools allow the optimization of the servo parameters to achieve maximum motor speed
and accuracy and permit the customization of the motion and PLC programsinside PMAC for the
application requirements. All types of communications methods are implemented for all the available
communication ports, delivering arobust and reliable interchange of datawith either single or multiple
PMACs. A set of diagnosistoolsis also available for displaying variables values, monitoring connector

and motor status, and plotting motion profiles. The capability to define projects allows combining sets of

files and configurations for an easy reference to each particular application.

Configuring PEWIN

Establishing Communications
The UMAC System can communicate with the host computer using several different communication
methods. Thisincludes serial RS232, USB, Ethernet and PC/104 bus. The Pewin32 Pro installation

utility includes a PDF document describing the steps required to establish communications and complete

the installation process.
Workspace Layout

Fila sdiing et ks Dala Backup Piok &
Tuiislors | '‘Whindows 1 Taik | Tufifg Took
"3 PN il =[] %]
e Tegra ooy e ooy Heager fehe e [oon §rdos Bl
[<~ Torrminad FHACD WL /1 LN 0¥ =] e

Tarmminal ! Position | Wialoh
L gt Wndors WVindow

PMAC Executive Program, PEWIN32Pro

11

UMAC Quick Reference Guide

chk Plot Feature

To run the quick plot feature, select PMAC Plot Pro from the Tools menu.
Select the motors and the feature to gather.
Select what to plot from the possible choices, and then click Add to left or Add to right.
Click the Define Gather Buffer button.
Click the Begin Gathering button.
Click on the terminal part of the screen and run the motion program or Jog command.
Click the End Gathering button when the motion is completed.
First, Click the Upload Data button, and then the Plot Data button.
778 Pt Wit 3.2 1, o T80 GRALTT) Sl £ F v} o

Cyen Divelm CONEEE
Gusck it | Eoatad Pl

i Pion Tale |in;u-u"' ' —

©NDOAWN R

2

¥ Lk Eod sy Prinidle Chsices
I dii 1 Camdl Pas s 1 il Vel
| b | Coll Aceel
W | Ol Jesi
Ml ¥ Coall Vil
W F Camdl fior el
|‘_‘£| Bemevs llmm 55 | (00 F Cod ek
T AR P i F Cmdl Poas

Righ Plos s e

»
5] Lemerlion s | gy {[o Adaiaien | upudnu,:[_ti

|t | vwn |[Hote [FE) o bt | | =

=l Bl)|

Mersnrerd gl Amin [Ve vmed

The plot feature is based on the PMAC data gathering functions. It is useful for analyzing motion profiles
and trajectories. For example, when using circular interpolation, the horizontal and vertical axes can plot
the two motorsinvolved. Plotting the two axes together is an important aid for understanding the set of
parameters involved in acircular interpolation move.

Saving and Retrieving PMAC Parameters

It isimportant to save the complete set of PMAC parameters in the host computer periodically. In case of
afailure or replacement, asingle file created thisway will allow restoring all the variables and programs
necessary for the particular application. To activate this function, select Upload Configuration from the
Backup menu. After thefileis saved, verify it with the feature part of the same menu. Thiswill confirm
if the memory contents in PMAC matches the recently saved file, thus confirming a valid restoring file.
To restore a configuration, select Restor e Configuration from the same Backup menu. In addition,
select Verify Configuration after the restore function is compl eted.

12 PMAC Executive Program, PEWIN32Pro

UMAC Quick Reference Guide

The Watch and Position Windows

The position window is accessed through the Position command from the View menu. It isa convenient
way to continuously check PMAC parameters such as position velocity and following error. Using the
right button of the mouse on this window checks the item selections as well asits format and update
period.

The Watch function of the same View menu performs a similar function. It allows the constant display of
any variable valuein PMAC. Right clicking on thiswindow allows selecting the display format from
hexadecimal, decimal and binary reporting values.

Uploading and Downloading Files

These functions are accessible through the File menu. The uploading function is of great importance and
allows the opening of atext editor with the contents of the requested PLC, Mation Program, M-V ariables
definitions or values, |-Variable values etc. This allows checking not only what commands or values
PMAC has actually in memory, but also will indent 1F conditions and WH I LE loops, making the program
flow more readable.

Using MACRO Names and Include Files

PEWIN allows using custom names in place of the common names for variables and functions that
PMAC expects (P, Q, M, 1):

Example:
File Downloaded Uploaded Translated PMAC Code
#define PUMP P1 OPEN PLC 1 CLEAR
OPEN PLC1 CLEAR BIlSIZDLél
PUMP = 1
DISABLE PLC1 CLOSE
CLOSE

The MACRO name must be defined before it can be used. In general, MACRO definitions are at the
beginning of the text file to be downloaded. MACROs must be up to 255 valid ASCII characters and
cannot have spaces in between (the underscore“_” is suggested in place of aspace). The MACRO

definitions, or any other PMAC code, can be placed in a separate file and included with asinglelinein
the text file to be downloaded. The file name must consist of afull path in order for PEWIN to find it.

Example: #include "c:\deltatau\files\any.pmc

Downloading Compiled PLCCs

PLCCs are compiled by Pewin in the downloading process. Only the compiled code is downloaded to
PMAC. Therefore, save the ASCII source code in the host computer separately since it cannot be
retrieved from PMAC. In most cases, compiled PLCs are firmware dependent and must be recompiled
when the firmware is changed in PMAC. If more than one PLCC is defined, all the PLCC code must
belong to the same ASCII text file. Pewin will compile all the PLCC code present in the file and place it
in the appropriate buffer in PMAC. If asingle PLCC code is downloaded, all the other PLCCs that might
have been present in memory will be erased, leaving only the last compiled code.

The PID Tuning Utility

Thisfunction is accessible by selecting PMAC Tuning Pro from the Tools menu. The Auto tuning
feature allows finding the PID parameters with virtually no effort from the user. In most cases, the
parameters are very close to optimal and in some cases require further fine-tuning by the user. In this
screen, press the Page-Up or Page-Down keys on the keyboard to select the motor number.

PMAC Executive Program, PEWIN32Pro 13

UMAC Quick Reference Guide

H‘JPmac Tuning ¥3.2.2 PMAC:0 ¥1.940 06,/11/2003 OMALC TURBD: SERTAL Port
ﬂe Current Looo Position Loop Iraja:tnr‘_r Tools Window ﬁeb

e r%}mm L0 3R - B

Py k!
Plot and] Interactive
Tuning Tools Tuning

Auto Tuning

In most cases, the motors can be controlled in closed loop with arelatively small following error by
simply increasing the proportional gain parameter, Ixx30, from its default value. Asarule of thumb,
slowly increase the proportional gain variable until a buzzing noise in the motor is heard, and then back
down 20% from that value. The auto-tuning utility provides a more efficient method of getting the
motors to move in close loop with minor effort.

2 P ma i Tumsing Siotoe @1 T o
= quﬂ'-Tl- Mgy T ures Prinarnaars

b l o (I ':"'""-L: Mam Eciin Migriade sty |17
Do Bl —= 4 o Caderd - Dow e % | a |
Barctatih iip [E st e T faa
I'_J e v i Traresd ot FIJ.T
[gty F ez rf--'.. % rwae B Figsslichd |u:

r | :_J-
0 B A ek Bl PO st Oy |

| I it Solect 5ampls Fossd
S ™ rehsts Los e Pl

d | —ged| | Veloky Fesd Forvem 1 |
T dcmsaton P ead F s B | e | L
—r el)

1] | | F lors

b L |

Make sure to read the Pewin manual section related to the safety issues of this procedure.
Select the type of amplifier being tuned.

Let the Auto Tune select the bandwidth by checking the Auto Select Bandwidth box.
Select the Velocity Feed Forward or Acceleration Feed Forward boxes as necessary.
Select the Integral Action box if necessary.

Start the Auto Tuning interaction by clicking the Auto Tune button. Most likely, the motor will
move after thisis clicked.

S

14 PMAC Executive Program, PEWIN32Pro

UMAC Quick Reference Guide

Interactive Tuning

e =izl ®
e Ly Mgy
ETL I B A e P
Inad KA | |=l‘:ﬂ ipglamsm Logmal L= Wiy Vi e |’J—
(=TT T oA
e —
b h gty
e T) i S ' St
EssfHis s Faep Mo |
aile] L M i T Ferabob Wil
=
sabaction luad s Toaparoxkel Velotly Ul s Al ey Mo
I ™ zf__p Al = o T Meren e feeie
[¥] g " L= THE]
Paramelsrs Taskll [S St o
fasBA | e ™ Liggt Dglesgil [- =
e Fagl
¥ Fann i =
| i || = 3
'r' - [L= Paan | e ebup |
. | s I Hiks bl o P Pl i s

After the Auto Tuning is completed, the PID parameters can be changed for afinal fine-tuning approach.
Perform a step response and use the following guidelines for the selection of the appropriate I-Variables:

t

|
Ideal Case Position Offset
The motor closely follows the commanded position Cause: friction or constant force/system limitation
Fix: Increase K (1x33) and maybe use more Kp (1x30)

UA.

Overshoot and Oscillation

Sluggish Response
Cause: Too much damping or too little proportional gain Cause: Too much damping or too little proportional gain
Fix: Increase Kp (1x30) or decrease K (1x31) Fix: Increase Kp (1x30) or decrease Kpp (1x31)

PMAC Executive Program, PEWIN32Pro 15

UMAC Quick Reference Guide

Perform a parabolic move and use the following guidelines for the selection of the appropriate I-Variables:

|
'hﬂ.
A | Il

e

li.:\l\. ; ';-:- ; '!.lH Il J !I rrII
ol e | Ij't‘] L
Ideal Case High vel/FE correlation Negative vel/FE correlation
Thefollowing error is reduced at Cause: damping Cause: friction
minimum and is concentrated in the Fix: Increase K,y (1x32) Fix: Increase Integral gain (1x33) or
center, evenly along the move Friction Feedforward (Ix68)
|
-\ L | -
I| o __-"-I “H"H..._H i | . . I_-".I - -__1
ke .qu | 5 .l"-)
i E AN} x‘ | /]
", - LB o i | N A ;
1 X - Ir."- k'-\. .-\,-'J e
4 | Tl
High acc/FE correlation High acc/FE correlation Negative vel/FE correlation
Fix: Increase K(1x35) Fix: Uselesssudden acceleration Fix: DecreaseK,q(Ix32)
1ih " i |" ." |" o
' 'ww!\“ A .
Ilj!lf I‘ll_ o IiIL‘IIu!:-\,N 1 _|l|| " ! r ’ 'l' 'I"h"p " 3 -
||'- | '1.. y IIHI'.IIIII L 'l | ,II i s '|'.|I |"I] II .'I
| -I'- |"| II| I||JI ik \ llﬁl““‘l ; L 3 f "'qll'fﬂ l'
gy I“.'ﬁ'.’mﬂil“ ol \ e

High vel/FE correlation
Cause: damping and friction
Fix: Increase K,q(1x32)

High acc/FE correlation
Cause: Too much acc FF
Fix: Decrease K 4(1x35)

High vel/FE and acc/FE correlation
Cause: Integral lag and friction
Fix: Increase K £(1x35)

Other Features

e Turbo Setup32 Pro provides a step-by-step method for configuring any Turbo PMA C-type motion

controller

e UMAC Config Pro provides a method for checking the hardware configuration of any existing

UMAC rack

o Workspace support that allows saving all the working environment settings for next session restore
(e.g., the number of windows open, their corresponding sizes and update rate)

Project management for combining sets of files and configurations for any given application
Organizer feature that allows sorting, setting and checking al the I, P, Q and M-Variables

Motor, Coordinate System and Global status windows that display PMAC’ s status bits in real-time
Methods for the configuration of the encoder conversion table
Real-time status display of all PMAC’ s connectors
Diagnostic routines for checking the functionality of motors and motion programs
A real-time color text editor for PMAC motion and PLC programs

16

PMAC Executive Program, PEWIN32Pro

UMAC Quick Reference Guide

HARDWARE SETUP AND CONNECTIONS

Address Configuration

When ordered from Delta Tau, the UMAC rack is provided already assembled with the selected boards
internally mounted and properly configured with the appropriate addresses. The address selection for
each accessory is necessary when replacing a board or when adding a new board in the UMAC System.
The System Configuration Reporting I-Variables, 14900 to 14965, provide information about the
accessory boards found inside the UMAC rack on power-up or reset. The UMAC Configuration program
of the Pewin32 Pro Suite uses these variables to report the configuration of any UMAC System.

Note:

The E1 jumper on the back of the Acc-Ux UBUS backplane board must be on to
use the DIP-switch addressing.

Servo Cards

The typical UMAC System will use up to eight different locations to address the servo cards. These are
set with DIP-switches according to the following table. The corresponding manual for each product will
indicateif it uses a servo address and the switches configuration for each particular address.

Board I-Variables Base
SL| 2| 834|536 # Range Address
ON | ON | ON | ON | ON | ON 1 17200-17249 $078200
OFF| ON | ON | ON | ON | ON 2 17300-17349 $078300
ON | ON | OFF | ON | ON | ON 3 17400-17449 $079200
OFF | ON [OFF | ON | ON | ON 4 17500-17549 $079300
ON ON ON | OFF | ON | ON 5 17600-17649 $07A200
OFF | ON ON | OFF | ON | ON 6 17700-17749 $07A300
ON ON | OFF | OFF | ON | ON 7 17800-17849 $07B200
OFF | ON | OFF | OFF | ON | ON 8 17900-17949 $07B300
Note:

Only one servo type board must source the servo clock linesin agiven UMAC
System. It is configured through ajumper setting. Consult the particular
accessory manual for details.

IO Cards

Each 10 card in agiven UMAC System must have a unique address and this is set with DIP-switches. The
following table shows the settings for the first four 10 type cards. The corresponding manual for each
product will indicate if it uses an 10 address and the switches configuration for each particular address.

S1 | S2 | S3 A | S5 | S6 Bo::rd Address Range

ON | ON ON ON ON | ON 1 Y :$078CO00 to Y:$078C03
ON | ON | OFF | ON | ON | ON 2 Y:$079C00 to Y:$079C03
ON | ON | ON | OFF | ON | ON 3 Y :$07ACO00 to Y:$07AC03
ON | ON | OFF | OFF | ON | ON 4 Y:$07BCO00 to Y:$07BC03

Some accessories can use only alimited range of addresses, but have a set of jumpers to select which byte
of the assigned address space is actually used. The following table shows an example that usesthis
addressing scheme.

Hardware Setup and Connections 17

UMAC Quick Reference Guide

ACC-11E Jumper Settings
Jumpers | Setting Bits used from base address
E6A- E6H 1-2 Uses bits 0-7 from six consecutive memory locations (low byte)
E6A- E6H 2-3 Uses hits 8-15 from six consecutive memory locations (middle byte)
E6A- E6H 4-5 Uses bits 16-23 from six consecutive memory locations (high byte)

Serial Port Connections
For serial communications, use a serial cable to connect the PC's COM port to the Turbo PMAC2's 3U
seria port connector. The Acc-3D cable provided connects to the Turbo PMAC2' s 3U serial port with a
DB-25 connector. Standard DB-9-to-DB-25 or DB-25-to-DB-9 adapters may be needed for a particular
set up. The ssimplest way to make such acable isto use aflat cable prepared with flat-cable type
connectors as indicated in the following diagram:

DB-25

Female IDC-26

1 1

~—

Do not connect
wire #26
If the auxiliary serial port is present, it will be provided through an IDC-10 connector. In this case, the
Acc-3L cable provided by Delta Tau connects to the Turbo PMAC2' s 3U auxiliary serial port with a DB-
9 connector. Standard DB-9-to-DB-25 or DB-25-t0-DB-9 adapters may be needed for a particular setup.
The simplest way to make such acable isto use aflat cable prepared with flat-cable type connectors as
indicated in the following diagram:

DB-9
Female IDC-10

D |

Do not connect
wire #10

1 1

Serial communications can be checked using the Windows® HyperTerminal program with 38,400 baud
rate, eight data bits, one stop bit, no parity and no flow control. In this mode, set 13=1to add a carriage
return at the end of each responseline.

Re-initializing UMAC

After communication is established, re-initialize UMAC for first-time use by sending the $$$***
command in the terminal window. This command will erase all programs and reset al variables to
factory defaults.

18 Hardware Setup and Connections

UMAC Quick Reference Guide

Power Supply

Thetypical UMAC System is provided with the internally mounted ACC-E1 power supply that can
accept an AC input from 85VAC to 240VAC, and output DC voltages with up to 14A at +5V, and 1.5A
each at £15V. Inthiscase, a standard computer type IEC/EIA male connector is present in the back panel
and any regular computer type cord can be used for the power connection. In addition, a connector in the
back panel provides the output power supply lines of +5V, +15V and ground. These lines can be used to
power the flags opto-isolation circuitry in case no external power supply is used.

Motor Flag Connections

When assigned for the dedicated uses, the overtravel limit flags provide important safety and accuracy
functions. PLIMn and MLIMn are direction-sensitive over-travel limitsthat must conduct current (either
sinking or sourcing) to permit motion in that direction. The home input flag is used in conjunction with
home search type moves to establish a machine point of reference when an incremental type of feedback
isused. Theuser input flag is used mostly in conjunction with the position capture feature, which allows
recording the feedback information when the input is activated.

Disabling the Overtravel Limit Flags
If no overtravel switches are connected to the particular motor, set bit 17 of the Ixx24 variableto 1 to
disable this feature.

Example:
1124 = $20001 ; Disables Overtravel Limits of Motor #1

Types of Overtravel Limits

The UMAC axes boards, ACC-24EX, have a bipolar opto-isolating circuitry (chip PS-2705-4NEC) for the
flag connections. Conveniently, this allows using either a sinking or a sourcing sensor in the 5V or 12 to
24V range. Thisincludes proximity sensors and dry (passive) normally closed contacts. If the use of 5V
flagsisdesired, a 1kQ SIP resistor pack (1K SIP8I) should be installed in the appropriate resistor socket
onboard. In this case, theflags opto-isolation circuits will be powered with a5V power supply instead.
Consult the particular accessory manual for details.

fo fo
/ 7
- e

Flag
Return

Flag
Return

Signal Signal

+V Sinking Signal Gnd Sourcing Signal
(Gnd) (+V)

UMAC Flag Inputs Circuit

Hardware Setup and Connections 19

UMAC Quick Reference Guide

Example:
These exampl es show the connection of the most common types of end-of-travel sensors. Instead of the
external power supply shown here, the power can be supplied from the back panel of the UMAC System.

Sinking Type
UMAC Flag UMAC Flag
o4 Connector 524 Connector
Power Power Normally
Supply Supply Clo_sed
+ [ISenegOut PLIM + Switch PLIM
’ FL_RT FL_RT
Sourcing Type
UMAC Flag UMAC Flag
1224 Connector 524 Connector
Power Power Normally
Supply Supply Closed
Switch PLIM

- [+ iooreolOut PLIM -+

FL_RT FL_RT

Home Sensors

The location of the home sensors establishes a point of reference in the machine from which each move is
related. When using incremental types of feedback, a home search type of move must be performed after
each power-up or reset cycle.

In contrast with the overtravel limit inputs, the home inputs do not need to conduct current to allow
motion. However, use the same type of sensors for both the limits and home inputs.

Note:

If ahardware flag is used for home reference and a quadrature encoder is used for
feedback, they both must belong to the same hardware channel in the axis board.

Checking the Flag Inputs
In the Pewin terminal window, define the following M-V ariables for the flags of the motors under
consideration:

Flag Type

Motor #1

M otor #2

Motor #3

Motor #4

HMFL input status

M120->X:$78200,16

M?220->X:$078208,16

M320->X:$078210,16

M420->X:$078218,16

PLIM input status

M121->X:$78200,17

M221->X:$078208,17

M321->X:$078210,17

M421->X:$078218,17

MLIM input status

M122->X:$78200,18

M222->X:$078208,18

M322->X:$078210,18

M422->X:$078218,18

Flag Type

Motor #5

Motor #6

Motor #7

Motor #8

HMFL input status

M520->X:$78300,16

M620->X:$078308,16

M720->X:$078310,16

M820->X:$078318,16

PLIM input status

M521->X:$78300,17

M621->X:$078308,17

M721->X:$078310,17

M821->X:$078318,17

MLIM input status

M522->X:$78300,18

M622->X:$078308,18

M722->X:$078310,18

M822->X:$078318,18

Open a Watch Window and click I nsert to enter the appropriate M-Variable to watch. Interacting with
the switch or sensor, monitor a change of value in the corresponding M-Variable. A value of zero
indicates that the flag is closed or conducting current, so the motor will be able to run in that direction
(see Ixx24). If thevalueisl, theflagis open instead.

20

Hardware Setup and Connections

UMAC Quick Reference Guide

Motor Signals Connections

Incremental Encoder Connection

The encoder connectors in the ACC-24Ex type boards provide all the signalsfor a TTL quadrature
incremental encoder type. Connect the A and B (quadrature) encoder channels to the appropriate terminal
block pins. If it isasingle-ended signal, leave the complementary signal pins floating — do not ground
them. For adifferential encoder, also connect the complementary signal lines. The third C channel
(index pulse) is optional, and it is used mostly for a more accurate home search procedure. Jumpers on
the Acc-24E2S select between amplifier enable outputs and encoder C channel inputs. An encoder loss
circuitry is available in most axes boards; refer to the appropriate accessory hardware reference for
details.

Example:

UMAC
Encoder
Connector

CHA+
CHA-
A CHB+
B) CHB-
CHC-
+5V
GND

‘ O~NO U WNPE

Checking the Encoder Inputs

Once the encoders have been properly wired, it isimportant to check their functionality and its polarity.
Make sure the motor is not powered while performing thistest. Activate the appropriate motor xx by
setting variable Ixx00 = 1. Then, in Pewin, open a position window by selecting Position in the View
menu. Rotate the encoder monitor to the corresponding position values. Make sure that arotation in the
positive direction increments the position value, otherwise change variable 17mn0 (17210 for motor 1 of
the first axes board) between values 3 or 7. Also, make sure that the number of counts of resolution
matches the number read by PMAC when moving the appropriate distance. If necessary, for
troubleshooting purposes, place an oscilloscope in the encoder inputs to check the functionality of the
encoder signals.

Example:

e Channel A ispin 1 of the encoders connector
e Channel B ispin 3 of the encoders connector <«
e Ground is pin 8 of the encoders connector

MLDT Feedback Connection

Any channel of an Acc-24E2, Acc-24E2A or Acc-24E2S that is not being used for digital PWM or
stepper PFM signals can be set up to interface an MLDT position feedback device. In most cases, MLDT
position feedback devices are used with analog +10V amplifiers. See the connections example at the end
of this section for details.

Hardware Setup and Connections 21

UMAC Quick Reference Guide

DAC Output Signals

Acc-24E2A providesthe 10V DAC signals for analog type motors. If PMAC is not performing the
commutation for the motor, only one analog output is required to command the motor. This analog
output can be either single-ended or differential, depending on what the amplifier is expecting. For a
single-ended command, connect DACA+ (pin 1) to the command input on the amplifier. Connect the
amplifier’s command signal return lineto GND line (pin 12). In this setup, leave the DACA- pin
floating; do not ground it. For adifferential command, connect DACA+ (pin 1) to the plus command
input on the amplifier. Connect DACA- (pin 2) to the minus command input on the amplifier. The GND
line should still be connected to the amplifier common.

If using PMAC to commutate the motor, use two analog outputs for the motor. In this case, the DACB+
and DACB- lines provide the second DAC output. Each output may be single-ended or differential, as for
the DC motor.

To limit the range of each signal to 5V, use parameter Ixx69. Sign-and-magnitude mode, the output of a
0-10V and sign signalsis not available in the UMAC System.

There are two options to power the Acc24-E2A DAC circuitry. If the UMAC internal power supply is
used (default), jumpers E85, E87, and E88 in the ACC-24E2A board must be installed. In this case, no
external power supply should be connected to the analog power terminal block of the Acc-24E2A board.
If an external power supply is used, jumpers E85, E87, and E88 must be removed.

Note:

Before using the analog DAC signals, the output of the corresponding motor must
be configured accordingly. Thisisaccomplished by setting the I-Variable
I7mn6=3 (17216=3 for the first motor of the first axes board).

Example:
ACC-24E2A
Amplifier
Connector
" DACA+
Amplifier | ———=-— 1
Command< — D2ACA-| 5
Inputs GND 1
Checking the DAC Outputs
Warning:

Make sure the amplifier is not powered while performing this test.

Before powering the amplifier, check the DAC outputs operation. In the Pewin terminal window, define
the following M-variables for the DACs of the motors under consideration:

Motor #1 Motor #2 Motor #3 Motor #4
DAC output | M102->Y:$78202,8,16,S | M202->Y:$7820A,8,16,S | M302->Y:$78212,8,16,S | M402->Y:$7821A,8,16,S

Motor #5 Motor #6 Motor #7 Motor #8
DAC output | M502->Y:$78302,8,16,S | M602->Y:$7830A,8,16,S | M702->Y:$78312,8,16,S | M802->Y:$7831A,8,16,S

22 Hardware Setup and Connections

UMAC Quick Reference Guide

Example for DAC #1.

Type the following in the terminal window:
M102->Y:$078202,8,16,S

1100=0

17216 = 3

M102=16383

<measure 5V between pins 1 and 12 of the amplifier connector>
M102=-16383

<measure -5V between pins 1 and 12 of the amplifier connector>
1100=1

Pulse and Direction Stepper Signals

Typically, the pulse and direction signals to control stepper drivers are provided by the Acc-24E2S board.
However, either Acc-24E2A or Acc-24E2 can be used for this purpose also. Thisisthe casein
applications where stepper drivers, analog amplifiers and digital amplifiers are controlled with the same
UMAC System. Regardless of the accessory used for connections, the setup isthe same. A set of
jumpers select between the pulse and direction outputs and the T, U, V and W hall-effect inputs. The
signals are differential at TTL levels and are brought to the encoder connector.

Note:

Before using the pulse and direction signals, the output of the corresponding
channel and motor must be configured accordingly. Thisis accomplished through
variables 1xx02, 1 7m03, | 7m04, 17mn6, | 7mn7, and | 7mn8.

UMAC

Encoder

Connector
GND 8
Stepper — DR+ 9
Driver — DIR- 10
_ PUL+ 4
i 12

Digital Amplifier Connections

ACC-24E2 provides the necessary signals for direct PWM digital control. These signals are brought
through a standard 36-pin Mini-D connector and are the direct PWM control lines, current feedback lines,
and amplifier enablé\fault lines. Typically, aconnection from UMAC to these types of amplifiersis
performed using a standard cable.

J, Digital
J 36-pin standard cable]\ Amplifier

available from Delta Tau

UMAC

ACC-24E2

Hardware Setup and Connections 23

UMAC Quick Reference Guide

Amplifier Enable Signals

Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier, regardless
of the voltage of the command signal. UMAC’'s AENA lineis meant for this purpose. For early tests,
this amplifier signal should be under manual control. For troubleshooting purposes, the amplifier enable
signal can be controlled manually by setting Ixx00=0 and using the properly defined Mxx14 variable.

To control the amplifier enable function, the Acc-24E2A is provided with arelay with normally closed
and normally open contacts. Typically, the required amplifier enable signal will be passed through the
normally open contact.

Example: The amplifier is connected to the Acc-24E2A and enables with a ground connection.

ACC-24E2A
Amplifier Connector Amplifier
Enable Input
T Normally Open 7 ‘
/ Common 6
\
; Normally Close 5 GND

Both Acc-24E2 and Acc-24E2S provide a differential amplifier enable signal at TTL levels. Jumperson
the Acc-24E2S select between amplifier enable outputs and encoder C channel inputs. Inthe Acc-24E2,
the 36-pin amplifier connector brings the necessary amplifier enable signals automatically. To usethe
driver enable outputs in the Acc-24E2S, the appropriate jumpers must be set accordingly.

Example: These examples show the connection of single-ended stepper driver enable signals.

ACC-24E2S ACC-24E2S
Encoder Encoder
Connector Connector
Driver ___ AENAY g Driver |- AENA-| ¢
Enables Enables
with+5v | GND | g withGND | — GND | g

Amplifier Fault Signals

These inputs, available only on Acc-24E2 and Acc-24E2A, can take a signal from the amplifier so PMAC
knows when the amplifier is having problems and can shut down action. The polarity is programmable
with I-Variable Ixx24 (1124 for motor #1). The amplifier fault input is differential, but it can be used with
single-ended type signals also. Inthe Acc-24E2, the 36-pin amplifier connector brings the necessary
amplifier fault signals automatically. The amplifier fault signal can be monitored using the properly
defined Mxx23 variable.

Examples: These examples show the connection of the single-ended amplifier fault signals. Instead of
the external power supply shown here, the power can be supplied from the back panel of the UMAC
System.

1224 ACC-24E2A ACC-24E2A
Power Amplifier Amplifier
Supply Connector Connector
+ AFault+ Afe:\l‘JII:;-
Amplifier indicates GND Amplifier indicates AUt
fault with GND Afault- fault with +V — AT

24 Hardware Setup and Connections

UMAC Quick Reference Guide

Digital Inputs and Outputs

This example shows the typical connection of an ACC-11E digital I/0O board with sinking inputs and
sinking outputs. The Acc-11E must be ordered with the appropriate output chips for either sinking or
sourcing operation.

TB1 Bottom
Load Pin # Symbol
¥ - 1 OuT00
12-24VvDC
Power Supply
TB3 Bottom
+
Pin # Symbol
2 V1 >
1 GND g
1
=
Input TB1 Top =
Switch .
Pin # Symbol rn
1 INOO
TB3 Top
Pin # Symbol
1 REF

This example shows the typical connection of an Acc-11E digital 1/0 board with sourcing inputs and
sourcing outputs. The Acc-11E must be ordered with the appropriate output chips for either sinking or
sourcing operation.

TB1 Bottom
Load Pin # Symbol
1 IF 1 OuUTO00
12-24VDC
Power Supply
TB3 Bottom
+
Pin # Symbol
1 GND >
2 V1 ((3)
1
=
Input TB1 Top —_
Switch .
Pin # Symbol ITI
T 1 INOO
TB3 Top
Pin # Symbol
1 REF

These examples can be applied to other 10 accessory types. However, in some cases, the polarity of the
TB3 Bottom power connector might be reversed from what is shown here.

Hardware Setup and Connections

25

UMAC Quick Reference Guide

Connection Examples

Digital Amplifier with Incremental Encoder
Digital
Amplifier Load

2000 Motor ’_‘
1 | 1

EXXZXE)

©oo0o

oo00

Encoder

Pin # Symbol
USER1
PLIM1
MLIM1
HOME1

FLG_1_RET

juoi4 719l

g wWwnN -

Pin # Symbol
CHAl1l+
CHA1-
CHB1+
CHB1-
CHC1+
CHC1-

ENCPWR

GND

dol Tgl

ONOO R WNE

¢3dvZ-O0V

Use Standard Cable

10108UU09 uld-9¢ T

26 Hardware Setup and Connections

UMAC Quick Reference Guide

Analog Amplifier with Incremental Encoder

Amplifier Load

Optional G000 Motor ﬂ
1|

+ 15V Power Supply 5555 I
Qore
Flags

o000 5550

Encoder

Pin # Symbol
USER1

PLIM1
MLIM1
HOME1

FLG_1_RET

woid4 1dl

QB WN|F

Pin # Symbol
CHA1+
CHA1-
CHB1+
CHB1-
CHC1+
CHC1-

ENCPWR

GND

dol 1491

O NOOORWN PP

Pin # Symbol
DAC1A+

DAC1A-
DAC1B+
DAC1B-
AE_NC_1
AE_COM_1
AE_NO_1
AFAULT 1+
AFAULT 1-
AGND

VZ3avre-00V

wonog 1dl

Rlojo|~jo|a| s w|Nk

Pin # Symbol
f 1 AGND
L 2 AA+15V

3 AA-15V

wonog
€dl

If the optional power supply is connected to the TB3 Bottom connector, jumpers E85, E87, and ES8 in the
Acc-24E2A axes accessory board must be removed.

Hardware Setup and Connections 27

UMAC Quick Reference Guide

Analog Amplifier with MLDT Feedback

Amplifier MLDT Load
Optional Motor
+ 15V Power Supply 1 | 1
MLDT Flags

Pin # Symbol
1 USER1 4
2 PLIM1 x
3 MLIM1 3
4 HOME1 2
5 FLG_1 RET

Pin # Symbol
1 CHA1+
2 CHA1- 3
7 ENCPWR -
8 GND 3

11 PUL 1+ j>
12 PUL 1- O

Pin # Symbol Q
1 DAC1A+ N
2 DAC1A- N
3 DAC1B+ . m
4 DAC1B- ® N
5 AE_NC_1 @ J>
6 AE.COM 1 | B
7 AENO 1 | 3
8 AFAULT_1+
9 AFAULT_1-

12 AGND

Pin # Symbol

f 1 AGND &
2 AA+15V g &
1 3 AA-15V

If the optional power supply is connected to the TB3 Bottom connector, jumpers E85, E87, and E88 in the
Acc-24E2A axes accessory board must be removed.

28 Hardware Setup and Connections

UMAC Quick Reference Guide

Stepper Driver with Incremental Encoder
Stepper

2000 Motor ’_‘
1 | 1

2000

w)
=
<
0]
-
o
o
o

20oa

[2XzX2X7)

Optional

Encoder Pin # Symbol
USER1
PLIM1
MLIM1
HOME1

FLG_1 RET

oi4 79l

ghwWwN -

Pin # Symbol
CHA1+
CHA1-
CHB1+
CHB1-
CHC1+
CHC1-

ENCPWR

GND

8 GND

9 DIR_1+
10 DIR_1-
11 PUL_1+
12 PUL_1-

S¢aAvrc-O0V

XN WN

doy Tgl

Jumpersin the Acc-24E2S board must be configured properly to output the pulse-and-direction signals
and to select between encoder C channel inputs or driver enable outputs.

Hardware Setup and Connections

UMAC Quick Reference Guide

Hardware Setup and Connections

UMAC Quick Reference Guide

SOFTWARE SETUP

The Turbo PMAC2 3U, or PMAC for short, isthe CPU of the UMAC System. PMAC has alarge set of
Initialization parameters (1-Variables) that determine the personality of the card for a specific application.
Many of these are used to configure amotor properly. The Pewin32 Pro Suite provides a set of tools for
setting up the motors and programming the UMAC System.

Resetting UMAC

Perform a complete reset routine before configuring the software of aUMAC System. Thiswill assurea
clean memory configuration before starting:

$*** ; Global Reset

P0..8191 = 0 ; Reset P-Variables values

Q0..8191 =0 ; Reset Q-Variables values

MO..8191 -> * ; Reset M-Variables definitions
MO..8191 = O ; Reset M-Variables values

UNDEFINE ALL ; Undefine Coordinate Systems

SAVE ; Save this initial clean configuration

Motors Setup

Each motor must be configured for the kind of output signals used (digital, analog or stepper), the
feedback device used and the use of safety flags. The Turbo Setup Program, part of the Pewin32 Pro
Suite, provides a step-by-step procedure for setting up the motorsin aUMAC System. Thisisimportant
particularly when using digital amplifiers since extra setup steps are necessary for the configuration of the
current loop feedback.

Servo Loop Setup

Before the motors can be controlled in close loop, the PID gains parameters must be configured properly.
The Tuning Pro software, part of the Pewin32 Pro Suite, provides a series of tools for tuning each motor
of aUMAC System with minor effort. See the Pewin32 Pro section for details.

Programming PMAC

Fundamentally, PMAC is a command-driven device. PMAC performs tasks when issued ASCI|
command text strings, and generally, PMAC provides information to the host in ASCII text strings.
When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII value 1 to 31) to cause it to take
some actual action. The most common control character used is the carriage return (<CR>; ASCII value
13), which tells PMAC to interpret the preceding set of a phanumeric characters as a command and to
take the appropriate action.

Once the motion parameters and programs have been set, the system can be operated as a stand-alone
controller or commanded via a host computer. The SAVE command issued from the terminal window
will store al the defined programs and parametersin flash memory for later use.

Online Commands

Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host. Some
commands, such asP1=1, are executed immediately if there is no open program buffer, but are stored in
the buffer if oneis open. Other commands, such as X1000 Y1000, cannot be on-line commands; there
must be an open buffer —even if it isa special rotary buffer for immediate execution. These commands
will be rejected by PMAC (reporting an ERROO5S if 16 isset to 1 or 3) if thereis no buffer open. Still
other commands, such as J+, are on-line commands only and cannot be entered into a program buffer
(unlessin the form of CMD**J+"*, for instance).

Software Setup 31

UMAC Quick Reference Guide

There are three basic classes of on-line commands: motor-specific commands, which affect only the
motor that is currently addressed by the host; coordinate-system-specific commands, which affect only
the coordinate system that is currently addressed by the host; and global commands, which affect the card
regardless of any addressing modes.

A motor is addressed by a#n command, where n is the number of the motor, with arange of 1 to 32,
inclusive. This motor is the one addressed until the card receives another #n. For instance, the command
line#1J+#2J- tellsMotor 1 to jog in the positive direction, and Motor 2 to jog in the negative direction.
There are only afew types of motor-specific commands. These include the jogging commands, a homing
command, an open loop command, and requests for motor position, velocity, following error, and status.

A coordinate system is addressed by an &n command, where n is the number of the coordinate system,
with arange of 1to 16, inclusive. This coordinate system is the one addressed until the card receives
another &n command. For instance, the command line &1B6R&2B8R tells Coordinate System 1 to run
Motion Program 6 and Coordinate System 2 to run Motion Program 8. There is a variety of coordinate-
system-specific commands. Axis definition statements act on the addressed coordinate system because
motors are matched to an axisin a particular coordinate system. Sinceit is acoordinate system that runs
amotion control program, all program control commands act on the addressed coordinate system. Q-
Variable assignment and query commands are coordinate system commands also because the Q-Variables
themselves belong to a coordinate system.

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 setsthe value of P1 to 1 regardless of what isaddressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers and only one can be open
a atime. When abuffer is open, commands can be entered into the buffer for later execution.

Control character commands (those with ASCI1 values 0 - 31D) are always global commands. Those that
do not require a data response include carriage return <CR>, backspace <BS>, and several special-
purpose characters. This allows, for instance, commands to be given to severa locationson the cardin a
single line, and have them take effect simultaneoudly at the <CR> at the end of the line (&1R&2R<CR>
causes both Coordinate Systems 1 and 2 to run).

Buffered (Program) Commands

Astheir name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers — 224 regular motion program buffers, 16 rotary motion program
buffers (one for each coordinate system), 32 non-compiled PLC program buffers and 32 compiled PLC
program buffers. Before commands can be entered into a buffer, that buffer must be opened (e.g. OPEN
PROG 3,0PEN PLC 7). Each program command is added onto the end of the list of commandsin the
open buffer. To replace the existing buffer, use the CLEAR command immediately after opening to erase
the existing contents before entering the new ones. When finished entering the program statements, use
the CLOSE command to close the opened buffer.

32 Software Setup

UMAC Quick Reference Guide

Computational Features

I-Variables

I-Variables (initialization or setup variables) determines the personality of the card for agiven
application. They are at fixed locations in memory and have pre-defined meanings. Most are integer
values, and their range varies depending on the particular variable. There are 8192 |-Variables, from 10 to
18191, and they are organized as follows:

10 — 199 Global card setup

1100 — 1199 Motor 1 setup
1200 — 1299 Motor 2 setup

13200 — 13299 Motor 32 setup

13300 — 14799 Supplemental Motor setup

14900 — 14999 Configuration status

15000 — 15099 Data gathering/ADC demux setup
15100 — 15199 Coordinate System 1 setup
15200 — 15299 Coordinate System 2 setup
16600 — 16699 Coordinate System 16 setup
16800 — 16999 MACRO IC setup

17000 — 17999 Servo IC setup

18000 — 18191 Encoder conversion table setup

When I-Variables are described in the documentation, the following nomenclature have been used:

XxX: Thisstands for motor number, and it can take values from 1 to 32.

mn: Them standsfor servo IC number. InaUMAC System, this can take avalue from 2 to 9
depending on the address given to the corresponding axes card. The n stands for the channel part
of the servo IC chip. Each servo IC has four hardware channels, so n has arange from 1 to 4.

m: The m stands for servo IC number. InaUMAC System, this can take avalue from 2t0 9,
depending on the address given to the corresponding axes card.

sx: Thisrepresents the coordinate system number plus 50. For example, variables that refer to
coordinate system 1 will be addressed by variables 15100 to 15199.

Values assigned to an |-Variable may be either a constant or an expression. The commandsto do thisare

on-line (immediate) if no buffer is open when sent, or buffered program commands, if a buffer is open.

Examples:

1120 = 45

120 = (1 120+P25*3)

For I-Variables with limited range, an attempt to assign an out-of-range value does not cause an error.

Thevalueisrolled over automatically to within the range by modulo arithmetic (truncation). For

example, 13 has arange of 0 to 3 (four possible values). Actualy, the command 13=5 would assign a

value of 5 modulo 4 = 1 to the variable.

On the UMAC System, all of the |-V ariable values must be stored in the flash memory with the SAVE
command. After anew valueis given to any I-Variable, the SAVE command must be issued in order for
this value to survive a power-down or reset.

Default valuesfor all I-Variables are contained in the manufacturer-supplied firmware. They can be used
individually with the 1{constant}=* command, or in arange with the
I{constant}..{constant}=* command. Upon board re-initialization by the $$$*** command or
by areset with jumper E3 of the PMAC CPU in the non-default setting, al default settings are copied
from the firmware into active memory. The last saved values are not lost; they are just not used.

Software Setup 33

UMAC Quick Reference Guide

P-Variables

P-Variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in Turbo PMAC’s memory, but with no pre-defined use. There are 8192 P-Variables, from PO to P8191.
A given P-Variable means the same thing from any context within the card; al coordinate systems have
accessto all P-Variables (in contrast to Q-Variables, which are coupled to agiven coordinate system
below). Thisalowsfor useful information passing between different coordinate systems. P-Variables
can be used in programs for any purpose desired: positions, distances, velocities, times, modes, angles,
intermediate calcul ations, etc.

P-Variables can be located either in the main memory or in the supplemental battery-backed parameter
memory (if Option 16 is ordered). If 146 is set to O (default) or 2, the P-Variables are located in the main
memory, which has fast access (1 wait state) but whose values are not retained without a SAVE command
copying the values to flash memory. On power-up/reset, the last saved values are copied from flash
memory into the active variable registersin RAM. If 146issetto 1 or 3, the P-variables are located in the
Option 16 battery-backed RAM, which has slow access (nine wait states) but whose values are retained
automatically by the battery when power is removed.

Generadly, Turbo PMAC firmware has no automatic use of P-Variables. However, it can make special
use of variables PO — P32 and P101 — P132. If acommand consisting ssmply of a constant valueis sent to
Turbo PMAC, that value is assigned to variable PO (unless a special table buffer such as a compensation
table or stimulus table has been defined but not yet filled — in that case the constant value will be entered
into the table). For example, if the command 342<CR> is sent to Turbo PMAC, it will interpret it as
P0=342<CR>. This capability isintended to facilitate simple operator terminal interfaces. Itisnot a
good ideato use PO for other purposes, because it is easy to change this variable’' s value accidentally. If
the application uses kinematic subroutines to convert between tool-tip (axis) positions and joint (motor)
positions, variables P1 — P32 and P101 — P132 are used for the motor paositions in these subroutines (Pnis
Motor n position; if PVT moves are converted, P10n is Motor n velocity). If using the kinematic
subroutines, make sure not to use the P-Variables employed in the subroutines for any other purpose.

Q-Variables

Q-Variables, like P-Variables, are genera-purpose user variables: 48-bit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-Variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This alows several
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y (Q2), but to do
have different values in their own Q-Variables (which in this case, means different destination points).

Several Q-Variables have special uses. The ATAN2 (two-argument arctangent) function uses QO asits
second argument (the cosine argument) automatically. The READ command places the valuesiit reads
following letters A through Z in Q101 to Q126, respectively, and a mask word denoting which variables
have been read in Q100. The S (spindle) statement in a motion program places the value following it into
Q127. If the application uses kinematic subroutines to convert between tool-tip (axis) positions and joint
(motor) positions, variables Q1 — Q10, and possibly Q11 — Q19 for the coordinate system are used for the
axis datain these subroutines. (Q1 — Q9 are for axis positions; Q10 tells whether PVT moves are being
converted; if PVT moves are converted, Q11 — Q19 are for axis velocities.) Therefore, since 8192 Q-
Variables are shared between potentially 16 Coordinate Systems (512 variables each), the practical ranges
of the Q-Variables to be used safely in motion programs are Q20 - Q99 and Q128 - Q511.

The set of Q-Variables working within a command depends on the type of command. When accessing a
Q-Variable from an on-line (immediate) command from the host, the Q-Variable for the currently host-
addressed coordinate system is used (with the &n command). When accessing a Q-Variable from a
motion program statement, the Q-variable belonging to the coordinate system running the programis
used. If adifferent coordinate system runs the same motion program, it will use different Q-Variables.

34 Software Setup

UMAC Quick Reference Guide

When accessing a Q-Variable from a PLC program statement, the Q-Variable for the coordinate system
that has been addressed by that PLC program with the ADDRESS command is used. Each PLC program
can address a particular coordinate system independent of other PLC programs and independent of the
host addressing. If no ADDRESS command is used in the PLC program, the program uses the Q-
Variablesfor C.S. 1.

M-Variables

To permit easy user access to Turbo PMAC’s memory and 1/0O space, M-variables are provided.
Typicaly, M-Variables are used to access general-purpose 10 points, read motor registers and monitor
status bits. There are 8192 M-V ariables (M0 to M8191), and as with other variable types, the number of
the M-Variable may be specified with either a constant or an expression: M576 or M(P1+20). The
definition of an M-Variable is set using the defines-arrow (->) composed of the minus sign and greater
than symbols. Generally, adefinition must be set only once with an on-line command. The SAVE
command must be used to retain the definition through a power-down or reset. An M-Variableis defined
by assigning it to alocation and defining the size and format of the value in thislocation. An M-Variable
can be ahit, anibble (4 bits), a byte (8 bits), 1-1/2 bytes (12 bits), a double-byte (16 bits), 2-1/2 bytes (20
bits), a 24-bit word, a 48-bit fixed-point double word, a 48-bit floating-point double word, or special
formats for dual-ported RAM. The following types are the most commonly used as specified by the
address prefix in the definition:

X: 1 to 24 bits fixed-point in X-memory

Y: 1 to 24 bits fixed-point in Y-memory

D: 48 bits Fixed-point across both X- and Y-memory

DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported
RAM)

F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported
RAM)

*: No address definition; uses part of the definition word as general-

purpose variable
If an X or Y type of M-Variable is defined, also define the starting bit to use, the number of bits, and the
format (decoding method). Typical M-V ariable definition statements are:

M1->Y:$078C02,8,1 ; Unsigned one-bit wide starting at bit 8 on the Y-register
M102->Y:$78003,8,16,S ; Signed 16-bits wide starting at bit 8 on the Y-register
M103->X:$078003,0,24,S ; Signed 24-bits wide starting at bit O on the X-register

M161->D:$8B ; 48-bit fixed-point double word
M50->DP :$060401 ; Dual-Ported RAM 48-bit fixed-point double word
M51->F:$0607FF ; Dual-Ported RAM 48-bit floating-point double word

Thereisaset of suggested M-V ariables definitions that allow accessing the most commonly used
registersin aUMAC System. The definitions are made to access motor position registers, status bits and
general-purpose 10 points. Downloading this set of M-Variables simplifies the definition process. See
the Turbo PMAC Software Reference for details.

Prepare asingle file with all of the M-V ariable definitions and put theMO . . 8191->* command at the
top of thisfile. Thiswill remove al existing definitions and help to prevent mysterious problems caused
by stray M-Variable definitions. The M-Variable definitions are stored as 48-bit codes at Turbo PMAC
memory addresses $004000 (for M0O) to $005FFF (for M8191). The Y -register contains the address of the
register pointed to by the definition; the X-register contains a code that determines what part of the
register isused and how it isinterpreted. If another M-Variable pointsto the Y -register, it can be used to
change the subject register. The main use of this techniqueis to create arrays of registers which can be
used to walk through tables in memory.

Software Setup 35

UMAC Quick Reference Guide

Once defined, an M-V ariable may be used in programs just as any other variable — through expressions.
When the expression is evaluated, Turbo PMAC reads the defined memory location, calculates avalue
based on the defined size and format, and utilizes it in the expression. Many M-V ariables have amore
limited range than Turbo PMAC’ s full computational range. If avalue outside of the range of an M-
Variableis placed to that M-Variable, Turbo PMAC rolls over the value to within that range
automatically and does not report any errors. For example, with asingle bit M-V ariable, any odd number
written to the variable ends up as 1, any even number ends up as 0. If anon-integer valueis placed in an
integer M-Variable, Turbo PMAC rounds to the nearest integer automatically.

When using the M-V ariables in a motion program, especially when used to control digital general-
purpose outputs, it isimportant to use double-equal assignments. M1==1, for example, will indicate to
PMAC that the assignment must take place at the blending point between the previous move encountered
before the assignment and the next. In Linear and Circle mode moves, the blending occurs V*TA/2
distance ahead of the specified intermediate point, where V is the commanded velocity of the axis, and
TA isthe acceleration (blending) time. Thisfeature isonly available for M-Variables.

Arrays
It ispossibleto use aset of P or Q-Variablesasan array. To read values from the array or assign values
toit, replace the constant specifying the variable number with an expression in parentheses.

Example:

P1 = 10 ; Pl isthe array index variable in this case
P3 = P(P1) : Same as P3 = P10

P1 = 15 ; Pl isthe array index variable in this case
P(P1) = 5 : SameasP15=5

Another method to useto get array capabilitiesisindirect M-Variables addressing.
Example: Vaues 31 to 40 will be assigned to variables P1 through P10

M34->L:$6001 ; Standard location for P1 (when 146 = 0 or 2)
M35->Y:$4022,0,24 ; Definition word of M34
OPEN PLC 15 CLEAR
P100=31
WHILE (P100!>40) ; From 31 to 40
M34=P100 ; Value is written to the array
P100=P100+1 ; Next value
M35=M35+1 ; Next Array position (next P-variable)
ENDWHILE
DISABLEPLC15 ; This PLC runs only once
CLOSE
ena PLC15 ; Enablethe PLC (15 must be 2 or 3)
P1..10 ; List the values of P1 to P10

The same concept applies for Q-Variables and M-V ariables arrays when using the appropriate address
locations.

Operators

PMAC operators work like those in any computer language: they combine values to produce new values.
PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic precedence rules
are used: multiply and divide are executed before add and subtract, operations of equal precedence are
executed |eft to right, and operations inside parentheses are executed first.

PMAC also has the % modul o operator, which produces the resulting remainder when the value in front
of the operator is divided by the value after the operator. Vaues may be integer or floating point. This
operator is useful particularly for dealing with counters and timers that roll over.

36 Software Setup

UMAC Quick Reference Guide

When the modul o operation is completed using a positive value X, the results can range from 0 to X (not
including X itself). When the modulo operation is completed using a negative value -X, the results can
range from -X to X (not including X itself). The negative modulo operation is useful when aregister can
roll over in either direction.

PMAC hasthree logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR),
and /™ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the
fractional aswell asthe integer bits. & hasthe same precedence as* and /; | and ” have the same
precedence as + and —. The use of parentheses can override the default precedence.

Note:

These bit-by-bit logical operators are different from the simple Boolean operators
AND and OR used in compound conditions.

Functions

The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and
INT. These functions perform mathematical operations on constants or expressions to yield new values.
Whether the units for the trigonometric functions are degrees or radians is controlled by the global |-
Variable 115.

SIN |Thisisthe standard trigonometric sine function.

COS |Thisisthe standard trigonometric cosine function.

TAN |Thisisthe standard trigonometric tangent function.

ASIN |Thisistheinverse sine (arc-sine) function with its range reduced to +/-90 degrees.

ACOS |Thisistheinverse cosine (arc-cosine) function with its range reduced to 0 -- 180 degrees.

ATAN |Thisisthe standard inverse tangent (arc-tangent) function.

ATANZ2 | This expanded arctangent function returns the angle whose sine is the expression in parentheses and
whose cosine is the value of QO for that coordinate system.

If calculating in a PLC program, make sure that the proper coordinate system has been addressed in
that PLC program. Itisonly theratio of thetwo values magnitudes and their signs that matter in this
function. It isdistinguished from the standard ATAN function by the use of two arguments. The
advantage of this function isthat it has afull 360-degree range, rather than the 180-degree range of
the single-argument ATAN function.

LN Thisisthe natural logarithm function (log base €).

EXP |Thisisthe exponentiation function (€°).

Note: To implement the y* function, use &™) instead. For example, use this expression to implement
the function P1™% EXP(P2*LN(P1)).

SQRT |[Thisisthe square root function.

ABS |Thisisthe absolute value function.

INT |Thisisatruncation function, which returns the greatest integer less than or equal to the argument
(INT(2.5)=2, INT(-2.5)=-3).

Functions and operators could be used either in motion programs, PLCs, or as online commands. For
example, the following commands can be typed in aterminal window:

P1=SIN(45) P1 ; Reports the sine value of a 45° angle
1130=1130/2 ; Lower the proportional gain of Motor #1 by half

Software Setup 37

UMAC Quick Reference Guide

Comparators

A comparator eval uates the rel ationship between two values (constants or expressions). It isused to
determine the truth of a condition in amotion or PLC program. The valid comparators for PMAC are:

(equal to)
(not equal to)

|

> (greater than)

I> (not greater than; |ess than or equal to)

< (1 ess than)

I < (not less than; greater than or equal to)

~ (approxi mately equal to -- within one)

I~ (not approxi mately equal to -- at |east one apart)
Note:

<= and >= are not valid PMAC comparators. The comparators !> and !<,
respectively, should be used instead.

Encoder Conversion Table

Turbo PMAC uses atwo-step process to work with its feedback and master position information for the
servo algorithm to provide maximum power and flexibility. For most Turbo PMAC applications with
guadrature encoder feedback, this process can be virtually transparent, with no need to worry about the
details. Thisis because the default conversion table is set to convert all the incremental quadrature
channels found in the UMAC System. However, some will need to understand this conversion processin
some detail to make the changes necessary to use other types of feedback, to optimize the system, or to

perform special functions.

The first stage in the position processing uses the hardware registers such as encoder counters with
associated timers, A/D registers, or accessory cards for parallel input. These work continually without
direct software intervention with data typically latched on the servo interrupt. Beyond this point, the
process is software-controlled. Turbo PMAC has an intermediate step using a software structure called
the Encoder Conversion Table to pre-process the information in the latched registers. Thistabletells
PMAC what registersto process and how to process them; it also holds the intermediate processed data.
PEWIN32-Pro has a special editing screen for viewing and changing the encoder conversion table.

Conversion Table Structure

The Encoder Conversion Table has two columns, one in the X memory space of the processor, and onein
the Y memory space. The X-column holds the converted data, while the Y -column holds the addresses of
the source registers and the conversion methods used on the datain each of those source registers. Set up
the table by writing to the Y -column and PMAC uses the Y -column data to fill up the X-column each

servo cycle.
Quadrature, incremental, encoder . §asu ¥ x

Parallel binary feedback
Laser interferometer feedback . ‘

Source sddress Siandardores

Analog feedback | e il
4096 sinusoidal interpolator feedback ' srthod

SSI encoder inputs ' — -
Y askawa or Mitsubishi absolute

ecauil vislue lor
BTy

encoders PMAC's Corversion Table

MLDTSs feedback inputs

Sgren

-
Algariiims

Each lineis setup through an I-Variable and these are numbered from 18000 to 18191. Depending on the
conversion method, each entry can be one, two or three lines long using one, two or three setup |-

Variables, consecutively numbered. The result of the conversion will be located at the address of the last
used line. For example, if three lines are used starting with 1-Variable 18000, the result will be located at

X:$3502.

38

Software Setup

UMAC Quick Reference Guide

Further Position Processing

Once the position feedback signals have been processed by the Encoder Conversion Table (which
happens at the beginning of each servo cycle), the datais ready for use by the servo loop. For each
activated motor, PMAC takes the position information in the 24-bit register pointed to by 1xx03 and
extends it in software to a48-bit register that holds the actual motor position. Several other features are
available for conditioning the feedback signal, if necessary.

e AxisPosition Scaling: for running motion programs, motors are mapped, either individually or in
groups, to a coordinate system with axis letters like X, Y and Z. For each individua motor, ascae
factor determines the relationship between encoder counts and user units to be used in motion
programs.

e Leadscrew Compensation: for each individual motor, it is possible to create a table to compensate

for potential leadscrew imperfections. This provides added positioning accuracy, especially when
moving large distances.

e Backlash Compensation: On reversal of the direction of the commanded velocity, a pre-
programmed backlash distance is added to or subtracted from the commanded position, thus
compensating for a potential backlash.

PMAC Position Registers

The PMAC Executive position window or the online P command reports the value of the actual position
register plus the position bias register plus the compensation correction register, and if bits 1 and 0 of Ixx06
are 1 (handwheel offset mode), minus the master position register:

M175->X:$00B0,4,1 ; Bit O of 1106

M176->X:$00B0,5,1 ; Bit 1 of 1106

M162->D:$008B ; #1 Actual position (1/[1xx08*32] cts)
M164->D:$00CC ; #1 Position bias (1/[Ixx08*32] cts)

M167->D:$008D #1 Present master ((handwheel) pos (1/[Ixx07*32] cts

of master or (1/[1xx08*32] cts of slaved motor)
#1 Compensation correction

(M162+ M164 + M169 - M175* M176* M167)

1108* 32
P100 will report the same value as the online P command or the position window in the PMAC Executive
program.
The addresses given are for Motor #1. For the registers of another motor x, add (x-1)*$80 to the
appropriate motor #1 address).
M161->D:$0088 ; #1 Commanded position (1/[Ixx08*32] cts)
The motor commanded position registers contain the value in counts where the motor is commanded to
move. It is set through JOG online commands or axis move commands (X 10) inside motion programs.
Toread thisregister incounts; P161 = M161 / (1108*32)
M162->D:$008B ; #1 Actual position (1/[I1xx08*32] cts)
The actual position register contains the information read from the feedback sensor after it has been
properly converted through the encoder conversion table and extended from a 24-bits register to a 48-bits
register.
To read thisregister in counts; P162 = M162 / (1108*32)
M163->D:$00C7 ; #1 Target (end) position (1/[I1xx08*32] cts)
This register contains the most recently programmed position and it is called the target position register, if
Isx13>0, PMAC isin segmentation mode and the value of M 163 corresponds to the last interpolated point
calculated.

To read thisregister in counts: P163 = M163 / (1108*32)

M169->D:$0090

P100=

Software Setup 39

UMAC Quick Reference Guide

M164->D:$00CC ; #1 Position bias (1/[Ixx08*32] cts)
This register contains the offset specified in the axis definition command #1->X + <offset>

The online command {ax i s}={constant}or the motion program command PSET addsthe
specified offset to the existing M164 offset: M164 = M164 + <new_offset>.

To read thisregister in counts: P164 = M164 / (1108*32)

M165->L:$2047 ; &1 X-axis target position (engineering units)
M165 contains the programmed axis position through a motion program, X 10 for example, in engineering
units. It is updated also by the online command {axis}={constant} or the motion program
command PSET.

M166->X:$009D,0,24,S ; #1 Actual velocity (1/[1xx09*32] cts/cyc)
M166 is the actual velocity register. For display purposes, use the motor-filtered actual velocity, M174
To read this register in ctsymsec: P166 = M166 * 8388608 / (1109 * 32 * 110 *
(1160+1))

M167->D:$008D ; #1 Present master ((handwheel) pos (1/[1xx07*32] cts

; of master or (1/[1xx08*32] cts of slaved motor)

M167 isrelated to the master/dave relationship set through 1xx05 and 1xx06. It contains the present
number of counts from the master.

To read this register in counts: P167 = M167 / (1108*32)

or

P167 = ML67 / (1107*32)

M169->D:$0090 ; #1 Compensation correction

This contains the cal culated leadscrew compensation correction according to actual position (M162) and the
leadscrew compensation table set through the DEF INE COMP command.

To read this register in counts: P169 = M169 / (1108*32)
M172->L:-$00D7 ; #1 Variable jog position/distance (counts)
Contains the distance for the J=* command.
Example: M172=2000 J=* ;Jog to position 2000 encoder counts
M173->Y:$00CE,0,24,S ; #1 Encoder home capture offset (counts)
Contains the home offset from the reset/power-on position; Important for the capture/compare features.
Example:
If (M117=1)

P103=M103-M173 ; Captured position minus offset
endif
M174->D:$00EF ; #1 Filtered actual velocity (1/[1xx09*32]

; cts/servo cycle)
This register contains the actual velocity averaged over the previous 80 real -time interrupt periods
(80*[18+1] servo cycles); good for display purposes.
To read this register in cts/msec: P174 = M174 * 8388608 / (1109 * 32 * 110 * (1160+1))
M180->D:$0091 ; #1 following error (1/[1xx08*32] cts)

Following error is the difference between motor desired and measured position at any instant. When the
motor is open loop (killed or enabled), following error does not exist and PMAC reports a value of 0.

M161- M162 + M164 + M169 — M175* M176* M167
1108* 32

To read thisregister in counts: P176 = M175 / (1108*32)

P176 =

40 Software Setup

UMAC Quick Reference Guide

Summary of Selected I-Variables

Motor Definition I-Variables

Ixx00 —Motor xx Activate: For controlling an actual physical motor, this PMAC motor |-Variable
should be set to one. If there is no physical motor associated with this PMAC motor xx, then this variable
should be set to zero especially when using the encoder input or output command (DAC or stepper) for
any general purpose.

Ixx02 —Motor xx Command Output Address. This variable determines which hardware channel will
be used to output the command signals to the amplifier. 1t must be changed from the default value when
using stepper type drivers. Variable Ixx96 further configures the command outputs for motor xx.

Ixx03 —Motor xx Position L oop Feedback Address. This variable determines which hardware channel
will be used to input the feedback information for closing the position loop.

Ixx04 —Motor xx Velocity L oop Feedback Address: This variable determines which hardware channel
will be used to input the feedback information for closing the velocity loop. It differs from variable Ixx03
when two encoders, one on the load and one in the motor, are used in double-feedback applications.

Motor Safety I-Variables

Warning:

Setting Ixx11 to zero (disabled) could lead to a dangerous motor runaway
condition.

Ixx11 —Motor xx Fatal Following Error Limit: This variable sets the maximum number of 1/16 counts
of alowed following error before the motor is shutdown.

Ixx13 —Motor xx + Software Position Limit: This variable determines the maximum allowed range of
motion in the positive direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ixx14 —Motor xx - Software Position Limit: This variable determines the maximum allowed range of
motion in the negative direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ixx15—Motor xx Abort/Lim Deceleration Rate: This parameter sets the decel eration rate used when a
programmed motion is aborted; either by the A abort command or when a maximum position limit is
reached.

Ixx16 —Motor xx Maximum Velocity: This parameter sets the maximum allowed velocity for a motor
performing a linear move issued from a motion program. Thisis observed only when variable I1sx13 is
zero or aspecia lookahead buffer has been defined with [sx20 > 0.

Ixx17 —Motor xx Maximum Acceleration: This parameter sets the maximum allowed acceleration for
amotor performing alinear move issued from a motion program. Thisis observed only when variable
Isx13is zero or aspecial lookahead buffer has been defined with 1sx20 > 0.

Ixx19 —Motor xx Maximum Jog/Home Acceleration: This parameter sets the maximum allowed
acceleration rate for a motor performing ajog or homing move.

Software Setup 41

UMAC Quick Reference Guide

S Curve and Linear Acceleration Variables

The acceleration portion of a programmed move, either programmed by ajog or a motion program
command, is controlled by two time parametersin units of millisecond. In the case of jog or homing
commands, these two parameters are |-variables Ixx20 and Ixx21. Ixx20 determines the overall
acceleration time, which is the total time required for any change in velocity. 1xx21 determines the
portion of the overall acceleration ramp that is performed in S curve mode.

In every case, if two times the S curve acceleration parameter is greater than the linear acceleration
parameter, then the overall acceleration time will be two times the S curve acceleration time:
IT (2 x Ixx21) > Ixx20 then Ixx20 = (2 x Ixx21)

TN
No ‘S’ curve with ‘S’ curve

(= ii]

i //

i

2000

e

10000 _/

0
- {00
a0 a5 [N i) 013 02 0z3 0.7] 035 0an 0a3 030
Tima(zad]
x21 <I>gl’
1x20 1x20

<¢“—>

The acceleration of either linear or circular interpolated moves programmed from a motion program is
determined by a set of different parameters. However, these parameters have the same meaning as those
described above:

Move Type S Curve Acceleration Linear Acceleration Parameter
Parameter
Jog or Home commands Ixx21 Ixx20
Linear or circular interpolation TS or 1sx88 TA or Ixx87

Rate vs. Time: Programming the Maximum Acceleration Parameters

The safety |-Variable Ixx17 determines the maximum allowed accel eration for the motor xx when no
special lookahead buffer is used in Linear mode moves. (Ixx19 is used for jog or home commands.)
These variables are programmed in units of encoder counts per millisecond square. However, the
acceleration of a programmed move, from either jog commands or a motion program, is set in
milliseconds as described above. The following relationship holds for the conversion between those
different units:

Velacity
Linear Acceleration Time- S Curve Acceleration Time

Acceleration Rate=

Examples:
Jog Commands Linear Interpolated Moves
Ixx20 - Ixx21 Isx87 - 1sx88

42 Software Setup

UMAC Quick Reference Guide

Benefits of Using S-Curve Acceleration Profiles

In an electric motor, the acceleration directly trand ates into torque and electrical current. Whenno S
curve component is programmed, the acceleration rate, torque and current are applied immediately to the
motor after it starts moving. With a programmed S curve profile, on the other hand, the acceleration is
applied linearly from zero to the programmed value resulting in a smoother transition in acceleration
torque and current. However, the acceleration rate in a pure S curve acceleration profile is two times that
which is necessary for apure linear acceleration profile. (See equation above.) Then, the use of S curve
acceleration requires alonger overall acceleration time than when using straight linear acceleration.

S-curve CJDI]lpﬂ['ICﬂt no S-curve CDI'IlpOI}CI]t

Velocity vs Time

Acceleration vs Time

: n,
Force/Torque vs Time -
Current vs Time)%

Motor Movement |-Variables

Ixx20 —Motor xx Jog/Home Acceleration Time: This variable determines how long the acceleration
portion of the jog moves will take, regardlessif a S curve component is also programmed or not. (See
diagram above.)

Ixx21 —Motor xx Jog/Home S-Curve Time: This variable determines the portion of the acceleration
ramp that will be performed in S curve mode. If 1xx20 is set to zero, then the acceleration ramp will take
2*I1xx21 and will be executed in pure S curve mode.

Ixx22 —Motor xx Jog Speed: Thisvariable setsthe jog velocity. If the motor xx is moving already, a
new jog command must be issued for the Ixx22 parameter to have effect.

Ixx23 —Motor xx Homing Speed and Direction: This variable is often set to the same value as Ixx22.
However, what isimportant in this case isits sign which determines the direction the motor xx will take
when searching for the home sensor.

Ixx24 —Motor xx Flag Mode Control: This variable specifies how the information in the register
specified by Ixx25 is used.

Ixx25 —Motor xx Flag Address: This variable determines which set of flags motor ‘xx’ will use. These
flags include the end-of-travel limits, the amplifier enable and fault lines and the home flag.

Note:

If ahardware flag is used for home reference and a quadrature encoder is used for
feedback, they must both belong to the same hardware channel in the axes board.

Software Setup 43

UMAC Quick Reference Guide

Ixx26 —Motor xx Home Offset: This variable determines an offset in 1/16 of a count that PMAC will
move after the home procedure is completed. Thisisimportant to move the motor away from the home
sensor which could be necessary for a better reliable home search routine.

IXx96 —Motor xx Position Capture & Trigger Mode: This variable controls how Turbo PMAC writes
to the command output registers specified in 1xx02.

Ixx97 —Motor xx Position Capture & Trigger Mode: This variable controls the triggering function and
the position capture function for triggered moves on motor xx. These triggered moves include homing
search moves, on-line jog-until-trigger moves, and motion program RAP 1D-mode move-until-trigger.

Servo Control I-Variables
The servo control variables are setup in the motor tuning process. Usually, thisis accomplished using a
software tool like the Tuning Pro, part of the Pewin32 Pro Suite Software.

Ixx30 —Motor xx Proportional Gain: Thisisthe most important variable in the servo control loop. It
determines how strong the corrections on the servo loop will be made, based on a given following error
value. Therule of thumb for the setup of thisvariableisto increase it until the motor startsto buzz and
then back down for about 20 % of its value.

Ixx31 —Motor xx Derivative Gain: This variable acts effectively as an electronic damper. The higher
Ixx31is, the heavier the damping effect is. On atypical system with a current-loop amplifier and
PMAC' s default servo update time, an Ixx31 value of 2000 to 3000 will provide a critically damped step
response.

Ixx32 —Motor xx Velocity Feed Forward Gain: Typically, thisvariable is used to minimize the
tracking errors when the motor is moving with a constant velocity. If the motor is driving a current-loop
(torque) amplifier, usually 1xx32 will be equal to (or dightly greater than) Ixx31 to minimize tracking
error.

Ixx33—Motor xx Integral Gain: Typically, thisvariable is used to minimize the steady state following
error when the motor is settling on the target position. The following error in this case is due to gravity
and external forces.

Ixx35—Motor xx Acceleration Feed Forward Gain: This parameter is intended to reduce tracking
error dueto inertial lag.

Ixx68 —Motor xx Friction Feedforward: This parameter isintended primarily to help overcome errors
due to mechanical friction.

Channel Specific I-Variables

I7mn0 — Encoder Decode Control: This variable determines how an increase in the encoder feedback
counter will be interpreted when translated into position, either as an increase or a decrease in the position
counter. This determines the proper direction of motion. Typical values are either 3 or 7, which
determine a clock-wise or counter-clockwise direction of decoding respectively.

I7mn2 —Encoder Capture Control: This variable determines the trigger condition that completes the
home search command. For example, the trigger condition could be a combination of the home sensor
being activated and the encoder C channel rising high.

I7mn3 — Encoder Flag Select: This variable determines which flag will be used for the home trigger
condition, selected from the home flag, the end-of-travel limits, the user flag or the amplifier fault flag.

44 Software Setup

UMAC Quick Reference Guide

Homing Search Moves

The purpose of a homing search move is to establish an absol ute position reference when an incremental
position feedback sensor isused. The move until trigger construct isideal for finding the sensor that
establishes the home position and returning to this position automatically. The trigger condition for
homing-search moves, as for other triggered moves, is specified by 1xx97, Ixx24, and 1xx25. Variables
IXx20, Ixx21, Ixx23 and 1xx26 specify the move parameters of home search type commands. If no trigger
isfound, the pre-trigger move will continue indefinitely, or until stopped by an error condition such as
hitting overtravel limits.

Note:

If ahardware flag is used for home reference and a quadrature encoder is used for
feedback, they must both belong to the same hardware channel in the axes board.

A homing search move can be initiated with the on-line motor-specific HOME command (short form HM,
e.g., #1HM). The homing search move can be commanded also from within a motion program with the
HOMENn command, where n is the motor number. Note that this command specifies a motor, unlike other
motion program commands that specify an axis move. Multiple homing moves can be started together by
specifying alist or range of motor numbers with the command (e.g. HOME1 , 3 or HOME2 . . 6). Further
program execution will wait for all of these motors to finish their homing moves. Separate homing
commands, even on the same line (e.g. HOME1 HOMEZ2) will be executed in sequence, with the first
finishing before the second starts.

Jogging Moves

Indefinite Jog Commands

J+ commands an indefinite positive jog for the addressed motor. J- commands an indefinite negative
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration. Itis
possible for the J/ command to |eave the commanded position at a fractional count which can cause
dithering between the adjacent integer count values. If thisisaproblem, the 3! command can be used to
force the commanded position to the nearest integer count value.

Jogging to a Specified Position

Jog commands to a specified position, or of a specified distance, can be given. J= commands ajog to the
last pre-jog position. J={constant} commands ajog to the (unscaled) position specified in the
command. J=={constant} commands ajog to the (unscaled) position specified in the command and
makes that position the pre-jog position. J*{constant} commands ajog of the specified distance
from the actual position at the time of the command (J™0 can be useful to take up remaining following
error). J:{constant} commands ajog of the specified distance from the commanded position at the
time of the command.

Jog Moves Specified by a Variable

Jogging moves to a position or a distance specified by a variable are possible. Each motor has a specific
register (L:$00D7 for motor 1, L:$0157 for motor 2, etc.) that holds the position or distance to move on
the next variable jog command. Thisregister contains a floating-point value scaled in encoder counts. It
should be accessed with an L-format M-Variable. The J=* command causes PMAC to use thisvalue as
adestination position. The J** command causes PMAC to use the value as a distance from the actual
position at the time of the command. The J:* command causes PMAC to use the value as a distance
from the commanded position at the time of the command.

Each time one of these commands is given, the accel eration and vel ocity parameters at that time control
the response to the command. To change speed or acceleration parameters of an active jog move, change
the appropriate parameters, then issue another jog command.

Software Setup 45

UMAC Quick Reference Guide

Jog-Until-Trigger

The jog-until-trigger function permits ajog move to be interrupted by atrigger and terminated by a move
relative to the position at the time of the trigger. It isvery similar to a homing search move, except that
the motor zero position is not atered and there is a specific destination in the absence of atrigger. The
jog-until-trigger function for a motor is specified by adding a”*{constant} specifier to the end of a
regular definite jog command for the motor, where {constant} isthe distance to be traveled relative to
the trigger position before stopping in encoder counts. 1t cannot be used with the indefinite jog
commands J+ and J-. To set the trigger for motor xx to occur when an obstruction such asa hard stop is
encountered, set 1xx97 to 3, specifying both following-error trigger and software capture.

Example:

#2J:5000"-100 ; Jog 5000 counts in the positive direction in the absence

; of a trigger, but if trigger is found, jog to -100 cts
; From trigger position.

Command and Send Statements

Using the COMMAND or CMD statement, online commands can be issued from a PLC or motion program
and have the same result asif they were issued from a host computer or aterminal window. Certain
online commands might not be valid when issued from a running program. For example, ajog command
to amotor part of a coordinate system running a motion program will be invalid. 16 should not be set to 2
in early development so that it will be known when PMAC has rejected such a command. Setting 16 to 2
in the actual application can prevent program hang-up from afull response queue or from disturbing the
normal host communications protocol.

Messages to a host computer connected through the PMAC port x could be issued using the SENDx command:

SENDS transmits the message to the main serial port.

SENDP transmits the message to the PC/104 parallel bus port.

SENDR transmits the message through the DPRAM ASCI| response buffer.
SENDA transmits the message to the Option 9T auxiliary serial port.

If there is no host on the port to which the message is sent, or the host is not ready to read the message,
the message isleft in the queue. If several messages back up in the queue, the program issuing the
messages will halt execution until the messages areread. Thisisacommon mistake when the SEND
command is used outside of an Edge-Triggered condition in a PLC program. On the serial port, it is
possible to send messages to a non-existent host by disabling the port handshaking with [1=1.

If aprogram, particularly a PLC program, sends messages immediately on power-up/reset, it can confuse
a host-computer program (such as the PMAC Executive Program) that is trying to find PMAC by
guerying it and looking for a particular response.

It ispossible, particularly in PLC programs, to order the sending of messages or command statements
faster than the port can handle them. Usually this happensif the same SEND or CMD command is
executed every scan through the PLC. For this reason, have at least one of the conditions that causes the
SEND or CMD command to execute set false immediately to prevent execution of this SEND or CMD
command on subsequent scans of the PLC.

Example:
IF (M7000=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
COMMAND"' #1J+"" ; jog motor
P11=1 ; set latch
ENDIF
ELSE
P11=0 ; reset latch
ENDIF

46 Software Setup

UMAC Quick Reference Guide

MOTION PROGRAMS

PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. Turbo
PMAC can run as many motion programs simultaneously as there are coordinate systems defined on the
card (up to 16). A motion program can call any other motion program as a subprogram, with or without
arguments.

PMAC’s motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It hasthe calculational and
logical constructs of a computer language and move specification constructs similar to machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Motion or PLCs programs are entered in any text file to be downloaded later to PMAC. Pewin32 Pro
provides a built-in text editor for this purpose. Once the code has been written, it can be downloaded to
PMAC using Pewin32 Pro. In addition, any PMAC command can be issued from any terminal window
communicating with PMAC. For example, online commands can jog motors, change variables, report
variables values, start and stop programs, query for status information, and even write short motion and
PLC programs. In fact, the downloading processis just a sequence of valid PMAC commands sent line
by line from a particular text file.

How PMAC Executes a Motion Program

A PMAC program exists to pass data to the trajectory generator routines that compute the series of
commanded positions for the motors every servo cycle. The motion program must be working ahead of the
actual commanded move to keep the trgjectory generators fed with data. PMAC processes program lines
either zero, one or two moves (including DWELLs and DELAYs) ahead. Calculating one move ahead is
necessary in order to be able to blend moves together. Calculating a second move ahead is necessary if
proper acceleration and velocity limiting isto be done, or athree-point splineisto be calculated (SPLINE
mode.)

Zero Moves Ahead Two Moves Ahead One Move Ahead
RAPID LINEAR with Isx13=0 LINEAR with Isx13>0
HOME SPLINE1 CIRCLE
DWELL PVT

“B1S’ (step through program 1)
Isx92=1 (blending disabled)

When aRUN command is given, and every time the actual execution of programmed moves progresses
into anew move, aflag is set saying it istime to do more calculations in the motion program for that
coordinate system. If thisflag isset, at the next RTI (real timeinterrupt), PMAC will start working
through the motion program processing each command encountered. This can include multiple modal
statements, calculation statements, and logical control statements. Program calculations will continue
(which means no background tasks will be executed) until one of the following conditions occurs:

1. Thenext move, Error! Bookmark not defined.a DWELL command or a PSETError! Bookmark not
defined. statement is found and cal cul ated.

2. End of, or halt to the program (e.g. STOP) is encountered.

3. Two jumps backward in the program (from ENDWHILE or GOTO) are performed.

4. A WAIT statement is encountered (usually in aWH I LE loop).

Motion Programs 47

UMAC Quick Reference Guide

If calculations stop on condition 1 or 2, the calculation flag is cleared and will not be set again until actual
motion progresses into the next move or anew RUN command is given. If calculations stop on conditions
3 or 4, the flag remains set, so calculations will resume at the next RTI. In these cases, there is an empty
(no-motion) loop and the motion program acts much like a PLCO during this period. This could resultin
an undesired starving condition for the background cycle. 1f PMAC cannot finish calculating the
trajectory for amove by the time execution of that move is supposed to begin, PMAC will abort the
program, showing arun-time error in its status word.

Coordinate Systems

A coordinate system in PMAC is agrouping of one or more motors for synchronizing movements. A
coordinate system (even with only one motor) can run amotion program; a motor cannot. Turbo PMAC can
have up to 16 coordinate systems, addressed as &1 to & 16, in avery flexible fashion (e.g. eight coordinate
systems of one motor each, one coordinate system of eight motors, four coordinate systems of two motors
each, etc.).

In general, certain motors should be moved in a coordinated fashion, put them in the same coordinate
system. To move the motors independent of each other, put them in separate coordinate systems.
Different coordinate systems can run separate programs at different times (including overlapping times),
or even run the same program at different (or overlapping) times.

A coordinate system must be established first by assigning axes to motors in Axis Definition Statements.
A coordinate system must have at least one motor assigned to an axis within that system, or it cannot run
amotion program, even non-motion parts of it. When a program is written for a coordinate system, and if
simultaneous motions are wanted of multiple motors, put their move commands on the same line and the
moves will be coordinated.

Axis Definitions

An axisis an element of a coordinate system. It issimilar to a motor, but not the samething. Anaxisis
referred to by letter. There can be up to nine axes in a coordinate system, selected from X, Y, Z, A, B, C,
U, V,and W. Anaxisisdefined by assigning it to amotor with a scaling factor and an optional offset (X,
Y, and Z may be defined as linear combinations of three motors, as may U, V, and W). The variables
associated with an axis are scaled floating-point values.

In the vast mgjority of cases, there will be a one-to-one correspondence between motors and axes. That
is, asingle motor is assigned to a single axisin a coordinate system. Even when thisis the case, however,
the matching motor and axis are not synonymous. The axisis scaled into engineering units and deals only
with commanded positions. Except for the PMATCH function, calculations go only from axis commanded
positions to motor commanded positions, not the other way around.

More than one motor may be assigned to the same axisin a coordinate system. Thisis common in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.
By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Commonly, thisis done with two motors but up to eight
motors have been used in this manner with PMAC. Remember that the motors still have independent
servo loops, and that the actual motor positions will not be the same necessarily.

An axisin acoordinate system can have no motors attached to it (a phantom axis). In thiscase,
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, one method to perform sinusoidal
profiles on asingle X-axisisto have a second, phantom Y -axis and program them together with a circular
interpolation move.

48 Motion Programs

UMAC Quick Reference Guide

Axis Definition Statements
A coordinate system is established by using axis definition statements. An axisis defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to the X-

axis of the currently addressed coordinate system. When an X-axis move is executed in this coordinate

system, motor #1 will make the move. The axis definition statement also defines the scaling of the axis

user units. For instance, #1->10000X also matches motor #1 to the X axis, but this statement sets

10,000 encoder counts to one X-axis user unit (e.g. inches or centimeters). Usually, this scaling featureis

used universally. Once the scaling has been defined in this statement, the user can program the axisin

engineering units without ever needing to deal with the scaling again.

Permitted AxisNames: X, Y, Z,U,V,W,A,B,C

X, Y, Z: Traditionally Main Linear Axes A, B, C: Traditionally Rotary Axes

e Matrix axis definition e A rotates about X, B about Y, C about Z
Matrix axis transformation e Position rollover (1xx27)

e Circular interpolation
L]

Cutter radius compensation U, V, W: Traditionally Secondary Linear Axes

e Maitrix Axis Definition
Writing a Motion Program

1. Open aprogram buffer with OPEN PROG {constant} where {constant} isan integer from 1 to
32767 representing the motion program to be opened.

2. Motion program numbers 1000 and above can contain G-codes, M-codes, T-codes and D-codes for
machine tool G-codes or RS-274 programming method. These buffers can be used for general
PMAC code programming as long as G-codes programming is not needed in PMAC.

3. PMAC can hold up to 224 motion programs at one time. For continuous execution of programs that
are larger than PMAC’ s memory space, a special PROGO (the rotary motion program buffers) allows
for the downloading of program lines during the execution of the program and for the overwriting of
already executed program lines.

4. The CLEAR command empties the currently opened motion program or rotary buffer.

5. Many of the statementsin PMAC motion programs are modal in nature. These include move modes,
which specify what type of trgjectory a move command will generate. This category includes
LINEAR, RAPID, CIRCLE, PVT, and SPLINE.

6. Moves can be specified incrementally (distance) or absolutely (location) — individually selectable by
axis—with the INC and ABS commands. Movetimes (TA, TS, and TM) and/or speeds (F) are
implemented in modal commands. Modal commands can precede the move commands they areto
affect, or they can be on the same line as the first of these move commands.

7. The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a
coordinated fashion on execution of the line; consecutive lines execute sequentially (with or without
stops in between, as determined by the mode). Depending on the modesin effect, the specified
values can mean destination, distance, and/or velocity.

8. If themovetimes (TA, TS, and TM) and/or speeds (F) are not declared specifically in the motion
program, the default parameters from the I-variables Isx87, 1sx88 and 1sx89 will be used instead.
Note:

Do not rely on these parameters and declare the move timesin the program. This
will keep the move parameters with the move commands, lessening the chances of
future errors and making debugging easier.

Motion Programs 49

UMAC Quick Reference Guide

0.

10.

In amotion program, PMAC hasWHILE loops and IF. . ELSE branches that control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either
constant or variable arguments. (The variable GOTO can perform the same function as a Case
statement.) GOSUB statements (constant or variable destination) allow subroutines to be executed
within aprogram. CALL statements permit other programs to be entered as subprograms. Entry to
the subprogram does not have to be at the beginning — the statement CALL 20.15000 causes entry
into Program 20 at line N15000. GOSUBs and CALLs can be nested only 15 deep.

The CLOSE statement closes the currently opened buffer. This should be used immediately after the
entry of amotion or rotary buffer. If the buffer isleft open, subsequent statements that are intended
as on-line commands (e.g. P1=0) will be entered into the buffer instead. It is good practice to have
CLOSE at the beginning and end of any file to be downloaded to PMAC. When PMAC receives a
CLOSE command, it appends aRETURN statement to the end of the open program buffer
automatically. If any program or PLC in PMAC is structured improperly (e.g. no ENDIF or
ENDWHILE to match an IF or WHILE), PMAC will report an ERROO3 at the CLOSE command for
any buffer until the problem is fixed.

Example:

close ; Close any buffer opened

delete gather ; Erase unwanted gathered data

undefine all ; Erase coordinate definitions in all coordinate
systems

#1->2000X ; Motor #1 is defined as axis X

OPEN PROG 1 CLEAR ; Open buffer to be written

LINEAR ; Linear interpolation

INC ; Incremental mode

TA100 ; Acceleration time is 100 msec

TSO ; No S-curve acceleration component

F50 ; Feedrate is 50 Units per 1sx90 msec

X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

Running a Motion Program

1

2.

Select the Coordinate System where the motion program will be running. Thisis done by issuing the
& command followed by the coordinate system number (i.e., &1 for the coordinate system 1).

Use the B{constant} command to select the program to be run, where the {constant}
represents the number of the motion program buffer. Use the B command to change motion programs
and after any motion program buffer has been opened. Thisis not used if running the same motion
program repeatedly without modification. When PMAC finishes executing a motion program, the
program counter for the coordinate system is set to point to the beginning of that program
automatically, ready to run it again.

Once pointing to the motion program to be run, issue the command to start execution of the program.
For continuous execution of the program, use the R command (<CTRL-R> for all coordinate systems
simultaneously). The program will execute all the way through unless stopped by command or error
condition.

To execute just one move, or asmall section of the program, use the S command (<CTRL-S> for all
coordinate systems simultaneously). The program will execute to the first move DWELL or DELAY,
or if it first encounters aBLOCKSTART command, it will execute to the BLOCKSTOP command.

Motion Programs

UMAC Quick Reference Guide

10.

11.

12.

When arun or step command isissued, PMAC checks the coordinate system to ensurethat itisin
proper working order. If it finds nothing in the coordinate system is set up properly, it will reject the
command, sending a<BELL> command back to the host. If I6issetto 1 or 3, it will report an error
number, as well telling the reason the command was rejected. PMAC will reject arun or step
command for any of the following reasons:

A motor in the coordinate system has both overtravel limitstripped (ERR010)

A motor in the coordinate system is executing a move currently (ERR011)

A motor in the coordinate system is not in closed-loop control (ERR012)

A motor in the coordinate system is not activated { Ixx00=0} (ERR013)

There are no motors assigned to the coordinate system (ERR014)

A fixed (non-rotary) motion program buffer is open (ERR015)

No mation program has been pointed to (ERR016)

After a/ or \ stop command, a motor in the coordinate system is not at the stop point (ERR017)

Before starting the program, issue a CTRL+A command to ensure that all the motors will be
potentially in closed loop and that all previous move commands are aborted. In addition, the
functionality of each motor can be checked individually with jog commands before running a
program. For example, #1J°2000 will try to move motor #1 2000 encoder counts, confirming if the
motor is ableto run in closed loop or not.

All motorsin the addressed coordinate system must be ready to run a motion program. Depending on
the settings of Ixx24, all PMAC motors may be disabled if only one motor is having problems
running in close loop.

No mation will occur if the feedrate override value for the current addressed coordinate systemis set
at zero. Check the feedrate override parameter by issuing &1% on the terminal window (replace 1 for
the appropriate coordinate system number). If it iszero or set too low, set it to an appropriate value.
The %100 command will set it to 100%.

For troubleshooting purposes, change the feedrate override to alower than 100% value. Before
running the program, type %10 to run it at a 10% rate of the programmed velocity, thus running it in
slow motion. Running the program slowly will allow observing the programmed path more clearly, it
will demand less calculation time from PMAC and it will prevent damages due to potentially wrong
acceleration and/or feedrate parameters.

A mation program running in Coordinate System 1 can be stopped at any time by sending &1A or, for
simplicity, the CTRL+A command will stop any running motor in PMAC.

If the motion of any axis becomes uncontrollable and must be stopped, a CTRL+K command can be
issued which will kill all the motorsin PMAC (disabling the amplifier enable line if connected).
However, the motor will come to a stop in an uncontrollable way and may continue moving dueto its
own inertia.

In addition, a motion program can be stopped by issuing aCTRL+Q command. The last programmed

moves in the buffer will be completed before the program quits execution. It can be resumed by
issuing an R command.

Motion Programs 51

UMAC Quick Reference Guide

Subroutines and Subprograms

It is possible to create subroutines and subprograms in PMAC motion programs to create well-structured
modular programs with re-usable subroutines. The GOSUBx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when aRETURN command is encountered. This creates a subroutine.

The CALLX command in a motion program causes ajump to PROG x, with ajump back to the command
immediately following the CALL when aRETURN command is encountered. If x isan integer, the jump
isto the beginning of PROG x; if thereisafractional component to x, the jump isto line label N
(y*100,000), wherey isthe fractional part of X. This structure permits the creation of special
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.

The PRELUDE command allows creating an automatic subprogram call before each move command or
other letter-number command in a motion program.

Passing Arguments to Subroutines

These subprogram calls are made more powerful by using the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program. The value after a B would be placed in Q102, and so on (Z
value goesin Q126). Letters N or O cannot be passed.

This structure is useful particularly for creating machine tool style programs, in which the syntax must
consist solely of letter-number combinations in the parts program. Since PMAC treatsthe G, M, T, and D
codes as specia subroutine calls, the READ statement can be used to let the subroutine access values on
the part-program line after the code.

In addition, the READ statement provides the capability of seeing what arguments have actually been
passed. The hits of Q100 for the coordinate system are used to note whether arguments have been passed
successfully; bit Ois 1if an A argument has been passed, bit 1is1if aB argument has been passed, and
so on, with bit 25 set to 1 if aZ argument has been passed. The corresponding bit for any argument not
passed in the latest subroutine or subprogram call is set to 0.

Example:
close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all coordinate
systems
#1->2000X ; Motor #1 is defined as axis X
OPEN PROG 1 CLEAR ; Open buffer to be written
LINEAR INC TA100 TSO F50 ;Mode and timing parameters
gosub 100 H10 ;Subroutine call passing parameter H with value 10
return ;End of the main program section (execution ends)
n100 ;Subroutine section. The First subroutine is
labeled 100
read(h) ;Read the H parameter value passed
IF (Q100 & $80 > 0) ;1T the H parameter has been passed ..
X(Q108) ; ..use the H parameter value contained in Q108
endif
return ;End of the subroutine labeled 100
close ;End of the motion program code

52 Motion Programs

UMAC Quick Reference Guide

G, M, T, and D-Codes (Machine Tool Style Programs)

PMAC permits the execution of machine tool style RS-274 (G-Code) programs by treating G, M, T, and
D-codes as subroutine calls. This permits the machine tool manufacturer to customize the codes for a
machine, but it requires the manufacturer to do the actual implementation of the subroutines that will
execute the desired actions.

When PMAC encounters the letter G with avalue in a motion program, it treats the command as a call to
motion program 10n0, where n isthe hundreds’ digit of the value. The value without the hundred’ s digit
(modulo 100 in mathematical terms) controls the line label within program 10n0 to which operation will
jump -- this value is multiplied by 1000 to specify the number of the line label. When areturn statement
is encountered, it will jump back to the calling program. For example, G17 will cause ajump to N17000
of PROG 1000; G117 will cause ajump to N17000 of PROG 1010; G973.1 will cause ajump to N73100
of PROG 1090.

M-Codes operate in the same way, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use
PROG 10n3.

Usually, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002, and 1003
arerequired to execute them. To extend code numbers past 100, PROGs 1010, 1011, etc. will be required
to execute them.

NC Products

The PMAC-NC software runs standard CNC parts program using a PMAC Motion controller. This
software performs two important functions. |t translates standard RS274 G-Codes programs into PMAC
code and feeds the trandated code into PMAC’s memory using a perfectly synchronized communications
scheme. Thetransfer of the program lines between the host computer and the PMAC motion controller is
performed using shared DPRAM memory and either USB, PC104 or Ethernet methods. In this fashion,
the size of the CNC parts program is limited only by the storage capacity in the host computer. Normally,
the PMAC NC software is used with Delta Tau's Advantage line of packaged CNC systems which
includes the operator control panel hardware for the machine operation.

Advantage 810 NC Control Console

"k" e N

usB

The Advantage 810U NC controller from Delta Tau consists of two main components, the UMAC and the
810 NC operator console. This hardware combination, along with the PMAC NC software, isan
excellent solution for five axes or greater, milling, turning and special purpose machines such as laser
cutting and water jet cutting. A standard USBII connection links the motion controller with the 810
operator’s control panel, resulting in afast and reliable connection.

The 810 console includes all of the standard operator controls such as rotary switches for axes selection,
user-definable buttons for customized 10 control, feedrate override, handwheel, spindle speed and mode
select. The open-architecture PC-based design runs any other Windows® compatible program, the writing
of NC parts programs, reading of programs locally or through an Ethernet network or even accessing the
Internet.

Motion Programs 53

UMAC Quick Reference Guide

Linear Blended Moves

The duration of amove, or move time, is set directly by TM or indirectly from the distances and feedrate
F parameters.

TM100 or FRAX(X,Y)

X3 Y4 1y 5190-4/32 4+ 42 5000

X3 Y4 F50 50 50

100 msec

e The acceleration time and shapeis programmed with the TA and TS parameters. TA determines the
overall acceleration time, which is the total time required for any change in velocity. TS determines
the portion of the overall acceleration ramp that is performed in S curve mode.

o |f the TA programmed results are less than twice the programmed TS, the 2* TS will be used instead.

o |f the movetime calculated aboveislessthan the TA time set, the TA time will be used instead. In
this case, the programmed TA (or 2* TS if TA<2*TS) will result in the minimum move time of a
linearly interpolated move.

e Theacceleration time TA of ablended move cannot be longer than two times the previous TM minus
the previous TA, otherwise the value 2* (TM- %2 TA) will be used as the current TA instead.

e When Isx13=0, safety variables Ixx16 and Ixx17 will override these parameters if they are found to
violate the programmed limits.

If TM < TA, TM = TA
If TA < 2*TS, TA = 2*TS
If TAi > 25(TMi- % TA;), TAi = 2%(TM; - % TA)

Example:

v

I —>
B TA ™ Y2 TA

Toillustrate how PMAC blends linear moves, a series of velocity Vstime profileswill be shown. The
moves are defined with zero S-curve components. The concepts described here can be applied when
using non-zero S-curve linear moves.
1. Consider the following motion program code:

close

delete gather
undefine all

&1
#1->2000x
OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; The acceleration time is 100 msec, TA;
TSO ; No S-curve component
TM250 ; Move time is 250 msec, TM;
X10 ; Move distance is 10 units, 20000 counts
TA250 ; Acceleration \ deceleration of the blended move is
; 250 msec, TA,
X40 ; Move distance is 40 units, 80000 counts
CLOSE

54 Motion Programs

UMAC Quick Reference Guide

2. Thetwo move commands are plotted without blending, placing aDWELLO command in between the
two moves:

Tuss misrawe, mo bareding
250000

S LU LU
-]
Md0od
1 530H0
100
SO0

1] J —

0000

o 31 0.z LR oA LK oy Dna (]

.5
Timi (0]
3. Thetwo moves are now plotted with the blending mode activated. To find out the blending point,

trace straight lines through the middle point of each acceleration lines of both velocity profiles:

Tows Bibirvlnd v sici

D]

hE]

T

5000 I_ .

A0

od A Dz I (LK] bS5 oA [T bE

Tirtsa 3£)

Linear Interpolated Moves Characteristics
L TA TA
1. Thetotal movetimeisgiven by 71+TM1+TM2 +72=50+ 250+ 250+ 125 =675 msec

2. Theacceleration of the second blended move and be extended only up to acertain limit, 2* (TM- %2
TA).

When not using a special |ookahead buffer, PMAC looks two moves ahead of actual move execution to

perform its acceleration limit and can recal cul ate these two moves to keep the accelerations under the

Ixx17 limit. However, there are cases where more than two moves, some much more than two, would

have to be recalculated in order to keep the accel erations under the limit.

Motion Programs 55

UMAC Quick Reference Guide

In these cases, PMAC will limit the accelerations as much asiit can, but because the earlier moves have
already been executed, they cannot be undone, and therefore the acceleration limit will be exceeded.

Toss ebirvlind] v sici
T2

000

g 31 03 1] L ' E] 0a as bi
Tima: [z)

3. When performing a blended move that involves a change of direction, the programmed end point
may not be reached.

Example:

TA100

TM250

X10 ; This would reach only to position = 10—M=
4.250

X-10

Bzt s Fod s

Equal to : TA(end position]
4. T

SO0
0000
0000
=000
20000

o
20000

A0

0
E00

0000

L [k] 02 [:h] D L1 5 08 [y
Tima (nac)

In order to reach the desired position, since the motor will stop when changing direction anyway,
place aDWELLO command between moves. This command will disable blending for that particular
move:
TA100
TM250
X10
DWELLO ;Temporarily disables blending between the two moves
X-10

4. Sincethevalue of TA determinesthe minimum time in which a programmed move can be executed,
potentially it can limit the maximum velocity of motion and therefore the programmed feedrate might
not be reached. Thisisthe case for triangular (not trapezoidal) velocity profile moves types which
can happen when a sequence of short distance moves is programmed.

56 Motion Programs

UMAC Quick Reference Guide

Example:

close

delete gather
undefine all

&1
#1->2000X
15190=1000
OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec, TA;
TSO ; No S-curve component
F40 ; Feedrate is 40 length_units / second
_3.15190 _ 3000 _
X3 ;TM——jﬁ——jth&mﬁ
CLOSE
5. Sincetheresulting TM for the given feedrate is 75 msec and the programmed TA for this moveis
100 msec, the TM used will bel00 msec instead. Thisyields the following feedrate value instead of
the programmed one:
F_&Bmo_mm_aﬁmmmmamw
100 100 second
Wl ;
i e P reseg rarrarmiadl
R " ferescirabe
oy - | i
I -
- T A mimum
; Teedraie reached
.M - -
- Towmtirecd -
6. To beableto reach the desired velocity, alonger move could be performed split into two sections.

The first move will be executed using a suitable TA to get the motor to move from rest. The second
move will have alower acceleration time TA in order to decrease the move time TM and so reach the

programmed feedrate.

OPEN PROG 1
CLEAR

LINEAR
INC
TSO
F40
TA100
X3
TA75
X3
CLOSE

Programmeed
feedrale reached

F-GBEEBRERE

ik N
Theafex]

iy i1 [

Motion Programs

57

UMAC Quick Reference Guide

In this case, the TA parameter must be changed at the beginning and end in a series of interpolated
moves. Thisis necessary particularly for profiles with sharp corners when more than one axis are linearly
interpolated. The special lookahead buffer is an excellent solution in those cases. The lookahead feature
will determine the necessary acceleration value to use in each case, maintaining the acceleration
constrains limits under control. This feature allows reaching the maximum velocity along the path when
possible, and reaching maximum allowed acceleration when required. This drastically increases the
throughput in the machine.

Circular Interpolation

PMAC alowscircular interpolation on the X, Y, and Z-axis in a coordinate system. Aswith linear
blended moves, TA and TS control the accel eration to and from a stop and between moves. Circular
blended moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. Itis
possible to change back and forth between linear and circular moves without stopping. The LINEAR
command is used when linear interpolation is needed, and CIRCLE1 or CIRCLEZ2 is used for circular
interpolation.

1]
i 4 »
o - i 1
o |] | o]
F 1

(TR | = 4 x

1. PMAC performs arc moves by segmenting the arc and performing the best cubic fit on each segment.
I-Variable Isx13 determines the time for each segment. 1sx13 must be set greater than zero to put
PMAC into this segmentation mode so that for arc moves can be done. If 1sx13 is set to zero, circular
arc moves will be donein linear fashion.

Thetypical range of 1sx13 for the circular interpolation mode isfrom 5 to 10 msec. A value of 10
msec is recommended for most applications, alower than 10 msec 1sx13 value will improve the
accuracy of the interpolation (calculating points of the curve more often) but will also consume more
of PMAC' stotal computational power.

2. When PMAC is segmenting moves automatically (Isx13 > 0), which isrequired for circular
interpolation, the Ixx17 accelerations limits and the Ixx16 velocity limits are not observed unless a
special lookahead buffer is defined.

3. Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if
they were not specified in an FRAX command. Other axes may or may not be feedrate axes. Any
non-feedrate axes commanded to move in the same move command will be linearly interpolated to
finish in the sametime. This permits easy helical interpolation.

4. Theplanefor the circular arc must be defined by the NORMAL command (the default — NORMAL K-
1 —definesthe XY plane). Thiscommand can define planesin XY Z space only which means that

the X, Y, and Z-axes can be used only for circular interpolation. Other axes specified in the same
move command will be interpolated linearly to finish in the same time. The most commonly used

planes are:

NORMAL K-1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL 1-1 ; YZ plane -- equivalent to G19

58 Motion Programs

UMAC Quick Reference Guide

5. To put the program in circular mode, use the CIRCLE1 program command for clockwise arcs (G02
equivalent) or CIRCLEZ for counterclockwise arcs (GO3 equivalent). L INEAR will restore PMAC
to linear blended moves. Oncein circular mode, a circular move is specified with a move command
designating the move endpoint and either the vector to the arc center or the distance (radius) to the
center. The endpoint may be specified either as a position or as a distance from the starting point,
depending on whether the axes are in absolute (ABS) or incremental (1NC) mode (individually
specifiable).

X{Data} Y{Data} R{Data} ;Radius of the circle is given
X{Data} Y{Data} I{Data} J{Data} ;Center coordinates of the circle are given

6. If the vector method of locating the arc center is used, the vector is specified by its |, J, and K
components (I specifies the component parallel to the X axis, Jtothe Y axis, and K to the Z axis).
This vector can be specified as a distance from the starting point (i.e. incrementally), or from the
XYZ origin (i.e. absolutely). The choice is made by specifying R in an ABS or INC statement (e.g.
ABS(R) or INC(R). Thisaffectsl, J, and K specifierstogether. (ABS and INC without arguments
affect all axes, but leave the vectors unchanged.) The default isfor incremental vector specification.

7. PMAC's convention isto take the short arc path if the R value is positive, and the long arc path if R
is negative:

e If thevalue of R ispositive, the arc to the move endpoint is the short route (<=180 degrees)
o |f thevalue of R is negative, the arc to the move endpoint is the long route (>=180 degrees)

Siarting point 1000]

8. When performing a circular interpolation, the individual axes describe a position Vstime profile
closeto asine and cosine shape. Thisistrue for their velocity and accel eration profiles al so.
Therefore, circular interpolation makes an ideal feature to described trigonometric profiles.

Furthermore, the period (and so the frequency) of the sine or cosine profiles are set by the total move
time given by TA+TM.

Motion Programs 59

UMAC Quick Reference Guide

Cirzular Interpolation

oo o0z 04

I leZCmdDm-(d.s! I

Example:
15113=10
NORMAL K-1
INC

INC (R)

CIRCLE 1

X20 YO 110 JO

s 1o 1.2
Time (zec])

;XY plane

; Incremental
;definition
;Incremental Center
;Vector definition
;Clockwise circle

;Arc move

Splined Moves

I WLr 2 md Yal I

;Move Segmentation Time

End Point

close

delete gather

undefine all

&l
#2->2000Y

;X 1s phantom

open progl clear

inc

inc (r)
ta300
tsO
tm1000
i13=10

normal k-1
circlel
x0 y0 110
close

blr

;TA+TM is period

;X-Y plane
;Clockwise

;Complete circle

;Run this program

Camnler 1,0}

Turbo PMAC can perform two types of cubic splines (cubic in terms of the position-vs.-time eguations) to
blend a series of points on an axis. 1ts SPLINE1 mode is a uniform non-rational cubic B-spline and its
SPLINEZ2 mode is anon-uniform non-rational cubic B-spline. Of course, it can perform either spline for
al of the axes simultaneously. Splining is particularly suited to odd (non-Cartesian) geometries, such as
radial tables and rotary-axis robots, where there are odd axis profile shapes even for regular tip movements.

In SPLINE1 mode, along moveis split into equal-time segments, each of TM or TA time (depending on
the setting of global variable 142). Each axisisgiven a destination position in the motion program for
each segment with a regular move command line like X1000Y 2000. Looking at the move command
before this and the move command after this, Turbo PMAC creates a cubic position-vs.-time curve for
each axis so that there is no sudden change of either velocity or acceleration at the segment boundaries.
The commanded position at the segment boundary may be relaxed dightly to meet the velocity and

accel eration constraints.

Turbo PMAC’'s SPLINE2 modeis similar to the SPLINE1 mode, except that the requirement that the
TA spline segment time remain constant is removed. The removal of this constraint makes the SPLINE2
mode a non-uniform, non-rational cubic B-spline, whereas the SPLINE1 mode is a uniform, non-rational
cubic B-spline.

Motion Programs

Y

UMAC Quick Reference Guide

PVT-Mode Moves

To have more direct control over the trgjectory profile, Turbo PMAC offers Position-Velocity-Time
(PVT) mode moves. In these moves, the axis states are specified directly at the transitions between
moves (unlike in blended moves). This requires more calculation by the host, but allows tighter control
of the profile shape. For each piece of amove, the end position or distance, the end velocity, and the
piece time are specified.

Turbo PMAC is put in this mode with the program statement PVT{data}, where {data} isafloating-
point constant, variable, or expression, representing the piece timein milliseconds. The move time may
be changed between moves, either with another PVT{data} statement, with a TM{data} statement if
142 =0, or aTA{data} statement if 142 = 1. The program is taken out of this mode with another move
mode statement (e.g., LINEAR, RAPID, CIRCLE, SPLINE).

A PVT mode move is specified for each axisto be moved with a statement of the form
{axis}{data}:{data}, where {axis} isaletter specifying the axis, thefirst {data} isavalue
specifying the end position or the piece distance, depending on whether the axisis in absolute or
incremental mode, respectively, and the second {data} is avalue representing the ending velocity.

The units for position or distance are the user length or angle units for the axis, as set in the Axis
Definition statement. The units for velocity are defined as length units divided by time units, where the
length units are the same as those for position or distance, and the time units are defined by variable sx90
for the coordinate system (feedrate time units). The velocity specified for an axisis asigned quantity.

From the specified parameters for the move piece, and the beginning position and velocity (from the end
of the previous piece), Turbo PMAC computes only the third-order position trajectory path to meet the
constraints. Thisresultsin linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.

Since anon-zero end velocity for the move can be specified (directly or indirectly), it is not agood ideato
step through a program of transition-point moves, and great care must be exercised in downloading these
movesin real time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series
of PVT moves, the last of which has a zero end velocity, it is possible to use a STEP command to execute
only part of a program.

The PVT modeisthe most useful for creating arbitrary trajectory profiles. It provides a building block
approach to putting together parabolic velocity segmentsto create whatever overall profileis desired.

The following diagrams show common velocity segment profiles. PV T mode can create any profile that
any other move mode can.

Mode changer |-——— —= Time tin msec Il
W
Axis Letter PVT30 v
pa Mt
Distance P in O| end velocity V in 15480
user units, | user_units per
calculated from [15190 msec >

t Tirme

Motion Programs 61

UMAC Quick Reference Guide

A A A
wel wel val
W W W
F-3 Ts.:gn
Pa et B 2001
PRI 315180
- - o=
Time t Timea t Time
[- | A
wnl F.--____,- " Il v L 5 i T by
y ;__, F.--f' DREET F#__ 4 E.ISH0 LT O —— _ p—
Wi JIII. Wi I e 3 ---'\.' + W]-
................ | ;) L Vi ;
/| = l\ P'_E.mm . B !'I‘:I'\-I
P 615130
i Timia 1 | Thimia Tima
Replace 15190 for the appropriate | sx90 variable'accor ding to coor dinate system sx - 50.
Example:
close delete gather undefine all P W
&1 #1->2000X o
OPEN PROG 1 CLEAR Ipomaa
INC Bl
PVT300 ;Time 1s 300 msec per section i
50user_units 300msec 15000 L LU
P = . = = Suser_units
X5-50 15190 msec 3 3000 oLl
i Tl
50user_units 300msec 15000)
P = . = = 5user_units ELLLY - — "
X5:0 15190 msec 3 3000 [LF1] LB [LE] L] |l.|.:|':+c 1.2 d 1 |]
CLOSE

Turbo PMAC Lookahead Function

Turbo PMAC can perform highly sophisticated lookahead cal culations on programmed trajectories to
ensure that the trgjectories do not violate specified maximum quantities for the axes involved in the
moves. When the lookahead function is enabled, Turbo PMAC will scan ahead in the programmed
trajectories, looking for potential violations of its position, velocity, and acceleration limits. If it seesa
violation, it will then work backward through the pre-computed buffered trajectories, slowing down the
parts of these trgjectories necessary to keep the moves within limits. Any application requiring quick
reaction to external conditions should not use lookahead. In addition, any application requiring precise
synchronization to external motion, such as those using PMAC’ s external time-base feature should not

use lookahead.

The following list explains the steps required for setting up and using the lookahead function on the

Turbo PMAC.

1. Assign al desired motors to the coordinate system with axis definition statements.

2. Set Ixx13 and Ixx14 positive and negative position limits, plus Ixx41 desired position-limit band, in
counts for each motor in coordinate system. Set bit 15 of Ixx24 to 1 to enable desired position limits.

3. Set Ixx16 maximum velocity in counts/msec for each motor in coordinate system.

62

Motion Programs

UMAC Quick Reference Guide

10.

11.

12.

13.

14.

15.

Set
Set

Ixx17 maximum acceleration in counts/msec? for each motor in coordinate system.
Isx13 segmentation time in msec for the coordinate system to minimum programmed move block

time or 10 msec, whichever isless.

Compute maximum stopping time for each motor as Ixx16/Ixx17.

Select motor with longest stopping time.

Compute number of segments needed to look ahead as this stopping time divided by (2 * 1sx13):

Ixx16
2-1sx13- Ixx17

Multiply the segments needed by 4/3 (round up if necessary) and set the 1sx20 lookahead length
parameter to this value:

4. |xx16
st20:(—‘

6 - Isx13- Ixx17

If the application involves high block rates, set the Isx87 default acceleration time to the minimum
block time in msec; the 1sx88 default S-curve timeto 0.

If the application does not involve high block rates, set the 1sx87 default acceleration time and the
Isx88 default S-curve time parameters to values that give the desired blending corner size and shape
at the programmed speeds.

Store these parameters to non-volatile memory with the SAVE command for them to be an automatic
part of the machine state.

After each power-up/reset, send the card a DEF INE LOOKAHEAD {# of segments}, {# of
outputs} command for the coordinate system, where {# of segments } isequal to 1sx20 plus

any

segments for which backup capability is desired, and {# of outputs} isat least equal to the

number of synchronous M-V ariable assignments that may need to be buffered over the lookahead
length.

L oad the motion program into the Turbo PMAC. Nothing special needs to be done to the maotion
program. The mation program defines the path to be followed; the lookahead algorithm may reduce

the

speed along the path, but it will not change the path.

Run the motion program, and let the lookahead algorithm do itswork. The following commands will

app

ly:

Set Isx21 to 4 or issue \ for a quick-stop command. This decelerates all motors at the maximum
allowed rate.

Set 1sx21 to 7 or issue < for a back-up command. This moves the motors up to the oldest point in the
buffer.

Set Isx21 to 6 or issue > for aresume-forward command. This resumes execution from the lookahead
buffer.

Issue / to quit program at the end of the block being added in the buffer. Thisis ablock-stop
command.

Issue Q to quit program execution at the end of the last calculated block.

Issue H to bring the feedrate override to zero at an 1sx95 rate. This holds program execution.

Issue A to immediately abort program execution and decel erate each motor at the Ixx15 rate.

IssueR (run) or S (step) to resume program execution.

Motion Programs 63

UMAC Quick Reference Guide

Turbo PMAC Kinematic Calculations

Turbo PMAC provides structures to enable easy implementation and execution of complex kinematic
calculations. Kinematic calculations are required when there is a non-linear mathematical relationship
between the tool-tip coordinates and the matching positions of the actuators (joints) of the mechanism,
typical in non-Cartesian geometries. Most commonly, they are used in robotic applications, but can be
used with other types of actuators that are not considered robotic. For example, in 4-axis or 5-axis
machine tools with one or two rotary axes, they should be programmed so that the cutter-tip path will let
the controller compute the necessary motor positions.

The forward-kinematic cal culations use the joint (motor) positions as input, and convert them to tool-tip
coordinates. The inverse-kinematic calculations use the tool-tip positions as input, and convert them to
joint (motor) coordinates. Turbo PMAC implements the execution of kinematic cal culations through
special forward-kinematic and inverse-kinematic program buffers. Each coordinate system can have one
of each of these program buffers, and the algorithms in them can be executed at the required times
automatically called as subroutines from the motion program.

1. Theon-lineOPEN FORWARD command opens the forward-kinematic buffer for the addressed
coordinate system for entry. The on-line CLEAR command erases any existing contents of that
buffer. The forward-kinematic equations defined are placed in this buffer. The on-line CLOSE
command stops entry into the buffer.

2. Before any execution of the forward-kinematic program, Turbo PMAC will place the present
commanded motor positions for each motor xx in the coordinate system into global variable Pxx.
These are floating-point values with units of counts. The program can then use these variables as the
inputs to the calculations.

3. Theresults of the forward-kinematic equations in the program are placed in variables Q1 to Q9 for
the axisletters A, B C, U, V, W, X, Y and Z respectively. Then, after any execution of the forward-
kinematic program, Turbo PMAC will take the valuesin Q1 — Q9 for the coordinate system in the
engineering units, and copy these into the 9-axis target position registers for the coordinate system.
These values can be monitored through the suggested M-V ariables Msx41 to Msx49 for Q1 to Q9
respectively. The basic purpose of the forward-kinematic program then is to take the joint-position
values found in P1 — P32 for the motors used in the coordinate system, compute the matching tip-
coordinate values, and place them in variables in the Q1 — Q9 range.

4. Theon-line OPEN INVERSE command opens the inverse-kinematic buffer for the addressed
coordinate system for entry. The on-line CLEAR command erases any existing contents of that
buffer. The inverse-kinematic equations defined are placed in this buffer. The on-line CLOSE
command stops entry into the buffer.

5. Before any execution of the inverse-kinematic program, Turbo PMAC will place the present axis
target positions for each axis in the coordinate system into variables in the range Q1 — Q9 for the
coordinate system. These are floating-point values, in engineering units. The program can then use
these variables as the inputs to the calculations.

6. Theresults of the inverse-kinematic equations in the program are placed in variables Pxx for the
corresponding motor xx in the coordinate system. After any execution of the inverse-kinematic
program, Turbo PMAC will read the values in those variables Pxx that correspond to motors xx in the
coordinate system with axis-definition statements of #xx->1. These are floating-point values, and
Turbo PMAC expectsto find them in the raw units of counts. Turbo PMAC will copy these values
automatically into the target position registers for these motors (suggested M-V ariable Mxx63),
where they are used for fine interpolation. The basic purpose of the inverse-kinematic program then
isto take the tip-position values found in Q1 — Q9 for the axes used in the coordinate system,
compute the matching joint-coordinate values, and place them in variables in the P1 — P32 range.

64 Motion Programs

UMAC Quick Reference Guide

7. Inaddition, the Turbo PMAC can support the conversion of velocities from tip space to joint spacein
the inverse-kinematic program to enable the use of PVT mode with kinematic calculations. With
PV T-mode moves, the position cal cul ations are completed the same as any other move mode. An
additional set of velocity-conversion calculations must be done also. The commanded velocity
values will be placed in variables Q11 to Q19 for the corresponding axisletters A, B C, U, V, W, X,
Y and Z respectively. Turbo PMAC will set Q10 to 1 in thismode as a flag to the inverse-kinematic
program to use these axis (tip) velocity values to compute motor (joint) velocity values.

8. Once the forward-kinematic and inverse-kinematic program buffers have been created for a
coordinate system, Turbo PMAC will execute them automatically at the proper times, once the
kinematic cal culations have been enabled by setting coordinate system |-Variable Isx50to 1. No
modification to a motion program is required for access to the kinematic programs at the proper time.

9. If the specia lookahead buffer for the coordinate system is active (L INEAR or CIRCLE-mode moves
with the lookahead buffer defined for the coordinate system, 1sx13 > 0, and Isx20 > 0), the internal
spline segments computed for the joints (motors) are entered into the lookahead buffer automatically.
Here they are checked continually against position, velocity, and acceleration limits for each motor.
This permits Turbo PMAC to check and correct for the motion anomalies that occur near singularities
automatically.

Other Programming Features

Rotary Motion Program Buffers
PMAC has alimited memory space for motion and PLCs programs. The rotary motion program buffers
allow running motion programs larger than the available spacein PMAC’s memory.

Motion Program

in a Text File PMAC's Memory

|'_ . -.Ii.]

!)
1.: If
"'. e, : --ll-

Cow '."-_-_,____ I A
Paortion of the _g;.&w____ ===

program Host reads the file . /4 Code is sent 1o I L } Rotary buffer
4' from the hard drive PMAC's buifer

Communication routines provided by Delta Tau have the necessary code to implement this featurein a
host computer.

Internal Timebase, the Feedrate Override

Each coordinate system has its own time base that controls the speed of interpolated moves in that
coordinate system.

If Isx93 is set at default, this parameter could be changed by different means:

%n,where0 <n <100 - pnpine or CMD command that runs all motion commands in

; slow-motion

%n,wherel00 <n <225 - onpine or CMD command that runs all motion commands in
; Ffast-motion

o %0 ; Online or CMD command that “freezes” all motions and
; timing in that C.S
o %100 ; Online or CMD command that restores the real-time
; reference (1 msec = 1 msec)
e M197 = 110 ; Suggested M-variable for time base change. Equal to 110

; Is 100%, equal to O is 0O%.

Motion Programs 65

UMAC Quick Reference Guide

2
The variable 1sx94 controls the rate at which the time base changes. 1sx94 = % , Wheret istheslew

rate timein msec.

External Time-Base Control (Electronic Cams)

The motion of each coordinate system can be referenced to an external clock in the form of a frequency
generated by an external encoder. At each servo cycle, the time reference used for the servo algorithmsis
adjusted by this external frequency source, thus controlling the rate of execution of moves and programs.
The encoder register receiving the input frequency and the relationship between the input frequency and the
program rate of execution must be specified. This not only varies the speed of movesin proportion to the
input frequency (all the way down to zero frequency), but also keeps total position synchronization. A
simple change of variable Isx93 allows switching between the internal and external time-base reference.

Example:
Material passing through a conveyor belt is processed on the fly with external time-base synchronization.

«__ Motor controlled by
Tool @ PMAC in time-base
T

| | !

Motor not under Conveyor Encoder used

PMAC control Belt for master
frequency

Position Following (Electronic Gearing)

PMAC has several methods of coordinating the axes under its control to axes not under its control. The
simplest method is basic position following. Thisisamotor-by-motor function, not a coordinate system
function like time-base following. An encoder signal from the master axis (which is not under PMAC’s
control) isfed into one of PMAC’ s encoder inputs. Typicaly, this master signal isfrom either an open-
loop drive or a handwheel knob. 1xx05 and Ixx06 control this function.

Cutter Radius Compensation

PMAC provides the capahility of performing cutter (tool) radius compensation on the moves it performs.
This compensation can be performed among the X, Y, and Z axes, which should be physically
perpendicular to each other. The compensation offsets the described path of motion perpendicular to the
path by a programmed amount. Cutter radius compensation isvalid only in LINEAR and CIRCLE move
modes. The moves must be specified by F (feedrate), not TM (movetime). PMAC must bein move
segmentation mode (I1sx13 > 0) to do this compensation. (Isx13 > 0 isrequired for CIRCLE mode
anyway). Program commands CCO, CC1, CC2, CCR and NORMAL control this feature.

Synchronizing PMAC to other PMACs

When multiple PMACs are used together, intercard synchronization is maintained by passing the servo
clock signal from the first card to the others. With careful writing of programs, this permits complete
coordination of axes on different cards.

66 Motion Programs

UMAC Quick Reference Guide

Axis Transformation Matrices

PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z-axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements can be fixed for a particular application. The matrix transformations permit
translation, rotation, scaling, mirroring, and skewing of the X, Y, and Z-axes. They can be useful for
English/metric conversion, floating origins, making duplicate mirror images, repeating operations with
angle offsets, and more. The matrices are implemented through Q-Variables and the DEFINE TBUF,
TSEL, TINIT, ADIS, IDIS, AROT and IROT commands.

Position-Capture and Position-Compare Functions

The position-capture function latches the current encoder position at the time of an external event into a
special register. It isexecuted totally in hardware, without the need for software intervention (although it
isset up, and later serviced, in software). This means that the only delays in the capture are the hardware
gate delays (negligible in any mechanical system), so this provides an incredibly accurate capture
function. The move-until-trigger functions (either jog or motion program) conveniently use the position
capture feature for continuous motions until atrigger condition is reached.

Essentially, the position-compare feature is the opposite of the position-capture function. Instead of
storing the position of the counter when an external signal changes, it changes an external signal when the
counter reaches a certain position.

Learning a Motion Program

It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. In this
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points. The motors can be open loop or closed loop as they are moved
around.

Motion Programs 67

UMAC Quick Reference Guide

Motion Programs

UMAC Quick Reference Guide

PLC PROGRAMS

Motion programs operate sequentially and synchronously in time, and any move command takes a
specified amount to execute before succeeding program lines are executed:

Example:

OPEN PROG 1 CLEAR ; Open program buffer

15113=0 ; Two moves ahead of calculation

LINEAR INC TA100 TSO F50 ; Mode commands

X1 ; First Move Command

X1 ; Second Move Command

X1 ; Third Move Command

M1=1 ; This line will be executed only after the
; First move is completed

CLOSE ; Close written buffer, program one

In addition to the motion programs, Turbo PMAC has 64 PLC programs that operate asynchronously and
with rapid repetition (32 compiled PLC programs as well as 32 interpreted [uncompiled] PLC programs.)
They are called PLC programs because they perform many of the same functions as hardware
programmable logic controllers. PLC programs have most of the same logical constructs as the motion
programs, but no move-type statements.

PL C programs are useful particularly for monitoring analog and digital inputs, setting outputs, sending
messages, monitoring motion parameters, issuing commands as if from a host, changing gains, and
starting and stopping moves. By their complete accessto Turbo PMAC variables and 10, and their
asynchronous nature, they become powerful adjuncts to the motion control programs.

PL C programs are numbered 0 through 31 for both the compiled and uncompiled PLCs. This means that
both a compiled PLC n and an uncompiled PLC n can be stored in Turbo PMAC. PLC programOisa
special, fast program that operates at the end of the servo-interrupt cycle with a frequency specified by
variable 18 (every 18+1 servo cycles). This program is meant for afew time-critical tasks and it should be
kept small because its rapid repetition can steal time from other tasks.

PL C programs 1-31 are executed in the background cycle. Each PLC program executes one scan (to the
end or to an ENDWH I LE statement) uninterrupted by any other background task (although it can be
interrupted by higher priority tasks). In between each PLC program, PMAC will do its general
housekeeping and respond to a host command, if any. In between each scan of each individual background
interpreted PLC program, PMAC will execute one scan of all active background compiled PLCs. This
means that the background compiled PL Cs execute at a higher scan rate than the background interpreted
PLCs. For example, if there are seven active background interpreted PL Cs, each background compiled
PL C will execute seven scans for each scan of a background interpreted PLC. At power-on/reset PLCC
programs run after the first PLC program runs. These are the suggested uses of the PLC buffers:

e PLCO\PLCCO: PLCOisaspecid fast program that operates at the end of the servo interrupt cycle
with afrequency specified by variable 18 (every 18+1 servo cycles). This program is meant for afew
time-critical tasks and it should be kept small because its rapid repetition can steal time from other
tasks. A PLC Othat istoo large can cause unpredictable behavior and can eventrip PMAC's
Watchdog Timer by starving background tasks of time to execute. For faster execution, define
PLCCO instead.

e PLC1: Thisisthefirst codethat PMAC will run on power-up, assuming that |5 was saved with a
value of 2 or 3. This makes PLC1 the appropriate PLC to initialize parameters, perform commutated
motors phase search and run motion programs. In addition, PLC1could disable itself and the end of
execution or disable other PLCs before they start running.

PLC Programs 69

UMAC Quick Reference Guide

e PLC2-31: PLC programs are useful particularly for monitoring analog and digital inputs, setting
outputs, sending messages, monitoring motion parameters, i ssuing online commands, changing servo
gains, and starting and stopping moves. Because of their complete accessto all PMAC variables and
10 and their asynchronous nature, they become powerful adjuncts to the motion control programs.

e PLCC1ltoPLCC31: Compiled PLCs are convenient for their faster execution compared to regular
PLCs. Sincethe execution rate of compiled PLCs is the same as some of the safety checks (following
error limits, hardware overtravel limits, software overtravel limits, and amplifier faults), PLCCs are
ideal for replacing or complementing them. However, due to their limited allocated memory space,
PL CCs should be reserved for faster execution critical tasks only.

Entering a PLC Program

PL Cs are programmed in atext editor and downloaded to PMAC with the Pewin32-Pro software.

Before writing the PLC, make sure that memory has not been tied up in data gathering or program trace
buffers by issuing DELETE GATHER and DELETE TRACE commands.

1. Open the buffer for entry with the OPEN PLC n statement, where n is the buffer number. Next, if
thereis anything currently in the buffer that should not be kept, it should be emptied with the CLEAR
statement. (PLC buffers may not be edited on the PMAC itself; they must be cleared and re-entered.)
If the buffer is not cleared, new statements will be added onto the end of the buffer.

2. When finished, close the buffer with the CLOSE command. Opening a PLC program buffer disables
that program automatically. Afteritisclosed, it remainsdisabled, but it can be re-enabled again with
the ENABLE PLC n command, where n is the buffer number from 0 to 31. In addition, 15 must be set
properly for a PLC program to operate.

3. Attheclosing, PMAC checksto make sure al IF branches and WHILE loops have been terminated
properly. If not, it reports an error, and the buffer isinoperable. Then correct the PLC program in the
host and re-enter it (clearing the erroneous block in the process). This processis repeated for all of
the PLC buffersto be used.

Because all PLC programsin PMAC’s memory are enabled at power-on/reset, 15 should be saved as 0 in
PMAC’'s memory when developing PLC programs. Thiswill allow PMAC to be reset and have no PLCs
running (an enabled PLC runsonly if I5 is set properly) and recover more easily fromaPLC
programming error.

Structure Example:

CLOSE

DELETE GATHER

DELETE TRACE

OPEN PLC n CLEAR

{PLC statements}

CLOSE

ENABLE PLC n

To erase an uncompiled PLC program, open the buffer, clear the contents, and then close the buffer again.
Example: OPEN PLC 5 CLEAR CLOSE

70 PLC Programs

UMAC Quick Reference Guide

PLC Program Structure

When writing a PLC program, it is important to remember that each PLC program is effectively in an
infinite loop; it will execute repeatedly until told to stop. (These are called PL Cs because of the similarity
in how they operate to hardware Programmable L ogic Controllers — the repeated scanning through a
sequence of operations and potential operations.)

Calculation Statements

Much of the action taken by a PLC is done through variabl e value assignment statements:

{variable}={expression}. Thevariablescanbel, P, Q, or M types, and the action thus taken

can affect many things inside and outside the card. Perhaps the simplest PLC program consists of one

line: P1=P1+1. Every timethe PLC executes, usually hundreds of times per second, P1 will increment

by one. Of course, these statements can get alot moreinvolved. Consider this statement:
P2=M162/(1108*32*10000)*C0S (M262/(1208*32*100))

This statement could be converting radial (M162) and angular (M262) positions into horizontal position

data, scaling at the same time. Because it updates this frequently, whoever needs access to this
information (e.g., host computer, operator, motion program) can be assured of having current data.

Conditional Statements

Most action in a PLC program is conditional, dependent on the state of PMAC variables, such asinputs,
outputs, positions, counters, etc. Action can be level-triggered or edge-triggered; both can be done, but
the techniques are different.

Level-Triggered Conditions
A branch controlled by alevel- triggered condition is easier to implement. Taking our incrementing
variable example and making the counting dependent on an input assigned to variable M 7000, we have:
IF (M7000=1)

P1=P1+1
ENDIF
Aslong astheinput istrue, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions

To increment P1 once for each time M 7000 goes true (triggering on the rising edge of M 7000 sometimes
called aone-shot or latched). A compound condition will trigger the action, then as part of the action, set
one of the conditions false, so the action will not occur on the next PLC scan. The easiest way to do this
is with a shadow variable which will follow the input variable value. Action is taken only when the
shadow variable does not match the input variable. The code would become:

IF (M7000=1)

IF (P11=0)
P1=P1+1
P11=1
ENDIF
ELSE
P11=0
ENDIF

Make sure that P11 can follow M 7000 both up and down. Set P11 to O in alevel-triggered mode; this
could have done as edge-triggered as well, but it does not matter as far as the final outcome of the routine
is concerned, it is about the same in calculation time and it saves program lines.

PLC Programs 71

UMAC Quick Reference Guide

WHILE Loops

Normally a PLC program executes all the way from beginning to end within asingle scan. The exception
to thisrule occursif the program encounters atrue WHILE condition. In this case, the program will
execute down to the ENDWH I LE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHI LE condition statement, not at the beginning. This process will
repeat as long as the condition istrue. When the WH I LE condition goes false, the PLC program will skip
past the ENDWH I LE statement and proceed to execute the rest of the PLC program.

To increment the counter aslong as the input is true and prevent execution of the rest of the PLC
program, program:
WHILE (M7000=1)

P1=P1+1
ENDWHILE
This structure makes it easier to hold up PLC operation in one section of the program, so other branches
in the same program do not have to have extra conditions and they do not execute when this condition is
true. Usethisinstead of an IF condition.

COMMAND and SEND Statements

One of the most common uses of PLCs isto start motion programs and jog motors by means of command
statements.

Some COMMAND action statements should be followed by aWH I LE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. Thisistrueif a second COMMAND action
statement that requires the first COMMAND action statement to finish will follow. (Remember, COMMAND
action statements are processed only during the communications section of the background cycle.) For
example, to stop any motion in a coordinate system and start motion program 10, the following PLC
could be used:

M5187->Y:$00203F, 17,1 ; &1 In-position bit (AND of motors)
OPEN PLC3 CLEAR
IF (M7000=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
P11=1 ; set latch
COMMAND"' &1A™ ; ABORT all motion
WHILE (M5187=0) ; wait for motion to stop.
ENDW
COMMAND"'&1B10R"™ ; start program 10
ENDIF
ELSE
P11=0 ; reset latch
ENDIF
CLOSE

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered
condition, because the PLC can cycle faster than these operations can process their information and the
communications channels can get overwhelmed if these statements are executed on consecutive scans
through the PLC.

IF (M7000=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
COMMAND"" #1J+"" ; JOG motor
P11=1 ; set latch
ENDIF
ELSE
P11=0 ; reset latch
ENDIF

72 PLC Programs

UMAC Quick Reference Guide

Timers

Timing commands like DWELL or DELAY are reserved only to motion programs and cannot be used for
timing purposes on PLCs. Instead, each active coordinate system (those numbered from 1 to 168+1) has
two timer variables running: 1sx11 and Isx12. These two 24-bit registers are timers for any general-
purpose use and can be used in any coordinate system. A valueiswritten to thetimer |-Variable
representing the desired time in servo cycles (multiply milliseconds by 8,388,608/110); then the PLC
waits until the I-Variable is less than O.

Example:

M7000->Y:$078C00,0,1 ; General-Purpose Outputl (redefine if necessary)
OPEN PLC3 CLEAR

M7000 = O Reset Outputl before start

15111 = 1000*8388608/110
WHILE (15111>0)

Set timer to 1000 msec, 1 second
Loop until counts to zero

ENDWHILE

M7000 = 1 ; Set Output 1 after time elapsed
DIS PLC3 ; disables PLC3 after execution
CLOSE

If more timers are need, use the technique in memory address X:0. This 24-bit register counts once per
servo cycle. Store a starting value for this, then in each scan, subtract the starting value from the current
value and compare the difference to the amount of time to wait.

Example:
M7000->Y:$078C00,0,1 General-Purpose Outputl (redefine iIf necessary)
MO->X:$0,24 Servo counter register

M85->X:$6055, 24
M86->X:$6056, 24

OPEN PLC 3 CLEAR

Location of P85 (146
Location of P86 (146

0 or 2) used as a spare register
0 or 2) used as a spare register

M7000=0 ; Reset Outputl before start

M85=MO ; Initialize timer

M86=0

WHILE(M86<1000) ; Time elapsed less than specified time?
M86=M0O-M85
M86=M86*110/8388608 ; Time elapsed so far in milliseconds

ENDWHILE

M7000=1 ; Set Output 1 after time elapsed

DISABLEPLC3 ; disables PLC3 after execution

CLOSE

Even if the servo cycle counter rolls over (start from zero again after the counter is saturated), by
subtracting into another 24-bit register, rollover is handled gracefully.

Rollover Example:

MO = 1,000
M85 = 16,777,000 (saturates at 2% = 16,777,216)
M86 = 1216

Bit | 232221 |20(19|18 |17 (16|15 |14 | 13|12 | 11| 10

=

MO 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M85 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o|lr|r|w©
o|lr|r|om»
Rrlo|r |~
Rr|lo|r|o
o|lr|r|wu
o|lo|o|»
o|lr|r|w
o|lo|o|wN
o|lo|o

o|lo|o|o

mMge | ol 00| OfjO|O|OjO|lO]|JO|]O]O0O]|O 1

-+——— Carryout bit

PLC Programs 73

UMAC Quick Reference Guide

Compiled PLC Programs

It is possible to compile Turbo PMAC PLC programs for faster execution. The faster execution of the
compiled PLCs comes from two factors: first, from the elimination of interpretation time, and second,
from the capability of the compiled PLC programs to execute integer arithmetic. Floating-point
operations in compiled PLC programs run two to three times faster than in interpreted PLC programs;
integer (including Boolean) operations run 20 to 30 times faster in compiled form.

Turbo PMAC can store and execute up to 32 compiled PLC programs as well as 32 interpreted
(uncompiled) PLC programs for 64 PLC programs. 15K (15,360) 24-bit words of Turbo PMAC memory
arereserved for compiled PLCs or 14K (14,336) words if there is a user-written servo aswell. No other
task may use this memory and compiled PLCs may not use any other memory.

PLCCs are compiled by Pewin32-Pro in the downloading process. Only the compiled machine code is
downloaded to PMAC. Therefore, it is suggested to save the ASCII source code in the host computer
separately since it cannot be retrieved from PMAC. In most cases, compiled PLCs are firmware
dependent and so they must be recompiled when the firmware is changed in PMAC.

If more than one PLCC is programmed, all the PLCCs code must belong to the same ASCI| text file.
Pewin will compile all the PLCC code present on the file and place it in the appropriate buffer in PMAC.
If asingle PLCC code is downloaded, the rest of the PLCCs that might have been present in memory will
be erased, leaving only the last compiled code. The Project Manager feature of the Pewin32-Pro File
menu allows PLCC codes to be in different files. They will be combined by PEWIN when the complete
project is downloaded to PMAC.

The use of L-Variablesin a PLC program statement tells the compiler that the statement is to be executed
using integer operations instead of floating-point operations. To implement integer arithmetic in a
compiled PLC, define any L-Variables and substitute them in the programs for the variables that were
used in the interpreted form (usually M-Variables). The compiler will interpret statements containing
only L-Variables (properly defined) and integer constants as operations to be executed using integer
arithmetic in compiled PLCs.

Example: Typically machine outputs 1 and 2 are referenced by the following definitionsin
uncompiled programs:

M7000->Y:$078C00,0,1 ; Machine Output 1

M7001->Y:$078C00,1,1 ; Machine Output 2

For the compiled PLC programs, create equivalent M-V ariable definitions:

L7000->Y:$078C00,0,1 ; Machine Output 1

L7001->Y:$078C00,1,1 ; Machine Output 2

Preparation of compiled PLCsis a multi-step process. The basic steps are as follows:
1. Write and debug the PLC programsin interpreted form (simple PL Cs programs).
2. Change all referencesto PLCsto be compiled from PLC to PLCC.

3. For integer arithmetic, define L-Variables and substitute these for the old variable namesin the
programs.

4. Combineall of the PLCC programsto be compiled into one file on the PC, or use the Project
Manager of Pewin32-Pro.

5. Activate the compiled PLCCs. If operation is not correct, return to step 1 or 2.
6. PLCCscan be deleted using the DELETE PLCCn command (replace n by the appropriate number).

74 PLC Programs

UMAC Quick Reference Guide

TROUBLESHOOTING

Establishing Communications

Serial communications can be checked using the Windows” T LIE]
Hyperterminal program with 38,400 baud rate, eight data bits, Poa Brgs |
one stop bit, no parity and no flow control.
1. Select the appropriate COM port and try different baud rates b e et | T - |
(bits per second) if necessary. -]
2. Intheterminal window, type 13 and press Enter. PMAC R [-
should respond with some characters. | o
Shp by |1 &
3. Inthismode, set 13=1 to add a carriage return character at
the end of each responseline. If there is no response, check it =
the serial cable or try adifferent COM port. |
Nesme Daimiiz
4. Follow the reset procedure in the following section if | i =
communications cannot be established. 3 | e | |

Hardware Re-initialization

1

2.
3.
4

Carefully remove the Turbo PMAC2 3U CPU board from the UMAC rack.

Install the jumper labeled E3 in the Turbo PMAC2 3U CPU board.

Replace the Turbo PMAC2 3U CPU board inside the UMAC rack and power up.

If the Turbo PMAC2 3U CPU board finds jumper E3 installed on power-up, the following actions

occur:

a. Theinstaled firmware isloaded from the flash memory into active memory.

b. Thefactory default I-Variables are loaded from firmware into active memory and registers. (The
last saved values in flash are not lost; they are simply not used.) The last saved user programs,
tables and buffers are loaded into active memory, but none will be active because of the default |-
Variable settings. If the checksum for the programs and buffers does not match the data, all of
these programs and buffers are completely cleared from active memory.

c. Thebasic configuration of the system —memory capacity, ASIC presence, location, and type—is
checked and logged. The CPU will make some decisions about default 1-Variable values based
on this configuration information. Countersin all ASICs are cleared.

d. Because of the default I-Variable configuration, no motors are enabled and no programs are

activated.

Establish communications with either PEWIN32-Pro or Windows® Hyperterminal .
Type the following commands in the terminal window:

$EF*F** : Global Reset
P0..8191 = 0O ; Reset P-Variables values
Q0..8191 =0 Reset Q-Variables values

MO..8191 > * Reset M-Variables definitions
MO..8191 = O Reset M-Variables values

UNDEFINE ALL ; Undefine Coordinate Systems

SAVE ; Save this initial clean configuration

Remove the Turbo PMAC2 3U CPU board from the UMAC rack, remove the E3 jumper, replace the
Turbo PMAC2 3U CPU board in the UMAC rack and try communications again.

Troubleshooting 75

UMAC Quick Reference Guide

The Watchdog Timer (Red LED)

Turbo PMAC has an on-board watchdog timer. This subsystem provides a fail-safe shutdown to guard
against software and hardware malfunction. To keep it from tripping the hardware circuit for the
watchdog timer requires that two basic conditions be met. First, it must see a DC voltage greater than
4.75V. If the supply voltage is below this value, the circuit’s relay will trip and the card will shut down.
This prevents corruption of registers due to insufficient voltage.

Second, the timer must see a square wave input (provided by the Turbo PMAC software) of afrequency
greater than 25 Hz. In the foreground, the servo-interrupt routine decrements a counter (as long as the
counter is greater than zero), causing the least significant bit of the timer to toggle. Thisbit isfed to the
timer itself. At the end of each background cycle, the CPU resets the counter value to a maximum value
set by variable 140 (or to 4096 if 140 is set to the default of 0).

If the card, for whatever reason, due either to hardware or software problems, cannot set and clear this bit
repeatedly at 25 Hz or greater, the timer will trip and the Turbo PMAC system will shut down. When the
timer trips due either to under-voltage or under-frequency, the system islatched into areset state with a
red LED indicating watchdog failure. The processor stops operating and will not communicate. All
Servo and 10 ICs are forced into their reset states, which force discrete outputs off and proportional
outputs (DAC, PWM, PFM) to zero level.

Once the watchdog timer has tripped, power to the UMAC System must be cycled off and on to restore
normal functioning.

System Configuration

After performing a hardware re-initialization, or issuing a $$$*** command, UMAC is configured with
the hardware found in the system. The System Configuration Reporting I-Variables 14900 to 14965
provide information about the accessory boards found inside the UMAC System on power-up or reset.
The UMAC Configuration program, part of the Pewin32 Pro Suite, uses these variables to report the
configuration of any UMAC System. Checking the configuration of the UMAC System isimportant in
case of addressing conflicts or hardware\software failures in the accessory boards.

UMAC System Status Bits

There are three online PMAC commands for reporting the status of the UMAC System at any time:
? Report status words for motor in hex ASCII form

?7? Report coordinate system status in hex ASCII form

??? Report global status wordsin hex ASCII

The easiest way to read thisinformation is through the Pewin32 Pro software. Screens for motor,

coordinate systems and global status are available under the View menu. Alternatively, the most
commonly used status bits can be monitored through the set of suggested M-V ariables definitions.

Direct Access to Hardware Features

In PMAC, amotor is a software concept. A PMAC motor isaset of registers and variablesin the PMAC
memory space that is controlled by the servo algorithmsinside the PMAC firmware and that uses an
actual hardware circuitry. This hardware circuitry isreferred to as amotion channel. A set of four
hardware channels, in turnisreferred to asa Servo |C. These are application-specific ICs (ASICs)
designed by Delta Tau and manufactured in gate array technology to create a full-feature set in a cost-
effective manner. The Servo ICs contain all of the digital logic to provide the interface between the CPU
and the motion (servo or stepper) channels.

76 Troubleshooting

UMAC Quick Reference Guide

One or more channel can be associated with a single motor by means of motor-specific I-Variables.
These variables define, for example, where the amplifier command will be output or which encoder input
will be used for feedback. If the motor activation control variable Ixx00 is set to zero, however, the
hardware channels associated with that motor xx can be directly controlled through M-Variables. Thisis
useful for directly controlling output features like DAC or stepper outputs and amplifier enable outputs,
thus allowing testing the functionality of a particular feature by direct access to the channel registers.

Example: The functionality of DAC #1 of an Acc-24E2A can be tested with the following

procedure:
M102->Y:$078202,8,16,S ;Address of DAC #1 of Servo IC #2
1100 = O ;Deactivate motor #1 to allow direct access to the
channel
17216 = 3 ;Sets output mode of channel 1 of servo IC #2 to DACs
M102 = 16383 ;DAC register is scaled as 3276.7 = 1V

<measure 5V between pins 1 and 12 of the amplifier connector of the Acc-24E2A
board>

M102 = -16383 ;Set DAC output to -5V

<measure -5V between pins 1 and 12 of the amplifier connector of the Acc-24E2A
board>

1100 = 1 ;Activate motor after the procedure is completed

Note:

Make sure the amplifier and any other external device using the hardware outputs
is not powered or disconnected during thistest. Deactivating the motor
automatically disables any safety feature that applies to the hardware channels.

Motor Parameters
1. If thereisno movement at al, check the following:
a. Check the output configuration of the motor. For an analog amplifier, set |7mn6=3 (17216=3 for

the first motor of the first axes board). For a stepper driver, set Ixx02 = [xx02+2 (1102 for motor
#1).

b. When using an analog amplifier, check the power supply lines +15V, -15V, and GND. If the
UMAC internal power supply is used (default), jumpers E85, E87, and E88 in the Acc-24E2A
board must beinstalled. The voltage can be checked in the connector at the back panel of the
UMAC rack.

c. Check the functionality of the hardware end-of-travel limits, or disable this feature by setting bit
17 of the Ixx24 variable to 1 (1124 = $20001 to disable the overtravel limits of motor #1).

Make sure that the proportional gain (Ixx30) is greater than zero.
Make sure that output can be measured at the DAC pin when an O command has been given.

f. If thefollowing error limit is being tripped, increase the fatal following error limit (Ixx11) by
setting it to adlightly higher value and try to move again.

g. Setthefeedrate override of the addressed coordinate system to 100 by issuing a%100 online
command.
2. If thereis movement, but it is sluggish, check the following:
a. Make surethat the proportional gain (Ixx30) isnot too low. Try increasing it (as long as stability
is kept).
b. Make surethat the big step limit (Ixx67) is not too low. Try increasing it to 8,000,000 — near the
maximum — to eliminate any effect.

Troubleshooting 77

UMAC Quick Reference Guide

c. Make surethat the output limit (Ixx69) is not too low. Try increasing it to 32,767 (the maximum)
to make sure PMAC can output adequate voltage.

d. Useanintegrator. Try increasing integral gain (1xx33) to 10,000 or more and the integration limit
(Ixx63) to 8,000,000.

3. If thereisarunaway condition, check the following:
a. Make surethat thereisfeedback. Check that position changes can be read in both directions.

b. Make sure that the feedback polarity matches the output polarity. Recheck the polarity match as
explained above.

4. If thereisbrief movement, then it stops. Check the following:

a. If thefollowing error limit is being tripped, increase the fatal following error limit (Ixx11) by
setting it to aslightly higher value and try to move again.

Motion Programs

If the program does not run at all, there are several possibilities:

1. Trytolist the program. Interminal mode, type LIST PROG 1 (or whichever program) and seeif itis
there. If not, try to download it to the card again.

2. Make sure that the program buffer is closed. Type A to check if the program is running; type CLOSE
to close any open buffer; type B1 (or the program #) to point to the top of the program; and typeR to
try to run it again.

3. Make sure that each motor in the coordinate system can be jogged in both directions. If not, review
that motor’s setup.

4. Check if any motors have been assigned to a coordinate system that is not really set up yet. Every
motor in the coordinate system must have its limits conducting current, even if there is no real motor
attached.

Try the following steps for any other motion program problem:
1. Type&1%100 inthe termina window.
2. Check that only one of the motors to be used in the motion program can be jogged appropriately.

3. Typethefollowing commandsin atext editor to be downloaded to PMAC:

close ; Close any buffer opened

delete gather Erase unwanted gathered data

undefine all Erase coordinate definitions in all coordinate systems
#1->2000X Replace #1 for the motor to be used and 2000 by the
appropriate scale factor for the number of counts

per user units

OPEN PROG 1 CLEAR ; Prepare buffer to be written

LINEAR ; Linear interpolation

INC ; Incremental mode

TA500 ; Acceleration time is 500 msec

TSO ; No S-curve acceleration component

TM2000 ; Total move time is 500 + 2000=2500 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

4. Torunit, press CTRL+A and then type B1R in the terminal window.
5. Repeat steps 2 through 4 for all the motors to be run in the actual motion program.

78 Troubleshooting

UMAC Quick Reference Guide

A good method to test motion programsisto run them at lower than one hundred percent override rate.
Any vaue of n from 1 to 99 in the %n online command will run the motion programs slower, increasing
the chances for success in execution. For example, in the terminal window type: &1 %75 B1R. If a
program runs successfully at lower feedrate override values, there could be two main reasons why it fails
at 100%: either thereisinsufficient calculation time for the programmed moves or the acceleration and\or
velocity parameters involved are unsuitable for the machine.

PLC Programs

PL Cs and PLCCs are the most common sources for communication or watchdog timer failures.

e Any SEND, COMMAND, or DISPLAY action statement should be done on an edge-triggered condition
only because the PLC can cycle faster than these operations can process their information, and the

communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.

IF (M7000=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
COMMAND"' #1J+"" ; Jog motor
P11=1 ; Set latch
ENDIF
ELSE
P11=0 ; Reset latch
ENDIF

e PLCO or PLCCO are meant to be used for only afew tasks (usually a single task) that must be done at
ahigher frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as
long as the tasks from the previous RTI have been completed. Potentially, PLC 0 is the most
dangerous task on PMAC as far as disturbing the scheduling of tasksis concerned. If itistoolong, it
will starve the background tasks for time. The first thing to notice is that communications and
background PL C tasks will become sluggish. In the worst case, the watchdog timer will trip, shutting
down the card because the housekeeping task in background did not have the time to keep it updated.

o Becausedl PLC programsin PMAC' s memory are enabled at power-on/reset, savel5as0in
PMAC’' s memory when developing PLC programs. Thisallows PMAC to be reset and no PLCs
running (an enabled PLC only runsif 15 is set properly) and recover more easily fromaPLC
programming error.

e Asan example, type these commandsin the terminal window. After that, open a watch window and
monitor for P1 to be counting up:

OPEN PLC1 CLEAR ; Prepare buffer to be written
P1=P1+1 ; P1 continuously incrementing
CLOSE ; Close written buffer, PLC1
15=2

Press<CTRL +D> and type ENA PLCL1.

Troubleshooting 79

UMAC Quick Reference Guide

Troubleshooting

UMAC Quick Reference Guide

APPENDIX A — UMAC ERROR CODE SUMMARY

16, Error Reporting Mode

16 controls how UMAC reports errorsin command lines. When 16 is set to 0 or 2, UMAC reports any
error only with a<BELL> character. When 16 is0, the <BELL> character is given for invalid commands
issued both from the host and from UMAC programs (using CMD”{ command}”). When 16 is 2, the
<BELL> character is given only for invalid commands from the host; there is no response to invalid
commands issued from UMAC programs. (In no mode is there aresponse to valid commands issued
from UMAC programs.)

When 16 isset to 1 or 3, an error number message can be reported along with the <BELL> character. The
message comes in the form of ERRnnn<CR>, where nnn represents the three-digit error number. 1f 13is
setto 1 or 3, thereisa<LF> character in front of the message.

When 16 is set to 1, the form of the error messageis <BELL>{error message}. This setting isthe
best for interfacing with host-computer driver routines. When 16 is set to 3, the form of the error message
is<BELL><CR>{error message}. Thissetting is appropriate for use with the PMAC Executive
Program, Pewin, in terminal mode.

Currently, the following error messages can be reported:

Error Problem Solution
ERROO1 Command not allowed during program (Halt program execution before issuing command)
execution
ERROO2 Password error (Enter the proper password)
ERROO3 Data error or unrecognized command (Correct syntax of command)
Illegal character: bad value (>127 ASCII) or (Correct the character and or check for noise on the
ERROO4 .) X ;
seria parity/framing error seria cable)
ERROO5 Command not allowed unless buffer is open (Open a buffer first)
No room in buffer for command (Allow more room for buffer — DELETE or CLEAR
ERROO6
other buffers)
ERROO7 Buffer already in use (Close currently open buffer first)
ERROOS8 MACRO auxiliary communications error (Check MACRO ring hardware and software setup)
ERRO0O9 F;rFo)gram structural error (e.g. ENDIF without (Correct structure of program)
ERRO10 goth overtravel limits set for amotor inthe C. | (Correct or disable limits)
ERRO11 Previous move not completed (Abort it or alow it to complete)
ERRO12 A motor in the coordinate system isopen-loop | (Close the loop on the motor)
ERRO13 A motor in the coordinate system is not (Set 1x00 to 1 or remove motor from Coordinate
activated System.)
ERRO14 No motorsin the coordinate system (Define at least one motor in Coordinate System.)
ERRO15 Not pointing to valid program buffer (Use B command first or clear out scrambled buffers)
ERRO16 Running improperly structured program (e.g. (Correct structure of program)
missing ENDWH I LE)
Trying to resume after H or Q with motors out (Use J= to return motor[s] to stopped position)
ERRO17 "
of stopped position
Attempt to perform phase reference during (Finish move before phase reference, or finish phase
ERRO18)
move, or move during phase reference reference before move)
ERRO19 Illegal position-change command while moves | (Pass through section of Program requiring storage of

stored in CCBUFFER

movesin CCBUFFER, or abort)

Appendix A

81

UMAC Quick Reference Guide

82

Appendix B

UMAC Quick Reference Guide

APPENDIX B — SELECTED UMAC I-VARIABLES SUMMARY

General Global Setup Range Units Default
10 | Serial Card Number $0 to $F (0 to 15) None $0
I1 | Seria Port Mode 0to3 None 0
I3 | I/O Handshake Control 0to3 None 1
14 | Communications Integrity Mode 0to3 None 1
I5 | PLC Program Control 0to3 None 1
16 | Error Reporting Mode 0to3 None 1
I7 | Phase Cycle Extension 0to 15 Phase Clock Cycles 0
I8 | Real-Time Interrupt Period 0to 255 Servo Clock Cycles 2
19 | Full/Abbreviated Listing Control 0to3 None 2
110 | Servo Interrupt Time "0 to 8,388,607" "1/8,388,608 msec" | "3,713,707 (442
msec)"
111 | Programmed Move Calculation "0 to 8,388,607 msec 0
Time
113 | Foreground In-Position Check Otol None 0
Enable
114 | Temporary Buffer Save Enable Otol None 0
115 | Degree/Radian Control for User Oto1l None 0 (degrees)
Trig Functions
119 | Clock Source I-Variable Number 7207 to 7957 I- Variable number Configuration-
dependent
139 | UBUS Accessory ID Variable 0to5 None 0
Display Control
140 | Watchdog Timer Reset Value "0 to0 65,535" Servo cycles 0 (sets 4095)
141 | I-Variable Lockout Control $0—$F (0-15) None 0
142 | Spline/PVT Time Control Mode Otol None 0
143 | Auxiliary Seria Port Parser Disable | Oto 1 None 0
146 | Pand Q- Variable Storage Location | 0to 3 None 0
151 | Compensation Table Enable Oto1l None 0 (disabled)
152 | CPU Frequency Control 0to 15 Multiplication factor 7 (80 MH2)
153 | Auxiliary Seria Port Baud Rate 0to15 None 0 (disabled)
Control
154 | Seria Port Baud Rate Control 0to15 None 12 (38400 baud)
159 | Motor/C.S. Group Select 0to3 None 0
160 | Filtered Velocity Sample Time 0to15 Servo Cycles- 1 15
161 | Filtered Velocity Shift 0to 255 Bits 8
162 | Internal Message Carriage Return Oto1l None 1
Control
163 | Control-X Echo Enable Otol None 1
164 | Internal Response Tag Enable Otol None 0
168 | Coordinate System Activation 0to15 None 15

Control

Appendix B

UMAC Quick Reference Guide

Motor Definition [-Variables Range Units Default
(xx: motor #from 1to 32)
Ixx00 | Motor xx Activation Control Otol None 1100 =1, 1200 .. 13200 =
0
Ixx01 | Motor xx Commutation Enable 0to3 None 0
Ixx02 | Motor xx Command Output Address | $000000 to $FFFFFF | Turbo PMAC See software reference
Addresses
Ixx03 | Motor xx Position Loop Feedback $000000 to $FFFFFF | Turbo PMAC See software reference
Address Addresses
Ixx04 | Motor xx Velocity Loop Feedback $000000 to $FFFFFF | Turbo PMAC See software reference
Address Addresses
Ixx05 | Motor xx Master Position Address $000000 to $FFFFFF | Turbo PMAC X' $0035C0 (end of table)
Addresses
Ixx06 | Motor xx Position Following Enable | 0to 3 None 0
and Mode
Ixx07 | Motor xx Master (Handwheel) Scale | -8,388,608 to None 96
Factor 8,388,607
Ixx08 | Motor xx Position Scale Factor 0 to 8,388,607 None 96
Ixx09 | Motor xx Velocity-Loop Scale 0 to 8,388,607 None 96
Factor
Ixx10 | Motor xx Power-On Servo Position | $000000 to $FFFFFF | Turbo PMAC $0
Address Addresses
Motor Safety [-Variables Range Units Default
XX: motor #from 1to 32)
Ixx11 | Motor xx Fatal Following Error 0 to 8,388,607 1/16 count 32,000 (2000 counts)
Limit
Ixx12 | Motor xx Warning Following Error | O to 8,388,607 1/16 count 16,000 (1000 counts)
Limit
Ixx13 | Motor xx Positive Software Position | -235 to +235 Counts 0 (disabled)
Limit
Ixx14 | Motor xx Negative Software -235t0 +235 Counts 0 (disabled)
Position Limit
Ixx15 | Motor xx Abort/Limit Deceleration | Positive Floating- Counts/ msec2 0.25
Rate Point
Ixx16 | Motor xx Maximum Program Positive Floating- Counts/ msec 32.0
Veocity Point
Ixx17 | Motor xx Maximum Program Positive Floating- Counts/ msec2 0.5
Acceleration Point
Ixx19 | Motor xx Maximum Jog/Home Positive Floating- Counts/ msec2 0.15625

Acceleration

Point

Appendix B

UMAC Quick Reference Guide

Motor Mation |-Variables Range Units Default
(xx: motor #from 1to 32)
Ixx20 | Motor xx Jog/Home Acceleration 0 to 8,388,607 msec 0 (so I1xx21 controls)
Time
Ixx21 | Motor xx Jog/Home S-Curve Time | O to 8,388,607 msec 50
Ixx22 | Motor xx Jog Speed Positive Floating Counts/ msec 32.0
Point
Ixx23 | Motor xx Home Speed and Floating Point Counts/ msec 320
Direction
Ixx24 | Motor xx Flag Mode Control $000000 to $FFFFFF | None $000001
Ixx25 | Motor xx Flag Address $000000 to $FFFFFF | Turbo PMAC See software reference
Addresses
Ixx26 | Motor xx Home Offset -8,388,608 to 1/16 count 0
8,388,607"'=
Ixx27 | Motor xx Position Rollover Range -235t0 +235 Counts 0
Ixx28 | Motor xx In-Position Band 0 to 8,388,607 1/16 count 160 (10 counts)
Ixx29 | Motor xx Output/First Phase Offset | -32,768 to 32,767 16-bit equivalent 0
Motor xx PID Servo Setup Range Units Default
(xx: motor #from 1to 32)
Ixx30 | Motor xx PID Proportional Gain -8,388,608 to See software 2000
8,388,607 reference
Ixx31 | Motor xx PID Derivative Gain -8,388,608 to See software 1280
8,388,607 reference
Ixx32 | Motor xx PID Velocity Feedforward | -8,388,608 to See software 1280
Gain 8,388,607 reference
Ixx33 | Motor xx PID Integral Gain 0 to 8,388,607 See software 1280
reference
IXxx34 | Motor xx PID Integration Mode Otol None 1
Ixx35 | Motor xx PID Acceleration -8,388,608 to See software 0
Feedforward Gain 8,388,607 reference
Ixx40 | Motor xx Net Desired Position Filter | 0.0 to 0.999999 None 0.0
Gain
Ixx41 | Motor xx Desired Position Limit 0 to 8,388,607 Counts 0
Band
Motor Servo Setup Range Units Default
(xx: motor #from 1to 32)
Ixx57 | Motor xx Continuous Current Limit | -32,768 to 32,767 16-hit equivalent 0
Ixx58 | Motor xx Integrated Current Limit 0to 8,388,607 See software 0
reference
IXx59 | Motor xx User-Written Servo/Phase | 0to 3 None 0
Enable
Ixx60 | Motor xx Servo Cycle Period 0to 255 Servo Interrupt 0
Extension Period Periods
IXx63 | Motor xx Integration Limit -8,388,608 to 1/16 count * servo 4,194,304
8,388,607 cycle
Ixx64 | Motor xx Deadband Gain Factor -32,768 to 32,767 None 0 (no gain adjustment)
Ixx65 | Motor xx Deadband Size -32,768t0 32,767 1/16 count 0
IXxx67 | Motor xx Position Error Limit 0to 8,388,607 1/16 count 4,194,304 (262,144
counts)
IXxx68 | Motor xx Friction Feedforward 0to 32,767 16-bit DAC bits 0
IXx69 | Motor xx Output Command Limit 0to 32,767 16-bit DAC hits 20,480 (6.25V or
equivalent)
Appendix B 85

UMAC Quick Reference Guide

Further Motor |-Variables Range Units Default

(xx: motor #from 1to 32)

Ixx85 | Motor xx Backlash Take-up Rate 0 to 8,388,607 1/16 count / 0

background cycle

Ixx86 | Motor xx Backlash Size 0 to 8,388,607 1/16 count 0

Ixx87 | Motor xx Backlash Hysteresis 0 to 8,388,607 1/16 count 64 (= 4 counts)

Ixx88 | Motor xx In-Position Number of 0to 255 Background 0
Scans computation cycles

(minus one)

Ixx90 | Motor xx Rapid Mode Speed Select | Oto 1 None 1

IXxx91 | Motor xx Power-On Phase Position | $000000 to $FFFFFF | None 0
Format

Ixx92 | Motor xx Jog Move Calculation 1to 8,388,607 msec 10
Time

Ixx95 | Motor xx Power-On Servo Position | $000000 to $FFFFFF | None $000000
Format

Ixx96 | Motor xx Command Output Mode Otol None 0
Control

Ixx97 | Motor xx Position Capture & 0to3 None 0
Trigger Mode

System Configuration Reporting Range Units Default

14900 | Servo ICs Present $000000 to $FFFFFF | None (individua bits) | --

14901 | Servo IC Type $000000 to $FFFFFF | None (individua bits) | --

14904 | Dual-Ported RAM ICs Present $000000 to $FFB000 | None (individual bits) | --

14908 | End of Open Memory $006000 to $040000 | None (individual bits) | --

14909 | Turbo CPU ID Configuration $000000000 to None (individual bits) | --

$FFFFFFFFF

14910 | Servo IC Card Identification $000000000 to None (individual bits) | --

to $FFFFFFFFF

14925

14942 | DPRAM IC Card Identification $000000000 to None (individual bits) | --

to $FFFFFFFFF

14949

14950 | 1/O IC Card Identification $000000000 to None (individua bits) | --

to $FFFFFFFFF

14965

15060 | A/D Processing Ring Size 0to 16 Number of A/D Pairs | O

15061 | A/D Ring Slot Pointers $000000 to $7FFFFF | Turbo PMAC $0 (specifies $078800)

to Addresses

15076

15080 | A/D Ring Convert Enable Otol None 1

15081 | A/D Ring Convert Codes $000000 to $OOFOOF | None $000000

to

15096

86 Appendix B

UMAC Quick Reference Guide

Coordinate System |-Variables Range Units Default

(sx: CS#+ 50)

Isx11 | Coordinate System X' User -8,388,608 to Servo cycles 0
Countdown Timer 1 8,388,607

Isx12 | Coordinate System X' User -8,388,608 to Servo cycles 0
Countdown Timer 2 8,388,607

Isx13 | Coordinate System X' Segmentation | 0to 255 msec 0
Time

I1sx20 | Coordinate System X' Lookahead 0to0 65,535 Isx13 segmentation 0
Length periods

Isx21 | Coordinate System X' Lookahead 0to 15 None 0
State Control

Isx50 | Coordinate System X' Kinematic Otol None 0
Calculations Enable

Isx53 | Coordinate System X' Step Mode Otol None 0
Control

I1sx86 | Coordinate System 'x' Alternate Positive floating point | See software 1000.0
Feedrate reference

Isx87 | Coordinate System X' Default 0 to 8,388,607 msec 0 (so 1sx88 controals)
Program Acceleration Time

Isx88 | Coordinate System X' Default 0 to 8,388,607 msec 50
Program S-Curve Time

Isx89 | Coordinate System X' Default Positive floating point | See software 1000.0
Program Feedrate/Move Time reference

Isx90 | Coordinate System 'x' Feedrate Time | Positive floating point | msec 1000.0
Units

Isx91 | Coordinate System 'x' Default 0to 32,767 Motion Program 0
Working Program Number Numbers

Isx92 | Coordinate System X' Move Blend Oto1l None 0
Disable

Isx93 | Coordinate System 'x' Time Base $000000 to $FFFFFF | Turbo PMAC X- See software reference
Control Address Addresses

Isx94 | Coordinate System 'x' Time Base 0 to 8,388,607 2-23msec / servo 1644
Slew Rate cycle

Isx95 | Coordinate System 'x' Feed Hold 0 to 8,388,607 2-23msec / servo 1644
Slew Rate cycle

Isx96 | Coordinate System 'x' Circle Error Positive floating-point | User length units 0 (function disabled)
Limit

I1sx97 | Coordinate System 'x' Minimum Arc | Non-negative Semi-circles (180°) 0 (sets 2-20)
Length floating-point

I1sx98 | Coordinate System X' Maximum Non-negative See software 1000.0
Feedrate floating-point reference

Isx99 | Coordinate System 'x' Cutter-Comp | -1.0 to 0.9999 cosine 0.998 (cos 10)

Outside Corner Break Point

Appendix B

87

UMAC Quick Reference Guide

Multi-Channel Servo IC Range Units Default

(m: IC#from 21t09)

I7m00 | Servo IC m MaxPhase/PWM 0to 32,767 See software 6527
Frequency Control reference

I7m01 | Servo IC m Phase Clock Frequency | Oto 15 See software 0
Control reference

17m02 | Servo IC m Servo Clock Frequency | Oto 15 See software 3
Control reference

I7m03 | Servo IC m Hardware Clock 0to 4095 See software 2258
Control reference

I7m04 | Servo IC m PWM Deadtime/ PFM | 0to 255 See software 15
Pulse Width Control reference

Channel-Specific Servo IC Range Units Default

(m: 1IC#2-9, n:ch#1-4)

I7mn0 | Servo IC m Channel n 0to 15 None 7
Encoder/Timer Decode Control

I7mnl | Servo IC m Channel n Position Otol None 0
Compare Channel Select

I7mn2 | Servo IC m Channel n Capture 0to 15 None 1
Control

I7mn3 | Servo IC m Channel n Capture Flag | 0to 3 None 0
Select Control

I7mn4 | Servo IC m Channel n Encoder Otol None 0
Gated Index Select

I7mn6 | Servo IC m Channel n Output Mode | O0to 3 None 0
Select

I7mn7 | Servo IC m Channel n Output Invert | 0to 3 None 0
Control

I7mn8 | Servo IC m Channel n PFM Otol None 0
Direction Signal Invert Control

Conversion Table|-Variables Range Units Default

18000 | Conversion Table Setup Lines $000000 - $FFFFFF | Turbo PMAC See software reference

to Addresses

18191

Appendix B

UMAC Quick Reference Guide

APPENDIX C — SELECTED UMAC ONLINE COMMANDS

Command

Description

<CONTROL-A>

Abort al programs and moves.

<CONTROL-B>

Report status word for eight motors.

<CONTROL-C>

Report al coordinate system status words.

<CONTROL-D>

Disable all PLC programs.

<CONTROL-F>

Report following errors for eight motors.

<CONTROL-G>

Report global status word.

<CONTROL-H>

Erase |ast character.

<CONTROL-1>

Repeat last command line.

<CONTROL-K>

Kill al motors.

<CONTROL-M>

Enter command line.

<CONTROL-N>

Report command line checksum.

<CONTROL-0>

Feed hold on all coordinate systems.

<CONTROL-P>

Report positions for eight motors.

<CONTROL-Q>

Quit all executing motion programs.

<CONTROL-R>

Begin execution of motion programsin all coordinate systems.

<CONTROL-S>

Step working motion programs in all coordinate systems.

<CONTROL-T>

Cancel MACRO pass-through mode.

<CONTROL-V>

Report velocity for eight motors.

<CONTROL-X>

Cancel in-process communications.

1{axis}{constant}[{axis}{constant}..]

Alter destination of RAPID move.

@ Report currently addressed card on seria daisychain.
@{card} Address a card on the serial daisychain.

Report port's currently addressed motor.
#{constant} Select port’ s addressed motor.

#{constant}->

Report the specified motor's coordinate system axis definition.

#{constant}->0

Clear axis definition for specified motor.

#{constant}->{axis definition}

Assign an axis definition for the specified motor.

#{constant}->I

Assign inverse-kinematic definition for specified motor.

Hi Report port’s motor group.

#H#{constant} Select port’s motor group.

$ Establish phase reference for motor.

$$ Establish phase reference for motors in coordinate system.
$$$ Full card reset.

$H*** Global card reset and re-initialization.

$$* Read motor absolute positions.

$* Read motor absolute position.

% Report the addressed coordinate system's feedrate override value.
%{constant} Set the addressed coordinate system’s feedrate override value.
& Report port’s currently addressed coordinate system.
&{constant} Select port’ s addressed coordinate system.

\ Quick Stop in Lookahead/Feed Hold.

< Back up through Lookahead Buffer.

> Resume Forward Execution in Lookahead Buffer.

/ Halt Motion at End of Block.

? Report motor status.

?7? Report the status words of the addressed coordinate system.
?7?7? Report global status words.

A Abort al programs and movesin the currently addressed

coordinate system.

Appendix C

89

UMAC Quick Reference Guide

Command Description
ABR[{constant}] Abort currently running motion program and start another.
ABS Select absolute position mode for axes in addressed coordinate

system.

{axis}={constant}

Re-define the specified axis position.

B{constant} Point the addressed coordinate system to a motion program.
CHECKSUM Report the firmware checksum value.

CID Report card ID or part number.

CLEAR Erase currently opened buffer.

CLEAR ALL Erase all fixed motion, kinematic, and uncompiled PLC

programs.

CLEAR ALL PLCS

Erase all uncompiled PLC programs.

CLOSE

Close the currently opened buffer.

CLOSE ALL Close the currently opened buffer on any port.
{constant} Assign value to variable PO, or to table entry.
CPU Report the Turbo PMAC CPU type.

DATE Report the firmware release date.

DEFINE BLCOMP

Define backlash compensation table.

DEFINE CCBUF

Define extended cutter-compensation buffer.

DEFINE COMP (one-dimensional)

Define Leadscrew Compensation Table.

DEFINE COMP (two-dimensional)

Define two-dimensional |eadscrew compensation table.

DEFINE GATHER

Create a data gathering buffer.

DEFINE LOOKAHEAD

Create alookahead buffer.

DEFINE ROTARY

Define arotary motion program buffer.

DEFINE TBUF

Create a buffer for axis transformation matrices.

DEFINE TCOMP

Define torgue compensation table.

DEFINE UBUFFER

Create a buffer for user variable use.

DELETE ALL

Erase all defined permanent and temporary buffers.

DELETE ALL TEMPS

Erase all defined temporary buffers.

DELETE BLCOMP

Erase backlash compensation table.

DELETE CCUBUF

Erase extended cutter-compensation buffer.

DELETE COMP

Erase leadscrew compensation table.

DELETE LOOKAHEAD

Erase the lookahead buffer.

DELETE GATHER

Erase the data gather buffer.

DELETE PLCC

Erase specified compiled PLC program.

DELETE ROTARY

Delete rotary motion program buffer of addressed coordinate
system.

DELETE TBUF

Delete buffer for axis transformation matrices.

DELETE TCOMP

Erase torque compensation table.

DISABLE PLC Disable specified PLC programs.
DISABLE PLCC Disable compiled PLC programs.
EAVERSION Report firmware version information.
ENABLE PLC Enable specified PLC programs.
ENABLE PLCC Enable specified compiled PLC programs.
ENDGATHER Stop data gathering.
F Report motor following error.
FRAX Specify the coordinate system’ s feedrate axes.
GATHER Begin data gathering.
H Perform afeed hold.
HOME Start Homing Search Move.
HOMEZ Do aZero-Move Homing.

0 Appendix C

UMAC Quick Reference Guide

Command

Description

I{constant}

Report the current |-Variable values.

I{data}={expression}

Assign avalueto an I-Variable.

I{constant}=*

Assign factory default value to an I-Variable.

I{constant}=@I1{constant}

Set |-Variable to address of another |-V ariable.

I1DC

Force active clock equa to ID-module clock.

IDNUMBER Report electronic identification number.

INC Specify Incremental Move Mode.

J! Adjust motor commanded position to nearest integer count.
J+ Jog Positive.

J- Jog Negative.

J/ Jog Stop.

J:{constant} Jog Relative to Commanded Position.

J-* Jog to specified variable distance from present commanded position.
J= Jog to Prejog Position.

J={constant} Jog to specified position.

J=* Jog to specified variable position.

J=={constant}

Jog to specified motor position and make that position the pre-jog
position.

J™{constant}

Jog Relative to Actual Position.

J/*

Jog to specified variable distance from present actual position.

{jog command}*{constant}

Jog until trigger.

K

Kill motor output.

LEARN

Learn present commanded position.

LIST

List the contents of the currently opened buffer.

L1ST BLCOMP

List contents of addressed motor’ s backlash compensation table.

LI1ST BLCOMP DEF

List definition of addressed motor’ s backlash compensation table.

LIST COMP

List contents of addressed motor’s compensation table.

LIST COMP DEF

List definition of addressed motor’ s compensation table.

L1ST FORWARD

Report contents of forward-kinematic program buffer.

LIST GATHER

Report contents of the data gathering buffer.

LIST INVERSE Report contents of inverse-kinematic program buffer.
LIST LDS List Linking Addresses of L adder Functions.

LIST LINK List Linking Addresses of Internal Turbo PMAC Routines.
LIST PC List Program at Program Counter.

LIST PE List Program at Program Execution.

LIST PLC List the contents of the specified PL C program.

LIST PROGRAM

List the contents of the specified motion program.

LIST ROTARY

List contents of addressed coordinate system's rotary program buffer.

LIST TCOMP

List contents of addressed motor’ s torque compensation table.

LIST TCOMP DEF

List definition of addressed motor’ s torque compensation table.

LOCK{constant},P{constant}

Check/set process locking bit.

M{constant}

Report the current M- Variable values.

M{data}={expression}

Assign value to M- Variable s.

M{constant}->

Report current M- Variable definitions.

M{constant}->*

Self-Referenced M-V ariable Definition.

M{constant}->D:{address}

Long Fixed-Point M-Variable Definition.

M{constant}->DP:{address}

Dual-Ported RAM Fixed-Point M-V ariable Definition.

M{constant}->F:{address}

Dual-Ported RAM Floating-Point M-V ariable Definition.

M{constant}->L:{address}

Long Word Floating-Point M-Variable Definition.

M{constant}->TWB:{address}

Binary Thumbwheel-Multiplexer Definition.

M{constant}->TWD:{address}

BCD Thumbwheel-Multiplexer M-Variable Definition.

Appendix C

91

UMAC Quick Reference Guide

Command

Description

M{constant}->TWR:{address}

Resolver Thumbwheel-Multiplexer M-Variable Definition.

M{constant}->TWS:{address}

Serial Thumbwheel-Multiplexer M-V ariable Definition.

M{constant}->X/Y:{address}

Short Word M-V ariable Definition.

MFLUSH

Clear pending synchronous M-variable assignments.

MOVET IME Report time left in presently executing move.
NOFRAX Remove all axesfrom list of vector feedrate axes.
NORMAL Report circle-plane unit normal vector.
0{constant} Open loop output.

OPEN BINARY ROTARY

Open all existing rotary buffers for binary DPRAM entry.

OPEN FORWARD

Open aforward-kinematic program buffer for entry.

OPEN INVERSE

Open an inverse-kinematic program buffer for entry.

OPEN PLC

Open a PLC program buffer for entry.

OPEN PROGRAM

Open afixed motion program buffer for entry.

OPEN ROTARY

Open all existing rotary motion program buffers for text entry.

P

Report motor position.

P{constant}

Report the current P-Variable values.

P{data}={expression}

Assign avalueto aP-Variable.

PASSWORD={string}

Enter/set program password.

PAUSE PLC Pause specified PLC programs.

PC Report program counter.

PE Report program execution pointer.
PMATCH Re-match axis positions to motor positions.
PR Report rotary program remaining.

Q Quit program at end of move.
Q{constant} Report Q-Variable value.

Q{data}={expression}

Q-Variable value assignment

R

Run motion program

R[H]{address} Report the contents of specified memory addresses.
RESUME PLC Resume execution of specified PLC programs.

S Execute one move (step) of motion program.

SAVE Copy setup parameters to non-volatile memory.
SETPHASE Set commutation phase position value.

SID Report serial eectronic identification number.

SIZE Report the amount of unused buffer memory in Turbo PMAC.
STN Report MACRO station order number.
STN={constant} Set MACRO station order number.

TIME Report present time.

TIME={time} Set the present time.

TODAY Report present date.

TODAY={date} Set the present date.

TYPE Report type of Turbo PMAC.

UNDEFINE Erase coordinate system definition.

UNDEFINE ALL Erase coordinate definitionsin al coordinate systems.
UNLOCK{constant} Clear process locking hit.

UPDATE Copy present date and time to non-volétile storage.

\Y Report motor velocity.

VERSION Report PROM firmware version number.

VID Report vendor identification number.

W{address} Write values to specified addresses.

Z Coordinate-system specific.

92 Appendix C

UMAC Quick Reference Guide

APPENDIX D — SELECTED UMAC MOTION PROGRAM

COMMANDS

Command

Description

{axis}{data}[{axis}{data}...]

Position-only move specification

{axis}{data}:{data}
[{axis}{data}:{data}..]

Position and vel ocity move specification

{axis}H{data}[{axis}{data}.]

Circular arc move specification

{vector}{data}

[{vector}{data}..]

A{data} A-Axis move

ABS Absolute move mode

B{data} B-Axis move

C{data} C-Axis move

CALL Jump to subprogram with return

CIRCLE1 Set blended clockwise circular move mode
CIRCLE2 Set blended counterclockwise circular move mode
""COMMANDX""**{command}'"**"" Command issuance from internal program
COMMANDx™M{ letter} Control-character command issuance from internal program
DELAY{data} Delay for specified time

"DISABLE PLC

{constant}[,{constant}.._]"

Disable PLC programs

"DISABLE PLCC

{constant}[,{constant}...]"

Disable compiled PLC programs

"DISPLAY [{constant}] Display text to display port
""{message}"’

DISPLAY ... {variable} Formatted display of variable value
DWELL Dwell for specified time

ELSE Start false condition branch
ENABLE PLC Enable PLC buffers

ENABLE PLCC Enable compiled PL C programs
ENDIF Mark end of conditional block
ENDWHILE Mark end of conditional loop
F{data} Set Move Feedrate (Velocity)
FRAX Specify feedrate axes

GOsSuB Unconditional jump with return
GOTO Unconditional jump without return
HOME Programmed homing

HOMEZ Programmed zero-move homing
1{data} |-V ector specification for circular moves or normal vectors

I{data}={expression}

Set |-Variable value

IF ({condition})

Conditional branch

INC Incremental move mode

J{data} J-Vector specification for circular moves
K{data} K-Vector specification for circular moves
LINEAR Blended linear interpolation move mode

M{data}={expression}

Set M-Variable value

M{data}=={expression}

Synchronous M-V ariable value assignment

N{constant}

Program line label

Appendix D

93

UMAC Quick Reference Guide

Command Description

OR({condition}) Conditional OR

P{data}={expression} Set P-Variable value

PSET Redefine current axis positions (position SET)
Q{data}={expression} Set Q-Variable value

R{data} Set circleradius

RAPID Set rapid traverse mode

READ Read arguments for subroutine

RETURN Return from subroutine jJump/end main program
SENDx Cause Turbo PMAC to send message
SENDx™M{ letter} Cause Turbo PMAC to send control character
STOP Stop program execution

TA{data} Set acceleration time

TM{data} Set movetime

TS{data} Set S-Curve acceleration time

U{data} U-Axis move

v{data} V-Axis move

w{data} W-AXis move

WAIT Suspend program execution
WHILE({condition}) Conditional looping

X{data} X-Axis move

Y{data} Y -Axis move

Z{data} Z-AXxis move

94 Appendix D

UMAC Quick Reference Guide

APPENDIX E — SELECTED UMAC PLC PROGRAM

COMMANDS

Command Description

ADDRESS M otor/Coordinate System Modal Addressing
ADDRESS#P{constant} Select program’ s addressed motor
ADDRESS&P{constant} Select program’ s addressed coordinate system

AND ({condition})

Conditional AND

""COMMANDX"""*{command} """

Command issuance from internal program

COMMANDx™{ letter}

Control-Character command issuance

"DISABLE PLC {constant}[,{constant}...]"

Disable PLC programs

"DISABLE PLCC
{constant}[,{constant}...]"

Disable compiled PLC programs

"DISPLAY [{constant}] ""'{message}'"" Display text to display port
DISPLAY ... {variable} Formatted display of variable value
ELSE Start false condition branch
ENABLE PLC Enable PLC buffers

ENABLE PLCC Enable compiled PLC programs
ENDIF Mark end of conditional block
ENDWHILE Mark end of conditional loop

I{data}={expression}

Set |-Variable value

IF ({condition})

Conditional branch

M{data}={expression}

Set M-Variable value

OR({condition}) Conditional OR
P{data}={expression} Set P-Variable value

PAUSE PLC Pause execution of PLC programs
Q{data}={expression} Set Q-Variable value

RESUME PLC Resume execution of PLC programss

SENDx Cause Turbo PMAC to send message
SENDx™M{ letter} Cause Turbo PMAC to send control character
WHILE({condition}) Conditional looping

Appendix E

95

UMAC Quick Reference Guide

9

Appendix E

16

WST'8TEBL0$: X<-EZ8 N

WST'0TEBLO$: X<-EZLN.

.GT'80€8L0$: X<-EZIN.

«GT'00€820$: X<-EZS ..

snpess ndul Beyy 11Nv4

8T '8T€8L0$: X<-ZZ8 N

8T'0TEBL0$: X<-ZZL N,

«8T'80€820%$: X<-ZZIN..

«8T'00€820%$: X<-ZZS ..

snpess nduli Befy NITN

WLT'8TEBL0$: X<-TZ8 .,

WLT'0TESLO$: X<-TZLIN.,

.LT'80€820$:X<-TZ9N..

./T°00€8L0$: X<-TZS ..

sness indul Be|s ITd

IT'8TEBLOS: X<-0Z8 N

OT'0TELO$: X<-0ZL .,

.9T'80€8L0%$: X<-0Z9 .,

.9T'00€8L0%: X<-0ZS ..

snyess indul Beyy 14IAH

W7T'8TEBLOS: X<-6T8 N

WT'0TEBLOS: X<-6TLN.

u7T°80€8L0$: X<-6TIN.,

u7T'00€8L0$: X<-6TS .,

sngess Indul DHD

.8'8TE8L0$-X<-8T8IN..

8'0TE8L0$-X<-8TLIN..

.8'80E820$-X<-8TIN..

+8'00£820$-X<-8TS ..

Be|) Jo1e N0 DNJ

JBT'8TEBL0$: X<-ST8 N

JBT'0TEBLO$: X<-STLIN.

BT '80€8L0$: X<-STIN.

JB6T'00€8L0$: X<-STS .

snpess Indul Be|) Y3sn

WST1°ATESLOS X<-FT8N.

WT'STEBLOS- X<-VTLIN.,

7T A0E8LO$: X<-FTIN..

uVT'G0E8L0$: X<-VTS ..

snzess Indino VNIV

S'9T'8°0TEBL0%: A< S'9T'8'YTEBL0%: A< .S'9T'8'V0€8.0%: A< AN

-/08IA., -J0L .. S'9T'8'00€820%: A<-L09IN.. -LOSIN.. 10 Ndd 8nfeA puewwiod D1N0

S'9T'8'VTE8L0$: A< S'OT'8'2TEBL0%: A< .S'9T'8'20€820%: A< NN

-C08IN., -C0LIN., .S'9T'8'VY0E8.0%: A<-Z09IN.. -C0SIA., 10 DVvdenfeA puewwod V1 N0
S'Y2'0'6TEBL0%: X< S'Y2'0'TTE8L0%: X< .S'72'0'T0€8L0%: X<

-TO8IA., -TOLIN., S'12'0'60£820%: X<-TO9IN.. -TOSIN., uonisod Jeunod 11g-yZ ONI

g# puuey)d J# puuey)d o# puuey)d G# puuey) sRBBey puueyd aempreH

.GT'8TZ8L0%$: X<-ECV ..

.ST'0TZ8L0$: X<-EZEN.,

.ST°8028L0%: X<-EZZ .,

.ST'0028L0%: X<-EZT .,

snyess indul Bely 1 1NVv4

.8T'8T28L0$:X<-2Zr .,

8T'0TZ8L0$:X<-CZEWN..

81'802820$:X<-¢Z¢ .,

8T1°002820$:X<-¢ZT .,

sngess indui Bey WITIN

wWLT'8TZ8L0$: X<-TZr W.,

WL T'0TZ8L0$: X<-TZEW.

wLT'8028L0$: X<-TZZ .

wLT'0028L0$: X<-TZT .,

snyess indui Befy WITd

.9T'8TZ8L0%$: X<-0Zy W..

9T'0TZ8L0%: X<-0ZEW.,

.91'8028L0%: X<-0ZZ .

.91'0028L0%: X<-0ZT .,

sness indu Befy 14NH

uT'8TZ8L0$: X<-6TF .

W7T'0TZ8L0$: X<-6TEN.,

u7T°8028L0$: X<-6TC N

W7T'0028L0$: X<-6TT .,

snpess Indul OHD

.8'8T2820$:X<-8T¥ ..

.8'0TZ820%-X<-8TEN.,

.8'802820%-X<-8TZIN.

.8'002820%-X<-8TTIN.

Be|} Jo.p Wnod DNI

JBT'8TZ8L0$: X<-GTr ..

JBT'0TZ8L0$: X<-STEW.,

BT '8028L0$: X<-STZ .

J6T'0028L0$: X<-STT .

snpess Indul Bej) ¥3sn

WT'ATZ8L0$: X<-F T .

W7T'GTZ8L0$: X<-VTEN.,

W7T'A028L0$: X<-VTZ .

u7T'G0Z8L0$: X<-FTT .

sngess indino YNAY

.S'9T'8°DT2Z8L0%: A< S'9T‘8'PT28.0%: A< .S'9T‘8'0028/0%: A< .S'9T'8'702820%: A< NN
-LOVIN., -JOEN.. -J0CIN.. -/OTIN.. 10 |Add anfeA puewwod D1N0
S9T'8 VTZ8L0$ A< SIT'BZIZ8L0%: A< S'9T'8'V0eBLOS A< .S'9T'8°2028L0%: A< WA
207, -Z0EN. 202N -Z0T .. 10 QYA NA PUBLULLIOD VL NO

S'Y2'0'TT28.0%: X< S'72'0'T02820%: X<
S'72'0'6T2820%: X<-TOV .. -TOEW.. | .S'¥2'0'602820%:X<-TOZIN .. -TOTIN.. uonsod Jeunod 19-2 ON3
v# putRyD 4 PpuUeyD Z# PuUURyD T# PUURYD | sJesiBey puueydaiemp ey

SNOILINI43d
F19aVIdVA-IN dJLS3D99NS dOLOWN — 4 XIANIddV

8pIN9 a0 BRY YINO DVIANN

4 Xipusddy

86

.1'0T'07000$: A<-GF8IN..

.1 0T'00€000$° A<
-GN

.T'0T'0rE000$: A<-G9IN.,

.1'0T'002000%: A<-SrS ..

11 939 |dwoo-swoH

1'€'0r7000$: A<-EV8IN..

«1'€'00£000$: A<-EVLIN..

T'€'0rE000$: A<-EFIIN..

u1'€'002000$: A<-EVSIN..

1q Jolp-1|rej-pidwy

u1'C'0r7000$: A<-ZF8 ..

u1'2'00E000$: A<-ZVLIN.,

u1'2'0rE000$: A<-ZrIN.,

u1'2'002000$: A<-ZFS ..

11q Joue-Buimoo4-ered

W' T'0r7000$: A<-T¥8 .,

T T'00E000$: A<-TVLIN.,

T T'0rE000$: A<-TFIN.,

W1 T'002000$: A<-TrSIN.,

119 Joase Buimo|jo)-Bulurepn

.T'0'0r77000%$: A<-OF8 .,

WT'0'00E£000$: A<-0VLIN..

.T'0°07E000$: A<-0F9N.,

u1'0'002000$: A<-0VS N,

1iq uonsod-u|

«1'6T'0EP000$: X<-6E8 .,

T'6T°09€000$: X<
“6EL N

.T'6T°0EE000$: X<-6E9 N

.1'67'092000%$: X<-6ES .

119 SNess pe[qeus-eyijdwy

u1'8T'0E000$: X<-8E8 .,

.1'81°09€000$: X<
-8ELIN..

.1'8T°0€€000$: X<-8EIN

.1'87°0692000%$:X<-8ES .

11q 8pow-doo|-usdo

WT'2T'0EY000$: X<-LEBIN..

.T°L7°09€000$: X<
“LELIN.,

uT'2T'0E€000$: X<-LEIN.,

.1°27'092000%$: X<-LES .

119 weJBoud-Buuuny

«1'ST'0EP000$: X<-GESIN.,

T'GT'09E000$: X<
“GEL N

T'GT'0EE000$: X<-GEIN.,

.1'GT'092000%$: X<-GES ..

11g ssaJbo.d-ul-[pmqa

.1 'ET'0EP000$: X<-EEGIN.,

JT'ET'09E000$: X<
“€ELN.

T'ET'0EE000$: X<-EEIIN.,

T'€T'092000%$:X<-EES ..

119 08Z-A100PA-pRIISAQ

1T .1°22°0er000$: X<
-CEBIN..

.1'22'09€000%$:- X<
“CELIN.,

.1'22°0€€000$: X<-ZEIN.,

.1'22'092000%$: X<-2ES .

g Jos-HWl|-pue-dA BN

0€7000$: X<-TEBIN.,

.1'T2'09€000$: X<
“TELIN.

.1'TZ'0EE000$: X<-TEIN.,

.1'72'092000$:X<-TES .,

11 18511 1|-PUe-8AI S0

.1 TT'07000$: A<-0E8IN..

WT'TT'00€000$: A<
“0EL N

T TT'0rE000$: A<-0E9 N,

.1'TT'002000%$: A<-0ES .

119 1wij-uonsod-uo-paddols

8# 010N

/# I010N

9# 010N

G# I0J0IN

s1gsnyeIS J010 N

«1'0T'02000$: A<-Giv N,

.T'0T‘00T000$: A<
“GVEN..

.T'0T'0FT000$: A<-SZ N,

.T'0T°000000$: A<-SYTI.,

11g @19 |dWwoo-sWoH

WT'€'072000$: A<-EVV ..

1'€‘00T000$: A<-EVEN.,

WT'€'0rT000$: A<-EVZ ..

. 1'€'000000$: A<-EVT A,

11q Jose-}|rej-p i dwy

WT'C'072000$: A<-Zri ..

.1'2'00T000$: A<-ZVEN.,

WT'C'0rT000$: A<-ZHZ .,

.1'2'000000$: A<-ZVTIN..

11q Jou-Buimo|j04-|ere

W1 T'0r2000$: A<-T¥ .,

.T'T'00T000$: A<-TVEN.,

T T'0rT000$: A<-THZ .,

1'T°000000$: A<-TFT .,

119 Joase Buimo|jo)-Bulurepn

.1'0'072000$: A<-O77 .,

.1'0'00T000$: A<-OFE ..

.1‘0'0rT000$: A<-OFZ ..

.1'0'000000$: A<-OFTIN..

11g uonisod-u|

T'6T°0E2000$: X<-6E7 .,

T'6T7°09T000$: X<
-6EEN..

«1'6T'0ET000$: X<-6EC N

.T'67°090000$: X<-6ETIA..

1 Sniess pe(gqeue-e iyl dwy

.1'8T'0£2000$- X<-8EY ..

.1'87°09T1000%$: X<
-BEEN.

.1'8T'0ET000$: X<-8EC .,

.1'87°090000$:X<-8ET.,

11q 8pow-doo|-usdO

uT'LT'0E2000$: X<-LEV N,

T'LT°09T000$: X<
“LEEN.

T'LT'0ET000$: X<-LETIN.,

.1'27'090000$: X<-LET .,

119 weJboid-Buuuny

«1'GT'0E2000$: X<-GEVIN.,

T'GT'09T000$: X<
-GEEN..

.1'GT'0ET000$: X<-GECT .,

.T'GT°090000$: X<-GET ..

119 ssaJboud-ul-|pmqa

«T'E€T'0E2000$: X<-EEV .,

T'€T°09T000$: X<
-EEEN..

«T'ET'0ET000$: X<-EEC N

WT'€1°090000$ X<-EET ..

11 0J6Z-A100PA-PRIISAQ

u1'22'0£2000$: X<-ZEV N,

.1'22'091000%$: X<
-CEEN.,

«1'22'0ET000$: X<-ZETN.

.1'22°090000$:X<-CET .,

11 1Bs-1wi|-pus-dAiebeN

«1'T2'0E2000$: X<-TEV .,

T'T2'09T000$: X<
“TEEN..

«1'TC'0ET000$: X<-TEZN.,

.1'T2'090000$:X<-TET .,

19 Jes-1iW|-pus-SANISOd

.1 TT'0r2000$: A<-0EVIN..

+T'TT'00T000$: A<
-0EEN..

T'TT'0rT000$: A<-0ECIA..

.T'TT°000000$: A<-0ET ..

119 1wij-uonsod-uo-paeddols

¥7# JO10IN

c# 1010\

Z# 1010\

T# 1010

sligsniels 010N

apIN9 80U BRY MINO DVIANN

S'9T'8'6E7000$: X<

.S'9T'8'69€000$: X<

S'9T'8'6E€000$: X<

.S'9T'8'692000%: X<

-G/8IN., -GLLIN.. -G/9N.. -G/SIN.. (s [2e £80X1]/T) 40118 BUIMO| [0} JOION

(0fopn

49%000%:d<-7/8 N 43£000%:A<-v.LIN -498000%:d<-7/9 N 432000%:A<-7/SIN [ze x60xx1]/T) A1100BA [ENIDE Pabielony
.S'¥20'3rY000$: A< .S¥Z'0'3DE000$: A< .S'¥2'0'IrE000$: A< .S'¥Z'0'302000$: A<

-€/8IN., €L/ N, /9N, -€/SIN., (510) uonisod aun)cked swioy Jopoous

/Sp000$:1<-2/8W

£dE000$:1<-CLLIN

/SE000%:1<-2L9N

£d2000$:1<-2/SIN

(S10) souessipiuonisod Bol a|ge e A

0T7000$:A<-698 N

06€000$-A<-69L N

0T€000$:A<-699 N

062000%$-A<-695 N

(510 [2€ «80XX|]/T) UON139.100 UO ITesuadwio)

.S'9T'8'4Er000$: X<
-898IN.

,S'9T'8°'49€000$: X<
-89L .

S'9T'8'4EE000$: X<
-899 I\,

.S'9T'8°'492000$: X<
-89S\

(S1g Ova 19-9T) INdINO 114

aor000$:d<-/98IN

aseo00$:ad<-/9/IN

doco00$:d<-L99N

asco00s$:d<-295 N

(S10 [2€ £20%x1]/T) Sod Jeisew 1ussald

S'P2'0'dTr000$: X<

.S'Y2'0°A6£000$- X<

S'P2'0'dTE000$: X<

.S'¥2'0°A62000%- X<

-998I\.., 99/ N, -999 I\, -99G .., (0hos10 [2€ «60XX1]/T) A1ooRA PNIDY
O¥y000$:d<-798IN 00£000$:A<-79L N O¥£000$:d<-799N 002000$:A<-79S N (S10 [2€ «80XX1]/T) Seiq uonsod
/77000$:A<-€98IN /0€000$:d<-£9L N /£000$:A<-€99IN /0Z000$:d<-£9S N (S10 [2e480%x1]/T) Uonssod (pus) 1ebre |

d017000$-A<-298 N

98€000$-A<-29LIN

90€000$-A<-299N

g982000$-A<-29SIN

(S0 [2e «80xx1]/T) Uonsod Ny

807000$:A<-T98IN

88€000%$:A<-T9LIN

80€000$:A<-T99IN

882000%:A<-T9SIN

(810 [2€80%x1]/T) UonIS0d pBpUBLILIOD

84 1010\ /# 1010\ O# I010 N G# 010N SPIIBeY N0 |\ 1010 N
.S'91'8'6£2000%$: X< .S'9T'8'69T000$: X< .S'9T'8'6ET000%$: X<
-Gy .. -G/EN., -G/ZN., 160000$:A<-08TIN (s10 [2e +80X1]/T) Jo1se Buimo||0) J01OIN
(fosn
492000%:A<-v.vIN 43T000$:d<-7.EN -49T000%:d<-7.ZN 430000%:d<-7.TIN [ze x60xx1]/T) A1100A [ENIDR pabielony
.S'¥2'0'3r2000$: A< .S'72'0'FOT000$: A< .S'7Z'0'IrT000$: A< .S'72°0'300000$: A<
€., -CLEN.. -€LZN.. -€LTN., (510) uonsod aunycked swoy Jepoous

1S2000%:1<-¢/VIN

2d1000$:1<-CLEN

/GT000$: 1<-¢/2N

£d0000$:1<-CLTIN

(s10) souessip/uonsod Bola|ge e A

0T2000$:d<-697 N

06T000$-A<-69EN

0TTO00$:d<-69CIN

060000$-:A<-69TIN

(S10 [2€ x80XX1]/T) UoROB.1100 Lo IFestadwo)

.S'91°8'4E2000$: X<
-89V N,

.S'9T'8'49T000$: X<
-B9EN.,

.S'9T'8"4ET000$: X<
-89\

.S'9T'8'490000$: X<
-89T .,

(S19 OV 19-9T) INdINO Jol| 14

A02000$-a<-29vIN

dsT000$:d<-29€IN

AaoTo00$-d<-29ZN

Ads0000$-a<-29TIN

(810 [2€ xL0xx1]/T) sod Jersew wessid

.S'72'0'dTe000$: X<
-9 N

.S'P2'0'a6T000$: X<
-99EN.

.S'P2'0'dTT000$: X<
“99ZI\.

.S'72°0'd60000$: X<
“99TIN.

(Ao [2€ «60XX1]/T) AloOoRA ey

J¥2000$-a<-+9vr N

00T1000$:A<-+9EN

OrT1000$:d<-79ZIN

000000%$:A<-¥9T N

(S0 [2€ +80xx|]/T) Selq uonisod

/¥2000$-d<-€9¥ N

20T000$:d<-€9EN

/¥T000$:d<-€9CIN

£00000$:A<-€9TN

(s [2e +80x%x1]/1) Uonssod (pus) 1ebre |

902000$:A<-29r N

g98T000%$:A<-29EN

d90T000$:A<-29ZIN

980000$-:A<-C9TIN

(s10 [2e £80%x1]/T) Uonsod enpy

802000$-A<-T9vIN

88T000$-A<-TIEN

80T000$-A<-T9ZN

880000$-A<-TIT

(510 [z€ «80%x1]/T) UonSOd papuewwo)

g# I010 N

/# 1010\

9# OO\

G# 010N

SPBIIBYaN0 N J010N

8pIN9 a0 BRY YINO DVIANN

ul 0l JdeZeU0%- A<-OoocalN. “0cLa N 009N “0oaa N \dO) 14 10Le-DUINMOT10;3-[Ejed
T'8T'4€9200%: A< T'8T'4EG200$: A< T'8T'4EV200%: A<
1'8T'4€2200%: A<-888S\.. -88LGIN., -889GIN., -885SW. | (HO) 11g Jose-Buimo|jos-Buiuiep
3 xipusddy T'/T'4S9200%: A< T'/T'4EG200$ A< T'/T'de200$ A< 00t
I'2T1'4€2200%: A<-288SI\.. -/8/GIN., -/89GIN., -/8SGIN.. (sJo10w Jo ANY) 1g uonsod-u|

«7'0'072200$: X<-788S .,

«7'0'079200%$: X<-78LS .,

«7'0'0rS200$: X<-789S .,

W7'0'017200$: X<-785G N .

159nba. uoow snonunUoD

u1'22'4€9200%: A<

u1'22'4€5200%: A<

122’ 4Er200$: A<

,1'22'48/200$: A<-Z8BG N, Z8/GN., 289G ., 289G ., 11g JOLB-BWN-UNY
.1'02'4€€200%: A< 1'T2'4€9200%: A< TOTH3500F A< WO HROZ00F6 A<
JT'T2'4€/200%: XO6E8BGIN., {T'02'4€2200%: A<-GREIRN., OSSN, -ORISIN., || (S1010W 10 Y@ LBIBIBRLHIY
T'0'0BA0OSECRaIBAGIN|. | .T'0'0r9200$: X<-08/G .| | .T'O0rIZ6DSISECORDI. || .T°0'0ric60%ISCZ008HA.. 119 Bujuuni-weibod
68VGW.. | [L'61 362200%: A<-685G .. 682G ., 68TG., (50) 11q Jo1B-BUIMO ([0 Efeg
g WO BRIERWP 00D | , wesAsareupiooD| | 9 weBAE SIS || g weBREIREENPISD || snieis wesAs areulpioo)
[ele1=1'A'IM) ul OL JCCCUUD-AS 0oCaV N [eleI®= 1A' ooLavVu AU/ +1Y AT OUTVIOUTO U TUAS VY
LT'LT'4E€200%: A< LT'LT'HET200$: A< .T'21'4£0200%: A<
-/8VGW. | .T'2T'462200%: A<-2Z8ES .. -/82G .. -/8TS .. (s1010W Jo ANY) 3iq uonsod-uj
F7'0°0rEZ00$: X<
Y8rGN. | .#'0'0v2200$: X<¥8ESN. | .F'0°0FT200$:X<-¥82SIN. | .7'0'0r0200$: X<-¥8TSI.. 159nba. Uo oW SNoNUUOD
.T1'22'4€€200$: A< WT'TZ'HET200$: A< .1'22'4€0200%$: A<
Z8VG .. | .1'22'462200%: A<-Z8ES .. 282G .. Z8TSN.. 11g Jose-dwi-uny
.T'TZ'4E€200$: A< LT'TZ'HET200$: A< .T'TZ'4£0200%: A<
T8VSW.. | .T'T2'462200%: A<-T8ES .. -T8ZS .. -T8TSW.. 11q JoLe-SNIpeI-8oII0
.T'0°0rEZ00$: X<
08¥GW. | .T'0'0v2200$:X<-086SW.. | .T'0'0rT200$:X<-0825W.. | .I'0'0v0200$: X<-08TSI.. 11g Buuunu-ureibo.d
sug
¥ WOSAS 81eUIp 100D € WeIsAS a1euIp 00D 2 WeSAS areulp 100D T WeSAS areulp 00D shjels WeIsAS ajeulp oo

617.200$:1<-678SIN

679200%:1<-6.SIN

675200%:1<-619SIN

67172003 1<-61/95 N

(s1un Busauibus) uonsod el sixe-7

817/200%:1<-878SIN

879200$:1<-87/SIN

815200$: 1<-879SIN

877200$- 1<-87SSIN

(S1un Buissuibus) uonsod PH.IeISIXe- A

L¥7/200$:1<-L¥8SIN

1¥9200$-1<-L7/SIN

L¥5200$-1<-L79SIN

L77200$-1<-L7SSIN

(S1un Bursauibus) uonisod 6] sIxe-X

917/200$-1<-9¥8SN

99200$-1<-97/SIN

95200$-1<-979SIN

9t717200$- 1<-9¥SSIN

(S1un BuLisuIbus) uonisod 6] SIXe-\\

S/200$: 1<-G8SIN

S¥9200$:1<-GV/SIN

S¥SC00$:1<-G9SIN

St200$: 1<-GSSIN

(S1un Busaubus) uonisod 6] SIXe- A

¥v/200$:1<-778SIN

¥¥9200$:1<-7/SIN

¥¥5200$:1<-779SIN

Y200$: 1<-77SSIN

(s1un BuLissuibus) uonisod VORI SIXe-N

€¥/200$-1<-EV8SIN

€¥9200$:1<-EV.SIN

EYS200$:1<-EV9SIN

EYr200$:1<-EVSSIN

(s1un Busauibue) uonsod el sixe-)

Zi7/200$:1<-28SIN

Z19200%:1<-¢v/SIN

ZS200$:1<-2v9SIN

Zi7200$:1<-2vSSIN

(s1un Busauibue) uonsod pbhrel sixe-g

Ti7/200$:1<-T¥8SN

T¥9200$-1<-T¥/SIN

T¥S200$-1<-T¥9SIN

Ti77200$- 1<-T¥SSIN

(S1un BuLssuibus) uonisod P6.Ie] SIXe-y

8
WeISAS areulp J00)

L

WRIS/AS a1eulIp 00D

9
WRIS/AS a1eulIp 00D

S

WweIs/AS areulp J00)d

SUOI1IS0d 9A0 N PeTe|N9[eD-§0-pul 'S "D

67€200$-1<-677SIN

617¢200$-1<-6VESIN

671200$-1<-67¢SIN

6170200$-1<-6VTSIN

(S1un Busauibus) uonisod phIe) sixe-7

87€C00$: 1<-87SIN

872200$: 1<-8VESIN

871200$: 1<-8V¢SIN

870200$: 1<-8VISIN

(s1un BuisauIbus) uonsod 6.l SIXe- A

L¥€200$:1<-LI 7SN

1¥2200%$:1<-LVESIN

L¥T1200$:1<-L2SIN

/¥0200%$: 1<-LFTSIN

(s1un Busauibus) uonsod PHIe) SIXe-X

9r€200$: 1<-9SIN

9P2200$:1<-9ESIN

9¥T200$:1<-9rZSIN

9v0200$:1<-9VTSIN

(s1un BuLsauibus) uonsod PO SIXe-A\

S€200$: 1<-GSIN

S¥2200$: 1<-GVESIN

ST200$: 1<-GFZSIN

S¥0200$: 1<-GFTSIN

(s1un Busauibus) uonisod 6.l SixXe- A

¥7€200$- 1<-7i77S N

¥2200$-1<-77ESIN

¥¥1200$- 1<-77¢S N

¥70200$- 1<-77TSIN

(s1un Busauibus) uonisod PO SIXe-N

ErE200$-1<-EFFSIN

€172200$:-1<-EVESIN

€¥T200$-1<-EFCSIN

€0200$-1<-EVTISIN

(S1un Busauibus) uonisod PhIe] sixe-)

ZvEC00$: 1<-CSIN

Z¥2200$: 1<-¢reSIN

Z¥1200$:1<-¢eSIN

Z¥0200$: 1<-ZrTSIN

(s1un Busauibus) uonisod pH.Ie] Sixe-q

TYEC00$: 1<-Tr7SIN

T2200$: 1<-TFESIN

TrT200$:1<-TreSIN

T0200%$: 1<-TFTSIN

(s1un Busauibus) uonisod BbHre] sixXe-y

14

WoISAS areUIp 100D

€
WweIsAS areulp Jood

2
WoISAS 97eUIP 100D

I
WweIsAS areulp oo

SUONSOd
90\ PRTe|NO[eD-J0-puUT 'S 'O

apIN9 80U BRY MINO DVIANN

TO0T

4 Xlpusddy

S'P2'0°20,200$:X<

.S'72'0°209200$: X<

S'72'0'205200$: X<

S'P2'0°20r200$: X<

-868G ., -86/GIN.. -869G I\, 865G\, (S1un OT1) 8seq awn Wese.d
.S'¥20'00,200$: X< .S'v72°0°009200%: X< .S'72°0°'005200%: X< .S'72'0°'0017200%: X<

-/68S ., -/6/SIN., -/69SIN.. -/6SS .. (S1uNn QT) 8Seq SW 11 PSPURLLLIOD 1SOH

(uewubsse

ST/200$: A<-ZT8SIN GT9200$: A<-ZT/SN GTS200$: A<-ZT9SIN ST#200$: A<-ZTSSN snouoJyoufs Joy) mme n Noda_

Juswiub Isse

GT/200$-X<-TT8SWN

GT9200$-X<-TT/SIN

GTS200$-X<-TT9SN

STi7200$-X<-TTSSIN

SNOUOJYDU/S 10)) BWi TTXS|

8 Was/AS areulp j00d

/ WesAS areulp ood

9 WesAS areulpIood

G wWes/AS areulp J00d

Sa|Celie \ WeISAS areulp oo

S'¥2'0°20€200$: X<

S'¥2'0°202200%$: X<

.S'¥2'0°20T200%$: X<

.S'¥20'200200%$: X<

867G\, -86ESIN., -862S . -86TSIN., (SHun QT 1) 8seq 8W N JBsS.d
.S'¥2'0'00£200%: X< .S'72°0°002200%: X< .S'72°0°'00T200$: X< .S'72°0°'000200%: X<

-/6¥SIN., -/6ESIN.. -/62SIN., -/6TSIN.. (S1uNn QT [) 8Seq S 11 PSPUBLILIOD 1SOH

(uewubsse

STE200$: A<-ZTHSIN GT2200$: A<-ZTEGIN GTTZ00$: A<-ZTZSN ST0200$: A<-TTTSIA SNoU0JYIUAS J0§) Ame n N@me_

Juswiub Isse

STEC00$: X<-TTVSIN

STZ200$: X<-TTESIN

STT200$: X<-TTZSIN

GT0200$-X<-TTISIN

SNOUOJYDU/S J0)) Jown TTXS|

¥ WeSAS a1euIp J00D

€ wes/As areulp jood

Z Wes/s areulp.Jood

T WesAs areulp.Jood

Sa|qel.re A\ WeISAS 81eulp 100D

S9d0$: 1<-¥68 N

2de000$:-1<-¥6LIN

ZS€000%:1<-769IN

2d2000$:1<-#6SIN

(S10) IS0 SIXY

7900$:1<-€68 N

TAE000$: 1<-E6LIN

TSE000$: 1<-E69IN

1A2000$: 1<-€65 N

(1unsi) Joloey B[RS SIXY-M/Z

€9d03$:1<-¢68 N

0d€000$:-1<-Z6.LIN

0SE000$-1<-269IN

0d2000$-1<-26S N

(Hunps)) Jojoey 8IS SIXY-A/A

29d03$:1<-T68IN

40€000$:1<-T6LIN

47€000$: 1<-T69IN

402000$:-1<-T6S N

(1uns)o) Joyaey fe3s SIXY-0/g/V/N/X

8# 010N

/# 1010\

9# 1010\

G# JOJ0IN

slwsIfoy uoniupdgsIXy Jo1o N

252000%: 1<V IN

2dr000$:1<-76EN

ZST000$:1<-6CIN

2d0000$: 1<-¥6TIN

(S10) 1SJJ0SIXY

TGC000$: 1<-E6V7 N

TAT000$:1<-E6EN

TST000$: 1<-E6ZIN

TA0000$:1<-E6TIN

(1lun/s10) J010R) B[ETS SIXY-M/Z

052000$:1<-2677 N

0dT000$: 1<-Z6EN

0ST000$:1<-¢6ZIN

0d0000$:1<-2¢6TIN

(1uns)) Jo1oey B[RS SIXY-AJA

=472000%-1<-T6¥ N

40T000$:-1<-T6EN

47T000$: 1<-T6CIN

420000$:1<-T6T N

(1uns)o) Joyoey 8 [e3s SIXY-0/g/V/N/X

¥# 1010 N

E# 010N

¢# JO10IN

T# 010N

sJesiBey uoniueqsSIXy J010 A

8pIN9 a0 BRY YINO DVIANN

20T
4 Xipusddy

apIN9 80U BRY MINO DVIANN

UMAC Quick Reference Guide

APPENDIX G — FIRST DIGITAL I/O ACCESSORY M-VARIABLES

Name Definition

M1/00 M7000->Y:$078C00,0,1
M1/01 M7001->Y:$078C00,1,1
MI1/02 M7002->Y:$078C00,2,1
M1/03 M7003->Y:$078C00,3,1
M1/04 M7004->Y:$078C00,4,1
MI1/05 M7005->Y:$078C00,5,1
M1/06 M7006->Y:$078C00,6,1
M1/07 M7007->Y:$078C00,7,1
M1/08 M7008->Y:$078C01,0,1
MI1/09 M7009->Y:$078C01,1,1
M1/010 M7010->Y:$078C01,2,1
M1/011 M7011->Y:$078C01,3,1
M1/012 M7012->Y:$078C01,4,1
M1/013 M7013->Y:$078C01,5,1
M1/014 M7014->Y:$078C01,6,1
M1/015 M7015->Y:$078C01,7,1
M1/016 M7016->Y:$078C02,0,1
M1/017 M7017->Y:$078C02,1,1
M1/018 M7018->Y:$078C02,2,1
M1/019 M7019->Y:$078C02,3,1
M1/020 M7020->Y:$078C02,4,1
M1/021 M7021->Y:$078C02,5,1
M1/022 M7022->Y:$078C02,6,1
M1/023 M7023->Y:$078C02,7,1
M1/024 M7024->Y:$078C03,0,1
M1/025 M7025->Y:$078C03,1,1
M1/026 M7026->Y:$078C03,2,1
M1/027 M7027->Y:$078C03,3,1
M1/028 M7028->Y:$078C03,4,1
M1/029 M7029->Y:$078C03,5,1
M1/030 M7030->Y:$078C03,6,1
M1/031 M7031->Y:$078C03,7,1
M1/032 M7032->Y:$078C04,0,1
M1/033 M7033->Y:$078C04,1,1
M1/034 M7034->Y:$078C04,2,1
M1/035 M7035->Y:$078C04,3,1
M1/036 M7036->Y:$078C04,4,1
M1/037 M7037->Y:$078C04,5,1
M1/038 M7038->Y:$078C04,6,1
M1/039 M7039->Y:$078C04,7,1
M1/040 M7040->Y:$078C05,0,1
M1/041 M7041->Y:$078C05,1,1
M1/042 M7042->Y:$078C05,2,1
M1/043 M7043->Y:$078C05,3,1
M1/044 M7044->Y:$078C05,4,1
M1/045 M7045->Y:$078C05,5,1
M1/046 M7046->Y:$078C05,6,1
M1/047 M7047->Y:$078C05,7,1

Appendix G

103

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions We buy equipment Learn more!

Extend the life of your critical industrial, Planning to,upgrade your/current Visit us at artisantg.com for more info
commercial, and military systems with our equipment? Have/surplus equipment taking on price quotes, drivers, technical

superior service and support. up’shelf'space? Well give'it a new home. specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, represéntative, or authorized distributor for any manufacturer listed herein.

(217) 352-9330 | sales@artisantg.com | artisantg.com TECHNOLOGY GROUP

We’re here to make your life easier. How can we help you today? Vl ARTISAN

