
All trademarks, brandnames, and brands appearing herein are the property of their respective owners.

• Critical and expedited services
• In stock / Ready-to-ship

• We buy your excess, underutilized, and idle equipment
• Full-service, independent repair center

Delta Tau Turbo UMAC-3U

160 MHz CPU

$3250 .00

In Stock
Qty Available: 1
New From Surplus Stock

Open Web Page

https://www.artisantg.com/62993-5

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/62993-5/OMRON-Turbo-UMAC-3U?pdf=62993-5
https://www.artisantg.com/62993-5?pdf=62993-5

^1 Reference Guide

^2 UMAC Quick Reference

^3 Reference Guide for UMAC Products

^4 3A0-UMACQR-xPRx

^5 December 23, 2004

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other
uses are unauthorized without written permission of Delta Tau Data Systems, Inc.
Information contained in this manual may be updated from time-to-time due to product
improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and
amplifiers contain static sensitive components that can be damaged by incorrect
handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid
contact with highly insulated materials. Only qualified personnel should be allowed to
handle this equipment.

In the case of industrial applications, we expect our products to be protected from
hazardous or conductive materials and/or environments that could cause harm to the
controller by damaging components or causing electrical shorts. When our products
are used in an industrial environment, install them into an industrial electrical cabinet
or industrial PC to protect them from excessive or corrosive moisture, abnormal
ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.
products are directly exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

UMAC Quick Reference Guide

Table of Contents i

Table of Contents

INTRODUCTION..1
Motion Control Applications ...1
UMAC Turbo System..2

Features..3
Installation and Setup ...5

Hardware Setup...5
Software Setup ...5

Programming UMAC...6
Online Commands ...6
Motion Programs...6
PLC Programs...6

UMAC Tasks..7
Single Character I/O ...7
Commutation Update ..7
Servo Update..7
Real-Time Interrupt Tasks...8
Background Tasks..8

PMAC EXECUTIVE PROGRAM, PEWIN32PRO ..11
Configuring PEWIN...11

Establishing Communications ..11
Workspace Layout ...11

Quick Plot Feature..12
Saving and Retrieving PMAC Parameters..12
The Watch and Position Windows ..13
Uploading and Downloading Files ..13
Using MACRO Names and Include Files...13
Downloading Compiled PLCCs..13
The PID Tuning Utility ..13

Auto Tuning..14
Interactive Tuning..15

Other Features...16
HARDWARE SETUP AND CONNECTIONS...17

Address Configuration ...17
Servo Cards..17
IO Cards...17

Serial Port Connections..18
Re-initializing UMAC..18

Power Supply..19
Motor Flag Connections...19

Disabling the Overtravel Limit Flags...19
Types of Overtravel Limits ..19
Home Sensors ..20
Checking the Flag Inputs ..20

Motor Signals Connections..21
Incremental Encoder Connection ...21
Checking the Encoder Inputs ..21
MLDT Feedback Connection..21
DAC Output Signals ..22
Checking the DAC Outputs...22
Pulse and Direction Stepper Signals ..23
Digital Amplifier Connections ..23
Amplifier Enable Signals...24

 UMAC Quick Reference Guide

ii Table of Contents

Amplifier Fault Signals..24
Digital Inputs and Outputs ...25
Connection Examples...26

Digital Amplifier with Incremental Encoder..26
Analog Amplifier with Incremental Encoder..27
Analog Amplifier with MLDT Feedback ..28
Stepper Driver with Incremental Encoder ...29

SOFTWARE SETUP...31
Resetting UMAC..31
Motors Setup...31
Servo Loop Setup ...31
Programming PMAC ...31

Online Commands ...31
Buffered (Program) Commands ...32

Computational Features..33
I-Variables..33
P-Variables ..34
Q-Variables..34
M-Variables ...35
Arrays...36
Operators ...36
Functions..37
Comparators ..38

Encoder Conversion Table...38
Conversion Table Structure ..38
Further Position Processing ...39

PMAC Position Registers ..39
Summary of Selected I-Variables..41

Motor Definition I-Variables ..41
Motor Safety I-Variables...41
S Curve and Linear Acceleration Variables...42
Rate vs. Time: Programming the Maximum Acceleration Parameters..42
Benefits of Using S-Curve Acceleration Profiles ...43
Motor Movement I-Variables..43
Servo Control I-Variables ...44
Channel Specific I-Variables ..44

Homing Search Moves...45
Jogging Moves..45

Indefinite Jog Commands..45
Jogging to a Specified Position...45
Jog Moves Specified by a Variable...45
Jog-Until-Trigger ..46

Command and Send Statements ..46
MOTION PROGRAMS..47

How PMAC Executes a Motion Program...47
Coordinate Systems..48

Axis Definitions..48
Axis Definition Statements...49

Writing a Motion Program...49
Running a Motion Program ...50
Subroutines and Subprograms ...52

Passing Arguments to Subroutines ...52
G, M, T, and D-Codes (Machine Tool Style Programs)..53

NC Products..53
Linear Blended Moves ...54

UMAC Quick Reference Guide

Table of Contents iii

Linear Interpolated Moves Characteristics..55
Circular Interpolation ...58
Splined Moves ..60
PVT-Mode Moves..61
Turbo PMAC Lookahead Function...62
Turbo PMAC Kinematic Calculations ..64
Other Programming Features...65

Rotary Motion Program Buffers ...65
Internal Timebase, the Feedrate Override ...65
External Time-Base Control (Electronic Cams)..66
Position Following (Electronic Gearing)...66
Cutter Radius Compensation ..66
Synchronizing PMAC to other PMACs..66
Axis Transformation Matrices ..67
Position-Capture and Position-Compare Functions ...67
Learning a Motion Program...67

PLC PROGRAMS..69
Entering a PLC Program..70
PLC Program Structure ..71
Calculation Statements...71
Conditional Statements...71

Level-Triggered Conditions ..71
Edge-Triggered Conditions...71

WHILE Loops ..72
COMMAND and SEND Statements ..72
Timers ...73
Compiled PLC Programs ...74

TROUBLESHOOTING ..75
Establishing Communications ...75
Hardware Re-initialization ...75
The Watchdog Timer (Red LED)..76
System Configuration...76
UMAC System Status Bits...76
Direct Access to Hardware Features..76
Motor Parameters ...77
Motion Programs..78
PLC Programs...79

APPENDIX A — UMAC ERROR CODE SUMMARY..81
I6, Error Reporting Mode...81

APPENDIX B — SELECTED UMAC I-VARIABLES SUMMARY ...83
APPENDIX C — SELECTED UMAC ONLINE COMMANDS...89
APPENDIX D — SELECTED UMAC MOTION PROGRAM COMMANDS..93
APPENDIX E — SELECTED UMAC PLC PROGRAM COMMANDS..95
APPENDIX F — MOTOR SUGGESTED M-VARIABLE DEFINITIONS..97
APPENDIX G — FIRST DIGITAL I/O ACCESSORY M-VARIABLES...103

 UMAC Quick Reference Guide

iv Table of Contents

UMAC Quick Reference Guide

Introduction 1

INTRODUCTION
This manual introduces the most common hardware and software features of the UMAC Turbo system. It
is intended for first-time users as a complement to the UMAC Turbo System manuals and related
accessories. Use this quick reference manual in conjunction with the following manuals:
• Turbo PMAC User Manual
• Turbo PMAC Software Reference
• UMAC Turbo Hardware Reference
• UMAC Turbo Accessory Manuals

Motion Control Applications
A typical motion control application is composed of a computer, a motion controller, a set of amplifiers
and motors, and the machine to be controlled.

The computer is the interface between the user and the machine and it defines the automated tasks
required for the machine as a series of motion program commands written as simple text files.

The motion programs, written as text files, are downloaded to the main memory of the motion controller
for fast and continuous execution. The motion controller interprets the series of commands in the motion
programs and converts them to proper electrical signals for the amplifier and motor to cause the
programmed motion. The characteristics and timing of these signals will determine, for example, the
distance, acceleration and velocity of motion for the different processes.

The use of an amplifier allows the standardization of the command signals from the motion controller to
control virtually any kind and size of motor. The most commonly used command signal from a motion
controller is a ±10V analog command signal. Usually, the amplifier interprets this signal as a torque
command, which translates into an electrical current in the windings of the motor that causes the desired
motion. An encoder device, usually placed in the back of the motor and mechanically engaged with the
motor shaft, provides feedback information for the motion controller.

The electric motor is a device that converts electrical energy into mechanical energy. There are several
kinds of motors including DC brush, AC brushless and stepper motors. It is important to know the
maximum velocity and acceleration that the motor can deliver for the proper selection of the servo loop
parameters in the motion controller. The accuracy of motion is determined mainly by the appropriate
response of the amplifier and motor to the required motion command signals and by the resolution of the
encoder feedback device.

The UMAC (Universal Motion and Automation Controller) is a motion controller system configurable to
control virtually any kind of machine automation application. A single UMAC Turbo system can control
up to 32 axes and thousands of digital I/O points with a great level of accuracy and simplicity of
operation. The UMAC Turbo system can be configured to interface with virtually any kind of amplifier,
motor and feedback device. In addition, the UMAC can use different kinds of communication methods
with the host computer, including USB, Ethernet, RS-232 and PC/104 bus communications.

Amplifier Electric Motor Automated MachineMotion ControllerComputer

 UMAC Quick Reference Guide

2 Introduction

UMAC Turbo System
The UMAC (Universal Motion and Automation Controller) is a
modular system built with a set of 3U-format Eurocards. The
configuration of any UMAC System starts with the selection of the
Turbo PMAC2 3U CPU board and continues with the addition of the
necessary axes boards, I/O boards, communication interfaces (USB,
Ethernet, etc.), and any other interface boards selected from the variety
of available accessories. Accessory boards interface with virtually any
kind of feedback sensor or implement almost any kind of
communication method with the host computer or external devices. In
addition, a PC/104 computer can be installed inside the UMAC System
yielding an incredibly powerful system inside a compact industrial
package.

Turbo PMAC2-3U

The Turbo PMAC2 3U CPU is based on the Motorola 56k DSP
processor and a sophisticated firmware designed by Delta Tau Data
Systems, Inc. This combination provides a highly accurate, flexible
and powerful motion controller capable of controlling a large number
of axes and I/O with simplicity of operation.

ACC-24E2 Axes

The axes interface boards are based on custom made ASIC gate array
chips designed by Delta Tau Data Systems, Inc. These chips and the
associated circuitry, interface between the Turbo PMAC2 3U CPU and
the machine to output amplifier command signals, to input quadrature
encoder feedback information, and to input flags information including
end-of-travel limits and machine home sensors. Different kind of axes
interface boards can be selected to control analog ±10V amplifiers,
stepper drivers and direct digital PWM amplifiers.

UBUS Backplane

The I/O boards are based on custom-made ASIC chips that interface
between the Turbo PMAC2 3U CPU and the machine to output or
input a large number of I/O points with different electrical
characteristics from which to choose.

Pack Frame

UMAC type boards are mounted inside 3U racks composed of pack
frames and plug into the UBUS backplane. Each accessory board in
the UMAC Turbo system has a unique settable address that maps into
the Turbo PMAC2 3U CPU memory. The UBUS backplane connects
the address and data lines from Turbo PMAC2 3U CPU to the different
accessory boards. In addition, the 5V and ±12V lines are transmitted
over the UBUS to power the different accessory boards. UMAC Turbo

UMAC Quick Reference Guide

Introduction 3

Features
• Up to 32 axes of motion control
• Analog ±10V, digital PWM or pulse and direction command signals
• Quadrature, incremental, encoder inputs
• Parallel binary feedback inputs
• Laser interferometer feedback devices inputs
• Analog feedback inputs
• Sinusoidal encoder feedback inputs with 4096 interpolation lines
• SSI encoders inputs
• Yaskawa or Mitsubishi absolute encoders inputs
• MLDTs feedback inputs
• Thousands of I/O points
• High-power, sinking, sourcing or OPTO-22 compatible I/O
• Up to 256 analog-to-digital converted inputs (12-bits or 16-bits resolution)
• Stand-alone or host commanded operation
• PC/104, USB, Ethernet or RS-232/422 communication methods supported

 UMAC Quick Reference Guide

4 Introduction

UMAC Products

ACC-28E, analog-to-digital converter

ACC-11E, 24V 24 in/24 out

ACC-51E, sinusoidal interpolator

ACC-65E, protected 24 in/24 out

ACC-24E2A, analog interface

ACC-53E, SSI interface

ACC-14E, 48 TTL I/O

ACC-24E2S, stepper interface

Turbo PMAC2 3U ACC-54E, USB/Ethernet interface ACC-E1, power supply

ACC-24E2, digital interface

UMAC Quick Reference Guide

Introduction 5

Installation and Setup
When ordered from Delta Tau, the UMAC rack is provided already assembled with the selected boards
internally mounted and configured properly with the appropriate addresses. The boards are installed in
the rack in a particular sequence from left to right as described in the following diagram:

ACC-PC/104
or

ACC-54E

C
om

m
un

ic
at

io
ns

Turbo
PMAC2 3U

ACC-5E
ACC-55E

ACC-24E2
ACC-24E2A
ACC-24E2S

ACC-69E

ACC-28E
ACC-51E
ACC-53E
ACC-57E
ACC-70E

ACC-11E
ACC-12E
ACC-14E
ACC-36E
ACC-59E
ACC-65E
ACC-66E
ACC-67E

ACC-E1
or

ACC-F

C
P

U

N
et

w
or

ki
ng

A
xe

s
In

te
rfa

ce
s

Fe
ed

ba
ck

 In
te

rfa
ce

s

I/O
 B

oa
rd

s

P
ow

er
 S

up
pl

y 3U
 Form

at
10, 15 or 21-slot rack

Hardware Setup
On some UMAC accessory boards, there are jumpers (pairs of metal prongs) called E-points. Some have
been shorted together; others have been left open. These jumpers customize the hardware features of the
board for a given application. Check each jumper configuration using the appropriate hardware reference
for the particular accessory board being set. After all the jumpers have been properly set, the UMAC can
be wired to the machine and the host computer linked with a serial cable to it.

The connections to the machine are performed directly to the UMAC rack. Terminal blocks on top,
bottom and front of the rack provide the signals for the amplifiers, feedback devices and I/O points.

Software Setup
The Turbo PMAC2 3U has a set of initialization parameters (I-Variables) that determine the personality
of the card for a specific application. Many of these are used to configure a motor properly. Once set up,
these variables may be stored in flash memory (using the SAVE command) so the card is always
configured properly. (PMAC loads the flash I-variable values into RAM on power up.)

The easiest way to program, set up and troubleshoot PMAC is by using the PMAC Executive Program,
PEWIN32-Pro and its related add-on packages, Turbo Setup and UMAC configuration. PEWIN has the
following main tools and features:
• A terminal window – This is the main channel of communication between the user and PMAC
• Watch window for real-time system information and debugging
• Position window for displaying the position, velocity and following error of all motors on the system
• Several ways to tune PMAC systems
• Interface for data gathering and plotting

In Pewin, the value of an I-Variable may be queried by typing in the name of the I-Variable. For
instance, typing I100<CR> causes the value of the I100 to be returned. The value may be changed by
typing in the name, an equals sign, and the new value (e.g. I900=3<CR>). Remember that if any I-
Variables are changed during this setup, use the SAVE command before the card is powered down or
reset, or the changes that were made will be lost.

 UMAC Quick Reference Guide

6 Introduction

Programming UMAC
Once the UMAC System is wired to the machine and the motors are properly tuned, any I/O control and
motion control can be performed. There are three different ways to control I/O and motion in a UMAC
System, and all these methods require Pewin Pro, the PMAC Executive Software for Windows, for
communications and download to the system.

Online Commands
Online commands allow jogging motors and setting I/O points by issuing commands from the terminal
window of Pewin. This mode is convenient for trying move commands and sequences to be included
later in a motion or PLC program.
CTRL+A ; Pressing the control and A keys together stops all motion
 ; programs and motion commands
CTRL+D ; Pressing the control and D keys together stops the execution
 ; of all PLC programs
#1J^2000 ; Jogs Motor #1 2000 encoder counts in incremental mode. Press
 ; <Enter> to execute the command.

Motion Programs
Motion programs are entered and downloaded using the text editor of Pewin. A motion program allows
synchronizing the motion of axes and setting of I/O points with different methods of interpolation, including
linear and circular interpolation.
CLOSE ; Close all open buffers
END GATHER ; Stops gathering feature
DELETE GATHER ; Deletes gathering buffer
UNDEFINE ALL ; Removes all axis definitions
&1 ; Coordinate System 1
#1->2000X ; Motor 1 is defined as axis X with a scale factor of 2000 encoder counts
OPEN PROG 1 CLEAR ; Open program 1 for editing

TA100 ; Linear acceleration time is 100 msec
TS0 ; No S-curve acceleration
TM1000 ; Move time is 1000 msec
INC ; Incremental mode
LINEAR ; Linear interpolation mode
X1 ; Move axis X one unit. This moves motor #1 2000 encoder counts

CLOSE

To run this program, type B1R in the terminal window.

PLC Programs
PLC programs are entered and downloaded using the text editor of PEWIN and are ideal for controlling
digital I/O points, to start and stop motion programs, and to perform any function that does not require a
tight axes synchronization.

I5 = 2 ; Allows enabled PLCs to run
OPEN PLC 1 CLEAR ; Open PLC 1 for editing

P1 = P1 + 1 ; Increments variable P1 by one at each scan
IF (P1=1000) ; Reset P1 to zero when it reaches 1000

P1 = 0
ENDIF

CLOSE

To run this program, type ENA PLC1 in the terminal window and then press Enter.

UMAC Quick Reference Guide

Introduction 7

UMAC Tasks
Turbo PMAC can handle all of the tasks required for machine control, constantly switching back and
forth between the different tasks thousands of times per second. The major tasks involved in machine
control are summarized here.

Single Character I/O
Bringing in a single character from or sending out a single character to, the serial port or host port is the
highest priority in PMAC. The time this task takes is 200 nsec per character, but having it at this high
priority ensures that the host cannot outrun PMAC on a character-by-character basis. This task is never a
significant portion of PMAC’s total calculation time. Note that this task does not include processing a
full command; that happens at a lower priority (See the Background Tasks section of this guide.).

E N A P L C

I 3 =

Input Buffer

Output Buffer

1

0 Communications
Link

Commutation Update
If Turbo PMAC is asked to perform the commutation for a multiphase motor, it will perform
commutation updates automatically at a fixed frequency (usually around 9 kHz). The commutation, or
phasing, update for a motor consists of measuring and/or estimating the rotor magnetic field orientation,
then apportioning the command that was calculated by the servo update among the different phases of the
motor. This task occurs automatically without the need for any explicit commands.

Amplifier

Encoder

Motor

GndEncoder

Commutation
Algorithm

DACa

DACb

Servo Update
In an automatic task that is essentially invisible to the Turbo PMAC user, Turbo PMAC performs a servo
update for each motor at a fixed frequency (usually around 2 kHz). The servo update for a motor consists
of incrementing the commanded position (if necessary) according the equations generated by the motion
program or other motion command, comparing this to the actual position as read from the feedback
sensor, and computing a command output based on the difference. This task occurs automatically without
the need for any explicit commands.

Amplifier

Encoder

Motor

Gnd

DAC

Commanded
Position

PID
+

-
Actual

Position

 UMAC Quick Reference Guide

8 Introduction

Real-Time Interrupt Tasks
The real-time interrupt (RTI) tasks occur immediately after
the servo update tasks at a rate controlled by parameter I8
(every I8+1 servo update cycles). There are two significant
tasks occurring at this priority level: PLC 0 / PLCC0 and
motion program move planning.

PMAC will scan the lines of each program running in the
different coordinate systems and will calculate the necessary
number of move commands.

The number of move commands of pre-calculation can be
zero, one, or two, depending on the type of motion
commands and the mode in which the program is being
executed.

Non-move commands are executed immediately as they are
found. The scan of any given motion program will stop as
the necessary number of moves is calculated. It resumes
when previous move commands are completed and more
move-planning calculations are required.

In the execution of a motion program, if PMAC finds two
jumps backward (toward the top) in the program while
looking for the next move command, PMAC will pause
execution of the program and not try to blend the moves
together. It will go on to other tasks and resume execution
of the motion program on a later scan. Two statements can
cause such a jump back: ENDWHILE and GOTO (RETURN
does not count).

Enabled
PLC0

Enabled
PLCC0

move
calculations

needed?

Read next line of
the motion program

line
contains move
commands?

calculate move execute line

end of program?

C.S.
program
running?

Next coordinate
system

Yes No

Yes

No

Yes

No

Yes No

All
C.S.

programs
 checked?

No

Yes

End of Interrupt

I5=1 or I5=3? Yes

decrement the
watchdog register

by 8

No

Background Tasks
During the time not taken by any of the higher-priority tasks,
PMAC will be executing background tasks. There are three
basic background tasks: command processing, PLC programs
1-31, and housekeeping. The frequency of these background
tasks is controlled by the computational load on PMAC: the
more high-priority tasks that are executed, the slower the
background tasks will cycle through; and the more background
tasks there are, the slower they will cycle through.

Each PLC program executes one scan (to the end or to an
ENDWHILE statement) uninterrupted by any other background
task (although it can be interrupted by higher priority tasks).
In between each PLC program, PMAC will do its general
housekeeping and respond to a host command, if any.

Execute next
enabled PLC

Execute first
enabled PLCC

All PLCCs
checked?

Execute next
enabled PLCC

perform safety checks:
end of travel limits

amplifier faults
following error

sets watchdog register
 to 4095

command response
(communications)

I5=2 or I5=3? Yes

No

NoYes

UMAC Quick Reference Guide

Introduction 9

All enabled PLCC programs execute one scan (to the end or to an ENDWHILE statement) starting from
lowest numbered to highest uninterrupted by any other background task (although it can be interrupted by
higher priority tasks). At power-on\reset, PLCC programs run after the first PLC program runs.

The receipt of a control character from any port is a signal to PMAC that it must respond to a command.
The most common control character is the carriage return (<CR>) which tells PMAC to treat all the
preceding alphanumeric characters as a command line. Other control characters have their own
meanings, independent of any alphanumeric characters received. Here PMAC will take the appropriate
action to the command, or if it is an illegal command, it will report an error to the host.

Between each scan through each background PLC program, PMAC performs its housekeeping duties to keep
itself properly updated. The most important of these is the safety limit checks (following error, overtravel limit,
fault, watchdog, etc.) Although this happens at a low priority, a minimum frequency is ensured because the
watchdog timer will trip, shutting down the card, if this frequency gets too low.

 UMAC Quick Reference Guide

10 Introduction

UMAC Quick Reference Guide

PMAC Executive Program, PEWIN32Pro 11

PMAC EXECUTIVE PROGRAM, PEWIN32PRO
Pewin32 PRO is the PMAC Executive program for Microsoft Windows®. It is an environment rich with
software tools for the development and maintenance of any application using the PMAC motion
controller. These tools allow the optimization of the servo parameters to achieve maximum motor speed
and accuracy and permit the customization of the motion and PLC programs inside PMAC for the
application requirements. All types of communications methods are implemented for all the available
communication ports, delivering a robust and reliable interchange of data with either single or multiple
PMACs. A set of diagnosis tools is also available for displaying variables values, monitoring connector
and motor status, and plotting motion profiles. The capability to define projects allows combining sets of
files and configurations for an easy reference to each particular application.

Configuring PEWIN
Establishing Communications
The UMAC System can communicate with the host computer using several different communication
methods. This includes serial RS232, USB, Ethernet and PC/104 bus. The Pewin32 Pro installation
utility includes a PDF document describing the steps required to establish communications and complete
the installation process.
Workspace Layout

 UMAC Quick Reference Guide

12 PMAC Executive Program, PEWIN32Pro

Quick Plot Feature
1. To run the quick plot feature, select PMAC Plot Pro from the Tools menu.
2. Select the motors and the feature to gather.
3. Select what to plot from the possible choices, and then click Add to left or Add to right.
4. Click the Define Gather Buffer button.
5. Click the Begin Gathering button.
6. Click on the terminal part of the screen and run the motion program or Jog command.
7. Click the End Gathering button when the motion is completed.
8. First, Click the Upload Data button, and then the Plot Data button.

The plot feature is based on the PMAC data gathering functions. It is useful for analyzing motion profiles
and trajectories. For example, when using circular interpolation, the horizontal and vertical axes can plot
the two motors involved. Plotting the two axes together is an important aid for understanding the set of
parameters involved in a circular interpolation move.

Saving and Retrieving PMAC Parameters
It is important to save the complete set of PMAC parameters in the host computer periodically. In case of
a failure or replacement, a single file created this way will allow restoring all the variables and programs
necessary for the particular application. To activate this function, select Upload Configuration from the
Backup menu. After the file is saved, verify it with the feature part of the same menu. This will confirm
if the memory contents in PMAC matches the recently saved file, thus confirming a valid restoring file.
To restore a configuration, select Restore Configuration from the same Backup menu. In addition,
select Verify Configuration after the restore function is completed.

UMAC Quick Reference Guide

PMAC Executive Program, PEWIN32Pro 13

The Watch and Position Windows
The position window is accessed through the Position command from the View menu. It is a convenient
way to continuously check PMAC parameters such as position velocity and following error. Using the
right button of the mouse on this window checks the item selections as well as its format and update
period.
The Watch function of the same View menu performs a similar function. It allows the constant display of
any variable value in PMAC. Right clicking on this window allows selecting the display format from
hexadecimal, decimal and binary reporting values.

Uploading and Downloading Files
These functions are accessible through the File menu. The uploading function is of great importance and
allows the opening of a text editor with the contents of the requested PLC, Motion Program, M-Variables
definitions or values, I-Variable values etc. This allows checking not only what commands or values
PMAC has actually in memory, but also will indent IF conditions and WHILE loops, making the program
flow more readable.

Using MACRO Names and Include Files
PEWIN allows using custom names in place of the common names for variables and functions that
PMAC expects (P, Q, M, I):
Example:
File Downloaded Uploaded Translated PMAC Code
#define PUMP P1
OPEN PLC1 CLEAR
 PUMP = 1

DISABLE PLC1
CLOSE

OPEN PLC 1 CLEAR
P1 = 1
DISPLC1

CLOSE

The MACRO name must be defined before it can be used. In general, MACRO definitions are at the
beginning of the text file to be downloaded. MACROs must be up to 255 valid ASCII characters and
cannot have spaces in between (the underscore “_” is suggested in place of a space). The MACRO
definitions, or any other PMAC code, can be placed in a separate file and included with a single line in
the text file to be downloaded. The file name must consist of a full path in order for PEWIN to find it.
Example: #include "c:\deltatau\files\any.pmc

Downloading Compiled PLCCs
PLCCs are compiled by Pewin in the downloading process. Only the compiled code is downloaded to
PMAC. Therefore, save the ASCII source code in the host computer separately since it cannot be
retrieved from PMAC. In most cases, compiled PLCs are firmware dependent and must be recompiled
when the firmware is changed in PMAC. If more than one PLCC is defined, all the PLCC code must
belong to the same ASCII text file. Pewin will compile all the PLCC code present in the file and place it
in the appropriate buffer in PMAC. If a single PLCC code is downloaded, all the other PLCCs that might
have been present in memory will be erased, leaving only the last compiled code.

The PID Tuning Utility
This function is accessible by selecting PMAC Tuning Pro from the Tools menu. The Auto tuning
feature allows finding the PID parameters with virtually no effort from the user. In most cases, the
parameters are very close to optimal and in some cases require further fine-tuning by the user. In this
screen, press the Page-Up or Page-Down keys on the keyboard to select the motor number.

 UMAC Quick Reference Guide

14 PMAC Executive Program, PEWIN32Pro

Auto Tuning
In most cases, the motors can be controlled in closed loop with a relatively small following error by
simply increasing the proportional gain parameter, Ixx30, from its default value. As a rule of thumb,
slowly increase the proportional gain variable until a buzzing noise in the motor is heard, and then back
down 20% from that value. The auto-tuning utility provides a more efficient method of getting the
motors to move in close loop with minor effort.

1. Make sure to read the Pewin manual section related to the safety issues of this procedure.
2. Select the type of amplifier being tuned.
3. Let the Auto Tune select the bandwidth by checking the Auto Select Bandwidth box.
4. Select the Velocity Feed Forward or Acceleration Feed Forward boxes as necessary.
5. Select the Integral Action box if necessary.
6. Start the Auto Tuning interaction by clicking the Auto Tune button. Most likely, the motor will

move after this is clicked.

UMAC Quick Reference Guide

PMAC Executive Program, PEWIN32Pro 15

Interactive Tuning

After the Auto Tuning is completed, the PID parameters can be changed for a final fine-tuning approach.
Perform a step response and use the following guidelines for the selection of the appropriate I-Variables:

Ideal Case

The motor closely follows the commanded position

Position Offset

Cause: friction or constant force/system limitation
Fix: Increase KI (Ix33) and maybe use more KP (Ix30)

Sluggish Response

Cause: Too much damping or too little proportional gain
Fix: Increase KP (Ix30) or decrease KD (Ix31)

Overshoot and Oscillation

Cause: Too much damping or too little proportional gain
Fix: Increase KP (Ix30) or decrease KD (Ix31)

 UMAC Quick Reference Guide

16 PMAC Executive Program, PEWIN32Pro

Perform a parabolic move and use the following guidelines for the selection of the appropriate I-Variables:

Ideal Case

The following error is reduced at
minimum and is concentrated in the
center, evenly along the move

High vel/FE correlation
Cause: damping
Fix: Increase Kvel(Ix32)

Negative vel/FE correlation
Cause: friction
Fix: Increase Integral gain (Ix33) or
 Friction Feedforward (Ix68)

High acc/FE correlation

Cause: Integral lag
Fix: Increase Kaff(Ix35)

High acc/FE correlation

Cause: Physical system limitations
Fix: Use less sudden acceleration

Negative vel/FE correlation
Cause: Too much velocity FF
Fix: Decrease Kvel(Ix32)

High vel/FE correlation

Cause: damping and friction
Fix: Increase Kvel(Ix32)

High acc/FE correlation

Cause: Too much acc FF
Fix: Decrease Kaff(Ix35)

High vel/FE and acc/FE correlation

Cause: Integral lag and friction
Fix: Increase Kaff(Ix35)

Other Features
• Turbo Setup32 Pro provides a step-by-step method for configuring any Turbo PMAC-type motion

controller
• UMAC Config Pro provides a method for checking the hardware configuration of any existing

UMAC rack
• Workspace support that allows saving all the working environment settings for next session restore

(e.g., the number of windows open, their corresponding sizes and update rate)
• Project management for combining sets of files and configurations for any given application
• Organizer feature that allows sorting, setting and checking all the I, P, Q and M-Variables
• Motor, Coordinate System and Global status windows that display PMAC’s status bits in real-time
• Methods for the configuration of the encoder conversion table
• Real-time status display of all PMAC’s connectors
• Diagnostic routines for checking the functionality of motors and motion programs
• A real-time color text editor for PMAC motion and PLC programs

UMAC Quick Reference Guide

Hardware Setup and Connections 17

HARDWARE SETUP AND CONNECTIONS
Address Configuration
When ordered from Delta Tau, the UMAC rack is provided already assembled with the selected boards
internally mounted and properly configured with the appropriate addresses. The address selection for
each accessory is necessary when replacing a board or when adding a new board in the UMAC System.
The System Configuration Reporting I-Variables, I4900 to I4965, provide information about the
accessory boards found inside the UMAC rack on power-up or reset. The UMAC Configuration program
of the Pewin32 Pro Suite uses these variables to report the configuration of any UMAC System.

Note:

The E1 jumper on the back of the Acc-Ux UBUS backplane board must be on to
use the DIP-switch addressing.

Servo Cards
The typical UMAC System will use up to eight different locations to address the servo cards. These are
set with DIP-switches according to the following table. The corresponding manual for each product will
indicate if it uses a servo address and the switches configuration for each particular address.

S1 S2 S3 S4 S5 S6 Board

I-Variables
Range

Base
Address

ON ON ON ON ON ON 1 I7200-I7249 $078200
OFF ON ON ON ON ON 2 I7300-I7349 $078300
ON ON OFF ON ON ON 3 I7400-I7449 $079200
OFF ON OFF ON ON ON 4 I7500-I7549 $079300
ON ON ON OFF ON ON 5 I7600-I7649 $07A200
OFF ON ON OFF ON ON 6 I7700-I7749 $07A300
ON ON OFF OFF ON ON 7 I7800-I7849 $07B200
OFF ON OFF OFF ON ON 8 I7900-I7949 $07B300

Note:

Only one servo type board must source the servo clock lines in a given UMAC
System. It is configured through a jumper setting. Consult the particular
accessory manual for details.

IO Cards
Each IO card in a given UMAC System must have a unique address and this is set with DIP-switches. The
following table shows the settings for the first four IO type cards. The corresponding manual for each
product will indicate if it uses an IO address and the switches configuration for each particular address.

S1 S2 S3 S4 S5 S6 Board
Address Range

ON ON ON ON ON ON 1 Y:$078C00 to Y:$078C03
ON ON OFF ON ON ON 2 Y:$079C00 to Y:$079C03
ON ON ON OFF ON ON 3 Y:$07AC00 to Y:$07AC03
ON ON OFF OFF ON ON 4 Y:$07BC00 to Y:$07BC03

Some accessories can use only a limited range of addresses, but have a set of jumpers to select which byte
of the assigned address space is actually used. The following table shows an example that uses this
addressing scheme.

 UMAC Quick Reference Guide

18 Hardware Setup and Connections

ACC-11E Jumper Settings
Jumpers Setting Bits used from base address
E6A- E6H 1-2 Uses bits 0-7 from six consecutive memory locations (low byte)
E6A- E6H 2-3 Uses bits 8-15 from six consecutive memory locations (middle byte)
E6A- E6H 4-5 Uses bits 16-23 from six consecutive memory locations (high byte)

Serial Port Connections
For serial communications, use a serial cable to connect the PC’s COM port to the Turbo PMAC2’s 3U
serial port connector. The Acc-3D cable provided connects to the Turbo PMAC2’s 3U serial port with a
DB-25 connector. Standard DB-9-to-DB-25 or DB-25-to-DB-9 adapters may be needed for a particular
set up. The simplest way to make such a cable is to use a flat cable prepared with flat-cable type
connectors as indicated in the following diagram:

DB-25
Female IDC-26

Do not connect
wire #26

1 1

If the auxiliary serial port is present, it will be provided through an IDC-10 connector. In this case, the
Acc-3L cable provided by Delta Tau connects to the Turbo PMAC2’s 3U auxiliary serial port with a DB-
9 connector. Standard DB-9-to-DB-25 or DB-25-to-DB-9 adapters may be needed for a particular setup.
The simplest way to make such a cable is to use a flat cable prepared with flat-cable type connectors as
indicated in the following diagram:

DB-9
Female IDC-10

Do not connect
wire #10

1 1

Serial communications can be checked using the Windows® HyperTerminal program with 38,400 baud
rate, eight data bits, one stop bit, no parity and no flow control. In this mode, set I3=1 to add a carriage
return at the end of each response line.

Re-initializing UMAC
After communication is established, re-initialize UMAC for first-time use by sending the $$$***
command in the terminal window. This command will erase all programs and reset all variables to
factory defaults.

UMAC Quick Reference Guide

Hardware Setup and Connections 19

Power Supply
The typical UMAC System is provided with the internally mounted ACC-E1 power supply that can
accept an AC input from 85VAC to 240VAC, and output DC voltages with up to 14A at +5V, and 1.5A
each at ±15V. In this case, a standard computer type IEC/EIA male connector is present in the back panel
and any regular computer type cord can be used for the power connection. In addition, a connector in the
back panel provides the output power supply lines of +5V, ±15V and ground. These lines can be used to
power the flags opto-isolation circuitry in case no external power supply is used.

Motor Flag Connections
When assigned for the dedicated uses, the overtravel limit flags provide important safety and accuracy
functions. PLIMn and MLIMn are direction-sensitive over-travel limits that must conduct current (either
sinking or sourcing) to permit motion in that direction. The home input flag is used in conjunction with
home search type moves to establish a machine point of reference when an incremental type of feedback
is used. The user input flag is used mostly in conjunction with the position capture feature, which allows
recording the feedback information when the input is activated.

Disabling the Overtravel Limit Flags
If no overtravel switches are connected to the particular motor, set bit 17 of the Ixx24 variable to 1 to
disable this feature.

Example:
I124 = $20001 ; Disables Overtravel Limits of Motor #1

Types of Overtravel Limits
The UMAC axes boards, ACC-24Ex, have a bipolar opto-isolating circuitry (chip PS-2705-4NEC) for the
flag connections. Conveniently, this allows using either a sinking or a sourcing sensor in the 5V or 12 to
24V range. This includes proximity sensors and dry (passive) normally closed contacts. If the use of 5V
flags is desired, a 1kΩ SIP resistor pack (1KSIP8I) should be installed in the appropriate resistor socket
onboard. In this case, the flags’ opto-isolation circuits will be powered with a 5V power supply instead.
Consult the particular accessory manual for details.

+V

Flag
Return

Signal

Sinking Signal
(Gnd)

Gnd

Flag
Return

Signal

Sourcing Signal
(+V)

UMAC Flag Inputs Circuit

 UMAC Quick Reference Guide

20 Hardware Setup and Connections

Example:
These examples show the connection of the most common types of end-of-travel sensors. Instead of the
external power supply shown here, the power can be supplied from the back panel of the UMAC System.

Sinking Type

PLIM

FL_RT

+ -

12-24
Power
Supply

Normally
Closed
Switch

UMAC Flag
Connector

PLIM

FL_RT
+

-+ -

12-24
Power
Supply

OutSensor

UMAC Flag
Connector

Sourcing Type

PLIM

FL_RT

- +

12-24
Power
Supply

Normally
Closed
Switch

UMAC Flag
Connector

PLIM

FL_RT
-

+- +

12-24
Power
Supply

OutSensor

UMAC Flag
Connector

Home Sensors
The location of the home sensors establishes a point of reference in the machine from which each move is
related. When using incremental types of feedback, a home search type of move must be performed after
each power-up or reset cycle.

In contrast with the overtravel limit inputs, the home inputs do not need to conduct current to allow
motion. However, use the same type of sensors for both the limits and home inputs.

Note:

If a hardware flag is used for home reference and a quadrature encoder is used for
feedback, they both must belong to the same hardware channel in the axis board.

Checking the Flag Inputs
In the Pewin terminal window, define the following M-Variables for the flags of the motors under
consideration:

Flag Type Motor #1 Motor #2 Motor #3 Motor #4
HMFL input status M120->X:$78200,16 M220->X:$078208,16 M320->X:$078210,16 M420->X:$078218,16
PLIM input status M121->X:$78200,17 M221->X:$078208,17 M321->X:$078210,17 M421->X:$078218,17
MLIM input status M122->X:$78200,18 M222->X:$078208,18 M322->X:$078210,18 M422->X:$078218,18

Flag Type Motor #5 Motor #6 Motor #7 Motor #8
HMFL input status M520->X:$78300,16 M620->X:$078308,16 M720->X:$078310,16 M820->X:$078318,16
PLIM input status M521->X:$78300,17 M621->X:$078308,17 M721->X:$078310,17 M821->X:$078318,17
MLIM input status M522->X:$78300,18 M622->X:$078308,18 M722->X:$078310,18 M822->X:$078318,18

Open a Watch Window and click Insert to enter the appropriate M-Variable to watch. Interacting with
the switch or sensor, monitor a change of value in the corresponding M-Variable. A value of zero
indicates that the flag is closed or conducting current, so the motor will be able to run in that direction
(see Ixx24). If the value is 1, the flag is open instead.

UMAC Quick Reference Guide

Hardware Setup and Connections 21

Motor Signals Connections
Incremental Encoder Connection
The encoder connectors in the ACC-24Ex type boards provide all the signals for a TTL quadrature
incremental encoder type. Connect the A and B (quadrature) encoder channels to the appropriate terminal
block pins. If it is a single-ended signal, leave the complementary signal pins floating – do not ground
them. For a differential encoder, also connect the complementary signal lines. The third C channel
(index pulse) is optional, and it is used mostly for a more accurate home search procedure. Jumpers on
the Acc-24E2S select between amplifier enable outputs and encoder C channel inputs. An encoder loss
circuitry is available in most axes boards; refer to the appropriate accessory hardware reference for
details.

Example:

1
2
3
4
5
6
7
8

CHA+
CHA-
CHB+
CHB-
CHC+
CHC-
+5V
GND

A
B

C5V

UMAC
Encoder

Connector

Checking the Encoder Inputs
Once the encoders have been properly wired, it is important to check their functionality and its polarity.
Make sure the motor is not powered while performing this test. Activate the appropriate motor xx by
setting variable Ixx00 = 1. Then, in Pewin, open a position window by selecting Position in the View
menu. Rotate the encoder monitor to the corresponding position values. Make sure that a rotation in the
positive direction increments the position value, otherwise change variable I7mn0 (I7210 for motor 1 of
the first axes board) between values 3 or 7. Also, make sure that the number of counts of resolution
matches the number read by PMAC when moving the appropriate distance. If necessary, for
troubleshooting purposes, place an oscilloscope in the encoder inputs to check the functionality of the
encoder signals.

Example:

• Channel A is pin 1 of the encoders connector
• Channel B is pin 3 of the encoders connector
• Ground is pin 8 of the encoders connector

MLDT Feedback Connection
Any channel of an Acc-24E2, Acc-24E2A or Acc-24E2S that is not being used for digital PWM or
stepper PFM signals can be set up to interface an MLDT position feedback device. In most cases, MLDT
position feedback devices are used with analog ±10V amplifiers. See the connections example at the end
of this section for details.

 UMAC Quick Reference Guide

22 Hardware Setup and Connections

DAC Output Signals
Acc-24E2A provides the ±10V DAC signals for analog type motors. If PMAC is not performing the
commutation for the motor, only one analog output is required to command the motor. This analog
output can be either single-ended or differential, depending on what the amplifier is expecting. For a
single-ended command, connect DACA+ (pin 1) to the command input on the amplifier. Connect the
amplifier’s command signal return line to GND line (pin 12). In this setup, leave the DACA- pin
floating; do not ground it. For a differential command, connect DACA+ (pin 1) to the plus command
input on the amplifier. Connect DACA- (pin 2) to the minus command input on the amplifier. The GND
line should still be connected to the amplifier common.

If using PMAC to commutate the motor, use two analog outputs for the motor. In this case, the DACB+
and DACB- lines provide the second DAC output. Each output may be single-ended or differential, as for
the DC motor.

To limit the range of each signal to ±5V, use parameter Ixx69. Sign-and-magnitude mode, the output of a
0-10V and sign signals is not available in the UMAC System.

There are two options to power the Acc24-E2A DAC circuitry. If the UMAC internal power supply is
used (default), jumpers E85, E87, and E88 in the ACC-24E2A board must be installed. In this case, no
external power supply should be connected to the analog power terminal block of the Acc-24E2A board.
If an external power supply is used, jumpers E85, E87, and E88 must be removed.

Note:

Before using the analog DAC signals, the output of the corresponding motor must
be configured accordingly. This is accomplished by setting the I-Variable
I7mn6=3 (I7216=3 for the first motor of the first axes board).

Example:

1
2

12

DACA+
DACA-

GND

ACC-24E2A
Amplifier

Connector

Amplifier
Command

Inputs

Checking the DAC Outputs
Warning:

Make sure the amplifier is not powered while performing this test.

Before powering the amplifier, check the DAC outputs operation. In the Pewin terminal window, define
the following M-variables for the DACs of the motors under consideration:

 Motor #1 Motor #2 Motor #3 Motor #4
DAC output M102->Y:$78202,8,16,S M202->Y:$7820A,8,16,S M302->Y:$78212,8,16,S M402->Y:$7821A,8,16,S

 Motor #5 Motor #6 Motor #7 Motor #8
DAC output M502->Y:$78302,8,16,S M602->Y:$7830A,8,16,S M702->Y:$78312,8,16,S M802->Y:$7831A,8,16,S

UMAC Quick Reference Guide

Hardware Setup and Connections 23

 Example for DAC #1.

Type the following in the terminal window:
M102->Y:$078202,8,16,S
I100=0
I7216 = 3
M102=16383
<measure 5V between pins 1 and 12 of the amplifier connector>
M102=-16383
<measure -5V between pins 1 and 12 of the amplifier connector>
I100=1

Pulse and Direction Stepper Signals
Typically, the pulse and direction signals to control stepper drivers are provided by the Acc-24E2S board.
However, either Acc-24E2A or Acc-24E2 can be used for this purpose also. This is the case in
applications where stepper drivers, analog amplifiers and digital amplifiers are controlled with the same
UMAC System. Regardless of the accessory used for connections, the setup is the same. A set of
jumpers select between the pulse and direction outputs and the T, U, V and W hall-effect inputs. The
signals are differential at TTL levels and are brought to the encoder connector.

Note:

Before using the pulse and direction signals, the output of the corresponding
channel and motor must be configured accordingly. This is accomplished through
variables Ixx02, I7m03, I7m04, I7mn6, I7mn7, and I7mn8.

8
9
10
11
12

GND
DIR+
DIR-
PUL+
PUL-

UMAC
Encoder

Connector

Stepper
Driver

Digital Amplifier Connections
ACC-24E2 provides the necessary signals for direct PWM digital control. These signals are brought
through a standard 36-pin Mini-D connector and are the direct PWM control lines, current feedback lines,
and amplifier enable\fault lines. Typically, a connection from UMAC to these types of amplifiers is
performed using a standard cable.

 UMAC Quick Reference Guide

24 Hardware Setup and Connections

Amplifier Enable Signals
Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier, regardless
of the voltage of the command signal. UMAC’s AENA line is meant for this purpose. For early tests,
this amplifier signal should be under manual control. For troubleshooting purposes, the amplifier enable
signal can be controlled manually by setting Ixx00=0 and using the properly defined Mxx14 variable.

To control the amplifier enable function, the Acc-24E2A is provided with a relay with normally closed
and normally open contacts. Typically, the required amplifier enable signal will be passed through the
normally open contact.

Example: The amplifier is connected to the Acc-24E2A and enables with a ground connection.

7

ACC-24E2A
Amplifier Connector

Normally Open

Normally Close

Common 6

5 GND

Amplifier
Enable Input

Both Acc-24E2 and Acc-24E2S provide a differential amplifier enable signal at TTL levels. Jumpers on
the Acc-24E2S select between amplifier enable outputs and encoder C channel inputs. In the Acc-24E2,
the 36-pin amplifier connector brings the necessary amplifier enable signals automatically. To use the
driver enable outputs in the Acc-24E2S, the appropriate jumpers must be set accordingly.

Example: These examples show the connection of single-ended stepper driver enable signals.

Driver
Enables

with GND

5

8

AENA+

GND

ACC-24E2S
Encoder

Connector

Driver
Enables
with +5V

6

8

AENA-

GND

ACC-24E2S
Encoder

Connector

Amplifier Fault Signals
These inputs, available only on Acc-24E2 and Acc-24E2A, can take a signal from the amplifier so PMAC
knows when the amplifier is having problems and can shut down action. The polarity is programmable
with I-Variable Ixx24 (I124 for motor #1). The amplifier fault input is differential, but it can be used with
single-ended type signals also. In the Acc-24E2, the 36-pin amplifier connector brings the necessary
amplifier fault signals automatically. The amplifier fault signal can be monitored using the properly
defined Mxx23 variable.

Examples: These examples show the connection of the single-ended amplifier fault signals. Instead of
the external power supply shown here, the power can be supplied from the back panel of the UMAC
System.

AFault++-

12-24
Power
Supply

ACC-24E2A
Amplifier

Connector

Afault-
GNDAmplifier indicates

fault with GND

Afault-

ACC-24E2A
Amplifier

Connector

Afault+
GNDAmplifier indicates

fault with +V

UMAC Quick Reference Guide

Hardware Setup and Connections 25

Digital Inputs and Outputs
This example shows the typical connection of an ACC-11E digital I/O board with sinking inputs and
sinking outputs. The Acc-11E must be ordered with the appropriate output chips for either sinking or
sourcing operation.

Pin # Symbol
2 V1
1 GND

Pin # Symbol
1 OUT00

TB1 Bottom
A

C
C

-11E

TB3 Bottom

Pin # Symbol
1 IN00

TB1 Top

Pin # Symbol
1 REF

TB3 Top

12-24VDC
Power Supply

+-

+ -

Load

Input
 Switch

This example shows the typical connection of an Acc-11E digital I/O board with sourcing inputs and
sourcing outputs. The Acc-11E must be ordered with the appropriate output chips for either sinking or
sourcing operation.

Pin # Symbol
1 GND
2 V1

Pin # Symbol
1 OUT00

TB1 Bottom

A
C

C
-11E

TB3 Bottom

Pin # Symbol
1 IN00

TB1 Top

Pin # Symbol
1 REF

TB3 Top

12-24VDC
Power Supply

-+

- +

Load

Input
 Switch

These examples can be applied to other IO accessory types. However, in some cases, the polarity of the
TB3 Bottom power connector might be reversed from what is shown here.

 UMAC Quick Reference Guide

26 Hardware Setup and Connections

Connection Examples
Digital Amplifier with Incremental Encoder

Pin # Symbol
1 CHA1+
2 CHA1-
3 CHB1+
4 CHB1-
5 CHC1+
6 CHC1-
7 ENCPWR
8 GND

Digital
Amplifier

Flags

Encoder

Motor
Load

Pin # Symbol
1 USER1

3 MLIM1
4 HOME1
5 FLG_1_RET

2 PLIM1
TB

1 Front
TB

1 Top

Use Standard Cable

J1: 36-pin connector

A
C

C
-24E2

UMAC Quick Reference Guide

Hardware Setup and Connections 27

Analog Amplifier with Incremental Encoder

Pin # Symbol
1 CHA1+
2 CHA1-
3 CHB1+
4 CHB1-
5 CHC1+
6 CHC1-
7 ENCPWR
8 GND

Amplifier

Flags

Encoder

Motor
Load

Pin # Symbol
1 USER1

3 MLIM1
4 HOME1
5 FLG_1_RET

2 PLIM1

TB
1 Front

TB
1 Top

A
C

C
-24E2A

Optional
± 15V Power Supply

Pin # Symbol
1 AGND

3 AA-15V
2 AA+15V

TB
3

B
ottom

Pin # Symbol
1 DAC1A+

3 DAC1B+
4 DAC1B-

2 DAC1A-

5 AE_NC_1

12 AGND
9 AFAULT_1-
8 AFAULT_1+
7 AE_NO_1
6 AE_COM_1

TB
1 B

ottom

If the optional power supply is connected to the TB3 Bottom connector, jumpers E85, E87, and E88 in the
Acc-24E2A axes accessory board must be removed.

 UMAC Quick Reference Guide

28 Hardware Setup and Connections

Analog Amplifier with MLDT Feedback

Pin # Symbol
1 CHA1+
2 CHA1-
7 ENCPWR
8 GND

11 PUL_1+
12 PUL_1-

Amplifier

MLDT

Motor
Load

Pin # Symbol
1 USER1

3 MLIM1
4 HOME1
5 FLG_1_RET

2 PLIM1

TB
1 Front

TB
1 Top A

C
C

-24E2A
Optional

± 15V Power Supply

Pin # Symbol
1 AGND

3 AA-15V
2 AA+15V

TB
3

B
ottom

Pin # Symbol
1 DAC1A+

3 DAC1B+
4 DAC1B-

2 DAC1A-

5 AE_NC_1

12 AGND
9 AFAULT_1-
8 AFAULT_1+
7 AE_NO_1
6 AE_COM_1

TB
1 B

ottom

MLDT

Flags

If the optional power supply is connected to the TB3 Bottom connector, jumpers E85, E87, and E88 in the
Acc-24E2A axes accessory board must be removed.

UMAC Quick Reference Guide

Hardware Setup and Connections 29

Stepper Driver with Incremental Encoder

Pin # Symbol
1 CHA1+
2 CHA1-
3 CHB1+
4 CHB1-
5 CHC1+
6 CHC1-
7 ENCPWR
8 GND

8 GND
9 DIR_1+
10 DIR_1-
11 PUL_1+
12 PUL_1-

Stepper
Drive

Flags
Optional
Encoder

Motor
Load

Pin # Symbol
1 USER1

3 MLIM1
4 HOME1
5 FLG_1_RET

2 PLIM1

TB
1 Front

TB
1 Top

A
C

C
-24E2S

Jumpers in the Acc-24E2S board must be configured properly to output the pulse-and-direction signals
and to select between encoder C channel inputs or driver enable outputs.

 UMAC Quick Reference Guide

30 Hardware Setup and Connections

UMAC Quick Reference Guide

Software Setup 31

SOFTWARE SETUP
The Turbo PMAC2 3U, or PMAC for short, is the CPU of the UMAC System. PMAC has a large set of
Initialization parameters (I-Variables) that determine the personality of the card for a specific application.
Many of these are used to configure a motor properly. The Pewin32 Pro Suite provides a set of tools for
setting up the motors and programming the UMAC System.

Resetting UMAC
Perform a complete reset routine before configuring the software of a UMAC System. This will assure a
clean memory configuration before starting:
$$$*** ; Global Reset
P0..8191 = 0 ; Reset P-Variables values
Q0..8191 = 0 ; Reset Q-Variables values
M0..8191 -> * ; Reset M-Variables definitions
M0..8191 = 0 ; Reset M-Variables values
UNDEFINE ALL ; Undefine Coordinate Systems
SAVE ; Save this initial clean configuration

Motors Setup
Each motor must be configured for the kind of output signals used (digital, analog or stepper), the
feedback device used and the use of safety flags. The Turbo Setup Program, part of the Pewin32 Pro
Suite, provides a step-by-step procedure for setting up the motors in a UMAC System. This is important
particularly when using digital amplifiers since extra setup steps are necessary for the configuration of the
current loop feedback.

Servo Loop Setup
Before the motors can be controlled in close loop, the PID gains parameters must be configured properly.
The Tuning Pro software, part of the Pewin32 Pro Suite, provides a series of tools for tuning each motor
of a UMAC System with minor effort. See the Pewin32 Pro section for details.

Programming PMAC
Fundamentally, PMAC is a command-driven device. PMAC performs tasks when issued ASCII
command text strings, and generally, PMAC provides information to the host in ASCII text strings.
When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII value 1 to 31) to cause it to take
some actual action. The most common control character used is the carriage return (<CR>; ASCII value
13), which tells PMAC to interpret the preceding set of alphanumeric characters as a command and to
take the appropriate action.

Once the motion parameters and programs have been set, the system can be operated as a stand-alone
controller or commanded via a host computer. The SAVE command issued from the terminal window
will store all the defined programs and parameters in flash memory for later use.

Online Commands
Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host. Some
commands, such as P1=1, are executed immediately if there is no open program buffer, but are stored in
the buffer if one is open. Other commands, such as X1000 Y1000, cannot be on-line commands; there
must be an open buffer – even if it is a special rotary buffer for immediate execution. These commands
will be rejected by PMAC (reporting an ERR005 if I6 is set to 1 or 3) if there is no buffer open. Still
other commands, such as J+, are on-line commands only and cannot be entered into a program buffer
(unless in the form of CMD"J+", for instance).

 UMAC Quick Reference Guide

32 Software Setup

There are three basic classes of on-line commands: motor-specific commands, which affect only the
motor that is currently addressed by the host; coordinate-system-specific commands, which affect only
the coordinate system that is currently addressed by the host; and global commands, which affect the card
regardless of any addressing modes.

A motor is addressed by a #n command, where n is the number of the motor, with a range of 1 to 32,
inclusive. This motor is the one addressed until the card receives another #n. For instance, the command
line #1J+#2J- tells Motor 1 to jog in the positive direction, and Motor 2 to jog in the negative direction.
There are only a few types of motor-specific commands. These include the jogging commands, a homing
command, an open loop command, and requests for motor position, velocity, following error, and status.

A coordinate system is addressed by an &n command, where n is the number of the coordinate system,
with a range of 1 to 16, inclusive. This coordinate system is the one addressed until the card receives
another &n command. For instance, the command line &1B6R&2B8R tells Coordinate System 1 to run
Motion Program 6 and Coordinate System 2 to run Motion Program 8. There is a variety of coordinate-
system-specific commands. Axis definition statements act on the addressed coordinate system because
motors are matched to an axis in a particular coordinate system. Since it is a coordinate system that runs
a motion control program, all program control commands act on the addressed coordinate system. Q-
Variable assignment and query commands are coordinate system commands also because the Q-Variables
themselves belong to a coordinate system.

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 sets the value of P1 to 1 regardless of what is addressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers and only one can be open
at a time. When a buffer is open, commands can be entered into the buffer for later execution.

Control character commands (those with ASCII values 0 - 31D) are always global commands. Those that
do not require a data response include carriage return <CR>, backspace <BS>, and several special-
purpose characters. This allows, for instance, commands to be given to several locations on the card in a
single line, and have them take effect simultaneously at the <CR> at the end of the line (&1R&2R<CR>
causes both Coordinate Systems 1 and 2 to run).

Buffered (Program) Commands
As their name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers – 224 regular motion program buffers, 16 rotary motion program
buffers (one for each coordinate system), 32 non-compiled PLC program buffers and 32 compiled PLC
program buffers. Before commands can be entered into a buffer, that buffer must be opened (e.g. OPEN
PROG 3, OPEN PLC 7). Each program command is added onto the end of the list of commands in the
open buffer. To replace the existing buffer, use the CLEAR command immediately after opening to erase
the existing contents before entering the new ones. When finished entering the program statements, use
the CLOSE command to close the opened buffer.

UMAC Quick Reference Guide

Software Setup 33

Computational Features

I-Variables
I-Variables (initialization or setup variables) determines the personality of the card for a given
application. They are at fixed locations in memory and have pre-defined meanings. Most are integer
values, and their range varies depending on the particular variable. There are 8192 I-Variables, from I0 to
I8191, and they are organized as follows:
I0 – I99 Global card setup
I100 – I199 Motor 1 setup
I200 – I299 Motor 2 setup
…
I3200 – I3299 Motor 32 setup
I3300 – I4799 Supplemental Motor setup
I4900 – I4999 Configuration status
I5000 – I5099 Data gathering/ADC demux setup
I5100 – I5199 Coordinate System 1 setup
I5200 – I5299 Coordinate System 2 setup
…
I6600 – I6699 Coordinate System 16 setup
I6800 – I6999 MACRO IC setup
I7000 – I7999 Servo IC setup
I8000 – I8191 Encoder conversion table setup

When I-Variables are described in the documentation, the following nomenclature have been used:
xx: This stands for motor number, and it can take values from 1 to 32.
mn: The m stands for servo IC number. In a UMAC System, this can take a value from 2 to 9

depending on the address given to the corresponding axes card. The n stands for the channel part
of the servo IC chip. Each servo IC has four hardware channels, so n has a range from 1 to 4.

m: The m stands for servo IC number. In a UMAC System, this can take a value from 2 to 9,
depending on the address given to the corresponding axes card.

sx: This represents the coordinate system number plus 50. For example, variables that refer to
coordinate system 1 will be addressed by variables I5100 to I5199.

Values assigned to an I-Variable may be either a constant or an expression. The commands to do this are
on-line (immediate) if no buffer is open when sent, or buffered program commands, if a buffer is open.
Examples:
I120 = 45
I120 = (I120+P25*3)

For I-Variables with limited range, an attempt to assign an out-of-range value does not cause an error.
The value is rolled over automatically to within the range by modulo arithmetic (truncation). For
example, I3 has a range of 0 to 3 (four possible values). Actually, the command I3=5 would assign a
value of 5 modulo 4 = 1 to the variable.

On the UMAC System, all of the I-Variable values must be stored in the flash memory with the SAVE
command. After a new value is given to any I-Variable, the SAVE command must be issued in order for
this value to survive a power-down or reset.

Default values for all I-Variables are contained in the manufacturer-supplied firmware. They can be used
individually with the I{constant}=* command, or in a range with the
I{constant}..{constant}=* command. Upon board re-initialization by the $$$*** command or
by a reset with jumper E3 of the PMAC CPU in the non-default setting, all default settings are copied
from the firmware into active memory. The last saved values are not lost; they are just not used.

 UMAC Quick Reference Guide

34 Software Setup

P-Variables
P-Variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in Turbo PMAC’s memory, but with no pre-defined use. There are 8192 P-Variables, from P0 to P8191.
A given P-Variable means the same thing from any context within the card; all coordinate systems have
access to all P-Variables (in contrast to Q-Variables, which are coupled to a given coordinate system
below). This allows for useful information passing between different coordinate systems. P-Variables
can be used in programs for any purpose desired: positions, distances, velocities, times, modes, angles,
intermediate calculations, etc.
P-Variables can be located either in the main memory or in the supplemental battery-backed parameter
memory (if Option 16 is ordered). If I46 is set to 0 (default) or 2, the P-Variables are located in the main
memory, which has fast access (1 wait state) but whose values are not retained without a SAVE command
copying the values to flash memory. On power-up/reset, the last saved values are copied from flash
memory into the active variable registers in RAM. If I46 is set to 1 or 3, the P-variables are located in the
Option 16 battery-backed RAM, which has slow access (nine wait states) but whose values are retained
automatically by the battery when power is removed.
Generally, Turbo PMAC firmware has no automatic use of P-Variables. However, it can make special
use of variables P0 – P32 and P101 – P132. If a command consisting simply of a constant value is sent to
Turbo PMAC, that value is assigned to variable P0 (unless a special table buffer such as a compensation
table or stimulus table has been defined but not yet filled – in that case the constant value will be entered
into the table). For example, if the command 342<CR> is sent to Turbo PMAC, it will interpret it as
P0=342<CR>. This capability is intended to facilitate simple operator terminal interfaces. It is not a
good idea to use P0 for other purposes, because it is easy to change this variable’s value accidentally. If
the application uses kinematic subroutines to convert between tool-tip (axis) positions and joint (motor)
positions, variables P1 – P32 and P101 – P132 are used for the motor positions in these subroutines (Pn is
Motor n position; if PVT moves are converted, P10n is Motor n velocity). If using the kinematic
subroutines, make sure not to use the P-Variables employed in the subroutines for any other purpose.
Q-Variables
Q-Variables, like P-Variables, are general-purpose user variables: 48-bit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-Variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This allows several
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y(Q2), but to do
have different values in their own Q-Variables (which in this case, means different destination points).
Several Q-Variables have special uses. The ATAN2 (two-argument arctangent) function uses Q0 as its
second argument (the cosine argument) automatically. The READ command places the values it reads
following letters A through Z in Q101 to Q126, respectively, and a mask word denoting which variables
have been read in Q100. The S (spindle) statement in a motion program places the value following it into
Q127. If the application uses kinematic subroutines to convert between tool-tip (axis) positions and joint
(motor) positions, variables Q1 – Q10, and possibly Q11 – Q19 for the coordinate system are used for the
axis data in these subroutines. (Q1 – Q9 are for axis positions; Q10 tells whether PVT moves are being
converted; if PVT moves are converted, Q11 – Q19 are for axis velocities.) Therefore, since 8192 Q-
Variables are shared between potentially 16 Coordinate Systems (512 variables each), the practical ranges
of the Q-Variables to be used safely in motion programs are Q20 - Q99 and Q128 - Q511.
The set of Q-Variables working within a command depends on the type of command. When accessing a
Q-Variable from an on-line (immediate) command from the host, the Q-Variable for the currently host-
addressed coordinate system is used (with the &n command). When accessing a Q-Variable from a
motion program statement, the Q-variable belonging to the coordinate system running the program is
used. If a different coordinate system runs the same motion program, it will use different Q-Variables.

UMAC Quick Reference Guide

Software Setup 35

When accessing a Q-Variable from a PLC program statement, the Q-Variable for the coordinate system
that has been addressed by that PLC program with the ADDRESS command is used. Each PLC program
can address a particular coordinate system independent of other PLC programs and independent of the
host addressing. If no ADDRESS command is used in the PLC program, the program uses the Q-
Variables for C.S. 1.
M-Variables
To permit easy user access to Turbo PMAC’s memory and I/O space, M-variables are provided.
Typically, M-Variables are used to access general-purpose IO points, read motor registers and monitor
status bits. There are 8192 M-Variables (M0 to M8191), and as with other variable types, the number of
the M-Variable may be specified with either a constant or an expression: M576 or M(P1+20). The
definition of an M-Variable is set using the defines-arrow (->) composed of the minus sign and greater
than symbols. Generally, a definition must be set only once with an on-line command. The SAVE
command must be used to retain the definition through a power-down or reset. An M-Variable is defined
by assigning it to a location and defining the size and format of the value in this location. An M-Variable
can be a bit, a nibble (4 bits), a byte (8 bits), 1-1/2 bytes (12 bits), a double-byte (16 bits), 2-1/2 bytes (20
bits), a 24-bit word, a 48-bit fixed-point double word, a 48-bit floating-point double word, or special
formats for dual-ported RAM. The following types are the most commonly used as specified by the
address prefix in the definition:
X: 1 to 24 bits fixed-point in X-memory
Y: 1 to 24 bits fixed-point in Y-memory
D: 48 bits fixed-point across both X- and Y-memory
DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported

RAM)
F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported

RAM)
*: No address definition; uses part of the definition word as general-

purpose variable

If an X or Y type of M-Variable is defined, also define the starting bit to use, the number of bits, and the
format (decoding method). Typical M-Variable definition statements are:
M1->Y:$078C02,8,1 ; Unsigned one-bit wide starting at bit 8 on the Y-register
M102->Y:$78003,8,16,S ; Signed 16-bits wide starting at bit 8 on the Y-register
M103->X:$078003,0,24,S ; Signed 24-bits wide starting at bit 0 on the X-register
M161->D:$8B ; 48-bit fixed-point double word
M50->DP:$060401 ; Dual-Ported RAM 48-bit fixed-point double word
M51->F:$0607FF ; Dual-Ported RAM 48-bit floating-point double word

There is a set of suggested M-Variables definitions that allow accessing the most commonly used
registers in a UMAC System. The definitions are made to access motor position registers, status bits and
general-purpose IO points. Downloading this set of M-Variables simplifies the definition process. See
the Turbo PMAC Software Reference for details.

Prepare a single file with all of the M-Variable definitions and put the M0..8191->* command at the
top of this file. This will remove all existing definitions and help to prevent mysterious problems caused
by stray M-Variable definitions. The M-Variable definitions are stored as 48-bit codes at Turbo PMAC
memory addresses $004000 (for M0) to $005FFF (for M8191). The Y-register contains the address of the
register pointed to by the definition; the X-register contains a code that determines what part of the
register is used and how it is interpreted. If another M-Variable points to the Y-register, it can be used to
change the subject register. The main use of this technique is to create arrays of registers which can be
used to walk through tables in memory.

 UMAC Quick Reference Guide

36 Software Setup

Once defined, an M-Variable may be used in programs just as any other variable – through expressions.
When the expression is evaluated, Turbo PMAC reads the defined memory location, calculates a value
based on the defined size and format, and utilizes it in the expression. Many M-Variables have a more
limited range than Turbo PMAC’s full computational range. If a value outside of the range of an M-
Variable is placed to that M-Variable, Turbo PMAC rolls over the value to within that range
automatically and does not report any errors. For example, with a single bit M-Variable, any odd number
written to the variable ends up as 1, any even number ends up as 0. If a non-integer value is placed in an
integer M-Variable, Turbo PMAC rounds to the nearest integer automatically.

When using the M-Variables in a motion program, especially when used to control digital general-
purpose outputs, it is important to use double-equal assignments. M1==1, for example, will indicate to
PMAC that the assignment must take place at the blending point between the previous move encountered
before the assignment and the next. In Linear and Circle mode moves, the blending occurs V*TA/2
distance ahead of the specified intermediate point, where V is the commanded velocity of the axis, and
TA is the acceleration (blending) time. This feature is only available for M-Variables.

Arrays
It is possible to use a set of P or Q-Variables as an array. To read values from the array or assign values
to it, replace the constant specifying the variable number with an expression in parentheses.
Example:
P1 = 10 ; P1 is the array index variable in this case
P3 = P(P1) ; Same as P3 = P10
P1 = 15 ; P1 is the array index variable in this case
P(P1) = 5 ; Same as P15 = 5
Another method to use to get array capabilities is indirect M-Variables addressing.
Example: Values 31 to 40 will be assigned to variables P1 through P10
M34->L:$6001 ; Standard location for P1 (when I46 = 0 or 2)
M35->Y:$4022,0,24 ; Definition word of M34
OPEN PLC 15 CLEAR
P100=31
WHILE (P100!>40) ; From 31 to 40
 M34=P100 ; Value is written to the array
 P100=P100+1 ; Next value
 M35=M35+1 ; Next Array position (next P-variable)
ENDWHILE
DISABLEPLC15 ; This PLC runs only once
CLOSE
ena PLC15 ; Enable the PLC (I5 must be 2 or 3)
P1..10 ; List the values of P1 to P10
The same concept applies for Q-Variables and M-Variables arrays when using the appropriate address
locations.
Operators
PMAC operators work like those in any computer language: they combine values to produce new values.
PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic precedence rules
are used: multiply and divide are executed before add and subtract, operations of equal precedence are
executed left to right, and operations inside parentheses are executed first.

PMAC also has the % modulo operator, which produces the resulting remainder when the value in front
of the operator is divided by the value after the operator. Values may be integer or floating point. This
operator is useful particularly for dealing with counters and timers that roll over.

UMAC Quick Reference Guide

Software Setup 37

When the modulo operation is completed using a positive value X, the results can range from 0 to X (not
including X itself). When the modulo operation is completed using a negative value -X, the results can
range from -X to X (not including X itself). The negative modulo operation is useful when a register can
roll over in either direction.

PMAC has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR),
and ^ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the
fractional as well as the integer bits. & has the same precedence as * and /; | and ^ have the same
precedence as + and -. The use of parentheses can override the default precedence.

Note:
These bit-by-bit logical operators are different from the simple Boolean operators
AND and OR used in compound conditions.

Functions
The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and
INT. These functions perform mathematical operations on constants or expressions to yield new values.
Whether the units for the trigonometric functions are degrees or radians is controlled by the global I-
Variable I15.
SIN This is the standard trigonometric sine function.
COS This is the standard trigonometric cosine function.
TAN This is the standard trigonometric tangent function.
ASIN This is the inverse sine (arc-sine) function with its range reduced to +/-90 degrees.
ACOS This is the inverse cosine (arc-cosine) function with its range reduced to 0 -- 180 degrees.
ATAN This is the standard inverse tangent (arc-tangent) function.
ATAN2 This expanded arctangent function returns the angle whose sine is the expression in parentheses and

whose cosine is the value of Q0 for that coordinate system.
If calculating in a PLC program, make sure that the proper coordinate system has been addressed in
that PLC program. It is only the ratio of the two values’ magnitudes and their signs that matter in this
function. It is distinguished from the standard ATAN function by the use of two arguments. The
advantage of this function is that it has a full 360-degree range, rather than the 180-degree range of
the single-argument ATAN function.

LN This is the natural logarithm function (log base e).
EXP This is the exponentiation function (ex).

Note: To implement the yx function, use ex ln(y) instead. For example, use this expression to implement
the function P1P2: EXP(P2*LN(P1)).

SQRT This is the square root function.
ABS This is the absolute value function.
INT This is a truncation function, which returns the greatest integer less than or equal to the argument

(INT(2.5)=2, INT(-2.5)=-3).

Functions and operators could be used either in motion programs, PLCs, or as online commands. For
example, the following commands can be typed in a terminal window:
P1=SIN(45) P1 ; Reports the sine value of a 45° angle
I130=I130/2 ; Lower the proportional gain of Motor #1 by half

 UMAC Quick Reference Guide

38 Software Setup

Comparators
A comparator evaluates the relationship between two values (constants or expressions). It is used to
determine the truth of a condition in a motion or PLC program. The valid comparators for PMAC are:
= (equal to)
!= (not equal to)
> (greater than)
!> (not greater than; less than or equal to)
< (less than)
!< (not less than; greater than or equal to)
~ (approximately equal to -- within one)
!~ (not approximately equal to -- at least one apart)

Note:
<= and >= are not valid PMAC comparators. The comparators !> and !<,
respectively, should be used instead.

Encoder Conversion Table
Turbo PMAC uses a two-step process to work with its feedback and master position information for the
servo algorithm to provide maximum power and flexibility. For most Turbo PMAC applications with
quadrature encoder feedback, this process can be virtually transparent, with no need to worry about the
details. This is because the default conversion table is set to convert all the incremental quadrature
channels found in the UMAC System. However, some will need to understand this conversion process in
some detail to make the changes necessary to use other types of feedback, to optimize the system, or to
perform special functions.

The first stage in the position processing uses the hardware registers such as encoder counters with
associated timers, A/D registers, or accessory cards for parallel input. These work continually without
direct software intervention with data typically latched on the servo interrupt. Beyond this point, the
process is software-controlled. Turbo PMAC has an intermediate step using a software structure called
the Encoder Conversion Table to pre-process the information in the latched registers. This table tells
PMAC what registers to process and how to process them; it also holds the intermediate processed data.
PEWIN32-Pro has a special editing screen for viewing and changing the encoder conversion table.

Conversion Table Structure
The Encoder Conversion Table has two columns, one in the X memory space of the processor, and one in
the Y memory space. The X-column holds the converted data, while the Y-column holds the addresses of
the source registers and the conversion methods used on the data in each of those source registers. Set up
the table by writing to the Y-column and PMAC uses the Y-column data to fill up the X-column each
servo cycle.

• Quadrature, incremental, encoder
• Parallel binary feedback
• Laser interferometer feedback
• Analog feedback
• 4096 sinusoidal interpolator feedback
• SSI encoder inputs
• Yaskawa or Mitsubishi absolute

encoders
• MLDTs feedback inputs

Each line is setup through an I-Variable and these are numbered from I8000 to I8191. Depending on the
conversion method, each entry can be one, two or three lines long using one, two or three setup I-
Variables, consecutively numbered. The result of the conversion will be located at the address of the last
used line. For example, if three lines are used starting with I-Variable I8000, the result will be located at
X:$3502.

UMAC Quick Reference Guide

Software Setup 39

Further Position Processing
Once the position feedback signals have been processed by the Encoder Conversion Table (which
happens at the beginning of each servo cycle), the data is ready for use by the servo loop. For each
activated motor, PMAC takes the position information in the 24-bit register pointed to by Ixx03 and
extends it in software to a 48-bit register that holds the actual motor position. Several other features are
available for conditioning the feedback signal, if necessary.
• Axis Position Scaling: for running motion programs, motors are mapped, either individually or in

groups, to a coordinate system with axis letters like X, Y and Z. For each individual motor, a scale
factor determines the relationship between encoder counts and user units to be used in motion
programs.

• Leadscrew Compensation: for each individual motor, it is possible to create a table to compensate
for potential leadscrew imperfections. This provides added positioning accuracy, especially when
moving large distances.

• Backlash Compensation: On reversal of the direction of the commanded velocity, a pre-
programmed backlash distance is added to or subtracted from the commanded position, thus
compensating for a potential backlash.

PMAC Position Registers
The PMAC Executive position window or the online P command reports the value of the actual position
register plus the position bias register plus the compensation correction register, and if bits 1 and 0 of Ixx06
are 1 (handwheel offset mode), minus the master position register:
M175->X:$00B0,4,1 ; Bit 0 of I106
M176->X:$00B0,5,1 ; Bit 1 of I106
M162->D:$008B ; #1 Actual position (1/[Ixx08*32] cts)
M164->D:$00CC ; #1 Position bias (1/[Ixx08*32] cts)
M167->D:$008D ; #1 Present master ((handwheel) pos (1/[Ixx07*32] cts
 ; of master or (1/[Ixx08*32] cts of slaved motor)
M169->D:$0090 ; #1 Compensation correction

32*I108
M167)*M176*M175M169M164(M162

 P100
−++

=

P100 will report the same value as the online P command or the position window in the PMAC Executive
program.
The addresses given are for Motor #1. For the registers of another motor x, add (x-1)*$80 to the
appropriate motor #1 address).
M161->D:$0088 ; #1 Commanded position (1/[Ixx08*32] cts)

The motor commanded position registers contain the value in counts where the motor is commanded to
move. It is set through JOG online commands or axis move commands (X10) inside motion programs.
To read this register in counts: P161 = M161 / (I108*32)
M162->D:$008B ; #1 Actual position (1/[Ixx08*32] cts)

The actual position register contains the information read from the feedback sensor after it has been
properly converted through the encoder conversion table and extended from a 24-bits register to a 48-bits
register.
To read this register in counts: P162 = M162 / (I108*32)
M163->D:$00C7 ; #1 Target (end) position (1/[Ixx08*32] cts)

This register contains the most recently programmed position and it is called the target position register, if
Isx13>0, PMAC is in segmentation mode and the value of M163 corresponds to the last interpolated point
calculated.
To read this register in counts: P163 = M163 / (I108*32)

 UMAC Quick Reference Guide

40 Software Setup

M164->D:$00CC ; #1 Position bias (1/[Ixx08*32] cts)

This register contains the offset specified in the axis definition command #1->X + <offset>
The online command {axis}={constant}or the motion program command PSET adds the
specified offset to the existing M164 offset: M164 = M164 + <new_offset>.
To read this register in counts: P164 = M164 / (I108*32)
M165->L:$2047 ; &1 X-axis target position (engineering units)

M165 contains the programmed axis position through a motion program, X10 for example, in engineering
units. It is updated also by the online command {axis}={constant} or the motion program
command PSET.
M166->X:$009D,0,24,S ; #1 Actual velocity (1/[Ixx09*32] cts/cyc)

M166 is the actual velocity register. For display purposes, use the motor-filtered actual velocity, M174
To read this register in cts/msec: P166 = M166 * 8388608 / (I109 * 32 * I10 *
(I160+1))
M167->D:$008D ; #1 Present master ((handwheel) pos (1/[Ixx07*32] cts
 ; of master or (1/[Ixx08*32] cts of slaved motor)

M167 is related to the master/slave relationship set through Ixx05 and Ixx06. It contains the present
number of counts from the master.
To read this register in counts: P167 = M167 / (I108*32)
or
P167 = M167 / (I107*32)
M169->D:$0090 ; #1 Compensation correction

This contains the calculated leadscrew compensation correction according to actual position (M162) and the
leadscrew compensation table set through the DEFINE COMP command.
To read this register in counts: P169 = M169 / (I108*32)
M172->L:$00D7 ; #1 Variable jog position/distance (counts)

Contains the distance for the J=* command.
Example: M172=2000 J=* ;Jog to position 2000 encoder counts
M173->Y:$00CE,0,24,S ; #1 Encoder home capture offset (counts)

Contains the home offset from the reset/power-on position; Important for the capture/compare features.
Example:
If (M117=1)
 P103=M103-M173 ; Captured position minus offset
endif
M174->D:$00EF ; #1 filtered actual velocity (1/[Ixx09*32]
 ; cts/servo cycle)

This register contains the actual velocity averaged over the previous 80 real-time interrupt periods
(80*[I8+1] servo cycles); good for display purposes.
To read this register in cts/msec: P174 = M174 * 8388608 / (I109 * 32 * I10 * (I160+1))
M180->D:$0091 ; #1 following error (1/[Ixx08*32] cts)

Following error is the difference between motor desired and measured position at any instant. When the
motor is open loop (killed or enabled), following error does not exist and PMAC reports a value of 0.

32* I108
M167** M176M175M169M164M162M161 176P −++−

=

To read this register in counts: P176 = M175 / (I108*32)

UMAC Quick Reference Guide

Software Setup 41

Summary of Selected I-Variables
Motor Definition I-Variables
Ixx00 – Motor xx Activate: For controlling an actual physical motor, this PMAC motor I-Variable
should be set to one. If there is no physical motor associated with this PMAC motor xx, then this variable
should be set to zero especially when using the encoder input or output command (DAC or stepper) for
any general purpose.

Ixx02 – Motor xx Command Output Address: This variable determines which hardware channel will
be used to output the command signals to the amplifier. It must be changed from the default value when
using stepper type drivers. Variable Ixx96 further configures the command outputs for motor xx.

Ixx03 – Motor xx Position Loop Feedback Address: This variable determines which hardware channel
will be used to input the feedback information for closing the position loop.

Ixx04 – Motor xx Velocity Loop Feedback Address: This variable determines which hardware channel
will be used to input the feedback information for closing the velocity loop. It differs from variable Ixx03
when two encoders, one on the load and one in the motor, are used in double-feedback applications.

Motor Safety I-Variables
Warning:

Setting Ixx11 to zero (disabled) could lead to a dangerous motor runaway
condition.

Ixx11 – Motor xx Fatal Following Error Limit: This variable sets the maximum number of 1/16 counts
of allowed following error before the motor is shutdown.

Ixx13 – Motor xx + Software Position Limit: This variable determines the maximum allowed range of
motion in the positive direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ixx14 – Motor xx - Software Position Limit: This variable determines the maximum allowed range of
motion in the negative direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ixx15 – Motor xx Abort/Lim Deceleration Rate: This parameter sets the deceleration rate used when a
programmed motion is aborted; either by the A abort command or when a maximum position limit is
reached.

Ixx16 – Motor xx Maximum Velocity: This parameter sets the maximum allowed velocity for a motor
performing a linear move issued from a motion program. This is observed only when variable Isx13 is
zero or a special lookahead buffer has been defined with Isx20 > 0.

Ixx17 – Motor xx Maximum Acceleration: This parameter sets the maximum allowed acceleration for
a motor performing a linear move issued from a motion program. This is observed only when variable
Isx13 is zero or a special lookahead buffer has been defined with Isx20 > 0.

Ixx19 – Motor xx Maximum Jog/Home Acceleration: This parameter sets the maximum allowed
acceleration rate for a motor performing a jog or homing move.

 UMAC Quick Reference Guide

42 Software Setup

S Curve and Linear Acceleration Variables
The acceleration portion of a programmed move, either programmed by a jog or a motion program
command, is controlled by two time parameters in units of millisecond. In the case of jog or homing
commands, these two parameters are I-variables Ixx20 and Ixx21. Ixx20 determines the overall
acceleration time, which is the total time required for any change in velocity. Ixx21 determines the
portion of the overall acceleration ramp that is performed in S curve mode.

In every case, if two times the S curve acceleration parameter is greater than the linear acceleration
parameter, then the overall acceleration time will be two times the S curve acceleration time:

If (2 x Ixx21) > Ixx20 then Ixx20 = (2 x Ixx21)

The acceleration of either linear or circular interpolated moves programmed from a motion program is
determined by a set of different parameters. However, these parameters have the same meaning as those
described above:

Move Type S Curve Acceleration
Parameter Linear Acceleration Parameter

Jog or Home commands Ixx21 Ixx20
Linear or circular interpolation TS or Isx88 TA or Ixx87

Rate vs. Time: Programming the Maximum Acceleration Parameters
The safety I-Variable Ixx17 determines the maximum allowed acceleration for the motor xx when no
special lookahead buffer is used in Linear mode moves. (Ixx19 is used for jog or home commands.)
These variables are programmed in units of encoder counts per millisecond square. However, the
acceleration of a programmed move, from either jog commands or a motion program, is set in
milliseconds as described above. The following relationship holds for the conversion between those
different units:

Time onAccelerati Curve S- Time onAccelerati Linear

Velocity
 Rate onAccelerati =

Examples:

Jog Commands Linear Interpolated Moves

Ixx21 - Ixx20
Ixx22 Ixx19 =

Isx88 - Isx87
Ixx16 Ixx17 =

No ‘S’ curve with ‘S’ curve

Ix21
Ix20 Ix20

Ix21

UMAC Quick Reference Guide

Software Setup 43

Benefits of Using S-Curve Acceleration Profiles
In an electric motor, the acceleration directly translates into torque and electrical current. When no S
curve component is programmed, the acceleration rate, torque and current are applied immediately to the
motor after it starts moving. With a programmed S curve profile, on the other hand, the acceleration is
applied linearly from zero to the programmed value resulting in a smoother transition in acceleration
torque and current. However, the acceleration rate in a pure S curve acceleration profile is two times that
which is necessary for a pure linear acceleration profile. (See equation above.) Then, the use of S curve
acceleration requires a longer overall acceleration time than when using straight linear acceleration.

Motor Movement I-Variables
Ixx20 – Motor xx Jog/Home Acceleration Time: This variable determines how long the acceleration
portion of the jog moves will take, regardless if a S curve component is also programmed or not. (See
diagram above.)

Ixx21 – Motor xx Jog/Home S-Curve Time: This variable determines the portion of the acceleration
ramp that will be performed in S curve mode. If Ixx20 is set to zero, then the acceleration ramp will take
2*Ixx21 and will be executed in pure S curve mode.

Ixx22 – Motor xx Jog Speed: This variable sets the jog velocity. If the motor xx is moving already, a
new jog command must be issued for the Ixx22 parameter to have effect.

Ixx23 – Motor xx Homing Speed and Direction: This variable is often set to the same value as Ixx22.
However, what is important in this case is its sign which determines the direction the motor xx will take
when searching for the home sensor.

Ixx24 – Motor xx Flag Mode Control: This variable specifies how the information in the register
specified by Ixx25 is used.

Ixx25 – Motor xx Flag Address: This variable determines which set of flags motor ‘xx’ will use. These
flags include the end-of-travel limits, the amplifier enable and fault lines and the home flag.

Note:

If a hardware flag is used for home reference and a quadrature encoder is used for
feedback, they must both belong to the same hardware channel in the axes board.

 UMAC Quick Reference Guide

44 Software Setup

Ixx26 – Motor xx Home Offset: This variable determines an offset in 1/16 of a count that PMAC will
move after the home procedure is completed. This is important to move the motor away from the home
sensor which could be necessary for a better reliable home search routine.

Ixx96 – Motor xx Position Capture & Trigger Mode: This variable controls how Turbo PMAC writes
to the command output registers specified in Ixx02.

Ixx97 – Motor xx Position Capture & Trigger Mode: This variable controls the triggering function and
the position capture function for triggered moves on motor xx. These triggered moves include homing
search moves, on-line jog-until-trigger moves, and motion program RAPID-mode move-until-trigger.

Servo Control I-Variables
The servo control variables are setup in the motor tuning process. Usually, this is accomplished using a
software tool like the Tuning Pro, part of the Pewin32 Pro Suite Software.

Ixx30 – Motor xx Proportional Gain: This is the most important variable in the servo control loop. It
determines how strong the corrections on the servo loop will be made, based on a given following error
value. The rule of thumb for the setup of this variable is to increase it until the motor starts to buzz and
then back down for about 20 % of its value.

Ixx31 – Motor xx Derivative Gain: This variable acts effectively as an electronic damper. The higher
Ixx31 is, the heavier the damping effect is. On a typical system with a current-loop amplifier and
PMAC’s default servo update time, an Ixx31 value of 2000 to 3000 will provide a critically damped step
response.

Ixx32 – Motor xx Velocity Feed Forward Gain: Typically, this variable is used to minimize the
tracking errors when the motor is moving with a constant velocity. If the motor is driving a current-loop
(torque) amplifier, usually Ixx32 will be equal to (or slightly greater than) Ixx31 to minimize tracking
error.

Ixx33 – Motor xx Integral Gain: Typically, this variable is used to minimize the steady state following
error when the motor is settling on the target position. The following error in this case is due to gravity
and external forces.

Ixx35 – Motor xx Acceleration Feed Forward Gain: This parameter is intended to reduce tracking
error due to inertial lag.

Ixx68 – Motor xx Friction Feedforward: This parameter is intended primarily to help overcome errors
due to mechanical friction.

Channel Specific I-Variables
I7mn0 – Encoder Decode Control: This variable determines how an increase in the encoder feedback
counter will be interpreted when translated into position, either as an increase or a decrease in the position
counter. This determines the proper direction of motion. Typical values are either 3 or 7, which
determine a clock-wise or counter-clockwise direction of decoding respectively.

I7mn2 – Encoder Capture Control: This variable determines the trigger condition that completes the
home search command. For example, the trigger condition could be a combination of the home sensor
being activated and the encoder C channel rising high.

I7mn3 – Encoder Flag Select: This variable determines which flag will be used for the home trigger
condition, selected from the home flag, the end-of-travel limits, the user flag or the amplifier fault flag.

UMAC Quick Reference Guide

Software Setup 45

Homing Search Moves
The purpose of a homing search move is to establish an absolute position reference when an incremental
position feedback sensor is used. The move until trigger construct is ideal for finding the sensor that
establishes the home position and returning to this position automatically. The trigger condition for
homing-search moves, as for other triggered moves, is specified by Ixx97, Ixx24, and Ixx25. Variables
Ixx20, Ixx21, Ixx23 and Ixx26 specify the move parameters of home search type commands. If no trigger
is found, the pre-trigger move will continue indefinitely, or until stopped by an error condition such as
hitting overtravel limits.

Note:
If a hardware flag is used for home reference and a quadrature encoder is used for
feedback, they must both belong to the same hardware channel in the axes board.

A homing search move can be initiated with the on-line motor-specific HOME command (short form HM,
e.g., #1HM). The homing search move can be commanded also from within a motion program with the
HOMEn command, where n is the motor number. Note that this command specifies a motor, unlike other
motion program commands that specify an axis move. Multiple homing moves can be started together by
specifying a list or range of motor numbers with the command (e.g. HOME1,3 or HOME2..6). Further
program execution will wait for all of these motors to finish their homing moves. Separate homing
commands, even on the same line (e.g. HOME1 HOME2) will be executed in sequence, with the first
finishing before the second starts.

Jogging Moves
Indefinite Jog Commands
J+ commands an indefinite positive jog for the addressed motor. J- commands an indefinite negative
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration. It is
possible for the J/ command to leave the commanded position at a fractional count which can cause
dithering between the adjacent integer count values. If this is a problem, the J! command can be used to
force the commanded position to the nearest integer count value.

Jogging to a Specified Position
Jog commands to a specified position, or of a specified distance, can be given. J= commands a jog to the
last pre-jog position. J={constant} commands a jog to the (unscaled) position specified in the
command. J=={constant} commands a jog to the (unscaled) position specified in the command and
makes that position the pre-jog position. J^{constant} commands a jog of the specified distance
from the actual position at the time of the command (J^0 can be useful to take up remaining following
error). J:{constant} commands a jog of the specified distance from the commanded position at the
time of the command.

Jog Moves Specified by a Variable
Jogging moves to a position or a distance specified by a variable are possible. Each motor has a specific
register (L:$00D7 for motor 1, L:$0157 for motor 2, etc.) that holds the position or distance to move on
the next variable jog command. This register contains a floating-point value scaled in encoder counts. It
should be accessed with an L-format M-Variable. The J=* command causes PMAC to use this value as
a destination position. The J^* command causes PMAC to use the value as a distance from the actual
position at the time of the command. The J:* command causes PMAC to use the value as a distance
from the commanded position at the time of the command.

Each time one of these commands is given, the acceleration and velocity parameters at that time control
the response to the command. To change speed or acceleration parameters of an active jog move, change
the appropriate parameters, then issue another jog command.

 UMAC Quick Reference Guide

46 Software Setup

Jog-Until-Trigger
The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by a move
relative to the position at the time of the trigger. It is very similar to a homing search move, except that
the motor zero position is not altered and there is a specific destination in the absence of a trigger. The
jog-until-trigger function for a motor is specified by adding a ^{constant} specifier to the end of a
regular definite jog command for the motor, where {constant} is the distance to be traveled relative to
the trigger position before stopping in encoder counts. It cannot be used with the indefinite jog
commands J+ and J-. To set the trigger for motor xx to occur when an obstruction such as a hard stop is
encountered, set Ixx97 to 3, specifying both following-error trigger and software capture.
Example:
#2J:5000^-100 ; Jog 5000 counts in the positive direction in the absence

; of a trigger, but if trigger is found, jog to -100 cts
; from trigger position.

Command and Send Statements
Using the COMMAND or CMD statement, online commands can be issued from a PLC or motion program
and have the same result as if they were issued from a host computer or a terminal window. Certain
online commands might not be valid when issued from a running program. For example, a jog command
to a motor part of a coordinate system running a motion program will be invalid. I6 should not be set to 2
in early development so that it will be known when PMAC has rejected such a command. Setting I6 to 2
in the actual application can prevent program hang-up from a full response queue or from disturbing the
normal host communications protocol.
Messages to a host computer connected through the PMAC port x could be issued using the SENDx command:
SENDS transmits the message to the main serial port.
SENDP transmits the message to the PC/104 parallel bus port.
SENDR transmits the message through the DPRAM ASCII response buffer.
SENDA transmits the message to the Option 9T auxiliary serial port.
If there is no host on the port to which the message is sent, or the host is not ready to read the message,
the message is left in the queue. If several messages back up in the queue, the program issuing the
messages will halt execution until the messages are read. This is a common mistake when the SEND
command is used outside of an Edge-Triggered condition in a PLC program. On the serial port, it is
possible to send messages to a non-existent host by disabling the port handshaking with I1=1.
If a program, particularly a PLC program, sends messages immediately on power-up/reset, it can confuse
a host-computer program (such as the PMAC Executive Program) that is trying to find PMAC by
querying it and looking for a particular response.
It is possible, particularly in PLC programs, to order the sending of messages or command statements
faster than the port can handle them. Usually this happens if the same SEND or CMD command is
executed every scan through the PLC. For this reason, have at least one of the conditions that causes the
SEND or CMD command to execute set false immediately to prevent execution of this SEND or CMD
command on subsequent scans of the PLC.
Example:
IF (M7000=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 COMMAND"#1J+" ; jog motor
 P11=1 ; set latch
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF

UMAC Quick Reference Guide

Motion Programs 47

MOTION PROGRAMS
PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. Turbo
PMAC can run as many motion programs simultaneously as there are coordinate systems defined on the
card (up to 16). A motion program can call any other motion program as a subprogram, with or without
arguments.

PMAC’s motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It has the calculational and
logical constructs of a computer language and move specification constructs similar to machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Motion or PLCs programs are entered in any text file to be downloaded later to PMAC. Pewin32 Pro
provides a built-in text editor for this purpose. Once the code has been written, it can be downloaded to
PMAC using Pewin32 Pro. In addition, any PMAC command can be issued from any terminal window
communicating with PMAC. For example, online commands can jog motors, change variables, report
variables values, start and stop programs, query for status information, and even write short motion and
PLC programs. In fact, the downloading process is just a sequence of valid PMAC commands sent line
by line from a particular text file.

How PMAC Executes a Motion Program
A PMAC program exists to pass data to the trajectory generator routines that compute the series of
commanded positions for the motors every servo cycle. The motion program must be working ahead of the
actual commanded move to keep the trajectory generators fed with data. PMAC processes program lines
either zero, one or two moves (including DWELLs and DELAYs) ahead. Calculating one move ahead is
necessary in order to be able to blend moves together. Calculating a second move ahead is necessary if
proper acceleration and velocity limiting is to be done, or a three-point spline is to be calculated (SPLINE
mode.)

Zero Moves Ahead Two Moves Ahead One Move Ahead
RAPID LINEAR with Isx13=0 LINEAR with Isx13>0
HOME SPLINE1 CIRCLE

DWELL PVT
“B1S” (step through program 1)

Isx92=1 (blending disabled)

When a RUN command is given, and every time the actual execution of programmed moves progresses
into a new move, a flag is set saying it is time to do more calculations in the motion program for that
coordinate system. If this flag is set, at the next RTI (real time interrupt), PMAC will start working
through the motion program processing each command encountered. This can include multiple modal
statements, calculation statements, and logical control statements. Program calculations will continue
(which means no background tasks will be executed) until one of the following conditions occurs:

1. The next move, Error! Bookmark not defined.a DWELL command or a PSETError! Bookmark not
defined. statement is found and calculated.

2. End of, or halt to the program (e.g. STOP) is encountered.
3. Two jumps backward in the program (from ENDWHILE or GOTO) are performed.
4. A WAIT statement is encountered (usually in a WHILE loop).

 UMAC Quick Reference Guide

48 Motion Programs

If calculations stop on condition 1 or 2, the calculation flag is cleared and will not be set again until actual
motion progresses into the next move or a new RUN command is given. If calculations stop on conditions
3 or 4, the flag remains set, so calculations will resume at the next RTI. In these cases, there is an empty
(no-motion) loop and the motion program acts much like a PLC0 during this period. This could result in
an undesired starving condition for the background cycle. If PMAC cannot finish calculating the
trajectory for a move by the time execution of that move is supposed to begin, PMAC will abort the
program, showing a run-time error in its status word.

Coordinate Systems
A coordinate system in PMAC is a grouping of one or more motors for synchronizing movements. A
coordinate system (even with only one motor) can run a motion program; a motor cannot. Turbo PMAC can
have up to 16 coordinate systems, addressed as &1 to &16, in a very flexible fashion (e.g. eight coordinate
systems of one motor each, one coordinate system of eight motors, four coordinate systems of two motors
each, etc.).

In general, certain motors should be moved in a coordinated fashion, put them in the same coordinate
system. To move the motors independent of each other, put them in separate coordinate systems.
Different coordinate systems can run separate programs at different times (including overlapping times),
or even run the same program at different (or overlapping) times.

A coordinate system must be established first by assigning axes to motors in Axis Definition Statements.
A coordinate system must have at least one motor assigned to an axis within that system, or it cannot run
a motion program, even non-motion parts of it. When a program is written for a coordinate system, and if
simultaneous motions are wanted of multiple motors, put their move commands on the same line and the
moves will be coordinated.

Axis Definitions
An axis is an element of a coordinate system. It is similar to a motor, but not the same thing. An axis is
referred to by letter. There can be up to nine axes in a coordinate system, selected from X, Y, Z, A, B, C,
U, V, and W. An axis is defined by assigning it to a motor with a scaling factor and an optional offset (X,
Y, and Z may be defined as linear combinations of three motors, as may U, V, and W). The variables
associated with an axis are scaled floating-point values.

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. That
is, a single motor is assigned to a single axis in a coordinate system. Even when this is the case, however,
the matching motor and axis are not synonymous. The axis is scaled into engineering units and deals only
with commanded positions. Except for the PMATCH function, calculations go only from axis commanded
positions to motor commanded positions, not the other way around.

More than one motor may be assigned to the same axis in a coordinate system. This is common in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.
By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Commonly, this is done with two motors but up to eight
motors have been used in this manner with PMAC. Remember that the motors still have independent
servo loops, and that the actual motor positions will not be the same necessarily.

An axis in a coordinate system can have no motors attached to it (a phantom axis). In this case,
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, one method to perform sinusoidal
profiles on a single X-axis is to have a second, phantom Y-axis and program them together with a circular
interpolation move.

UMAC Quick Reference Guide

Motion Programs 49

Axis Definition Statements
A coordinate system is established by using axis definition statements. An axis is defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to the X-
axis of the currently addressed coordinate system. When an X-axis move is executed in this coordinate
system, motor #1 will make the move. The axis definition statement also defines the scaling of the axis’
user units. For instance, #1->10000X also matches motor #1 to the X axis, but this statement sets
10,000 encoder counts to one X-axis user unit (e.g. inches or centimeters). Usually, this scaling feature is
used universally. Once the scaling has been defined in this statement, the user can program the axis in
engineering units without ever needing to deal with the scaling again.
Permitted Axis Names: X, Y, Z, U, V, W, A, B, C

A, B, C: Traditionally Rotary Axes
• A rotates about X, B about Y, C about Z
• Position rollover (Ixx27)

X, Y, Z: Traditionally Main Linear Axes
• Matrix axis definition
• Matrix axis transformation
• Circular interpolation
• Cutter radius compensation

U, V, W: Traditionally Secondary Linear Axes
• Matrix Axis Definition

Writing a Motion Program
1. Open a program buffer with OPEN PROG {constant} where {constant} is an integer from 1 to

32767 representing the motion program to be opened.
2. Motion program numbers 1000 and above can contain G-codes, M-codes, T-codes and D-codes for

machine tool G-codes or RS-274 programming method. These buffers can be used for general
PMAC code programming as long as G-codes programming is not needed in PMAC.

3. PMAC can hold up to 224 motion programs at one time. For continuous execution of programs that
are larger than PMAC’s memory space, a special PROG0 (the rotary motion program buffers) allows
for the downloading of program lines during the execution of the program and for the overwriting of
already executed program lines.

4. The CLEAR command empties the currently opened motion program or rotary buffer.
5. Many of the statements in PMAC motion programs are modal in nature. These include move modes,

which specify what type of trajectory a move command will generate. This category includes
LINEAR, RAPID, CIRCLE, PVT, and SPLINE.

6. Moves can be specified incrementally (distance) or absolutely (location) – individually selectable by
axis – with the INC and ABS commands. Move times (TA, TS, and TM) and/or speeds (F) are
implemented in modal commands. Modal commands can precede the move commands they are to
affect, or they can be on the same line as the first of these move commands.

7. The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a
coordinated fashion on execution of the line; consecutive lines execute sequentially (with or without
stops in between, as determined by the mode). Depending on the modes in effect, the specified
values can mean destination, distance, and/or velocity.

8. If the move times (TA, TS, and TM) and/or speeds (F) are not declared specifically in the motion
program, the default parameters from the I-variables Isx87, Isx88 and Isx89 will be used instead.

Note:
Do not rely on these parameters and declare the move times in the program. This
will keep the move parameters with the move commands, lessening the chances of
future errors and making debugging easier.

 UMAC Quick Reference Guide

50 Motion Programs

9. In a motion program, PMAC has WHILE loops and IF..ELSE branches that control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either
constant or variable arguments. (The variable GOTO can perform the same function as a Case
statement.) GOSUB statements (constant or variable destination) allow subroutines to be executed
within a program. CALL statements permit other programs to be entered as subprograms. Entry to
the subprogram does not have to be at the beginning – the statement CALL 20.15000 causes entry
into Program 20 at line N15000. GOSUBs and CALLs can be nested only 15 deep.

10. The CLOSE statement closes the currently opened buffer. This should be used immediately after the
entry of a motion or rotary buffer. If the buffer is left open, subsequent statements that are intended
as on-line commands (e.g. P1=0) will be entered into the buffer instead. It is good practice to have
CLOSE at the beginning and end of any file to be downloaded to PMAC. When PMAC receives a
CLOSE command, it appends a RETURN statement to the end of the open program buffer
automatically. If any program or PLC in PMAC is structured improperly (e.g. no ENDIF or
ENDWHILE to match an IF or WHILE), PMAC will report an ERR003 at the CLOSE command for
any buffer until the problem is fixed.
Example:
close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all coordinate
systems
#1->2000X ; Motor #1 is defined as axis X

OPEN PROG 1 CLEAR ; Open buffer to be written
LINEAR ; Linear interpolation
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec
TS0 ; No S-curve acceleration component
F50 ; Feedrate is 50 Units per Isx90 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

Running a Motion Program
1. Select the Coordinate System where the motion program will be running. This is done by issuing the

& command followed by the coordinate system number (i.e., &1 for the coordinate system 1).
2. Use the B{constant} command to select the program to be run, where the {constant}

represents the number of the motion program buffer. Use the B command to change motion programs
and after any motion program buffer has been opened. This is not used if running the same motion
program repeatedly without modification. When PMAC finishes executing a motion program, the
program counter for the coordinate system is set to point to the beginning of that program
automatically, ready to run it again.

3. Once pointing to the motion program to be run, issue the command to start execution of the program.
For continuous execution of the program, use the R command (<CTRL-R> for all coordinate systems
simultaneously). The program will execute all the way through unless stopped by command or error
condition.

4. To execute just one move, or a small section of the program, use the S command (<CTRL-S> for all
coordinate systems simultaneously). The program will execute to the first move DWELL or DELAY,
or if it first encounters a BLOCKSTART command, it will execute to the BLOCKSTOP command.

UMAC Quick Reference Guide

Motion Programs 51

5. When a run or step command is issued, PMAC checks the coordinate system to ensure that it is in
proper working order. If it finds nothing in the coordinate system is set up properly, it will reject the
command, sending a <BELL> command back to the host. If I6 is set to 1 or 3, it will report an error
number, as well telling the reason the command was rejected. PMAC will reject a run or step
command for any of the following reasons:
• A motor in the coordinate system has both overtravel limits tripped (ERR010)
• A motor in the coordinate system is executing a move currently (ERR011)
• A motor in the coordinate system is not in closed-loop control (ERR012)
• A motor in the coordinate system is not activated {Ixx00=0} (ERR013)
• There are no motors assigned to the coordinate system (ERR014)
• A fixed (non-rotary) motion program buffer is open (ERR015)
• No motion program has been pointed to (ERR016)
• After a / or \ stop command, a motor in the coordinate system is not at the stop point (ERR017)

6. Before starting the program, issue a CTRL+A command to ensure that all the motors will be
potentially in closed loop and that all previous move commands are aborted. In addition, the
functionality of each motor can be checked individually with jog commands before running a
program. For example, #1J^2000 will try to move motor #1 2000 encoder counts, confirming if the
motor is able to run in closed loop or not.

7. All motors in the addressed coordinate system must be ready to run a motion program. Depending on
the settings of Ixx24, all PMAC motors may be disabled if only one motor is having problems
running in close loop.

8. No motion will occur if the feedrate override value for the current addressed coordinate system is set
at zero. Check the feedrate override parameter by issuing &1% on the terminal window (replace 1 for
the appropriate coordinate system number). If it is zero or set too low, set it to an appropriate value.
The %100 command will set it to 100%.

9. For troubleshooting purposes, change the feedrate override to a lower than 100% value. Before
running the program, type %10 to run it at a 10% rate of the programmed velocity, thus running it in
slow motion. Running the program slowly will allow observing the programmed path more clearly, it
will demand less calculation time from PMAC and it will prevent damages due to potentially wrong
acceleration and/or feedrate parameters.

10. A motion program running in Coordinate System 1 can be stopped at any time by sending &1A or, for
simplicity, the CTRL+A command will stop any running motor in PMAC.

11. If the motion of any axis becomes uncontrollable and must be stopped, a CTRL+K command can be
issued which will kill all the motors in PMAC (disabling the amplifier enable line if connected).
However, the motor will come to a stop in an uncontrollable way and may continue moving due to its
own inertia.

12. In addition, a motion program can be stopped by issuing a CTRL+Q command. The last programmed
moves in the buffer will be completed before the program quits execution. It can be resumed by
issuing an R command.

 UMAC Quick Reference Guide

52 Motion Programs

Subroutines and Subprograms
It is possible to create subroutines and subprograms in PMAC motion programs to create well-structured
modular programs with re-usable subroutines. The GOSUBx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when a RETURN command is encountered. This creates a subroutine.

The CALLx command in a motion program causes a jump to PROG x, with a jump back to the command
immediately following the CALL when a RETURN command is encountered. If x is an integer, the jump
is to the beginning of PROG x; if there is a fractional component to x, the jump is to line label N
(y*100,000), where y is the fractional part of x. This structure permits the creation of special
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.
The PRELUDE command allows creating an automatic subprogram call before each move command or
other letter-number command in a motion program.
Passing Arguments to Subroutines
These subprogram calls are made more powerful by using the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program. The value after a B would be placed in Q102, and so on (Z
value goes in Q126). Letters N or O cannot be passed.
This structure is useful particularly for creating machine tool style programs, in which the syntax must
consist solely of letter-number combinations in the parts program. Since PMAC treats the G, M, T, and D
codes as special subroutine calls, the READ statement can be used to let the subroutine access values on
the part-program line after the code.
In addition, the READ statement provides the capability of seeing what arguments have actually been
passed. The bits of Q100 for the coordinate system are used to note whether arguments have been passed
successfully; bit 0 is 1 if an A argument has been passed, bit 1 is 1 if a B argument has been passed, and
so on, with bit 25 set to 1 if a Z argument has been passed. The corresponding bit for any argument not
passed in the latest subroutine or subprogram call is set to 0.
Example:
close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all coordinate
systems
#1->2000X ; Motor #1 is defined as axis X
OPEN PROG 1 CLEAR ; Open buffer to be written
LINEAR INC TA100 TS0 F50 ;Mode and timing parameters
gosub 100 H10 ;Subroutine call passing parameter H with value 10
return ;End of the main program section (execution ends)
n100 ;Subroutine section. The first subroutine is
labeled 100
read(h) ;Read the H parameter value passed
IF (Q100 & $80 > 0) ;If the H parameter has been passed …
 X(Q108) ; …use the H parameter value contained in Q108
endif
return ;End of the subroutine labeled 100
close ;End of the motion program code

UMAC Quick Reference Guide

Motion Programs 53

G, M, T, and D-Codes (Machine Tool Style Programs)
PMAC permits the execution of machine tool style RS-274 (G-Code) programs by treating G, M, T, and
D-codes as subroutine calls. This permits the machine tool manufacturer to customize the codes for a
machine, but it requires the manufacturer to do the actual implementation of the subroutines that will
execute the desired actions.
When PMAC encounters the letter G with a value in a motion program, it treats the command as a call to
motion program 10n0, where n is the hundreds’ digit of the value. The value without the hundred’s digit
(modulo 100 in mathematical terms) controls the line label within program 10n0 to which operation will
jump -- this value is multiplied by 1000 to specify the number of the line label. When a return statement
is encountered, it will jump back to the calling program. For example, G17 will cause a jump to N17000
of PROG 1000; G117 will cause a jump to N17000 of PROG 1010; G973.1 will cause a jump to N73100
of PROG 1090.
M-Codes operate in the same way, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use
PROG 10n3.
Usually, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002, and 1003
are required to execute them. To extend code numbers past 100, PROGs 1010, 1011, etc. will be required
to execute them.

NC Products
The PMAC-NC software runs standard CNC parts program using a PMAC Motion controller. This
software performs two important functions. It translates standard RS274 G-Codes programs into PMAC
code and feeds the translated code into PMAC’s memory using a perfectly synchronized communications
scheme. The transfer of the program lines between the host computer and the PMAC motion controller is
performed using shared DPRAM memory and either USB, PC104 or Ethernet methods. In this fashion,
the size of the CNC parts program is limited only by the storage capacity in the host computer. Normally,
the PMAC NC software is used with Delta Tau’s Advantage line of packaged CNC systems which
includes the operator control panel hardware for the machine operation.

The Advantage 810U NC controller from Delta Tau consists of two main components, the UMAC and the
810 NC operator console. This hardware combination, along with the PMAC NC software, is an
excellent solution for five axes or greater, milling, turning and special purpose machines such as laser
cutting and water jet cutting. A standard USBII connection links the motion controller with the 810
operator’s control panel, resulting in a fast and reliable connection.
The 810 console includes all of the standard operator controls such as rotary switches for axes selection,
user-definable buttons for customized IO control, feedrate override, handwheel, spindle speed and mode
select. The open-architecture PC-based design runs any other Windows® compatible program, the writing
of NC parts programs, reading of programs locally or through an Ethernet network or even accessing the
Internet.

UMAC Motion Controller

Advantage 810 NC Control Console

USB

 UMAC Quick Reference Guide

54 Motion Programs

Linear Blended Moves
The duration of a move, or move time, is set directly by TM or indirectly from the distances and feedrate
F parameters.
TM100
X3 Y4

or FRAX(X,Y)

X3 Y4 F50 ;
msec 100

50

5000

50

2423I5190
TM ==

+⋅
=

• The acceleration time and shape is programmed with the TA and TS parameters. TA determines the
overall acceleration time, which is the total time required for any change in velocity. TS determines
the portion of the overall acceleration ramp that is performed in S curve mode.

• If the TA programmed results are less than twice the programmed TS, the 2*TS will be used instead.
• If the move time calculated above is less than the TA time set, the TA time will be used instead. In

this case, the programmed TA (or 2*TS if TA<2*TS) will result in the minimum move time of a
linearly interpolated move.

• The acceleration time TA of a blended move cannot be longer than two times the previous TM minus
the previous TA, otherwise the value 2*(TM- ½ TA) will be used as the current TA instead.

• When Isx13=0, safety variables Ixx16 and Ixx17 will override these parameters if they are found to
violate the programmed limits.
If TM < TA, TM = TA
If TA < 2*TS, TA = 2*TS
If TAi+1 > 2*(TMi- ½ TAi), TAi+1 = 2*(TMi - ½ TAi)

Example:

TM½ TA ½ TA

V

t

To illustrate how PMAC blends linear moves, a series of velocity Vs time profiles will be shown. The
moves are defined with zero S-curve components. The concepts described here can be applied when
using non-zero S-curve linear moves.
1. Consider the following motion program code:

close
delete gather
undefine all
&1
#1->2000x
OPEN PROG 1 CLEAR

LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; The acceleration time is 100 msec, TA1
TS0 ; No S-curve component
TM250 ; Move time is 250 msec, TM1
X10 ; Move distance is 10 units, 20000 counts
TA250 ; Acceleration \ deceleration of the blended move is

; 250 msec, TA2
X40 ; Move distance is 40 units, 80000 counts

CLOSE

UMAC Quick Reference Guide

Motion Programs 55

2. The two move commands are plotted without blending, placing a DWELL0 command in between the
two moves:

3. The two moves are now plotted with the blending mode activated. To find out the blending point,

trace straight lines through the middle point of each acceleration lines of both velocity profiles:

Linear Interpolated Moves Characteristics
1. The total move time is given by msec 675 125250 250 50

2
2TA

2TM1TM
2
1TA

=+++=+++

2. The acceleration of the second blended move and be extended only up to a certain limit, 2*(TM- ½
TA).

When not using a special lookahead buffer, PMAC looks two moves ahead of actual move execution to
perform its acceleration limit and can recalculate these two moves to keep the accelerations under the
Ixx17 limit. However, there are cases where more than two moves, some much more than two, would
have to be recalculated in order to keep the accelerations under the limit.

 UMAC Quick Reference Guide

56 Motion Programs

In these cases, PMAC will limit the accelerations as much as it can, but because the earlier moves have
already been executed, they cannot be undone, and therefore the acceleration limit will be exceeded.

3. When performing a blended move that involves a change of direction, the programmed end point

may not be reached.
Example:
TA100
TM250

X10 ; This would reach only to position = 9
250 . 4

10 . 10010 =−

X-10

In order to reach the desired position, since the motor will stop when changing direction anyway,
place a DWELL0 command between moves. This command will disable blending for that particular
move:
TA100
TM250
X10
DWELL0 ;Temporarily disables blending between the two moves
X-10

4. Since the value of TA determines the minimum time in which a programmed move can be executed,
potentially it can limit the maximum velocity of motion and therefore the programmed feedrate might
not be reached. This is the case for triangular (not trapezoidal) velocity profile moves types which
can happen when a sequence of short distance moves is programmed.

UMAC Quick Reference Guide

Motion Programs 57

Example:
close
delete gather
undefine all
&1
#1->2000X
I5190=1000
OPEN PROG 1 CLEAR

LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec, TA1
TS0 ; No S-curve component
F40 ; Feedrate is 40 length_units / second

X3 ;
cmse 75 40

3000 40
 I5190 . 3TM ===

CLOSE

5. Since the resulting TM for the given feedrate is 75 msec and the programmed TA for this move is
100 msec, the TM used will be100 msec instead. This yields the following feedrate value instead of
the programmed one:

second

distance of units
 30

100

3000

100

I5190 . 3
F ===

6. To be able to reach the desired velocity, a longer move could be performed split into two sections.

The first move will be executed using a suitable TA to get the motor to move from rest. The second
move will have a lower acceleration time TA in order to decrease the move time TM and so reach the
programmed feedrate.

OPEN PROG 1
CLEAR
LINEAR
INC
TS0
F40
TA100
X3
TA75
X3
CLOSE

 UMAC Quick Reference Guide

58 Motion Programs

In this case, the TA parameter must be changed at the beginning and end in a series of interpolated
moves. This is necessary particularly for profiles with sharp corners when more than one axis are linearly
interpolated. The special lookahead buffer is an excellent solution in those cases. The lookahead feature
will determine the necessary acceleration value to use in each case, maintaining the acceleration
constrains limits under control. This feature allows reaching the maximum velocity along the path when
possible, and reaching maximum allowed acceleration when required. This drastically increases the
throughput in the machine.

Circular Interpolation
PMAC allows circular interpolation on the X, Y, and Z-axis in a coordinate system. As with linear
blended moves, TA and TS control the acceleration to and from a stop and between moves. Circular
blended moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. It is
possible to change back and forth between linear and circular moves without stopping. The LINEAR
command is used when linear interpolation is needed, and CIRCLE1 or CIRCLE2 is used for circular
interpolation.

1. PMAC performs arc moves by segmenting the arc and performing the best cubic fit on each segment.

I-Variable Isx13 determines the time for each segment. Isx13 must be set greater than zero to put
PMAC into this segmentation mode so that for arc moves can be done. If Isx13 is set to zero, circular
arc moves will be done in linear fashion.
The typical range of Isx13 for the circular interpolation mode is from 5 to 10 msec. A value of 10
msec is recommended for most applications, a lower than 10 msec Isx13 value will improve the
accuracy of the interpolation (calculating points of the curve more often) but will also consume more
of PMAC’s total computational power.

2. When PMAC is segmenting moves automatically (Isx13 > 0), which is required for circular
interpolation, the Ixx17 accelerations limits and the Ixx16 velocity limits are not observed unless a
special lookahead buffer is defined.

3. Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if
they were not specified in an FRAX command. Other axes may or may not be feedrate axes. Any
non-feedrate axes commanded to move in the same move command will be linearly interpolated to
finish in the same time. This permits easy helical interpolation.

4. The plane for the circular arc must be defined by the NORMAL command (the default – NORMAL K-
1 – defines the XY plane). This command can define planes in XYZ space only which means that
the X, Y, and Z-axes can be used only for circular interpolation. Other axes specified in the same
move command will be interpolated linearly to finish in the same time. The most commonly used
planes are:
NORMAL K-1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL I-1 ; YZ plane -- equivalent to G19

UMAC Quick Reference Guide

Motion Programs 59

5. To put the program in circular mode, use the CIRCLE1 program command for clockwise arcs (G02
equivalent) or CIRCLE2 for counterclockwise arcs (G03 equivalent). LINEAR will restore PMAC
to linear blended moves. Once in circular mode, a circular move is specified with a move command
designating the move endpoint and either the vector to the arc center or the distance (radius) to the
center. The endpoint may be specified either as a position or as a distance from the starting point,
depending on whether the axes are in absolute (ABS) or incremental (INC) mode (individually
specifiable).
X{Data} Y{Data} R{Data} ;Radius of the circle is given
X{Data} Y{Data} I{Data} J{Data} ;Center coordinates of the circle are given

6. If the vector method of locating the arc center is used, the vector is specified by its I, J, and K
components (I specifies the component parallel to the X axis, J to the Y axis, and K to the Z axis).
This vector can be specified as a distance from the starting point (i.e. incrementally), or from the
XYZ origin (i.e. absolutely). The choice is made by specifying R in an ABS or INC statement (e.g.
ABS(R) or INC(R). This affects I, J, and K specifiers together. (ABS and INC without arguments
affect all axes, but leave the vectors unchanged.) The default is for incremental vector specification.

7. PMAC’s convention is to take the short arc path if the R value is positive, and the long arc path if R
is negative:
• If the value of R is positive, the arc to the move endpoint is the short route (<=180 degrees)
• If the value of R is negative, the arc to the move endpoint is the long route (>=180 degrees)

8. When performing a circular interpolation, the individual axes describe a position Vs time profile

close to a sine and cosine shape. This is true for their velocity and acceleration profiles also.
Therefore, circular interpolation makes an ideal feature to described trigonometric profiles.
Furthermore, the period (and so the frequency) of the sine or cosine profiles are set by the total move
time given by TA+TM.

 UMAC Quick Reference Guide

60 Motion Programs

close
delete gather
undefine all
&1
#2->2000Y ;X is phantom
open prog1 clear
inc
inc (r)
ta300
ts0
tm1000 ;TA+TM is period
i13=10
normal k-1 ;X-Y plane
circle1 ;Clockwise
x0 y0 i10 ;Complete circle
close
b1r ;Run this program

Example:
I5113=10 ;Move Segmentation Time
NORMAL K-1 ;XY plane
INC ;Incremental End Point
 ;definition
INC (R) ;Incremental Center
 ;Vector definition
CIRCLE 1 ;Clockwise circle
X20 Y0 I10 J0 ;Arc move

Splined Moves
Turbo PMAC can perform two types of cubic splines (cubic in terms of the position-vs.-time equations) to
blend a series of points on an axis. Its SPLINE1 mode is a uniform non-rational cubic B-spline and its
SPLINE2 mode is a non-uniform non-rational cubic B-spline. Of course, it can perform either spline for
all of the axes simultaneously. Splining is particularly suited to odd (non-Cartesian) geometries, such as
radial tables and rotary-axis robots, where there are odd axis profile shapes even for regular tip movements.

In SPLINE1 mode, a long move is split into equal-time segments, each of TM or TA time (depending on
the setting of global variable I42). Each axis is given a destination position in the motion program for
each segment with a regular move command line like X1000Y2000. Looking at the move command
before this and the move command after this, Turbo PMAC creates a cubic position-vs.-time curve for
each axis so that there is no sudden change of either velocity or acceleration at the segment boundaries.
The commanded position at the segment boundary may be relaxed slightly to meet the velocity and
acceleration constraints.
Turbo PMAC’s SPLINE2 mode is similar to the SPLINE1 mode, except that the requirement that the
TA spline segment time remain constant is removed. The removal of this constraint makes the SPLINE2
mode a non-uniform, non-rational cubic B-spline, whereas the SPLINE1 mode is a uniform, non-rational
cubic B-spline.

UMAC Quick Reference Guide

Motion Programs 61

PVT-Mode Moves
To have more direct control over the trajectory profile, Turbo PMAC offers Position-Velocity-Time
(PVT) mode moves. In these moves, the axis states are specified directly at the transitions between
moves (unlike in blended moves). This requires more calculation by the host, but allows tighter control
of the profile shape. For each piece of a move, the end position or distance, the end velocity, and the
piece time are specified.
Turbo PMAC is put in this mode with the program statement PVT{data}, where {data} is a floating-
point constant, variable, or expression, representing the piece time in milliseconds. The move time may
be changed between moves, either with another PVT{data} statement, with a TM{data} statement if
I42 = 0, or a TA{data} statement if I42 = 1. The program is taken out of this mode with another move
mode statement (e.g., LINEAR, RAPID, CIRCLE, SPLINE).
A PVT mode move is specified for each axis to be moved with a statement of the form
{axis}{data}:{data}, where {axis} is a letter specifying the axis, the first {data} is a value
specifying the end position or the piece distance, depending on whether the axis is in absolute or
incremental mode, respectively, and the second {data} is a value representing the ending velocity.
The units for position or distance are the user length or angle units for the axis, as set in the Axis
Definition statement. The units for velocity are defined as length units divided by time units, where the
length units are the same as those for position or distance, and the time units are defined by variable Isx90
for the coordinate system (feedrate time units). The velocity specified for an axis is a signed quantity.
From the specified parameters for the move piece, and the beginning position and velocity (from the end
of the previous piece), Turbo PMAC computes only the third-order position trajectory path to meet the
constraints. This results in linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.
Since a non-zero end velocity for the move can be specified (directly or indirectly), it is not a good idea to
step through a program of transition-point moves, and great care must be exercised in downloading these
moves in real time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series
of PVT moves, the last of which has a zero end velocity, it is possible to use a STEP command to execute
only part of a program.
The PVT mode is the most useful for creating arbitrary trajectory profiles. It provides a building block
approach to putting together parabolic velocity segments to create whatever overall profile is desired.
The following diagrams show common velocity segment profiles. PVT mode can create any profile that
any other move mode can.

 UMAC Quick Reference Guide

62 Motion Programs

Replace I5190 for the appropriate Isx90 variable according to coordinate system sx - 50.

Example:
close delete gather undefine all
&1 #1->2000X
OPEN PROG 1 CLEAR
INC
PVT300 ;Time is 300 msec per section

X5:50 ;
user_units 5

3000

15000

3

msec 300

msec I5190

user_units 50
P ==⋅=

X5:0 ;
user_units 5

3000

15000

3

msec 300

msec I5190

user_units 50
P ==⋅=

CLOSE

Turbo PMAC Lookahead Function
Turbo PMAC can perform highly sophisticated lookahead calculations on programmed trajectories to
ensure that the trajectories do not violate specified maximum quantities for the axes involved in the
moves. When the lookahead function is enabled, Turbo PMAC will scan ahead in the programmed
trajectories, looking for potential violations of its position, velocity, and acceleration limits. If it sees a
violation, it will then work backward through the pre-computed buffered trajectories, slowing down the
parts of these trajectories necessary to keep the moves within limits. Any application requiring quick
reaction to external conditions should not use lookahead. In addition, any application requiring precise
synchronization to external motion, such as those using PMAC’s external time-base feature should not
use lookahead.

The following list explains the steps required for setting up and using the lookahead function on the
Turbo PMAC.
1. Assign all desired motors to the coordinate system with axis definition statements.
2. Set Ixx13 and Ixx14 positive and negative position limits, plus Ixx41 desired position-limit band, in

counts for each motor in coordinate system. Set bit 15 of Ixx24 to 1 to enable desired position limits.
3. Set Ixx16 maximum velocity in counts/msec for each motor in coordinate system.

UMAC Quick Reference Guide

Motion Programs 63

4. Set Ixx17 maximum acceleration in counts/msec2 for each motor in coordinate system.
5. Set Isx13 segmentation time in msec for the coordinate system to minimum programmed move block

time or 10 msec, whichever is less.
6. Compute maximum stopping time for each motor as Ixx16/Ixx17.
7. Select motor with longest stopping time.
8. Compute number of segments needed to look ahead as this stopping time divided by (2 * Isx13):

Ixx17Isx132

Ixx16

⋅⋅
9. Multiply the segments needed by 4/3 (round up if necessary) and set the Isx20 lookahead length

parameter to this value:







⋅⋅

⋅
=

Ixx17Isx136

Ixx164
 Isx20

10. If the application involves high block rates, set the Isx87 default acceleration time to the minimum

block time in msec; the Isx88 default S-curve time to 0.
11. If the application does not involve high block rates, set the Isx87 default acceleration time and the

Isx88 default S-curve time parameters to values that give the desired blending corner size and shape
at the programmed speeds.

12. Store these parameters to non-volatile memory with the SAVE command for them to be an automatic
part of the machine state.

13. After each power-up/reset, send the card a DEFINE LOOKAHEAD {# of segments},{# of
outputs} command for the coordinate system, where {# of segments } is equal to Isx20 plus
any segments for which backup capability is desired, and {# of outputs} is at least equal to the
number of synchronous M-Variable assignments that may need to be buffered over the lookahead
length.

14. Load the motion program into the Turbo PMAC. Nothing special needs to be done to the motion
program. The motion program defines the path to be followed; the lookahead algorithm may reduce
the speed along the path, but it will not change the path.

15. Run the motion program, and let the lookahead algorithm do its work. The following commands will
apply:
• Set Isx21 to 4 or issue \ for a quick-stop command. This decelerates all motors at the maximum

allowed rate.
• Set Isx21 to 7 or issue < for a back-up command. This moves the motors up to the oldest point in the

buffer.
• Set Isx21 to 6 or issue > for a resume-forward command. This resumes execution from the lookahead

buffer.
• Issue / to quit program at the end of the block being added in the buffer. This is a block-stop

command.
• Issue Q to quit program execution at the end of the last calculated block.
• Issue H to bring the feedrate override to zero at an Isx95 rate. This holds program execution.
• Issue A to immediately abort program execution and decelerate each motor at the Ixx15 rate.
• Issue R (run) or S (step) to resume program execution.

 UMAC Quick Reference Guide

64 Motion Programs

Turbo PMAC Kinematic Calculations
Turbo PMAC provides structures to enable easy implementation and execution of complex kinematic
calculations. Kinematic calculations are required when there is a non-linear mathematical relationship
between the tool-tip coordinates and the matching positions of the actuators (joints) of the mechanism,
typical in non-Cartesian geometries. Most commonly, they are used in robotic applications, but can be
used with other types of actuators that are not considered robotic. For example, in 4-axis or 5-axis
machine tools with one or two rotary axes, they should be programmed so that the cutter-tip path will let
the controller compute the necessary motor positions.
The forward-kinematic calculations use the joint (motor) positions as input, and convert them to tool-tip
coordinates. The inverse-kinematic calculations use the tool-tip positions as input, and convert them to
joint (motor) coordinates. Turbo PMAC implements the execution of kinematic calculations through
special forward-kinematic and inverse-kinematic program buffers. Each coordinate system can have one
of each of these program buffers, and the algorithms in them can be executed at the required times
automatically called as subroutines from the motion program.
1. The on-line OPEN FORWARD command opens the forward-kinematic buffer for the addressed

coordinate system for entry. The on-line CLEAR command erases any existing contents of that
buffer. The forward-kinematic equations defined are placed in this buffer. The on-line CLOSE
command stops entry into the buffer.

2. Before any execution of the forward-kinematic program, Turbo PMAC will place the present
commanded motor positions for each motor xx in the coordinate system into global variable Pxx.
These are floating-point values with units of counts. The program can then use these variables as the
inputs to the calculations.

3. The results of the forward-kinematic equations in the program are placed in variables Q1 to Q9 for
the axis letters A, B C, U, V, W, X, Y and Z respectively. Then, after any execution of the forward-
kinematic program, Turbo PMAC will take the values in Q1 – Q9 for the coordinate system in the
engineering units, and copy these into the 9-axis target position registers for the coordinate system.
These values can be monitored through the suggested M-Variables Msx41 to Msx49 for Q1 to Q9
respectively. The basic purpose of the forward-kinematic program then is to take the joint-position
values found in P1 – P32 for the motors used in the coordinate system, compute the matching tip-
coordinate values, and place them in variables in the Q1 – Q9 range.

4. The on-line OPEN INVERSE command opens the inverse-kinematic buffer for the addressed
coordinate system for entry. The on-line CLEAR command erases any existing contents of that
buffer. The inverse-kinematic equations defined are placed in this buffer. The on-line CLOSE
command stops entry into the buffer.

5. Before any execution of the inverse-kinematic program, Turbo PMAC will place the present axis
target positions for each axis in the coordinate system into variables in the range Q1 – Q9 for the
coordinate system. These are floating-point values, in engineering units. The program can then use
these variables as the inputs to the calculations.

6. The results of the inverse-kinematic equations in the program are placed in variables Pxx for the
corresponding motor xx in the coordinate system. After any execution of the inverse-kinematic
program, Turbo PMAC will read the values in those variables Pxx that correspond to motors xx in the
coordinate system with axis-definition statements of #xx->I. These are floating-point values, and
Turbo PMAC expects to find them in the raw units of counts. Turbo PMAC will copy these values
automatically into the target position registers for these motors (suggested M-Variable Mxx63),
where they are used for fine interpolation. The basic purpose of the inverse-kinematic program then
is to take the tip-position values found in Q1 – Q9 for the axes used in the coordinate system,
compute the matching joint-coordinate values, and place them in variables in the P1 – P32 range.

UMAC Quick Reference Guide

Motion Programs 65

7. In addition, the Turbo PMAC can support the conversion of velocities from tip space to joint space in
the inverse-kinematic program to enable the use of PVT mode with kinematic calculations. With
PVT-mode moves, the position calculations are completed the same as any other move mode. An
additional set of velocity-conversion calculations must be done also. The commanded velocity
values will be placed in variables Q11 to Q19 for the corresponding axis letters A, B C, U, V, W, X,
Y and Z respectively. Turbo PMAC will set Q10 to 1 in this mode as a flag to the inverse-kinematic
program to use these axis (tip) velocity values to compute motor (joint) velocity values.

8. Once the forward-kinematic and inverse-kinematic program buffers have been created for a
coordinate system, Turbo PMAC will execute them automatically at the proper times, once the
kinematic calculations have been enabled by setting coordinate system I-Variable Isx50 to 1. No
modification to a motion program is required for access to the kinematic programs at the proper time.

9. If the special lookahead buffer for the coordinate system is active (LINEAR or CIRCLE-mode moves
with the lookahead buffer defined for the coordinate system, Isx13 > 0, and Isx20 > 0), the internal
spline segments computed for the joints (motors) are entered into the lookahead buffer automatically.
Here they are checked continually against position, velocity, and acceleration limits for each motor.
This permits Turbo PMAC to check and correct for the motion anomalies that occur near singularities
automatically.

Other Programming Features
Rotary Motion Program Buffers
PMAC has a limited memory space for motion and PLCs programs. The rotary motion program buffers
allow running motion programs larger than the available space in PMAC’s memory.

Communication routines provided by Delta Tau have the necessary code to implement this feature in a
host computer.
Internal Timebase, the Feedrate Override
Each coordinate system has its own time base that controls the speed of interpolated moves in that
coordinate system.
If Isx93 is set at default, this parameter could be changed by different means:

• 100n0 where%n, << ; Online or CMD command that runs all motion commands in
; slow-motion

• 225n100 where%n, ≤< ; Online or CMD command that runs all motion commands in
; fast-motion

• %0 ; Online or CMD command that “freezes” all motions and
; timing in that C.S

• %100 ; Online or CMD command that restores the real-time
; reference (1 msec = 1 msec)

• M197 = I10 ; Suggested M-variable for time base change. Equal to I10
 ; is 100%, equal to 0 is 0%.

 UMAC Quick Reference Guide

66 Motion Programs

The variable Isx94 controls the rate at which the time base changes:
23

2

2t
I10Isx94
⋅

= , where t is the slew

rate time in msec.

External Time-Base Control (Electronic Cams)
The motion of each coordinate system can be referenced to an external clock in the form of a frequency
generated by an external encoder. At each servo cycle, the time reference used for the servo algorithms is
adjusted by this external frequency source, thus controlling the rate of execution of moves and programs.
The encoder register receiving the input frequency and the relationship between the input frequency and the
program rate of execution must be specified. This not only varies the speed of moves in proportion to the
input frequency (all the way down to zero frequency), but also keeps total position synchronization. A
simple change of variable Isx93 allows switching between the internal and external time-base reference.

Example:
Material passing through a conveyor belt is processed on the fly with external time-base synchronization.

Motor not under
PMAC control

Encoder used
for master
frequency

Conveyor
Belt

Tool
Motor controlled by
PMAC in time-base

Position Following (Electronic Gearing)
PMAC has several methods of coordinating the axes under its control to axes not under its control. The
simplest method is basic position following. This is a motor-by-motor function, not a coordinate system
function like time-base following. An encoder signal from the master axis (which is not under PMAC’s
control) is fed into one of PMAC’s encoder inputs. Typically, this master signal is from either an open-
loop drive or a handwheel knob. Ixx05 and Ixx06 control this function.

Cutter Radius Compensation
PMAC provides the capability of performing cutter (tool) radius compensation on the moves it performs.
This compensation can be performed among the X, Y, and Z axes, which should be physically
perpendicular to each other. The compensation offsets the described path of motion perpendicular to the
path by a programmed amount. Cutter radius compensation is valid only in LINEAR and CIRCLE move
modes. The moves must be specified by F (feedrate), not TM (move time). PMAC must be in move
segmentation mode (Isx13 > 0) to do this compensation. (Isx13 > 0 is required for CIRCLE mode
anyway). Program commands CC0, CC1, CC2, CCR and NORMAL control this feature.

Synchronizing PMAC to other PMACs
When multiple PMACs are used together, intercard synchronization is maintained by passing the servo
clock signal from the first card to the others. With careful writing of programs, this permits complete
coordination of axes on different cards.

UMAC Quick Reference Guide

Motion Programs 67

Axis Transformation Matrices
PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z-axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements can be fixed for a particular application. The matrix transformations permit
translation, rotation, scaling, mirroring, and skewing of the X, Y, and Z-axes. They can be useful for
English/metric conversion, floating origins, making duplicate mirror images, repeating operations with
angle offsets, and more. The matrices are implemented through Q-Variables and the DEFINE TBUF,
TSEL, TINIT, ADIS, IDIS, AROT and IROT commands.

Position-Capture and Position-Compare Functions
The position-capture function latches the current encoder position at the time of an external event into a
special register. It is executed totally in hardware, without the need for software intervention (although it
is set up, and later serviced, in software). This means that the only delays in the capture are the hardware
gate delays (negligible in any mechanical system), so this provides an incredibly accurate capture
function. The move-until-trigger functions (either jog or motion program) conveniently use the position
capture feature for continuous motions until a trigger condition is reached.

Essentially, the position-compare feature is the opposite of the position-capture function. Instead of
storing the position of the counter when an external signal changes, it changes an external signal when the
counter reaches a certain position.

Learning a Motion Program
It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. In this
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points. The motors can be open loop or closed loop as they are moved
around.

 UMAC Quick Reference Guide

68 Motion Programs

UMAC Quick Reference Guide

PLC Programs 69

PLC PROGRAMS
Motion programs operate sequentially and synchronously in time, and any move command takes a
specified amount to execute before succeeding program lines are executed:
Example:
OPEN PROG 1 CLEAR ; Open program buffer
I5113=0 ; Two moves ahead of calculation
LINEAR INC TA100 TS0 F50 ; Mode commands
X1 ; First Move Command
X1 ; Second Move Command
X1 ; Third Move Command
M1=1 ; This line will be executed only after the
 ; first move is completed
CLOSE ; Close written buffer, program one

In addition to the motion programs, Turbo PMAC has 64 PLC programs that operate asynchronously and
with rapid repetition (32 compiled PLC programs as well as 32 interpreted [uncompiled] PLC programs.)
They are called PLC programs because they perform many of the same functions as hardware
programmable logic controllers. PLC programs have most of the same logical constructs as the motion
programs, but no move-type statements.
PLC programs are useful particularly for monitoring analog and digital inputs, setting outputs, sending
messages, monitoring motion parameters, issuing commands as if from a host, changing gains, and
starting and stopping moves. By their complete access to Turbo PMAC variables and IO, and their
asynchronous nature, they become powerful adjuncts to the motion control programs.
PLC programs are numbered 0 through 31 for both the compiled and uncompiled PLCs. This means that
both a compiled PLC n and an uncompiled PLC n can be stored in Turbo PMAC. PLC program 0 is a
special, fast program that operates at the end of the servo-interrupt cycle with a frequency specified by
variable I8 (every I8+1 servo cycles). This program is meant for a few time-critical tasks and it should be
kept small because its rapid repetition can steal time from other tasks.
PLC programs 1-31 are executed in the background cycle. Each PLC program executes one scan (to the
end or to an ENDWHILE statement) uninterrupted by any other background task (although it can be
interrupted by higher priority tasks). In between each PLC program, PMAC will do its general
housekeeping and respond to a host command, if any. In between each scan of each individual background
interpreted PLC program, PMAC will execute one scan of all active background compiled PLCs. This
means that the background compiled PLCs execute at a higher scan rate than the background interpreted
PLCs. For example, if there are seven active background interpreted PLCs, each background compiled
PLC will execute seven scans for each scan of a background interpreted PLC. At power-on/reset PLCC
programs run after the first PLC program runs. These are the suggested uses of the PLC buffers:
• PLC0 \ PLCC0: PLC0 is a special fast program that operates at the end of the servo interrupt cycle

with a frequency specified by variable I8 (every I8+1 servo cycles). This program is meant for a few
time-critical tasks and it should be kept small because its rapid repetition can steal time from other
tasks. A PLC 0 that is too large can cause unpredictable behavior and can even trip PMAC’s
Watchdog Timer by starving background tasks of time to execute. For faster execution, define
PLCC0 instead.

• PLC1: This is the first code that PMAC will run on power-up, assuming that I5 was saved with a
value of 2 or 3. This makes PLC1 the appropriate PLC to initialize parameters, perform commutated
motors phase search and run motion programs. In addition, PLC1could disable itself and the end of
execution or disable other PLCs before they start running.

 UMAC Quick Reference Guide

70 PLC Programs

• PLC2-31: PLC programs are useful particularly for monitoring analog and digital inputs, setting
outputs, sending messages, monitoring motion parameters, issuing online commands, changing servo
gains, and starting and stopping moves. Because of their complete access to all PMAC variables and
IO and their asynchronous nature, they become powerful adjuncts to the motion control programs.

• PLCC1 to PLCC31: Compiled PLCs are convenient for their faster execution compared to regular
PLCs. Since the execution rate of compiled PLCs is the same as some of the safety checks (following
error limits, hardware overtravel limits, software overtravel limits, and amplifier faults), PLCCs are
ideal for replacing or complementing them. However, due to their limited allocated memory space,
PLCCs should be reserved for faster execution critical tasks only.

Entering a PLC Program
PLCs are programmed in a text editor and downloaded to PMAC with the Pewin32-Pro software.

Before writing the PLC, make sure that memory has not been tied up in data gathering or program trace
buffers by issuing DELETE GATHER and DELETE TRACE commands.

1. Open the buffer for entry with the OPEN PLC n statement, where n is the buffer number. Next, if
there is anything currently in the buffer that should not be kept, it should be emptied with the CLEAR
statement. (PLC buffers may not be edited on the PMAC itself; they must be cleared and re-entered.)
If the buffer is not cleared, new statements will be added onto the end of the buffer.

2. When finished, close the buffer with the CLOSE command. Opening a PLC program buffer disables
that program automatically. After it is closed, it remains disabled, but it can be re-enabled again with
the ENABLE PLC n command, where n is the buffer number from 0 to 31. In addition, I5 must be set
properly for a PLC program to operate.

3. At the closing, PMAC checks to make sure all IF branches and WHILE loops have been terminated
properly. If not, it reports an error, and the buffer is inoperable. Then correct the PLC program in the
host and re-enter it (clearing the erroneous block in the process). This process is repeated for all of
the PLC buffers to be used.

Because all PLC programs in PMAC’s memory are enabled at power-on/reset, I5 should be saved as 0 in
PMAC’s memory when developing PLC programs. This will allow PMAC to be reset and have no PLCs
running (an enabled PLC runs only if I5 is set properly) and recover more easily from a PLC
programming error.

Structure Example:
CLOSE
DELETE GATHER
DELETE TRACE
OPEN PLC n CLEAR
 {PLC statements}
CLOSE
ENABLE PLC n

To erase an uncompiled PLC program, open the buffer, clear the contents, and then close the buffer again.
Example: OPEN PLC 5 CLEAR CLOSE

UMAC Quick Reference Guide

PLC Programs 71

PLC Program Structure
When writing a PLC program, it is important to remember that each PLC program is effectively in an
infinite loop; it will execute repeatedly until told to stop. (These are called PLCs because of the similarity
in how they operate to hardware Programmable Logic Controllers – the repeated scanning through a
sequence of operations and potential operations.)

Calculation Statements
Much of the action taken by a PLC is done through variable value assignment statements:
{variable}={expression}. The variables can be I, P, Q, or M types, and the action thus taken
can affect many things inside and outside the card. Perhaps the simplest PLC program consists of one
line: P1=P1+1. Every time the PLC executes, usually hundreds of times per second, P1 will increment
by one. Of course, these statements can get a lot more involved. Consider this statement:

P2=M162/(I108*32*10000)*COS (M262/(I208*32*100))

This statement could be converting radial (M162) and angular (M262) positions into horizontal position
data, scaling at the same time. Because it updates this frequently, whoever needs access to this
information (e.g., host computer, operator, motion program) can be assured of having current data.

Conditional Statements
Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs,
outputs, positions, counters, etc. Action can be level-triggered or edge-triggered; both can be done, but
the techniques are different.

Level-Triggered Conditions
A branch controlled by a level- triggered condition is easier to implement. Taking our incrementing
variable example and making the counting dependent on an input assigned to variable M7000, we have:
IF (M7000=1)
 P1=P1+1
ENDIF

As long as the input is true, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions
To increment P1 once for each time M7000 goes true (triggering on the rising edge of M7000 sometimes
called a one-shot or latched). A compound condition will trigger the action, then as part of the action, set
one of the conditions false, so the action will not occur on the next PLC scan. The easiest way to do this
is with a shadow variable which will follow the input variable value. Action is taken only when the
shadow variable does not match the input variable. The code would become:
IF (M7000=1)
 IF (P11=0)
 P1=P1+1
 P11=1
 ENDIF
ELSE
 P11=0
ENDIF

Make sure that P11 can follow M7000 both up and down. Set P11 to 0 in a level-triggered mode; this
could have done as edge-triggered as well, but it does not matter as far as the final outcome of the routine
is concerned, it is about the same in calculation time and it saves program lines.

 UMAC Quick Reference Guide

72 PLC Programs

WHILE Loops
Normally a PLC program executes all the way from beginning to end within a single scan. The exception
to this rule occurs if the program encounters a true WHILE condition. In this case, the program will
execute down to the ENDWHILE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHILE condition statement, not at the beginning. This process will
repeat as long as the condition is true. When the WHILE condition goes false, the PLC program will skip
past the ENDWHILE statement and proceed to execute the rest of the PLC program.
To increment the counter as long as the input is true and prevent execution of the rest of the PLC
program, program:
WHILE (M7000=1)
 P1=P1+1
ENDWHILE

This structure makes it easier to hold up PLC operation in one section of the program, so other branches
in the same program do not have to have extra conditions and they do not execute when this condition is
true. Use this instead of an IF condition.

COMMAND and SEND Statements
One of the most common uses of PLCs is to start motion programs and jog motors by means of command
statements.

Some COMMAND action statements should be followed by a WHILE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. This is true if a second COMMAND action
statement that requires the first COMMAND action statement to finish will follow. (Remember, COMMAND
action statements are processed only during the communications section of the background cycle.) For
example, to stop any motion in a coordinate system and start motion program 10, the following PLC
could be used:
M5187->Y:$00203F,17,1 ; &1 In-position bit (AND of motors)
OPEN PLC3 CLEAR
IF (M7000=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 P11=1 ; set latch
 COMMAND"&1A" ; ABORT all motion
 WHILE (M5187=0) ; wait for motion to stop.
 ENDW
 COMMAND"&1B10R" ; start program 10
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF
CLOSE

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered
condition, because the PLC can cycle faster than these operations can process their information and the
communications channels can get overwhelmed if these statements are executed on consecutive scans
through the PLC.
IF (M7000=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 COMMAND"#1J+" ; JOG motor
 P11=1 ; set latch
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF

UMAC Quick Reference Guide

PLC Programs 73

Timers
Timing commands like DWELL or DELAY are reserved only to motion programs and cannot be used for
timing purposes on PLCs. Instead, each active coordinate system (those numbered from 1 to I68+1) has
two timer variables running: Isx11 and Isx12. These two 24-bit registers are timers for any general-
purpose use and can be used in any coordinate system. A value is written to the timer I-Variable
representing the desired time in servo cycles (multiply milliseconds by 8,388,608/I10); then the PLC
waits until the I-Variable is less than 0.

Example:
M7000->Y:$078C00,0,1 ; General-Purpose Output1 (redefine if necessary)
OPEN PLC3 CLEAR
M7000 = 0 ; Reset Output1 before start
I5111 = 1000*8388608/I10 ; Set timer to 1000 msec, 1 second
WHILE (I5111>0) ; Loop until counts to zero
ENDWHILE
M7000 = 1 ; Set Output 1 after time elapsed
DIS PLC3 ; disables PLC3 after execution
CLOSE

If more timers are need, use the technique in memory address X:0. This 24-bit register counts once per
servo cycle. Store a starting value for this, then in each scan, subtract the starting value from the current
value and compare the difference to the amount of time to wait.
Example:
M7000->Y:$078C00,0,1 ; General-Purpose Output1 (redefine if necessary)
M0->X:$0,24 ; Servo counter register
M85->X:$6055, 24 ; Location of P85 (I46 = 0 or 2) used as a spare register
M86->X:$6056, 24 ; Location of P86 (I46 = 0 or 2) used as a spare register
OPEN PLC 3 CLEAR
M7000=0 ; Reset Output1 before start
M85=M0 ; Initialize timer
M86=0
WHILE(M86<1000) ; Time elapsed less than specified time?

M86=M0-M85
 M86=M86*I10/8388608 ; Time elapsed so far in milliseconds
ENDWHILE
M7000=1 ; Set Output 1 after time elapsed
DISABLEPLC3 ; disables PLC3 after execution
CLOSE

Even if the servo cycle counter rolls over (start from zero again after the counter is saturated), by
subtracting into another 24-bit register, rollover is handled gracefully.
Rollover Example:
M0 = 1,000
M85 = 16,777,000 (saturates at 224 = 16,777,216)
M86 = 1216

Bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

M85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0

M86 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

 UMAC Quick Reference Guide

74 PLC Programs

Compiled PLC Programs
It is possible to compile Turbo PMAC PLC programs for faster execution. The faster execution of the
compiled PLCs comes from two factors: first, from the elimination of interpretation time, and second,
from the capability of the compiled PLC programs to execute integer arithmetic. Floating-point
operations in compiled PLC programs run two to three times faster than in interpreted PLC programs;
integer (including Boolean) operations run 20 to 30 times faster in compiled form.

Turbo PMAC can store and execute up to 32 compiled PLC programs as well as 32 interpreted
(uncompiled) PLC programs for 64 PLC programs. 15K (15,360) 24-bit words of Turbo PMAC memory
are reserved for compiled PLCs or 14K (14,336) words if there is a user-written servo as well. No other
task may use this memory and compiled PLCs may not use any other memory.

PLCCs are compiled by Pewin32-Pro in the downloading process. Only the compiled machine code is
downloaded to PMAC. Therefore, it is suggested to save the ASCII source code in the host computer
separately since it cannot be retrieved from PMAC. In most cases, compiled PLCs are firmware
dependent and so they must be recompiled when the firmware is changed in PMAC.

If more than one PLCC is programmed, all the PLCCs code must belong to the same ASCII text file.
Pewin will compile all the PLCC code present on the file and place it in the appropriate buffer in PMAC.
If a single PLCC code is downloaded, the rest of the PLCCs that might have been present in memory will
be erased, leaving only the last compiled code. The Project Manager feature of the Pewin32-Pro File
menu allows PLCC codes to be in different files. They will be combined by PEWIN when the complete
project is downloaded to PMAC.

The use of L-Variables in a PLC program statement tells the compiler that the statement is to be executed
using integer operations instead of floating-point operations. To implement integer arithmetic in a
compiled PLC, define any L-Variables and substitute them in the programs for the variables that were
used in the interpreted form (usually M-Variables). The compiler will interpret statements containing
only L-Variables (properly defined) and integer constants as operations to be executed using integer
arithmetic in compiled PLCs.

Example: Typically machine outputs 1 and 2 are referenced by the following definitions in
uncompiled programs:

M7000->Y:$078C00,0,1 ; Machine Output 1
M7001->Y:$078C00,1,1 ; Machine Output 2

For the compiled PLC programs, create equivalent M-Variable definitions:
L7000->Y:$078C00,0,1 ; Machine Output 1
L7001->Y:$078C00,1,1 ; Machine Output 2

Preparation of compiled PLCs is a multi-step process. The basic steps are as follows:
1. Write and debug the PLC programs in interpreted form (simple PLCs programs).
2. Change all references to PLCs to be compiled from PLC to PLCC.
3. For integer arithmetic, define L-Variables and substitute these for the old variable names in the

programs.
4. Combine all of the PLCC programs to be compiled into one file on the PC, or use the Project

Manager of Pewin32-Pro.
5. Activate the compiled PLCCs. If operation is not correct, return to step 1 or 2.
6. PLCCs can be deleted using the DELETE PLCCn command (replace n by the appropriate number).

UMAC Quick Reference Guide

Troubleshooting 75

TROUBLESHOOTING
Establishing Communications
Serial communications can be checked using the Windows®

Hyperterminal program with 38,400 baud rate, eight data bits,
one stop bit, no parity and no flow control.

1. Select the appropriate COM port and try different baud rates
(bits per second) if necessary.

2. In the terminal window, type I3 and press Enter. PMAC
should respond with some characters.

3. In this mode, set I3=1 to add a carriage return character at
the end of each response line. If there is no response, check
the serial cable or try a different COM port.

4. Follow the reset procedure in the following section if
communications cannot be established.

Hardware Re-initialization
1. Carefully remove the Turbo PMAC2 3U CPU board from the UMAC rack.
2. Install the jumper labeled E3 in the Turbo PMAC2 3U CPU board.
3. Replace the Turbo PMAC2 3U CPU board inside the UMAC rack and power up.
4. If the Turbo PMAC2 3U CPU board finds jumper E3 installed on power-up, the following actions

occur:
a. The installed firmware is loaded from the flash memory into active memory.
b. The factory default I-Variables are loaded from firmware into active memory and registers. (The

last saved values in flash are not lost; they are simply not used.) The last saved user programs,
tables and buffers are loaded into active memory, but none will be active because of the default I-
Variable settings. If the checksum for the programs and buffers does not match the data, all of
these programs and buffers are completely cleared from active memory.

c. The basic configuration of the system – memory capacity, ASIC presence, location, and type – is
checked and logged. The CPU will make some decisions about default I-Variable values based
on this configuration information. Counters in all ASICs are cleared.

d. Because of the default I-Variable configuration, no motors are enabled and no programs are
activated.

5. Establish communications with either PEWIN32-Pro or Windows® Hyperterminal.
6. Type the following commands in the terminal window:

$$$*** ; Global Reset
P0..8191 = 0 ; Reset P-Variables values
Q0..8191 = 0 ; Reset Q-Variables values
M0..8191 -> * ; Reset M-Variables definitions
M0..8191 = 0 ; Reset M-Variables values
UNDEFINE ALL ; Undefine Coordinate Systems
SAVE ; Save this initial clean configuration

7. Remove the Turbo PMAC2 3U CPU board from the UMAC rack, remove the E3 jumper, replace the
Turbo PMAC2 3U CPU board in the UMAC rack and try communications again.

 UMAC Quick Reference Guide

76 Troubleshooting

The Watchdog Timer (Red LED)
Turbo PMAC has an on-board watchdog timer. This subsystem provides a fail-safe shutdown to guard
against software and hardware malfunction. To keep it from tripping the hardware circuit for the
watchdog timer requires that two basic conditions be met. First, it must see a DC voltage greater than
4.75V. If the supply voltage is below this value, the circuit’s relay will trip and the card will shut down.
This prevents corruption of registers due to insufficient voltage.

Second, the timer must see a square wave input (provided by the Turbo PMAC software) of a frequency
greater than 25 Hz. In the foreground, the servo-interrupt routine decrements a counter (as long as the
counter is greater than zero), causing the least significant bit of the timer to toggle. This bit is fed to the
timer itself. At the end of each background cycle, the CPU resets the counter value to a maximum value
set by variable I40 (or to 4096 if I40 is set to the default of 0).

If the card, for whatever reason, due either to hardware or software problems, cannot set and clear this bit
repeatedly at 25 Hz or greater, the timer will trip and the Turbo PMAC system will shut down. When the
timer trips due either to under-voltage or under-frequency, the system is latched into a reset state with a
red LED indicating watchdog failure. The processor stops operating and will not communicate. All
Servo and IO ICs are forced into their reset states, which force discrete outputs off and proportional
outputs (DAC, PWM, PFM) to zero level.

Once the watchdog timer has tripped, power to the UMAC System must be cycled off and on to restore
normal functioning.

System Configuration
After performing a hardware re-initialization, or issuing a $$$*** command, UMAC is configured with
the hardware found in the system. The System Configuration Reporting I-Variables I4900 to I4965
provide information about the accessory boards found inside the UMAC System on power-up or reset.
The UMAC Configuration program, part of the Pewin32 Pro Suite, uses these variables to report the
configuration of any UMAC System. Checking the configuration of the UMAC System is important in
case of addressing conflicts or hardware\software failures in the accessory boards.

UMAC System Status Bits
There are three online PMAC commands for reporting the status of the UMAC System at any time:
? Report status words for motor in hex ASCII form
?? Report coordinate system status in hex ASCII form
??? Report global status words in hex ASCII
The easiest way to read this information is through the Pewin32 Pro software. Screens for motor,
coordinate systems and global status are available under the View menu. Alternatively, the most
commonly used status bits can be monitored through the set of suggested M-Variables definitions.

Direct Access to Hardware Features
In PMAC, a motor is a software concept. A PMAC motor is a set of registers and variables in the PMAC
memory space that is controlled by the servo algorithms inside the PMAC firmware and that uses an
actual hardware circuitry. This hardware circuitry is referred to as a motion channel. A set of four
hardware channels, in turn is referred to as a Servo IC. These are application-specific ICs (ASICs)
designed by Delta Tau and manufactured in gate array technology to create a full-feature set in a cost-
effective manner. The Servo ICs contain all of the digital logic to provide the interface between the CPU
and the motion (servo or stepper) channels.

UMAC Quick Reference Guide

Troubleshooting 77

One or more channel can be associated with a single motor by means of motor-specific I-Variables.
These variables define, for example, where the amplifier command will be output or which encoder input
will be used for feedback. If the motor activation control variable Ixx00 is set to zero, however, the
hardware channels associated with that motor xx can be directly controlled through M-Variables. This is
useful for directly controlling output features like DAC or stepper outputs and amplifier enable outputs,
thus allowing testing the functionality of a particular feature by direct access to the channel registers.

Example: The functionality of DAC #1 of an Acc-24E2A can be tested with the following
procedure:

M102->Y:$078202,8,16,S ;Address of DAC #1 of Servo IC #2
I100 = 0 ;Deactivate motor #1 to allow direct access to the
channel
I7216 = 3 ;Sets output mode of channel 1 of servo IC #2 to DACs
M102 = 16383 ;DAC register is scaled as 3276.7 = 1V
<measure 5V between pins 1 and 12 of the amplifier connector of the Acc-24E2A
board>
M102 = -16383 ;Set DAC output to -5V
<measure -5V between pins 1 and 12 of the amplifier connector of the Acc-24E2A
board>
I100 = 1 ;Activate motor after the procedure is completed

Note:

Make sure the amplifier and any other external device using the hardware outputs
is not powered or disconnected during this test. Deactivating the motor
automatically disables any safety feature that applies to the hardware channels.

Motor Parameters
1. If there is no movement at all, check the following:

a. Check the output configuration of the motor. For an analog amplifier, set I7mn6=3 (I7216=3 for
the first motor of the first axes board). For a stepper driver, set Ixx02 = Ixx02+2 (I102 for motor
#1).

b. When using an analog amplifier, check the power supply lines +15V, -15V, and GND. If the
UMAC internal power supply is used (default), jumpers E85, E87, and E88 in the Acc-24E2A
board must be installed. The voltage can be checked in the connector at the back panel of the
UMAC rack.

c. Check the functionality of the hardware end-of-travel limits, or disable this feature by setting bit
17 of the Ixx24 variable to 1 (I124 = $20001 to disable the overtravel limits of motor #1).

d. Make sure that the proportional gain (Ixx30) is greater than zero.
e. Make sure that output can be measured at the DAC pin when an O command has been given.
f. If the following error limit is being tripped, increase the fatal following error limit (Ixx11) by

setting it to a slightly higher value and try to move again.
g. Set the feedrate override of the addressed coordinate system to 100 by issuing a %100 online

command.
2. If there is movement, but it is sluggish, check the following:

a. Make sure that the proportional gain (Ixx30) is not too low. Try increasing it (as long as stability
is kept).

b. Make sure that the big step limit (Ixx67) is not too low. Try increasing it to 8,000,000 – near the
maximum – to eliminate any effect.

 UMAC Quick Reference Guide

78 Troubleshooting

c. Make sure that the output limit (Ixx69) is not too low. Try increasing it to 32,767 (the maximum)
to make sure PMAC can output adequate voltage.

d. Use an integrator. Try increasing integral gain (Ixx33) to 10,000 or more and the integration limit
(Ixx63) to 8,000,000.

3. If there is a runaway condition, check the following:
a. Make sure that there is feedback. Check that position changes can be read in both directions.
b. Make sure that the feedback polarity matches the output polarity. Recheck the polarity match as

explained above.
4. If there is brief movement, then it stops. Check the following:

a. If the following error limit is being tripped, increase the fatal following error limit (Ixx11) by
setting it to a slightly higher value and try to move again.

Motion Programs
If the program does not run at all, there are several possibilities:

1. Try to list the program. In terminal mode, type LIST PROG 1 (or whichever program) and see if it is
there. If not, try to download it to the card again.

2. Make sure that the program buffer is closed. Type A to check if the program is running; type CLOSE
to close any open buffer; type B1 (or the program #) to point to the top of the program; and type R to
try to run it again.

3. Make sure that each motor in the coordinate system can be jogged in both directions. If not, review
that motor’s setup.

4. Check if any motors have been assigned to a coordinate system that is not really set up yet. Every
motor in the coordinate system must have its limits conducting current, even if there is no real motor
attached.

Try the following steps for any other motion program problem:
1. Type &1%100 in the terminal window.
2. Check that only one of the motors to be used in the motion program can be jogged appropriately.
3. Type the following commands in a text editor to be downloaded to PMAC:

close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all coordinate systems
#1->2000X ; Replace #1 for the motor to be used and 2000 by the

 ; appropriate scale factor for the number of counts
; per user units

OPEN PROG 1 CLEAR ; Prepare buffer to be written
LINEAR ; Linear interpolation
INC ; Incremental mode
TA500 ; Acceleration time is 500 msec
TS0 ; No S-curve acceleration component
TM2000 ; Total move time is 500 + 2000=2500 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

4. To run it, press CTRL+A and then type B1R in the terminal window.

5. Repeat steps 2 through 4 for all the motors to be run in the actual motion program.

UMAC Quick Reference Guide

Troubleshooting 79

A good method to test motion programs is to run them at lower than one hundred percent override rate.
Any value of n from 1 to 99 in the %n online command will run the motion programs slower, increasing
the chances for success in execution. For example, in the terminal window type: &1 %75 B1R. If a
program runs successfully at lower feedrate override values, there could be two main reasons why it fails
at 100%: either there is insufficient calculation time for the programmed moves or the acceleration and\or
velocity parameters involved are unsuitable for the machine.

PLC Programs
PLCs and PLCCs are the most common sources for communication or watchdog timer failures.
• Any SEND, COMMAND, or DISPLAY action statement should be done on an edge-triggered condition

only because the PLC can cycle faster than these operations can process their information, and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.
IF (M7000=1) ; Input is ON
 IF (P11=0) ; Input was not ON last time
 COMMAND"#1J+" ; Jog motor
 P11=1 ; Set latch
 ENDIF
ELSE
 P11=0 ; Reset latch
ENDIF

• PLC0 or PLCC0 are meant to be used for only a few tasks (usually a single task) that must be done at
a higher frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as
long as the tasks from the previous RTI have been completed. Potentially, PLC 0 is the most
dangerous task on PMAC as far as disturbing the scheduling of tasks is concerned. If it is too long, it
will starve the background tasks for time. The first thing to notice is that communications and
background PLC tasks will become sluggish. In the worst case, the watchdog timer will trip, shutting
down the card because the housekeeping task in background did not have the time to keep it updated.

• Because all PLC programs in PMAC’s memory are enabled at power-on/reset, save I5 as 0 in
PMAC’s memory when developing PLC programs. This allows PMAC to be reset and no PLCs
running (an enabled PLC only runs if I5 is set properly) and recover more easily from a PLC
programming error.

• As an example, type these commands in the terminal window. After that, open a watch window and
monitor for P1 to be counting up:
OPEN PLC1 CLEAR ; Prepare buffer to be written
P1=P1+1 ; P1 continuously incrementing
CLOSE ; Close written buffer, PLC1
I5=2
Press <CTRL+D> and type ENA PLC1.

 UMAC Quick Reference Guide

80 Troubleshooting

UMAC Quick Reference Guide

Appendix A 81

APPENDIX A — UMAC ERROR CODE SUMMARY
I6, Error Reporting Mode
I6 controls how UMAC reports errors in command lines. When I6 is set to 0 or 2, UMAC reports any
error only with a <BELL> character. When I6 is 0, the <BELL> character is given for invalid commands
issued both from the host and from UMAC programs (using CMD”{command}”). When I6 is 2, the
<BELL> character is given only for invalid commands from the host; there is no response to invalid
commands issued from UMAC programs. (In no mode is there a response to valid commands issued
from UMAC programs.)

When I6 is set to 1 or 3, an error number message can be reported along with the <BELL> character. The
message comes in the form of ERRnnn<CR>, where nnn represents the three-digit error number. If I3 is
set to 1 or 3, there is a <LF> character in front of the message.

When I6 is set to 1, the form of the error message is <BELL>{error message}. This setting is the
best for interfacing with host-computer driver routines. When I6 is set to 3, the form of the error message
is <BELL><CR>{error message}. This setting is appropriate for use with the PMAC Executive
Program, Pewin, in terminal mode.
Currently, the following error messages can be reported:
Error Problem Solution
ERR001 Command not allowed during program

execution
(Halt program execution before issuing command)

ERR002 Password error (Enter the proper password)
ERR003 Data error or unrecognized command (Correct syntax of command)

ERR004 Illegal character: bad value (>127 ASCII) or
serial parity/framing error

(Correct the character and or check for noise on the
serial cable)

ERR005 Command not allowed unless buffer is open (Open a buffer first)

ERR006 No room in buffer for command (Allow more room for buffer – DELETE or CLEAR
other buffers)

ERR007 Buffer already in use (Close currently open buffer first)
ERR008 MACRO auxiliary communications error (Check MACRO ring hardware and software setup)

ERR009 Program structural error (e.g. ENDIF without
IF)

(Correct structure of program)

ERR010 Both overtravel limits set for a motor in the C.
S.

(Correct or disable limits)

ERR011 Previous move not completed (Abort it or allow it to complete)
ERR012 A motor in the coordinate system is open-loop (Close the loop on the motor)

ERR013 A motor in the coordinate system is not
activated

(Set Ix00 to 1 or remove motor from Coordinate
System.)

ERR014 No motors in the coordinate system (Define at least one motor in Coordinate System.)
ERR015 Not pointing to valid program buffer (Use B command first or clear out scrambled buffers)

ERR016 Running improperly structured program (e.g.
missing ENDWHILE)

(Correct structure of program)

ERR017 Trying to resume after H or Q with motors out
of stopped position

(Use J= to return motor[s] to stopped position)

ERR018 Attempt to perform phase reference during
move, or move during phase reference

(Finish move before phase reference, or finish phase
reference before move)

ERR019 Illegal position-change command while moves
stored in CCBUFFER

(Pass through section of Program requiring storage of
moves in CCBUFFER, or abort)

 UMAC Quick Reference Guide

82 Appendix B

UMAC Quick Reference Guide

Appendix B 83

APPENDIX B — SELECTED UMAC I-VARIABLES SUMMARY
General Global Setup Range Units Default

I0 Serial Card Number $0 to $F (0 to 15) None $0
I1 Serial Port Mode 0 to 3 None 0
I3 I/O Handshake Control 0 to 3 None 1
I4 Communications Integrity Mode 0 to 3 None 1
I5 PLC Program Control 0 to 3 None 1
I6 Error Reporting Mode 0 to 3 None 1
I7 Phase Cycle Extension 0 to 15 Phase Clock Cycles 0
I8 Real-Time Interrupt Period 0 to 255 Servo Clock Cycles 2
I9 Full/Abbreviated Listing Control 0 to 3 None 2

I10 Servo Interrupt Time "0 to 8,388,607" "1 / 8,388,608 msec" "3,713,707 (442
msec)"

I11 Programmed Move Calculation
Time

"0 to 8,388,607" msec 0

I13 Foreground In-Position Check
Enable

0 to 1 None 0

I14 Temporary Buffer Save Enable 0 to 1 None 0
I15 Degree/Radian Control for User

Trig Functions
0 to 1 None 0 (degrees)

I19 Clock Source I-Variable Number 7207 to 7957 I- Variable number Configuration-
dependent

I39 UBUS Accessory ID Variable
Display Control

0 to 5 None 0

I40 Watchdog Timer Reset Value "0 to 65,535" Servo cycles 0 (sets 4095)
I41 I-Variable Lockout Control $0 – $F (0 – 15) None 0
I42 Spline/PVT Time Control Mode 0 to 1 None 0
I43 Auxiliary Serial Port Parser Disable 0 to 1 None 0
I46 P and Q- Variable Storage Location 0 to 3 None 0
I51 Compensation Table Enable 0 to 1 None 0 (disabled)
I52 CPU Frequency Control 0 to 15 Multiplication factor 7 (80 MHz)
I53 Auxiliary Serial Port Baud Rate

Control
0 to 15 None 0 (disabled)

I54 Serial Port Baud Rate Control 0 to 15 None 12 (38400 baud)
I59 Motor/C.S. Group Select 0 to 3 None 0
I60 Filtered Velocity Sample Time 0 to 15 Servo Cycles - 1 15
I61 Filtered Velocity Shift 0 to 255 Bits 8
I62 Internal Message Carriage Return

Control
0 to 1 None 1

I63 Control-X Echo Enable 0 to 1 None 1
I64 Internal Response Tag Enable 0 to 1 None 0
I68 Coordinate System Activation

Control
0 to 15 None 15

 UMAC Quick Reference Guide

84 Appendix B

Motor Definition I-Variables
(xx: motor # from 1 to 32)

Range Units Default

Ixx00 Motor xx Activation Control 0 to 1 None I100 = 1, I200 .. I3200 =
0

Ixx01 Motor xx Commutation Enable 0 to 3 None 0
Ixx02 Motor xx Command Output Address $000000 to $FFFFFF Turbo PMAC

Addresses
See software reference

Ixx03 Motor xx Position Loop Feedback
Address

$000000 to $FFFFFF Turbo PMAC
Addresses

See software reference

Ixx04 Motor xx Velocity Loop Feedback
Address

$000000 to $FFFFFF Turbo PMAC
Addresses

See software reference

Ixx05 Motor xx Master Position Address $000000 to $FFFFFF Turbo PMAC 'X'
Addresses

$0035C0 (end of table)

Ixx06 Motor xx Position Following Enable
and Mode

0 to 3 None 0

Ixx07 Motor xx Master (Handwheel) Scale
Factor

-8,388,608 to
8,388,607

None 96

Ixx08 Motor xx Position Scale Factor 0 to 8,388,607 None 96
Ixx09 Motor xx Velocity-Loop Scale

Factor
0 to 8,388,607 None 96

Ixx10 Motor xx Power-On Servo Position
Address

$000000 to $FFFFFF Turbo PMAC
Addresses

$0

Motor Safety I-Variables
xx: motor # from 1 to 32)

Range Units Default

Ixx11 Motor xx Fatal Following Error
Limit

0 to 8,388,607 1/16 count 32,000 (2000 counts)

Ixx12 Motor xx Warning Following Error
Limit

0 to 8,388,607 1/16 count 16,000 (1000 counts)

Ixx13 Motor xx Positive Software Position
Limit

-235 to +235 Counts 0 (disabled)

Ixx14 Motor xx Negative Software
Position Limit

-235 to +235 Counts 0 (disabled)

Ixx15 Motor xx Abort/Limit Deceleration
Rate

Positive Floating-
Point

Counts / msec2 0.25

Ixx16 Motor xx Maximum Program
Velocity

Positive Floating-
Point

Counts / msec 32.0

Ixx17 Motor xx Maximum Program
Acceleration

Positive Floating-
Point

Counts / msec2 0.5

Ixx19 Motor xx Maximum Jog/Home
Acceleration

Positive Floating-
Point

Counts / msec2 0.15625

UMAC Quick Reference Guide

Appendix B 85

Motor Motion I-Variables
(xx: motor # from 1 to 32)

Range Units Default

Ixx20 Motor xx Jog/Home Acceleration
Time

0 to 8,388,607 msec 0 (so Ixx21 controls)

Ixx21 Motor xx Jog/Home S-Curve Time 0 to 8,388,607 msec 50
Ixx22 Motor xx Jog Speed Positive Floating

Point
Counts / msec 32.0

Ixx23 Motor xx Home Speed and
Direction

Floating Point Counts / msec 32.0

Ixx24 Motor xx Flag Mode Control $000000 to $FFFFFF None $000001
Ixx25 Motor xx Flag Address $000000 to $FFFFFF Turbo PMAC

Addresses
See software reference

Ixx26 Motor xx Home Offset -8,388,608 to
8,388,607"=

1/16 count 0

Ixx27 Motor xx Position Rollover Range -235 to +235 Counts 0
Ixx28 Motor xx In-Position Band 0 to 8,388,607 1/16 count 160 (10 counts)
Ixx29 Motor xx Output/First Phase Offset -32,768 to 32,767 16-bit equivalent 0

Motor xx PID Servo Setup
(xx: motor # from 1 to 32)

Range Units Default

Ixx30 Motor xx PID Proportional Gain -8,388,608 to
8,388,607

See software
reference

2000

Ixx31 Motor xx PID Derivative Gain -8,388,608 to
8,388,607

See software
reference

1280

Ixx32 Motor xx PID Velocity Feedforward
Gain

-8,388,608 to
8,388,607

See software
reference

1280

Ixx33 Motor xx PID Integral Gain 0 to 8,388,607 See software
reference

1280

Ixx34 Motor xx PID Integration Mode 0 to 1 None 1
Ixx35 Motor xx PID Acceleration

Feedforward Gain
-8,388,608 to
8,388,607

See software
reference

0

Ixx40 Motor xx Net Desired Position Filter
Gain

0.0 to 0.999999 None 0.0

Ixx41 Motor xx Desired Position Limit
Band

0 to 8,388,607 Counts 0

Motor Servo Setup
(xx: motor # from 1 to 32)

Range Units Default

Ixx57 Motor xx Continuous Current Limit -32,768 to 32,767 16-bit equivalent 0
Ixx58 Motor xx Integrated Current Limit 0 to 8,388,607 See software

reference
0

Ixx59 Motor xx User-Written Servo/Phase
Enable

0 to 3 None 0

Ixx60 Motor xx Servo Cycle Period
Extension Period

0 to 255 Servo Interrupt
Periods

0

Ixx63 Motor xx Integration Limit -8,388,608 to
8,388,607

1/16 count * servo
cycle

4,194,304

Ixx64 Motor xx Deadband Gain Factor -32,768 to 32,767 None 0 (no gain adjustment)
Ixx65 Motor xx Deadband Size -32,768 to 32,767 1/16 count 0
Ixx67 Motor xx Position Error Limit 0 to 8,388,607 1/16 count 4,194,304 (262,144

counts)
Ixx68 Motor xx Friction Feedforward 0 to 32,767 16-bit DAC bits 0
Ixx69 Motor xx Output Command Limit 0 to 32,767 16-bit DAC bits 20,480 (6.25V or

equivalent)

 UMAC Quick Reference Guide

86 Appendix B

Further Motor I-Variables
(xx: motor # from 1 to 32)

Range Units Default

Ixx85 Motor xx Backlash Take-up Rate 0 to 8,388,607 1/16 count /
background cycle

0

Ixx86 Motor xx Backlash Size 0 to 8,388,607 1/16 count 0
Ixx87 Motor xx Backlash Hysteresis 0 to 8,388,607 1/16 count 64 (= 4 counts)
Ixx88 Motor xx In-Position Number of

Scans
0 to 255 Background

computation cycles
(minus one)

0

Ixx90 Motor xx Rapid Mode Speed Select 0 to 1 None 1
Ixx91 Motor xx Power-On Phase Position

Format
$000000 to $FFFFFF None 0

Ixx92 Motor xx Jog Move Calculation
Time

1 to 8,388,607 msec 10

Ixx95 Motor xx Power-On Servo Position
Format

$000000 to $FFFFFF None $000000

Ixx96 Motor xx Command Output Mode
Control

0 to 1 None 0

Ixx97 Motor xx Position Capture &
Trigger Mode

0 to 3 None 0

System Configuration Reporting Range Units Default
I4900 Servo ICs Present $000000 to $FFFFFF None (individual bits) --
I4901 Servo IC Type $000000 to $FFFFFF None (individual bits) --
I4904 Dual-Ported RAM ICs Present $000000 to $FF8000 None (individual bits) --
I4908 End of Open Memory $006000 to $040000 None (individual bits) --
I4909 Turbo CPU ID Configuration $000000000 to

$FFFFFFFFF
None (individual bits) --

I4910
to
I4925

Servo IC Card Identification $000000000 to
$FFFFFFFFF

None (individual bits) --

I4942
to
I4949

DPRAM IC Card Identification $000000000 to
$FFFFFFFFF

None (individual bits) --

I4950
to
I4965

I/O IC Card Identification $000000000 to
$FFFFFFFFF

None (individual bits) --

I5060 A/D Processing Ring Size 0 to 16 Number of A/D Pairs 0
I5061
to
I5076

A/D Ring Slot Pointers $000000 to $7FFFFF Turbo PMAC
Addresses

$0 (specifies $078800)

I5080 A/D Ring Convert Enable 0 to 1 None 1
I5081
to
I5096

A/D Ring Convert Codes $000000 to $00F00F None $000000

UMAC Quick Reference Guide

Appendix B 87

Coordinate System I-Variables
(sx: CS # + 50)

Range Units Default

Isx11 Coordinate System 'x' User
Countdown Timer 1

-8,388,608 to
8,388,607

Servo cycles 0

Isx12 Coordinate System 'x' User
Countdown Timer 2

-8,388,608 to
8,388,607

Servo cycles 0

Isx13 Coordinate System 'x' Segmentation
Time

0 to 255 msec 0

Isx20 Coordinate System 'x' Lookahead
Length

0 to 65,535 Isx13 segmentation
periods

0

Isx21 Coordinate System 'x' Lookahead
State Control

0 to 15 None 0

Isx50 Coordinate System 'x' Kinematic
Calculations Enable

0 to 1 None 0

Isx53 Coordinate System 'x' Step Mode
Control

0 to 1 None 0

Isx86 Coordinate System 'x' Alternate
Feedrate

Positive floating point See software
reference

1000.0

Isx87 Coordinate System 'x' Default
Program Acceleration Time

0 to 8,388,607 msec 0 (so Isx88 controls)

Isx88 Coordinate System 'x' Default
Program S-Curve Time

0 to 8,388,607 msec 50

Isx89 Coordinate System 'x' Default
Program Feedrate/Move Time

Positive floating point See software
reference

1000.0

Isx90 Coordinate System 'x' Feedrate Time
Units

Positive floating point msec 1000.0

Isx91 Coordinate System 'x' Default
Working Program Number

0 to 32,767 Motion Program
Numbers

0

Isx92 Coordinate System 'x' Move Blend
Disable

0 to 1 None 0

Isx93 Coordinate System 'x' Time Base
Control Address

$000000 to $FFFFFF Turbo PMAC X-
Addresses

See software reference

Isx94 Coordinate System 'x' Time Base
Slew Rate

0 to 8,388,607 2-23msec / servo
cycle

1644

Isx95 Coordinate System 'x' Feed Hold
Slew Rate

0 to 8,388,607 2-23msec / servo
cycle

1644

Isx96 Coordinate System 'x' Circle Error
Limit

Positive floating-point User length units 0 (function disabled)

Isx97 Coordinate System 'x' Minimum Arc
Length

Non-negative
floating-point

Semi-circles (180°) 0 (sets 2-20)

Isx98 Coordinate System 'x' Maximum
Feedrate

Non-negative
floating-point

See software
reference

1000.0

Isx99 Coordinate System 'x' Cutter-Comp
Outside Corner Break Point

-1.0 to 0.9999 cosine 0.998 (cos 1o)

 UMAC Quick Reference Guide

88 Appendix B

Multi-Channel Servo IC
(m: IC # from 2 to 9)

Range Units Default

I7m00 Servo IC m MaxPhase/PWM
Frequency Control

0 to 32,767 See software
reference

6527

I7m01 Servo IC m Phase Clock Frequency
Control

0 to 15 See software
reference

0

I7m02 Servo IC m Servo Clock Frequency
Control

0 to 15 See software
reference

3

I7m03 Servo IC m Hardware Clock
Control

0 to 4095 See software
reference

2258

I7m04 Servo IC m PWM Deadtime / PFM
Pulse Width Control

0 to 255 See software
reference

15

Channel-Specific Servo IC
(m: IC # 2-9, n: ch # 1-4)

Range Units Default

I7mn0 Servo IC m Channel n
Encoder/Timer Decode Control

0 to 15 None 7

I7mn1 Servo IC m Channel n Position
Compare Channel Select

0 to 1 None 0

I7mn2 Servo IC m Channel n Capture
Control

0 to 15 None 1

I7mn3 Servo IC m Channel n Capture Flag
Select Control

0 to 3 None 0

I7mn4 Servo IC m Channel n Encoder
Gated Index Select

0 to 1 None 0

I7mn6 Servo IC m Channel n Output Mode
Select

0 to 3 None 0

I7mn7 Servo IC m Channel n Output Invert
Control

0 to 3 None 0

I7mn8 Servo IC m Channel n PFM
Direction Signal Invert Control

0 to 1 None 0

Conversion Table I-Variables Range Units Default
I8000
to
I8191

Conversion Table Setup Lines $000000 - $FFFFFF Turbo PMAC
Addresses

See software reference

UMAC Quick Reference Guide

Appendix C 89

APPENDIX C — SELECTED UMAC ONLINE COMMANDS
Command Description
<CONTROL-A> Abort all programs and moves.
<CONTROL-B> Report status word for eight motors.
<CONTROL-C> Report all coordinate system status words.
<CONTROL-D> Disable all PLC programs.
<CONTROL-F> Report following errors for eight motors.
<CONTROL-G> Report global status word.
<CONTROL-H> Erase last character.
<CONTROL-I> Repeat last command line.
<CONTROL-K> Kill all motors.
<CONTROL-M> Enter command line.
<CONTROL-N> Report command line checksum.
<CONTROL-O> Feed hold on all coordinate systems.
<CONTROL-P> Report positions for eight motors.
<CONTROL-Q> Quit all executing motion programs.
<CONTROL-R> Begin execution of motion programs in all coordinate systems.
<CONTROL-S> Step working motion programs in all coordinate systems.
<CONTROL-T> Cancel MACRO pass-through mode.
<CONTROL-V> Report velocity for eight motors.
<CONTROL-X> Cancel in-process communications.
!{axis}{constant}[{axis}{constant}…] Alter destination of RAPID move.
@ Report currently addressed card on serial daisychain.
@{card} Address a card on the serial daisychain.
Report port's currently addressed motor.
#{constant} Select port’s addressed motor.
#{constant}-> Report the specified motor's coordinate system axis definition.
#{constant}->0 Clear axis definition for specified motor.
#{constant}->{axis definition} Assign an axis definition for the specified motor.
#{constant}->I Assign inverse-kinematic definition for specified motor.
Report port’s motor group.
##{constant} Select port’s motor group.
$ Establish phase reference for motor.
$$ Establish phase reference for motors in coordinate system.
$$$ Full card reset.
$$$*** Global card reset and re-initialization.
$$* Read motor absolute positions.
$* Read motor absolute position.
% Report the addressed coordinate system's feedrate override value.
%{constant} Set the addressed coordinate system’s feedrate override value.
& Report port’s currently addressed coordinate system.
&{constant} Select port’s addressed coordinate system.
\ Quick Stop in Lookahead/Feed Hold.
< Back up through Lookahead Buffer.
> Resume Forward Execution in Lookahead Buffer.
/ Halt Motion at End of Block.
? Report motor status.
?? Report the status words of the addressed coordinate system.
??? Report global status words.
A Abort all programs and moves in the currently addressed

coordinate system.

 UMAC Quick Reference Guide

90 Appendix C

Command Description
ABR[{constant}] Abort currently running motion program and start another.
ABS Select absolute position mode for axes in addressed coordinate

system.
{axis}={constant} Re-define the specified axis position.
B{constant} Point the addressed coordinate system to a motion program.
CHECKSUM Report the firmware checksum value.
CID Report card ID or part number.
CLEAR Erase currently opened buffer.
CLEAR ALL Erase all fixed motion, kinematic, and uncompiled PLC

programs.
CLEAR ALL PLCS Erase all uncompiled PLC programs.
CLOSE Close the currently opened buffer.
CLOSE ALL Close the currently opened buffer on any port.
{constant} Assign value to variable P0, or to table entry.
CPU Report the Turbo PMAC CPU type.
DATE Report the firmware release date.
DEFINE BLCOMP Define backlash compensation table.
DEFINE CCBUF Define extended cutter-compensation buffer.
DEFINE COMP (one-dimensional) Define Leadscrew Compensation Table.
DEFINE COMP (two-dimensional) Define two-dimensional leadscrew compensation table.
DEFINE GATHER Create a data gathering buffer.
DEFINE LOOKAHEAD Create a lookahead buffer.
DEFINE ROTARY Define a rotary motion program buffer.
DEFINE TBUF Create a buffer for axis transformation matrices.
DEFINE TCOMP Define torque compensation table.
DEFINE UBUFFER Create a buffer for user variable use.
DELETE ALL Erase all defined permanent and temporary buffers.
DELETE ALL TEMPS Erase all defined temporary buffers.
DELETE BLCOMP Erase backlash compensation table.
DELETE CCUBUF Erase extended cutter-compensation buffer.
DELETE COMP Erase leadscrew compensation table.
DELETE LOOKAHEAD Erase the lookahead buffer.
DELETE GATHER Erase the data gather buffer.
DELETE PLCC Erase specified compiled PLC program.
DELETE ROTARY Delete rotary motion program buffer of addressed coordinate

system.
DELETE TBUF Delete buffer for axis transformation matrices.
DELETE TCOMP Erase torque compensation table.
DISABLE PLC Disable specified PLC programs.
DISABLE PLCC Disable compiled PLC programs.
EAVERSION Report firmware version information.
ENABLE PLC Enable specified PLC programs.
ENABLE PLCC Enable specified compiled PLC programs.
ENDGATHER Stop data gathering.
F Report motor following error.
FRAX Specify the coordinate system’s feedrate axes.
GATHER Begin data gathering.
H Perform a feed hold.
HOME Start Homing Search Move.
HOMEZ Do a Zero-Move Homing.

UMAC Quick Reference Guide

Appendix C 91

Command Description
I{constant} Report the current I-Variable values.
I{data}={expression} Assign a value to an I-Variable.
I{constant}=* Assign factory default value to an I-Variable.
I{constant}=@I{constant} Set I-Variable to address of another I-Variable.
IDC Force active clock equal to ID-module clock.
IDNUMBER Report electronic identification number.
INC Specify Incremental Move Mode.
J! Adjust motor commanded position to nearest integer count.
J+ Jog Positive.
J- Jog Negative.
J/ Jog Stop.
J:{constant} Jog Relative to Commanded Position.
J:* Jog to specified variable distance from present commanded position.
J= Jog to Prejog Position.
J={constant} Jog to specified position.
J=* Jog to specified variable position.
J=={constant} Jog to specified motor position and make that position the pre-jog

position.
J^{constant} Jog Relative to Actual Position.
J^* Jog to specified variable distance from present actual position.
{jog command}^{constant} Jog until trigger.
K Kill motor output.
LEARN Learn present commanded position.
LIST List the contents of the currently opened buffer.
LIST BLCOMP List contents of addressed motor’s backlash compensation table.
LIST BLCOMP DEF List definition of addressed motor’s backlash compensation table.
LIST COMP List contents of addressed motor’s compensation table.
LIST COMP DEF List definition of addressed motor’s compensation table.
LIST FORWARD Report contents of forward-kinematic program buffer.
LIST GATHER Report contents of the data gathering buffer.
LIST INVERSE Report contents of inverse-kinematic program buffer.
LIST LDS List Linking Addresses of Ladder Functions.
LIST LINK List Linking Addresses of Internal Turbo PMAC Routines.
LIST PC List Program at Program Counter.
LIST PE List Program at Program Execution.
LIST PLC List the contents of the specified PLC program.
LIST PROGRAM List the contents of the specified motion program.
LIST ROTARY List contents of addressed coordinate system's rotary program buffer.
LIST TCOMP List contents of addressed motor’s torque compensation table.
LIST TCOMP DEF List definition of addressed motor’s torque compensation table.
LOCK{constant},P{constant} Check/set process locking bit.
M{constant} Report the current M- Variable values.
M{data}={expression} Assign value to M- Variable s.
M{constant}-> Report current M- Variable definitions.
M{constant}->* Self-Referenced M-Variable Definition.
M{constant}->D:{address} Long Fixed-Point M-Variable Definition.
M{constant}->DP:{address} Dual-Ported RAM Fixed-Point M-Variable Definition.
M{constant}->F:{address} Dual-Ported RAM Floating-Point M-Variable Definition.
M{constant}->L:{address} Long Word Floating-Point M-Variable Definition.
M{constant}->TWB:{address} Binary Thumbwheel-Multiplexer Definition.
M{constant}->TWD:{address} BCD Thumbwheel-Multiplexer M-Variable Definition.

 UMAC Quick Reference Guide

92 Appendix C

Command Description
M{constant}->TWR:{address} Resolver Thumbwheel-Multiplexer M-Variable Definition.
M{constant}->TWS:{address} Serial Thumbwheel-Multiplexer M-Variable Definition.
M{constant}->X/Y:{address} Short Word M-Variable Definition.
MFLUSH Clear pending synchronous M-variable assignments.
MOVETIME Report time left in presently executing move.
NOFRAX Remove all axes from list of vector feedrate axes.
NORMAL Report circle-plane unit normal vector.
O{constant} Open loop output.
OPEN BINARY ROTARY Open all existing rotary buffers for binary DPRAM entry.
OPEN FORWARD Open a forward-kinematic program buffer for entry.
OPEN INVERSE Open an inverse-kinematic program buffer for entry.
OPEN PLC Open a PLC program buffer for entry.
OPEN PROGRAM Open a fixed motion program buffer for entry.
OPEN ROTARY Open all existing rotary motion program buffers for text entry.
P Report motor position.
P{constant} Report the current P-Variable values.
P{data}={expression} Assign a value to a P-Variable.
PASSWORD={string} Enter/set program password.
PAUSE PLC Pause specified PLC programs.
PC Report program counter.
PE Report program execution pointer.
PMATCH Re-match axis positions to motor positions.
PR Report rotary program remaining.
Q Quit program at end of move.
Q{constant} Report Q-Variable value.
Q{data}={expression} Q-Variable value assignment
R Run motion program
R[H]{address} Report the contents of specified memory addresses.
RESUME PLC Resume execution of specified PLC programs.
S Execute one move (step) of motion program.
SAVE Copy setup parameters to non-volatile memory.
SETPHASE Set commutation phase position value.
SID Report serial electronic identification number.
SIZE Report the amount of unused buffer memory in Turbo PMAC.
STN Report MACRO station order number.
STN={constant} Set MACRO station order number.
TIME Report present time.
TIME={time} Set the present time.
TODAY Report present date.
TODAY={date} Set the present date.
TYPE Report type of Turbo PMAC.
UNDEFINE Erase coordinate system definition.
UNDEFINE ALL Erase coordinate definitions in all coordinate systems.
UNLOCK{constant} Clear process locking bit.
UPDATE Copy present date and time to non-volatile storage.
V Report motor velocity.
VERSION Report PROM firmware version number.
VID Report vendor identification number.
W{address} Write values to specified addresses.
Z Coordinate-system specific.

UMAC Quick Reference Guide

Appendix D 93

APPENDIX D — SELECTED UMAC MOTION PROGRAM
COMMANDS
Command Description
{axis}{data}[{axis}{data}...] Position-only move specification
{axis}{data}:{data}
[{axis}{data}:{data}…]

Position and velocity move specification

{axis}{data}[{axis}{data}…]
{vector}{data}
[{vector}{data}…]

Circular arc move specification

A{data} A-Axis move
ABS Absolute move mode
B{data} B-Axis move
C{data} C-Axis move
CALL Jump to subprogram with return
CIRCLE1 Set blended clockwise circular move mode
CIRCLE2 Set blended counterclockwise circular move mode
"COMMANDx""{command}""" Command issuance from internal program
COMMANDx^{letter} Control-character command issuance from internal program
DELAY{data} Delay for specified time
"DISABLE PLC
{constant}[,{constant}...]"

Disable PLC programs

"DISABLE PLCC
{constant}[,{constant}...]"

Disable compiled PLC programs

"DISPLAY [{constant}]
""{message}"""

Display text to display port

DISPLAY ... {variable} Formatted display of variable value
DWELL Dwell for specified time
ELSE Start false condition branch
ENABLE PLC Enable PLC buffers
ENABLE PLCC Enable compiled PLC programs
ENDIF Mark end of conditional block
ENDWHILE Mark end of conditional loop
F{data} Set Move Feedrate (Velocity)
FRAX Specify feedrate axes
GOSUB Unconditional jump with return
GOTO Unconditional jump without return
HOME Programmed homing
HOMEZ Programmed zero-move homing
I{data} I-Vector specification for circular moves or normal vectors
I{data}={expression} Set I-Variable value
IF ({condition}) Conditional branch
INC Incremental move mode
J{data} J-Vector specification for circular moves
K{data} K-Vector specification for circular moves
LINEAR Blended linear interpolation move mode
M{data}={expression} Set M-Variable value
M{data}=={expression} Synchronous M-Variable value assignment
N{constant} Program line label

 UMAC Quick Reference Guide

94 Appendix D

Command Description
OR({condition}) Conditional OR
P{data}={expression} Set P-Variable value
PSET Redefine current axis positions (position SET)
Q{data}={expression} Set Q-Variable value
R{data} Set circle radius
RAPID Set rapid traverse mode
READ Read arguments for subroutine
RETURN Return from subroutine jump/end main program
SENDx Cause Turbo PMAC to send message
SENDx^{letter} Cause Turbo PMAC to send control character
STOP Stop program execution
TA{data} Set acceleration time
TM{data} Set move time
TS{data} Set S-Curve acceleration time
U{data} U-Axis move
V{data} V-Axis move
W{data} W-Axis move
WAIT Suspend program execution
WHILE({condition}) Conditional looping
X{data} X-Axis move
Y{data} Y-Axis move
Z{data} Z-Axis move

UMAC Quick Reference Guide

Appendix E 95

APPENDIX E — SELECTED UMAC PLC PROGRAM
COMMANDS
Command Description
ADDRESS Motor/Coordinate System Modal Addressing
ADDRESS#P{constant} Select program’s addressed motor
ADDRESS&P{constant} Select program’s addressed coordinate system
AND ({condition}) Conditional AND
"COMMANDx""{command}""" Command issuance from internal program
COMMANDx^{letter} Control-Character command issuance
"DISABLE PLC {constant}[,{constant}...]" Disable PLC programs
"DISABLE PLCC
{constant}[,{constant}...]"

Disable compiled PLC programs

"DISPLAY [{constant}] ""{message}""" Display text to display port
DISPLAY ... {variable} Formatted display of variable value
ELSE Start false condition branch
ENABLE PLC Enable PLC buffers
ENABLE PLCC Enable compiled PLC programs
ENDIF Mark end of conditional block
ENDWHILE Mark end of conditional loop
I{data}={expression} Set I-Variable value
IF ({condition}) Conditional branch
M{data}={expression} Set M-Variable value
OR({condition}) Conditional OR
P{data}={expression} Set P-Variable value
PAUSE PLC Pause execution of PLC programs
Q{data}={expression} Set Q-Variable value
RESUME PLC Resume execution of PLC programss
SENDx Cause Turbo PMAC to send message
SENDx^{letter} Cause Turbo PMAC to send control character
WHILE({condition}) Conditional looping

 UMAC Quick Reference Guide

96 Appendix E

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

Ap
pe

nd
ix

 F

97

A
PP

EN
D

IX
 F

 —
 M

O
TO

R
 S

U
G

G
ES

TE
D

 M
-V

A
R

IA
B

LE

D
EF

IN
IT

IO
N

S

H
ar

dw
ar

e
C

ha
nn

el
 R

eg
is

te
rs

C

ha
nn

el
 #

1
C

ha
nn

el
 #

2
C

ha
nn

el
 #

3
C

ha
nn

el
 #

4
EN

C
 2

4-
bi

t c
ou

nt
er

 p
os

iti
on

"M

10
1-

>X
:$

07
82

01
,0

,2
4,

S"

"M
20

1-
>X

:$
07

82
09

,0
,2

4,
S"

"M

30
1-

>X
:$

07
82

11
,0

,2
4,

S"

"M
40

1-
>X

:$
07

82
19

,0
,2

4,
S"

O
U

TA
 c

om
m

an
d

va
lu

e
D

A
C

 o
r

PW
M

"M

10
2-

>Y
:$

07
82

02
,8

,1
6,

S"

"M
20

2-
>Y

:$
07

82
0A

,8
,1

6,
S"

"M

30
2-

>Y
:$

07
82

12
,8

,1
6,

S"

"M
40

2-
>Y

:$
07

82
1A

,8
,1

6,
S"

O

U
TC

 c
om

m
an

d
va

lu
e

PF
M

 o
r

PW
M

"M

10
7-

>Y
:$

07
82

04
,8

,1
6,

S"

"M
20

7-
>Y

:$
07

82
0C

,8
,1

6,
S"

"M

30
7-

>Y
:$

07
82

14
,8

,1
6,

S"

"M
40

7-
>Y

:$
07

82
1C

,8
,1

6,
S"

A

EN
A

 o
ut

pu
t s

ta
tu

s
"M

11
4-

>X
:$

07
82

05
,1

4"

"M
21

4-
>X

:$
07

82
0D

,1
4"

"M

31
4-

>X
:$

07
82

15
,1

4"

"M
41

4-
>X

:$
07

82
1D

,1
4"

U

SE
R

 fl
ag

 in
pu

t s
ta

tu
s

"M
11

5-
>X

:$
07

82
00

,1
9"

"M

21
5-

>X
:$

07
82

08
,1

9"

"M
31

5-
>X

:$
07

82
10

,1
9"

"M

41
5-

>X
:$

07
82

18
,1

9"

EN
C

 c
ou

nt
 e

rr
or

 fl
ag

"M

11
8-

>X
:$

07
82

00
,8

"
"M

21
8-

>X
:$

07
82

08
,8

"
"M

31
8-

>X
:$

07
82

10
,8

"
"M

41
8-

>X
:$

07
82

18
,8

"
C

H
C

 in
pu

t s
ta

tu
s

"M
11

9-
>X

:$
07

82
00

,1
4"

"M

21
9-

>X
:$

07
82

08
,1

4"

"M
31

9-
>X

:$
07

82
10

,1
4"

"M

41
9-

>X
:$

07
82

18
,1

4"

H
M

FL
 fl

ag
 in

pu
t s

ta
tu

s
"M

12
0-

>X
:$

07
82

00
,1

6"

"M
22

0-
>X

:$
07

82
08

,1
6"

"M

32
0-

>X
:$

07
82

10
,1

6"

"M
42

0-
>X

:$
07

82
18

,1
6"

PL

IM
 fl

ag
 in

pu
t s

ta
tu

s
"M

12
1-

>X
:$

07
82

00
,1

7"

"M
22

1-
>X

:$
07

82
08

,1
7"

"M

32
1-

>X
:$

07
82

10
,1

7"

"M
42

1-
>X

:$
07

82
18

,1
7"

M

LI
M

 fl
ag

 in
pu

t s
ta

tu
s

"M
12

2-
>X

:$
07

82
00

,1
8"

"M

22
2-

>X
:$

07
82

08
,1

8"

"M
32

2-
>X

:$
07

82
10

,1
8"

"M

42
2-

>X
:$

07
82

18
,1

8"

FA
U

LT
 fl

ag
 in

pu
t s

ta
tu

s
"M

12
3-

>X
:$

07
82

00
,1

5"

"M
22

3-
>X

:$
07

82
08

,1
5"

"M

32
3-

>X
:$

07
82

10
,1

5"

"M
42

3-
>X

:$
07

82
18

,1
5"

H

ar
dw

ar
e

C
ha

nn
el

 R
eg

is
te

rs

C
ha

nn
el

 #
5

C
ha

nn
el

 #
6

C
ha

nn
el

 #
7

C
ha

nn
el

 #
8

EN
C

 2
4-

bi
t c

ou
nt

er
 p

os
iti

on

"M
50

1-
>X

:$
07

83
01

,0
,2

4,
S"

"M

60
1-

>X
:$

07
83

09
,0

,2
4,

S"

"M
70

1-
>X

:$
07

83
11

,0
,2

4,
S"

"M

80
1-

>X
:$

07
83

19
,0

,2
4,

S"

O
U

TA
 c

om
m

an
d

va
lu

e
D

A
C

 o
r

PW
M

"M

50
2-

>Y
:$

07
83

02
,8

,1
6,

S"

"M
60

2-
>Y

:$
07

83
0A

,8
,1

6,
S"

"M

70
2-

>Y
:$

07
83

12
,8

,1
6,

S"

"M
80

2-
>Y

:$
07

83
1A

,8
,1

6,
S"

O

U
TC

 c
om

m
an

d
va

lu
e

PF
M

 o
r

PW
M

"M

50
7-

>Y
:$

07
83

04
,8

,1
6,

S"

"M
60

7-
>Y

:$
07

83
0C

,8
,1

6,
S"

"M

70
7-

>Y
:$

07
83

14
,8

,1
6,

S"

"M
80

7-
>Y

:$
07

83
1C

,8
,1

6,
S"

A

EN
A

 o
ut

pu
t s

ta
tu

s
"M

51
4-

>X
:$

07
83

05
,1

4"

"M
61

4-
>X

:$
07

83
0D

,1
4"

"M

71
4-

>X
:$

07
83

15
,1

4"

"M
81

4-
>X

:$
07

83
1D

,1
4"

U

SE
R

 fl
ag

 in
pu

t s
ta

tu
s

"M
51

5-
>X

:$
07

83
00

,1
9"

"M

61
5-

>X
:$

07
83

08
,1

9"

"M
71

5-
>X

:$
07

83
10

,1
9"

"M

81
5-

>X
:$

07
83

18
,1

9"

EN
C

 c
ou

nt
 e

rr
or

 fl
ag

"M

51
8-

>X
:$

07
83

00
,8

"
"M

61
8-

>X
:$

07
83

08
,8

"
"M

71
8-

>X
:$

07
83

10
,8

"
"M

81
8-

>X
:$

07
83

18
,8

"
C

H
C

 in
pu

t s
ta

tu
s

"M
51

9-
>X

:$
07

83
00

,1
4"

"M

61
9-

>X
:$

07
83

08
,1

4"

"M
71

9-
>X

:$
07

83
10

,1
4"

"M

81
9-

>X
:$

07
83

18
,1

4"

H
M

FL
 fl

ag
 in

pu
t s

ta
tu

s
"M

52
0-

>X
:$

07
83

00
,1

6"

"M
62

0-
>X

:$
07

83
08

,1
6"

"M

72
0-

>X
:$

07
83

10
,1

6"

"M
82

0-
>X

:$
07

83
18

,1
6"

PL

IM
 fl

ag
 in

pu
t s

ta
tu

s
"M

52
1-

>X
:$

07
83

00
,1

7"

"M
62

1-
>X

:$
07

83
08

,1
7"

"M

72
1-

>X
:$

07
83

10
,1

7"

"M
82

1-
>X

:$
07

83
18

,1
7"

M

LI
M

 fl
ag

 in
pu

t s
ta

tu
s

"M
52

2-
>X

:$
07

83
00

,1
8"

"M

62
2-

>X
:$

07
83

08
,1

8"

"M
72

2-
>X

:$
07

83
10

,1
8"

"M

82
2-

>X
:$

07
83

18
,1

8"

FA
U

LT
 fl

ag
 in

pu
t s

ta
tu

s
"M

52
3-

>X
:$

07
83

00
,1

5"

"M
62

3-
>X

:$
07

83
08

,1
5"

"M

72
3-

>X
:$

07
83

10
,1

5"

"M
82

3-
>X

:$
07

83
18

,1
5"

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

98

Ap

pe
nd

ix
 F

M
ot

or
 S

ta
tu

s B
its

M

ot
or

 #
1

M
ot

or
 #

2
M

ot
or

 #
3

M
ot

or
 #

4
St

op
pe

d-
on

-p
os

iti
on

-li
m

it
bi

t
"M

13
0-

>Y
:$

00
00

C
0,

11
,1

"
"M

23
0-

>Y
:$

00
01

40
,1

1,
1"

"M

33
0-

>Y
:$

00
01

C
0,

11
,1

"
"M

43
0-

>Y
:$

00
02

40
,1

1,
1"

Po
si

tiv
e-

en
d-

lim
it-

se
t b

it
"M

13
1-

>X
:$

00
00

B
0,

21
,1

"
"M

23
1-

>X
:$

00
01

30
,2

1,
1"

"M

33
1-

>X
:$

00
01

B
0,

21
,1

"
"M

43
1-

>X
:$

00
02

30
,2

1,
1"

N
eg

at
iv

e-
en

d-
lim

it-
se

t b
it

"M
13

2-
>X

:$
00

00
B

0,
22

,1
"

"M
23

2-
>X

:$
00

01
30

,2
2,

1"

"M
33

2-
>X

:$
00

01
B

0,
22

,1
"

"M
43

2-
>X

:$
00

02
30

,2
2,

1"

D
es

ire
d-

ve
lo

ci
ty

-z
er

o
bi

t
"M

13
3-

>X
:$

00
00

B
0,

13
,1

"
"M

23
3-

>X
:$

00
01

30
,1

3,
1"

"M

33
3-

>X
:$

00
01

B
0,

13
,1

"
"M

43
3-

>X
:$

00
02

30
,1

3,
1"

D
w

el
l-i

n-
pr

og
re

ss
 b

it
"M

13
5-

>X
:$

00
00

B
0,

15
,1

"
"M

23
5-

>X
:$

00
01

30
,1

5,
1"

"M

33
5-

>X
:$

00
01

B
0,

15
,1

"
"M

43
5-

>X
:$

00
02

30
,1

5,
1"

R
un

ni
ng

-p
ro

gr
am

 b
it

"M
13

7-
>X

:$
00

00
B

0,
17

,1
"

"M
23

7-
>X

:$
00

01
30

,1
7,

1"

"M
33

7-
>X

:$
00

01
B

0,
17

,1
"

"M
43

7-
>X

:$
00

02
30

,1
7,

1"

O
pe

n-
lo

op
-m

od
e

bi
t

"M
13

8-
>X

:$
00

00
B

0,
18

,1
"

"M
23

8-
>X

:$
00

01
30

,1
8,

1"

"M
33

8-
>X

:$
00

01
B

0,
18

,1
"

"M
43

8-
>X

:$
00

02
30

,1
8,

1"

A
m

pl
ifi

er
-e

na
bl

ed
 st

at
us

 b
it

"M
13

9-
>X

:$
00

00
B

0,
19

,1
"

"M
23

9-
>X

:$
00

01
30

,1
9,

1"

"M
33

9-
>X

:$
00

01
B

0,
19

,1
"

"M
43

9-
>X

:$
00

02
30

,1
9,

1"

In
-p

os
iti

on
 b

it
"M

14
0-

>Y
:$

00
00

C
0,

0,
1"

"M

24
0-

>Y
:$

00
01

40
,0

,1
"

"M
34

0-
>Y

:$
00

01
C

0,
0,

1"

"M
44

0-
>Y

:$
00

02
40

,0
,1

"
W

ar
ni

ng
-f

ol
lo

w
in

g
er

ro
r b

it
"M

14
1-

>Y
:$

00
00

C
0,

1,
1"

"M

24
1-

>Y
:$

00
01

40
,1

,1
"

"M
34

1-
>Y

:$
00

01
C

0,
1,

1"

"M
44

1-
>Y

:$
00

02
40

,1
,1

"
Fa

ta
l-f

ol
lo

w
in

g-
er

ro
r b

it
"M

14
2-

>Y
:$

00
00

C
0,

2,
1"

"M

24
2-

>Y
:$

00
01

40
,2

,1
"

"M
34

2-
>Y

:$
00

01
C

0,
2,

1"

"M
44

2-
>Y

:$
00

02
40

,2
,1

"
A

m
pl

ifi
er

-f
au

lt-
er

ro
r b

it
"M

14
3-

>Y
:$

00
00

C
0,

3,
1"

"M

24
3-

>Y
:$

00
01

40
,3

,1
"

"M
34

3-
>Y

:$
00

01
C

0,
3,

1"

"M
44

3-
>Y

:$
00

02
40

,3
,1

"
H

om
e-

co
m

pl
et

e
bi

t
"M

14
5-

>Y
:$

00
00

C
0,

10
,1

"
"M

24
5-

>Y
:$

00
01

40
,1

0,
1"

"M

34
5-

>Y
:$

00
01

C
0,

10
,1

"
"M

44
5-

>Y
:$

00
02

40
,1

0,
1"

M
ot

or
 S

ta
tu

s B
its

M

ot
or

 #
5

M
ot

or
 #

6
M

ot
or

 #
7

M
ot

or
 #

8
St

op
pe

d-
on

-p
os

iti
on

-li
m

it
bi

t
"M

53
0-

>Y
:$

00
02

C
0,

11
,1

"
"M

63
0-

>Y
:$

00
03

40
,1

1,
1"

"M

73
0-

>Y
:$

00
03

C
0,

11
,1

"
"M

83
0-

>Y
:$

00
04

40
,1

1,
1"

Po
si

tiv
e-

en
d-

lim
it-

se
t b

it
"M

53
1-

>X
:$

00
02

B
0,

21
,1

"
"M

63
1-

>X
:$

00
03

30
,2

1,
1"

"M

73
1-

>X
:$

00
03

B
0,

21
,1

"
"M

83
1-

>X
:$

00
04

30

N
eg

at
iv

e-
en

d-
lim

it-
se

t b
it

"M
53

2-
>X

:$
00

02
B

0,
22

,1
"

"M
63

2-
>X

:$
00

03
30

,2
2,

1"

"M
73

2-
>X

:$
00

03
B

0,
22

,1
"

"M
83

2-
>X

:$
00

04
30

,2
2,

1"
,2

1,
1"

D

es
ire

d-
ve

lo
ci

ty
-z

er
o

bi
t

"M
53

3-
>X

:$
00

02
B

0,
13

,1
"

"M
63

3-
>X

:$
00

03
30

,1
3,

1"

"M
73

3-
>X

:$
00

03
B

0,
13

,1
"

"M
83

3-
>X

:$
00

04
30

,1
3,

1"

D
w

el
l-i

n-
pr

og
re

ss
 b

it
"M

53
5-

>X
:$

00
02

B
0,

15
,1

"
"M

63
5-

>X
:$

00
03

30
,1

5,
1"

"M

73
5-

>X
:$

00
03

B
0,

15
,1

"
"M

83
5-

>X
:$

00
04

30
,1

5,
1"

R
un

ni
ng

-p
ro

gr
am

 b
it

"M
53

7-
>X

:$
00

02
B

0,
17

,1
"

"M
63

7-
>X

:$
00

03
30

,1
7,

1"

"M
73

7-
>X

:$
00

03
B

0,
17

,1
"

"M
83

7-
>X

:$
00

04
30

,1
7,

1"

O
pe

n-
lo

op
-m

od
e

bi
t

"M
53

8-
>X

:$
00

02
B

0,
18

,1
"

"M
63

8-
>X

:$
00

03
30

,1
8,

1"

"M
73

8-
>X

:$
00

03
B

0,
18

,1
"

"M
83

8-
>X

:$
00

04
30

,1
8,

1"

A
m

pl
ifi

er
-e

na
bl

ed
 st

at
us

 b
it

"M
53

9-
>X

:$
00

02
B

0,
19

,1
"

"M
63

9-
>X

:$
00

03
30

,1
9,

1"

"M
73

9-
>X

:$
00

03
B

0,
19

,1
"

"M
83

9-
>X

:$
00

04
30

,1
9,

1"

In
-p

os
iti

on
 b

it
"M

54
0-

>Y
:$

00
02

C
0,

0,
1"

"M

64
0-

>Y
:$

00
03

40
,0

,1
"

"M
74

0-
>Y

:$
00

03
C

0,
0,

1"

"M
84

0-
>Y

:$
00

04
40

,0
,1

"
W

ar
ni

ng
-f

ol
lo

w
in

g
er

ro
r b

it
"M

54
1-

>Y
:$

00
02

C
0,

1,
1"

"M

64
1-

>Y
:$

00
03

40
,1

,1
"

"M
74

1-
>Y

:$
00

03
C

0,
1,

1"

"M
84

1-
>Y

:$
00

04
40

,1
,1

"
Fa

ta
l-f

ol
lo

w
in

g-
er

ro
r b

it
"M

54
2-

>Y
:$

00
02

C
0,

2,
1"

"M

64
2-

>Y
:$

00
03

40
,2

,1
"

"M
74

2-
>Y

:$
00

03
C

0,
2,

1"

"M
84

2-
>Y

:$
00

04
40

,2
,1

"
A

m
pl

ifi
er

-f
au

lt-
er

ro
r b

it
"M

54
3-

>Y
:$

00
02

C
0,

3,
1"

"M

64
3-

>Y
:$

00
03

40
,3

,1
"

"M
74

3-
>Y

:$
00

03
C

0,
3,

1"

"M
84

3-
>Y

:$
00

04
40

,3
,1

"
H

om
e-

co
m

pl
et

e
bi

t
"M

54
5-

>Y
:$

00
02

C
0,

10
,1

"
"M

64
5-

>Y
:$

00
03

40
,1

0,
1"

"M

74
5-

>Y
:$

00
03

C
0,

10
,1

"
"M

84
5-

>Y
:$

00
04

40
,1

0,
1"

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

Ap
pe

nd
ix

 F

99

M
ot

or
 M

ov
e

R
eg

is
te

rs

M
ot

or
 #

5
M

ot
or

 #
6

M
ot

or
 #

7
M

ot
or

 #
8

C
om

m
an

de
d

po
si

tio
n

(1
/[I

xx
08

*3
2]

 c
ts

)
M

16
1-

>D
:$

00
00

88

M
26

1-
>D

:$
00

01
08

M

36
1-

>D
:$

00
01

88

M
46

1-
>D

:$
00

02
08

A

ct
ua

l p
os

iti
on

 (1
/[I

xx
08

*3
2]

 c
ts

)
M

16
2-

>D
:$

00
00

8B

M
26

2-
>D

:$
00

01
0B

M

36
2-

>D
:$

00
01

8B

M
46

2-
>D

:$
00

02
0B

Ta

rg
et

 (e
nd

) p
os

iti
on

 (1
/[I

xx
08

*3
2]

 c
ts

)
M

16
3-

>D
:$

00
00

C
7

M
26

3-
>D

:$
00

01
47

M

36
3-

>D
:$

00
01

C
7

M
46

3-
>D

:$
00

02
47

Po

si
tio

n
bi

as
 (1

/[I
xx

08
*3

2]
 c

ts
)

M
16

4-
>D

:$
00

00
C

C

M
26

4-
>D

:$
00

01
4C

M

36
4-

>D
:$

00
01

C
C

M

46
4-

>D
:$

00
02

4C

A
ct

ua
l v

el
oc

ity
 (1

/[I
xx

09
*3

2]
 c

ts
/c

yc
)

"M
16

6-
>X

:$
00

00
9D

,0
,2

4,
S"

"M

26
6-

>X
:$

00
01

1D
,0

,2
4,

S"

"M
36

6-
>X

:$
00

01
9D

,0
,2

4,
S"

"M

46
6-

>X
:$

00
02

1D
,0

,2
4,

S"

Pr
es

en
t m

as
te

r p
os

 (1
/[I

xx
07

*3
2]

 c
ts

)
M

16
7-

>D
:$

00
00

8D

M
26

7-
>D

:$
00

01
0D

M

36
7-

>D
:$

00
01

8D

M
46

7-
>D

:$
00

02
0D

Fi

lte
r O

ut
pu

t (
16

-b
it

D
A

C
 b

its
)

"M
16

8-
>X

:$
00

00
B

F,
8,

16
,S

"
"M

26
8-

>X
:$

00
01

3F
,8

,1
6,

S"

"M
36

8-
>X

:$
00

01
B

F,
8,

16
,S

"
"M

46
8-

>X
:$

00
02

3F
,8

,1
6,

S"

C
om

pe
ns

at
io

n
co

rr
ec

tio
n

(1
/[I

xx
08

*3
2]

 c
ts

)
M

16
9-

>D
:$

00
00

90

M
26

9-
>D

:$
00

01
10

M

36
9-

>D
:$

00
01

90

M
46

9-
>D

:$
00

02
10

V

ar
ia

bl
e

jo
g

po
si

tio
n/

di
st

an
ce

 (c
ts

)
M

17
2-

>L
:$

00
00

D
7

M
27

2-
>L

:$
00

01
57

M

37
2-

>L
:$

00
01

D
7

M
47

2-
>L

:$
00

02
57

En

co
de

r h
om

e
ca

pt
ur

e
po

si
tio

n
(c

ts
)

"M
17

3-
>Y

:$
00

00
C

E,
0,

24
,S

"
"M

27
3-

>Y
:$

00
01

4E
,0

,2
4,

S"

"M
37

3-
>Y

:$
00

01
C

E,
0,

24
,S

"
"M

47
3-

>Y
:$

00
02

4E
,0

,2
4,

S"

A
ve

ra
ge

d
ac

tu
al

 v
el

oc
ity

 (1
/[I

xx
09

*3
2]

ct

s/
cy

c)

M
17

4-
>D

:$
00

00
EF

M

27
4-

>D
:$

00
01

6F

M
37

4-
>D

:$
00

01
EF

M

47
4-

>D
:$

00
02

6F

M
ot

or
 fo

llo
w

in
g

er
ro

r (
1/

[I
x0

8*
32

] c
ts

)
M

18
0-

>D
:$

00
00

91

"M
27

5-
>X

:$
00

01
39

,8
,1

6,
S"

"M

37
5-

>X
:$

00
01

B
9,

8,
16

,S
"

"M
47

5-
>X

:$
00

02
39

,8
,1

6,
S"

M

ot
or

 M
ov

e
R

eg
is

te
rs

M

ot
or

 #
5

M
ot

or
 #

6
M

ot
or

 #
7

M
ot

or
 #

8
C

om
m

an
de

d
po

si
tio

n
(1

/[I
xx

08
*3

2]
 c

ts
)

M
56

1-
>D

:$
00

02
88

M

66
1-

>D
:$

00
03

08

M
76

1-
>D

:$
00

03
88

M

86
1-

>D
:$

00
04

08

A
ct

ua
l p

os
iti

on
 (1

/[I
xx

08
*3

2]
 c

ts
)

M
56

2-
>D

:$
00

02
8B

M

66
2-

>D
:$

00
03

0B

M
76

2-
>D

:$
00

03
8B

M

86
2-

>D
:$

00
04

0B

Ta
rg

et
 (e

nd
) p

os
iti

on
 (1

/[I
xx

08
*3

2]
 c

ts
)

M
56

3-
>D

:$
00

02
C

7
M

66
3-

>D
:$

00
03

47

M
76

3-
>D

:$
00

03
C

7
M

86
3-

>D
:$

00
04

47

Po
si

tio
n

bi
as

 (1
/[I

xx
08

*3
2]

 c
ts

)
M

56
4-

>D
:$

00
02

C
C

M

66
4-

>D
:$

00
03

4C

M
76

4-
>D

:$
00

03
C

C

M
86

4-
>D

:$
00

04
4C

A

ct
ua

l v
el

oc
ity

 (1
/[I

xx
09

*3
2]

 c
ts

/c
yc

)
"M

56
6-

>X
:$

00
02

9D
,0

,2
4,

S"

"M
66

6-
>X

:$
00

03
1D

,0
,2

4,
S"

"M

76
6-

>X
:$

00
03

9D
,0

,2
4,

S"

"M
86

6-
>X

:$
00

04
1D

,0
,2

4,
S"

Pr

es
en

t m
as

te
r p

os
 (1

/[I
xx

07
*3

2]
 c

ts
)

M
56

7-
>D

:$
00

02
8D

M

66
7-

>D
:$

00
03

0D

M
76

7-
>D

:$
00

03
8D

M

86
7-

>D
:$

00
04

0D

Fi
lte

r O
ut

pu
t (

16
-b

it
D

A
C

 b
its

)
"M

56
8-

>X
:$

00
02

B
F,

8,
16

,S
"

"M
66

8-
>X

:$
00

03
3F

,8
,1

6,
S"

"M

76
8-

>X
:$

00
03

B
F,

8,
16

,S
"

"M
86

8-
>X

:$
00

04
3F

,8
,1

6,
S"

C

om
pe

ns
at

io
n

co
rr

ec
tio

n
(1

/[I
xx

08
*3

2]
 c

ts
)

M
56

9-
>D

:$
00

02
90

M

66
9-

>D
:$

00
03

10

M
76

9-
>D

:$
00

03
90

M

86
9-

>D
:$

00
04

10

V
ar

ia
bl

e
jo

g
po

si
tio

n/
di

st
an

ce
 (c

ts
)

M
57

2-
>L

:$
00

02
D

7
M

67
2-

>L
:$

00
03

57

M
77

2-
>L

:$
00

03
D

7
M

87
2-

>L
:$

00
04

57

En
co

de
r h

om
e

ca
pt

ur
e

po
si

tio
n

(c
ts

)
"M

57
3-

>Y
:$

00
02

C
E,

0,
24

,S
"

"M
67

3-
>Y

:$
00

03
4E

,0
,2

4,
S"

"M

77
3-

>Y
:$

00
03

C
E,

0,
24

,S
"

"M
87

3-
>Y

:$
00

04
4E

,0
,2

4,
S"

A

ve
ra

ge
d

ac
tu

al
 v

el
oc

ity
 (1

/[I
xx

09
*3

2]

ct
s/

cy
c)

M

57
4-

>D
:$

00
02

EF

M
67

4-
>D

:$
00

03
6F

M

77
4-

>D
:$

00
03

EF

M
87

4-
>D

:$
00

04
6F

M
ot

or
 fo

llo
w

in
g

er
ro

r (
1/

[I
x0

8*
32

] c
ts

)
"M

57
5-

>X
:$

00
02

B
9,

8,
16

,S
"

"M
67

5-
>X

:$
00

03
39

,8
,1

6,
S"

"M

77
5-

>X
:$

00
03

B
9,

8,
16

,S
"

"M
87

5-
>X

:$
00

04
39

,8
,1

6,
S"

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

10
0

Ap

pe
nd

ix
 F

C
. S

. E
nd

-o
f-

C
al

cu
la

te
d

M
ov

e
Po

si
tio

ns

C
oo

rd
in

at
e

Sy
st

em

1
C

oo
rd

in
at

e
Sy

st
em

2

C
oo

rd
in

at
e

Sy
st

em

3
C

oo
rd

in
at

e
Sy

st
em

4

A
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

51
41

->
L:

$0
02

04
1

M
52

41
->

L:
$0

02
14

1
M

53
41

->
L:

$0
02

24
1

M
54

41
->

L:
$0

02
34

1
B

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
51

42
->

L:
$0

02
04

2
M

52
42

->
L:

$0
02

14
2

M
53

42
->

L:
$0

02
24

2
M

54
42

->
L:

$0
02

34
2

C
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

51
43

->
L:

$0
02

04
3

M
52

43
->

L:
$0

02
14

3
M

53
43

->
L:

$0
02

24
3

M
54

43
->

L:
$0

02
34

3
U

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
51

44
->

L:
$0

02
04

4
M

52
44

->
L:

$0
02

14
4

M
53

44
->

L:
$0

02
24

4
M

54
44

->
L:

$0
02

34
4

V
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

51
45

->
L:

$0
02

04
5

M
52

45
->

L:
$0

02
14

5
M

53
45

->
L:

$0
02

24
5

M
54

45
->

L:
$0

02
34

5
W

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
51

46
->

L:
$0

02
04

6
M

52
46

->
L:

$0
02

14
6

M
53

46
->

L:
$0

02
24

6
M

54
46

->
L:

$0
02

34
6

X
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

51
47

->
L:

$0
02

04
7

M
52

47
->

L:
$0

02
14

7
M

53
47

->
L:

$0
02

24
7

M
54

47
->

L:
$0

02
34

7
Y

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
51

48
->

L:
$0

02
04

8
M

52
48

->
L:

$0
02

14
8

M
53

48
->

L:
$0

02
24

8
M

54
48

->
L:

$0
02

34
8

Z-
ax

is
 ta

rg
et

 p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

51
49

->
L:

$0
02

04
9

M
52

49
->

L:
$0

02
14

9
M

53
49

->
L:

$0
02

24
9

M
54

49
->

L:
$0

02
34

9
C

. S
. E

nd
-o

f-
C

al
cu

la
te

d
M

ov
e

Po
si

tio
ns

C

oo
rd

in
at

e
Sy

st
em

5

C
oo

rd
in

at
e

Sy
st

em

6
C

oo
rd

in
at

e
Sy

st
em

7

C
oo

rd
in

at
e

Sy
st

em

8
A

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
55

41
->

L:
$0

02
44

1
M

56
41

->
L:

$0
02

54
1

M
57

41
->

L:
$0

02
64

1
M

58
41

->
L:

$0
02

74
1

B
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

55
42

->
L:

$0
02

44
2

M
56

42
->

L:
$0

02
54

2
M

57
42

->
L:

$0
02

64
2

M
58

42
->

L:
$0

02
74

2
C

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
55

43
->

L:
$0

02
44

3
M

56
43

->
L:

$0
02

54
3

M
57

43
->

L:
$0

02
64

3
M

58
43

->
L:

$0
02

74
3

U
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

55
44

->
L:

$0
02

44
4

M
56

44
->

L:
$0

02
54

4
M

57
44

->
L:

$0
02

64
4

M
58

44
->

L:
$0

02
74

4
V

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
55

45
->

L:
$0

02
44

5
M

56
45

->
L:

$0
02

54
5

M
57

45
->

L:
$0

02
64

5
M

58
45

->
L:

$0
02

74
5

W
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

55
46

->
L:

$0
02

44
6

M
56

46
->

L:
$0

02
54

6
M

57
46

->
L:

$0
02

64
6

M
58

46
->

L:
$0

02
74

6
X

-a
xi

s t
ar

ge
t p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
55

47
->

L:
$0

02
44

7
M

56
47

->
L:

$0
02

54
7

M
57

47
->

L:
$0

02
64

7
M

58
47

->
L:

$0
02

74
7

Y
-a

xi
s t

ar
ge

t p
os

iti
on

 (e
ng

in
ee

rin
g

un
its

)
M

55
48

->
L:

$0
02

44
8

M
56

48
->

L:
$0

02
54

8
M

57
48

->
L:

$0
02

64
8

M
58

48
->

L:
$0

02
74

8
Z-

ax
is

 ta
rg

et
 p

os
iti

on
 (e

ng
in

ee
rin

g
un

its
)

M
55

49
->

L:
$0

02
44

9
M

56
49

->
L:

$0
02

54
9

M
57

49
->

L:
$0

02
64

9
M

58
49

->
L:

$0
02

74
9

C
oo

rd
in

at
e

Sy
st

em
 S

ta
tu

s
B

its

C
oo

rd
in

at
e

Sy
st

em
 1

C

oo
rd

in
at

e
Sy

st
em

 2

C
oo

rd
in

at
e

Sy
st

em
 3

C

oo
rd

in
at

e
Sy

st
em

 4

Pr
og

ra
m

-r
un

ni
ng

 b
it

"M
51

80
->

X
:$

00
20

40
,0

,1
"

"M
52

80
->

X
:$

00
21

40
,0

,1
"

"M
53

80
->

X
:$

00
22

40
,0

,1
"

"M
54

80
-

>X
:$

00
23

40
,0

,1
"

C
irc

le
-r

ad
iu

s-
er

ro
r b

it
"M

51
81

-
>Y

:$
00

20
3F

,2
1,

1"

"M
52

81
-

>Y
:$

00
21

3F
,2

1,
1"

"M

53
81

->
Y

:$
00

22
3F

,2
1,

1"

"M
54

81
-

>Y
:$

00
23

3F
,2

1,
1"

R

un
-ti

m
e-

er
ro

r b
it

"M
51

82
-

>Y
:$

00
20

3F
,2

2,
1"

"M

52
82

-
>Y

:$
00

21
3F

,2
2,

1"

"M
53

82
->

Y
:$

00
22

3F
,2

2,
1"

"M

54
82

-
>Y

:$
00

23
3F

,2
2,

1"

C
on

tin
uo

us
 m

ot
io

n
re

qu
es

t
"M

51
84

->
X

:$
00

20
40

,0
,4

"
"M

52
84

->
X

:$
00

21
40

,0
,4

"
"M

53
84

->
X

:$
00

22
40

,0
,4

"
"M

54
84

-
>X

:$
00

23
40

,0
,4

"
In

-p
os

iti
on

 b
it

(A
N

D
 o

f m
ot

or
s)

"M

51
87

-
>Y

:$
00

20
3F

,1
7,

1"

"M
52

87
-

>Y
:$

00
21

3F
,1

7,
1"

"M

53
87

->
Y

:$
00

22
3F

,1
7,

1"

"M
54

87
-

>Y
:$

00
23

3F
,1

7,
1"

W

ar
ni

ng
-f

ol
lo

w
in

g-
er

ro
r b

it
(O

R
)

"M
51

88
-

>Y
:$

00
20

3F
,1

8,
1"

"M

52
88

-
>Y

:$
00

21
3F

,1
8,

1"

"M
53

88
->

Y
:$

00
22

3F
,1

8,
1"

"M

54
88

-
>Y

:$
00

23
3F

,1
8,

1"

Fa
ta

l-f
ol

lo
w

in
g-

er
ro

r b
it

(O
R

)
"M

51
89

-
>Y

:$
00

20
3F

,1
9,

1"

"M
52

89
-

>Y
:$

00
21

3F
,1

9,
1"

"M

53
89

->
Y

:$
00

22
3F

,1
9,

1"

"M
54

89
-

>Y
:$

00
23

3F
,1

9,
1"

A

m
p-

fa
ul

t-e
rr

or
 b

it
(O

R
 o

f m
ot

or
s)

"M

51
90

-
>Y

:$
00

20
3F

,2
0,

1"

"M
52

90
-

>Y
:$

00
21

3F
,2

0,
1"

"M

53
90

->
Y

:$
00

22
3F

,2
0,

1"

"M
54

90
-

>Y
:$

00
23

3F
,2

0,
1"

C
oo

rd
in

at
e

Sy
st

em
 S

ta
tu

s
B

its

C
oo

rd
in

at
e

Sy
st

em
 5

C

oo
rd

in
at

e
Sy

st
em

 6

C
oo

rd
in

at
e

Sy
st

em
 7

C

oo
rd

in
at

e
Sy

st
em

 8

Pr
og

ra
m

-r
un

ni
ng

 b
it

"M
55

80
->

X
:$

00
24

40
,0

,1
"

"M
56

80
->

X
:$

00
25

40
,0

,1
"

"M
57

80
->

X
:$

00
26

40
,0

,1
"

"M
58

80
->

X
:$

00
27

40
,0

,1
"

C
irc

le
-r

ad
iu

s-
er

ro
r b

it
"M

55
81

-
>Y

:$
00

24
3F

,2
1,

1"

"M
56

81
-

>Y
:$

00
25

3F
,2

1,
1"

"M

57
81

-
>Y

:$
00

26
3F

,2
1,

1"

"M
58

81
->

Y
:$

00
27

3F
,2

1,
1"

R
un

-ti
m

e-
er

ro
r b

it
"M

55
82

-
>Y

:$
00

24
3F

,2
2,

1"

"M
56

82
-

>Y
:$

00
25

3F
,2

2,
1"

"M

57
82

-
>Y

:$
00

26
3F

,2
2,

1"

"M
58

82
->

Y
:$

00
27

3F
,2

2,
1"

C
on

tin
uo

us
 m

ot
io

n
re

qu
es

t
"M

55
84

->
X

:$
00

24
40

,0
,4

"
"M

56
84

->
X

:$
00

25
40

,0
,4

"
"M

57
84

->
X

:$
00

26
40

,0
,4

"
"M

58
84

->
X

:$
00

27
40

,0
,4

"
In

-p
os

iti
on

 b
it

(A
N

D
 o

f m
ot

or
s)

"M

55
87

-
>Y

:$
00

24
3F

,1
7,

1"

"M
56

87
-

>Y
:$

00
25

3F
,1

7,
1"

"M

57
87

-
>Y

:$
00

26
3F

,1
7,

1"

"M
58

87
->

Y
:$

00
27

3F
,1

7,
1"

W
ar

ni
ng

-f
ol

lo
w

in
g-

er
ro

r b
it

(O
R

)
"M

55
88

-
>Y

:$
00

24
3F

,1
8,

1"

"M
56

88
-

>Y
:$

00
25

3F
,1

8,
1"

"M

57
88

-
>Y

:$
00

26
3F

,1
8,

1"

"M
58

88
->

Y
:$

00
27

3F
,1

8,
1"

Fa
ta

l-f
ol

lo
w

in
g-

er
ro

rb
it

(O
R

)
"M

55
89

-
"M

56
89

-
"M

57
89

-
"M

58
89

->
Y

:$
00

27
3F

,1
9,

1"

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

Ap
pe

nd
ix

 F

10

1

M
ot

or
 A

xi
s D

ef
in

iti
on

 R
eg

is
te

rs

M
ot

or
 #

1
M

ot
or

 #
2

M
ot

or
 #

3
M

ot
or

 #
4

X
/U

/A
/B

/C
-A

xi
s s

ca
le

 fa
ct

or
 (c

ts
/u

ni
t)

M
19

1-
>L

:$
00

00
C

F
M

29
1-

>L
:$

00
01

4F

M
39

1-
>L

:$
00

01
C

F
M

49
1-

>L
:$

00
02

4F

Y
/V

-A
xi

s s
ca

le
 fa

ct
or

 (c
ts

/u
ni

t)
M

19
2-

>L
:$

00
00

D
0

M
29

2-
>L

:$
00

01
50

M

39
2-

>L
:$

00
01

D
0

M
49

2-
>L

:$
00

02
50

Z/

W
-A

xi
s s

ca
le

 fa
ct

or
 (c

ts
/u

ni
t)

M
19

3-
>L

:$
00

00
D

1
M

29
3-

>L
:$

00
01

51

M
39

3-
>L

:$
00

01
D

1
M

49
3-

>L
:$

00
02

51

A
xi

s o
ff

se
t (

ct
s)

M

19
4-

>L
:$

00
00

D
2

M
29

4-
>L

:$
00

01
52

M

39
4-

>L
:$

00
01

D
2

M
49

4-
>L

:$
00

02
52

M

ot
or

 A
xi

s D
ef

in
iti

on
 R

eg
is

te
rs

M

ot
or

 #
5

M
ot

or
 #

6
M

ot
or

 #
7

M
ot

or
 #

8
X

/U
/A

/B
/C

-A
xi

s s
ca

le
 fa

ct
or

 (c
ts

/u
ni

t)
M

59
1-

>L
:$

00
02

C
F

M
69

1-
>L

:$
00

03
4F

M

79
1-

>L
:$

00
03

C
F

M
89

1-
>L

:$
0D

62

Y
/V

-A
xi

s s
ca

le
 fa

ct
or

 (c
ts

/u
ni

t)
M

59
2-

>L
:$

00
02

D
0

M
69

2-
>L

:$
00

03
50

M

79
2-

>L
:$

00
03

D
0

M
89

2-
>L

:$
0D

63

Z/
W

-A
xi

s s
ca

le
 fa

ct
or

 (c
ts

/u
ni

t)
M

59
3-

>L
:$

00
02

D
1

M
69

3-
>L

:$
00

03
51

M

79
3-

>L
:$

00
03

D
1

M
89

3-
>L

:$
0D

64

A
xi

s o
ff

se
t (

ct
s)

M

59
4-

>L
:$

00
02

D
2

M
69

4-
>L

:$
00

03
52

M

79
4-

>L
:$

00
03

D
2

M
89

4-
>L

:$
0D

65

C
oo

rd
in

at
e

Sy
st

em
 V

ar
ia

bl
es

C

oo
rd

in
at

e
Sy

st
em

 1

C
oo

rd
in

at
e

Sy
st

em
 2

C

oo
rd

in
at

e
Sy

st
em

 3

C
oo

rd
in

at
e

Sy
st

em
 4

Is

x1
1

tim
er

 (f
or

 sy
nc

hr
on

ou
s

as
si

gn
m

en
t)

M
51

11
->

X
:$

00
20

15

M
52

11
->

X
:$

00
21

15

M
53

11
->

X
:$

00
22

15

M
54

11
->

X
:$

00
23

15

Is
x1

2
tim

er
 (f

or
 sy

nc
hr

on
ou

s
as

si
gn

m
en

t)
M

51
11

->
Y

:$
00

20
15

M

52
12

->
Y

:$
00

21
15

M

53
12

->
Y

:$
00

22
15

M

54
12

->
Y

:$
00

23
15

H
os

t c
om

m
an

de
d

tim
e

ba
se

 (I
10

 u
ni

ts
)

"M
51

97
-

>X
:$

00
20

00
,0

,2
4,

S"

"M
52

97
-

>X
:$

00
21

00
,0

,2
4,

S"

"M
53

97
-

>X
:$

00
22

00
,0

,2
4,

S"

"M
54

97
-

>X
:$

00
23

00
,0

,2
4,

S"

Pr
es

en
t t

im
e

ba
se

 (I
10

 u
ni

ts
)

"M
51

98
-

>X
:$

00
20

02
,0

,2
4,

S"

"M
52

98
-

>X
:$

00
21

02
,0

,2
4,

S"

"M
53

98
-

>X
:$

00
22

02
,0

,2
4,

S"

"M
54

98
-

>X
:$

00
23

02
,0

,2
4,

S"

C
oo

rd
in

at
e

Sy
st

em
 V

ar
ia

bl
es

C

oo
rd

in
at

e
Sy

st
em

 5

C
oo

rd
in

at
e

Sy
st

em
 6

C

oo
rd

in
at

e
Sy

st
em

 7

C
oo

rd
in

at
e

Sy
st

em
 8

Is

x1
1

tim
er

 (f
or

 sy
nc

hr
on

ou
s

as
si

gn
m

en
t)

M
55

11
->

X
:$

00
24

15

M
56

11
->

X
:$

00
25

15

M
57

11
->

X
:$

00
26

15

M
58

11
->

X
:$

00
27

15

Is
x1

2
tim

er
 (f

or
 sy

nc
hr

on
ou

s
as

si
gn

m
en

t)
M

55
12

->
Y

:$
00

24
15

M

56
12

->
Y

:$
00

25
15

M

57
12

->
Y

:$
00

26
15

M

58
12

->
Y

:$
00

27
15

H
os

t c
om

m
an

de
d

tim
e

ba
se

 (I
10

 u
ni

ts
)

"M
55

97
-

>X
:$

00
24

00
,0

,2
4,

S"

"M
56

97
-

>X
:$

00
25

00
,0

,2
4,

S"

"M
57

97
-

>X
:$

00
26

00
,0

,2
4,

S"

"M
58

97
-

>X
:$

00
27

00
,0

,2
4,

S"

Pr
es

en
t t

im
e

ba
se

 (I
10

 u
ni

ts
)

"M
55

98
-

>X
:$

00
24

02
,0

,2
4,

S"

"M
56

98
-

>X
:$

00
25

02
,0

,2
4,

S"

"M
57

98
-

>X
:$

00
26

02
,0

,2
4,

S"

"M
58

98
-

>X
:$

00
27

02
,0

,2
4,

S"

U
M

AC
 Q

ui
ck

 R
ef

er
en

ce
 G

ui
de

10
2

Ap

pe
nd

ix
 F

UMAC Quick Reference Guide

Appendix G 103

APPENDIX G — FIRST DIGITAL I/O ACCESSORY M-VARIABLES
Name Definition
MI/O0 M7000->Y:$078C00,0,1
MI/O1 M7001->Y:$078C00,1,1
MI/O2 M7002->Y:$078C00,2,1
MI/O3 M7003->Y:$078C00,3,1
MI/O4 M7004->Y:$078C00,4,1
MI/O5 M7005->Y:$078C00,5,1
MI/O6 M7006->Y:$078C00,6,1
MI/O7 M7007->Y:$078C00,7,1
MI/O8 M7008->Y:$078C01,0,1
MI/O9 M7009->Y:$078C01,1,1
MI/O10 M7010->Y:$078C01,2,1
MI/O11 M7011->Y:$078C01,3,1
MI/O12 M7012->Y:$078C01,4,1
MI/O13 M7013->Y:$078C01,5,1
MI/O14 M7014->Y:$078C01,6,1
MI/O15 M7015->Y:$078C01,7,1
MI/O16 M7016->Y:$078C02,0,1
MI/O17 M7017->Y:$078C02,1,1
MI/O18 M7018->Y:$078C02,2,1
MI/O19 M7019->Y:$078C02,3,1
MI/O20 M7020->Y:$078C02,4,1
MI/O21 M7021->Y:$078C02,5,1
MI/O22 M7022->Y:$078C02,6,1
MI/O23 M7023->Y:$078C02,7,1
MI/O24 M7024->Y:$078C03,0,1
MI/O25 M7025->Y:$078C03,1,1
MI/O26 M7026->Y:$078C03,2,1
MI/O27 M7027->Y:$078C03,3,1
MI/O28 M7028->Y:$078C03,4,1
MI/O29 M7029->Y:$078C03,5,1
MI/O30 M7030->Y:$078C03,6,1
MI/O31 M7031->Y:$078C03,7,1
MI/O32 M7032->Y:$078C04,0,1
MI/O33 M7033->Y:$078C04,1,1
MI/O34 M7034->Y:$078C04,2,1
MI/O35 M7035->Y:$078C04,3,1
MI/O36 M7036->Y:$078C04,4,1
MI/O37 M7037->Y:$078C04,5,1
MI/O38 M7038->Y:$078C04,6,1
MI/O39 M7039->Y:$078C04,7,1
MI/O40 M7040->Y:$078C05,0,1
MI/O41 M7041->Y:$078C05,1,1
MI/O42 M7042->Y:$078C05,2,1
MI/O43 M7043->Y:$078C05,3,1
MI/O44 M7044->Y:$078C05,4,1
MI/O45 M7045->Y:$078C05,5,1
MI/O46 M7046->Y:$078C05,6,1
MI/O47 M7047->Y:$078C05,7,1

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions
Extend the life of your critical industrial,

commercial, and military systems with our

superior service and support.

We buy equipment
Planning to upgrade your current

equipment? Have surplus equipment taking

up shelf space? We'll give it a new home.

Learn more!
Visit us at artisantg.com for more info

on price quotes, drivers, technical

specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?
(217) 352-9330 I sales@artisantg.com I artisantg.com

