VMIVME-7765
Dual Pentium® III FC-PGA/PGA2 Processor-Based VMEbus SBC

- Dual Pentium® III processor-based single-board computer (SBC) based on ServerWorks LE chipset with 133 MHz systems bus
- Special features for embedded applications
 - Up to 192 Mbyte bootable flash on secondary IDE (optional)
 - Software-selectable watchdog timer with reset
 - Two programmable 16-bit timers and two programmable 32-bit timers
 - Remote Ethernet booting
 - Supports VMEbus P2 connection to HD/floppy drive
 - 64-bit, 66 MHz PMC mezzanine expansion site (IEEE-P1386 common mezzanine card standard, 3.3 V)
 - VME64 modes supported: A32/A24/D32/D16/D08/EO/BLT64/BLT32
 - VMEbus interrupt handler, interrupter, and system controller
 - Includes real-time endian conversion hardware for little-endian and big-endian data interfacing (patent no. 6,032,212)
 - Enhanced bus error handling
 - Passive heat sink
- Standard features include
 - Dual Pentium III processors (up to 1.26 GHz) with advanced transfer cache
 - Up to 2 Gbyte PC-133 registered SDRAM with ECC
 - 64-bit PCI SVGA controller with 4 Mbyte internal/SDRAM
 - 133 MHz system bus
 - Two on-board Fast Ethernet controllers supporting 10BaseT and 100BaseTX interfaces
 - On-board Ultra DMA/66 hard drive and floppy drive controllers (use VMEbus P2 for connection to IDE/floppy)
 - PCI dual Ultra160 SCSI
 - Two high-performance 16550-compatible serial ports
 - Enhanced parallel port with ECP/EPP modes supported
 - Shared PS/2-style keyboard and mouse port on front panel
 - Real-time clock and miniature speaker included
 - Two front panel universal serial bus (USB) connections
 - Operating system support available:
 - Windows NT®/Windows® 2000
 - Linux

APPLICATIONS
- Telecommunications
- Simulation
- Instrumentation
- Industrial control
- Process control and monitoring
- Factory automation
- Intelligent networked PLC controllers
- Automated test
- Data acquisition

MICROPROCESSOR — The VMIVME-7765 brings dual Intel® Pentium III processors to VMEbus. The Pentium III processors have 32-bit addressing and a 64-bit data bus. Its superscalar architecture allows three instructions to be executed per clock cycle. A dynamic branch prediction unit, separate instruction and data caches, MMX™ technology, and streaming SIMD extensions with 70 new instructions also increase the Pentium III processor’s performance. The Pentium III processors have advanced transfer cache (ATC). ATC is an L2 cache integrated on the same die as the processor core. At 1.26 GHz, the ATC is 512 Kbyte.

DRAM MEMORY — The VMIVME-7765 accepts two PC-133 registered SDRAM modules with ECC for a maximum memory capacity of 2 Gbyte. The on-board DRAM is dual ported to the VMEbus.

BIOS — System BIOS, video BIOS, LAN Boot BIOS, and SCSI BIOS are provided in reprogrammable flash memory.

SUPER VGA CONTROLLER — High-resolution graphics and multimedia-quality video are supported on the VMIVME-7765 by a PCI graphics adapter. The adapter is complemented by 4 Mbyte synchronous internal DRAM with a high-bandwidth 64-bit data interface. Video resolutions supported by the graphics adapter are shown in the following table.

<table>
<thead>
<tr>
<th>Screen Resolution</th>
<th>Colors (bpp)*</th>
<th>Refresh Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>640 x 480</td>
<td>24</td>
<td>60, 75, 85</td>
</tr>
<tr>
<td>800 x 600</td>
<td>24</td>
<td>60, 75, 85</td>
</tr>
<tr>
<td>1,024 x 768</td>
<td>24</td>
<td>60(^1), 75(^1), 85(^1)</td>
</tr>
<tr>
<td>1,280 x 1,024</td>
<td>24</td>
<td>60(^1), 75(^1), 85(^1)</td>
</tr>
<tr>
<td>1,600 x 1,200</td>
<td>16</td>
<td>60(^1)</td>
</tr>
</tbody>
</table>

\(^*\)bpp = bits per pixel.
1. May exhibit objectionable ghosting.

DUAL Ultra160 SCSI CONTROLLER — Peripheral connections to SCSI hard drives, tape backup, and CD-ROM drives are facilitated by the on-board 64-bit, 66 MHz PCI SCSI dual Ultra160 controller, which provides 8- or 16-bit operation at up to 160 Mbyte/s. SCSI I/O is provided through the front panel connectors.

Ethernet CONTROLLER — The VMIVME-7765 supports Ethernet LANs with two Intel 82559ER PCI Ethernet controllers. 10BaseT and 100BaseTX options are supported via two RJ45 connectors.

REMOTE Ethernet BOOTING — The VMIVME-7765 utilizes Lanworks Technologies, Inc.’s BootWare®. BootWare provides the ability to remotely boot the VMIVME-7765 using NetWare, TCP/IP, or RPL network protocols.
UNIVERSAL SERIAL BUS (USB) — The VMIVME-7765 provides two front panel single connection hub host controllers for the USB. Supported USB features include: isochronous data transfers, asynchronous messaging, self-identification and configuration of peripherals, and dynamic (hot) attachment.

SERIAL PORTS — Two 16550-compatible serial ports are featured on the VMIVME-7765 front panel. Each serial channel has an independent 16-byte FIFO to support baud rates up to 56 kHz. Requires VMIACC-0045 or individual connector adapter.

ENHANCED PARALLEL PORT — The VMIVME-7765 provides a Centronics-compatible, fully bidirectional parallel port meeting all IEEE-1284 standards (Compatibility, Nibble, EPP, and ECP). The parallel port contains a 16-byte FIFO to allow data rates up to 2 Mbyte/s in ECP mode. Requires VMIACC-0045 or individual connector adapters.

KEYBOARD AND MOUSE PORTS — The VMIVME-7765 has a combined PS/2 keyboard and mouse connector for peripherals. An adapter cable is provided.

FLASH MEMORY — The VMIVME-7765 provides up to 192 Mbyte of Flash memory accessible through the secondary IDE port. The VMIVME-7765 BIOS includes an option to allow the board to boot from the Flash memory.

PROGRAMMABLE TIMERS — The VMIVME-7765 provides the user with two 16-bit timers and two 32-bit timers that are independently programmable. These timers are mapped in PCI memory space, and are capable of generating PCI interrupts.

WATCHDOG TIMER — The VMIVME-7765 provides a software-programmable watchdog timer. The watchdog timer is enabled under software control. Once the watchdog timer is enabled, on-board software must access the timer within the specified timer period, or a timeout will occur. Software can also enable the watchdog timeout to cause a Nonmaskable Interrupt (NMI) or a VMEbus SYSFAIL.

RESET SWITCH AND ANNUNCIATORS — A small push-button switch on the front panel will reset the VMIVME-7765. If the System Controller is enabled, a SYSRESET* will also be generated on the VMEbus. Seven LEDs are visible on the front panel: power, status of VMEbus SYSFAIL, IDE activity, LAN activity, and LAN Mode (10 or 100 MHz mode). A small speaker is also included on the VMIVME-7765 to provide PC/AT sound output.

PMC EXPANSION SITE — The VMIVME-7765 supports IEEE P1386 common mezzanine card specification with a 3.3 V, 64-bit, 66 MHz capable PCI mezzanine card expansion site. This expansion capability allows third-party devices to be used with the VMIVME-7765.
Contact VMIC for more information concerning third-party PMC modules and compatibility.

VMEbus INTERFACE — The VMIVME-7765 VMEbus interface is based on the Universe IIB high-performance PCI-to-VME interface from Newbridge/Tundra.

SYSTEM CONTROLLER — The on-board VMEbus system controller capabilities allow the board to operate as a slot 1 controller, or it may be disabled when another board is acting as the system controller. The system controller may be programmed to provide the following modes of arbitration:

- Round Robin (RRS)
- Single Level (SGL)
- Priority (PRI)

The system controller provides a SYSCLK driver, IACK* daisy-chain driver, and a VMEbus access timeout timer. The system controller also provides an arbitration timeout if BBSY* is not seen within a specified period after a BGOUT* signal is issued. This period is programmable for 16 or 256 µs.

VMEbus REQUESTER — The microprocessor can request and gain control of the bus using any of the VMEbus request lines (BR3* to BR0*) under software control. The requester can be programmed to operate in any of the following modes:

- Release-On-Request (ROR)
- Release-When-Done (RWD)
- VMEbus Capture and Hold (BCAP)

MAILBOXES — The VMEbus interface provides four 32-bit mailboxes, which are accessible from both the microprocessor and the VMEbus providing interprocessor communication. The mailboxes have the ability to interrupt the microprocessor when accessed by VMEbus.

INTERRUPT HANDLER — The interrupt handler monitors, and can be programmed to respond to any or all VMEbus IRQ* lines. All normal-process VMEbus-related interrupts can be mapped to PCI INTA# or SERR# interrupts.

These include:

- Mailbox interrupts
- VMEbus interrupts
- VMEbus interrupter IACK cycle (acknowledgment of VMIVME-7765 VMEbus-issued interrupts)

All error processing VMEbus-related interrupts can be mapped to PCI INTA# or SERR#. Note: PCI SERR# initiates a CPU NMI. These include:

- ACFAIL* interrupt
- BERR* interrupt
- SYSFAIL* interrupt

The interrupt handler has a corresponding STATUS/ID register for each IRQ* interrupt. Once the handler receives an IRQ*, it requests the VMEbus and, once granted, it performs an IACK cycle for that level. Once the IACK cycle is complete and the STATUS/ID is stored in the corresponding ID register, an appropriate interrupt status bit is set in an internal status register, and a PCI interrupt is generated. The PCI interrupt can be mapped to PCI INTA# or SERR#.

INTERRUPTER — Interrupts can be issued under software control on any or all of the seven VMEbus interrupt lines (IRQ7* to IRQ1*). A common ID register is associated with all interrupt lines. During the interrupt acknowledge cycle, the interrupter issues the ID to the interrupt handler.

The interrupter can be programmed to generate a PCI INTA# or SERR# interrupt when a VMEbus interrupt handler acknowledges a software-generated VMEbus interrupt.

BYTE SWAPPING — The Intel 80x86 family of processors use little-endian format. To accommodate other VMEbus modules that transfer data in big-endian format such as the 680x0 processor family, the VMIVME-7765 incorporates byte-swapping hardware. This provides independent byte swapping for both the master and slave interfaces. Both master and slave interface byte swapping are under software control.

The VMEbus master interface provides nine separate memory windows into VMEbus resources. Each window has separate configuration registers for mapping PCI transfers to the VMEbus (that is, PCI base address, window size, VMEbus base address, VMEbus access type, VMEbus address/data size, etc.). The maximum/minimum window sizes for the five windows are as follows:

<table>
<thead>
<tr>
<th>Window</th>
<th>Minimum Size</th>
<th>Maximum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 4</td>
<td>4 Kbyte</td>
<td>4 Gbyte</td>
</tr>
<tr>
<td>1 to 3, 5 to 7</td>
<td>64 Kbyte</td>
<td>4 Gbyte</td>
</tr>
<tr>
<td>Special Cycle</td>
<td>64 Mbyte</td>
<td>64 Mbyte</td>
</tr>
</tbody>
</table>

SLAVE INTERFACE — Memory Access

The VMEbus slave interface provides eight separate memory windows into PCI resources. Each window has separate configuration registers for mapping VMEbus...
transfers to the PCI bus (that is, VMEbus base address, window size, PCI base address, VMEbus access type, VMEbus address/data size, etc.). The maximum/minimum window sizes for the four windows are as follows:

<table>
<thead>
<tr>
<th>Window</th>
<th>Minimum Size</th>
<th>Maximum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 4</td>
<td>4 Kbyte</td>
<td>4 Gbyte</td>
</tr>
<tr>
<td>1 to 3, 5 to 7</td>
<td>64 Kbyte</td>
<td>4 Gbyte</td>
</tr>
</tbody>
</table>

In addition, each window can be programmed to operate in coupled or decoupled mode. In decoupled mode, the window utilizes a write-posting FIFO and/or a read prefetching FIFO for increased system performance. In coupled mode, the FIFOs are bypassed and VMEbus transactions are directly coupled to the PCI bus (that is, transfers on VMEbus are not completed until they are completed on the PCI bus).

ENHANCED BUS ERROR HANDLING —
Enhancements over the Universe chip’s bus error handling features are provided. A latch and register are provided to allow the CPU to read the VMEbus address that caused the bus error in all modes. The Universe chip’s support is limited to decoupled mode.

Support for bus cycle timeout and assertion of bus error is provided. The board may be configured to assert bus error upon timeout regardless of its status as system controller. The Universe chip asserts bus error only if it is system controller. In addition, this board may be configured to assert an interrupt upon bus cycle timeout.

OPERATING SYSTEM AND SOFTWARE SUPPORT — The VMIVME-7765 provides embedded features beyond PC/AT functionality. These features are supported by VMIC software products aimed at developers who are incorporating VMIC SBCs, I/O boards, and workstations into systems. Windows NT/Windows 2000 and Linux are the most common operating systems supported by VMIC software products.

Windows NT/Windows 2000 — The IOWorks® software family is a set of software components that can work together or separately to provide a total development environment for any application in a Windows NT/Windows 2000 OS.

VMISFT-9420 VMEbus Access™ for Windows NT/Windows 2000 — The VMEbus Access product is specifically designed for accessing the advanced VMEbus architecture of the VMIVME-7765. Running on Windows NT/Windows 2000, VMEbus Access is both sophisticated and easy to use.

The function library, VMEbus toolset, and open architecture VMEbus Access offers make it one of the most powerful products on the market today. It provides compatibility with existing VMIC VMEbus PC platforms and compatibility with future VMEbus PC platforms VMIC creates.

The VMEbus Access development package gives you everything you need to develop applications for your VME operations. This package includes the VMEmanager™ function library and four utilities that enable you to easily configure a VMEbus, dynamically monitor VMEbus activities, manage VMEbus data, and use DDE-client applications.

VMEbus Access provides powerful tools for developing, debugging, and monitoring VMEbus applications and increasing VMEbus performance. The flexible design of VMEbus Access enables you to incorporate it as a stand-alone solution, or use it to open your VMEbus operations to the IOWorks product suite.

VMEbus Access manipulates the hardware behind the scenes. With VMEbus Access, you can develop applications in or use existing applications developed in most programming environments. For example, VMEbus Access enables your VMEbus to recognize applications developed in these popular programming environments:

- IOWorks Manager™
- LabVIEW
- Citect
- Wonderware InTouch
- Visual IOWorks®
- Visual Basic®
- Visual C++®

I/O SUPPORT

VMISFT-9450 IOWorks BOARD DRIVERS — This driver supports VMIC’s extensive line of VME I/O boards, and is available for Windows NT/Windows 2000 and VxWorks. IOWorks board drivers take advantage of all the key benefits and features of each supported I/O board, and new I/O boards are constantly being added.

IOWorks board drivers contain both a C++ class library and a C function library that provide a common interface to VMIC I/O products for reading, writing, and configuring. You do not need to know the details of how an individual board is programmed. For instance, you can use the SetAttributes function on any supported VMIC board; the WriteAnalog function controls the output from any VMIC analog output board; or the GetScanMode function retrieves the scan mode for any VMIC analog board.
SPECIFICATIONS

6U two Eurocard format, two slots

- **Height**: 9.2 in. (233.4 mm)
- **Depth**: 6.3 in. (160 mm)
- **Thickness**: 1.6 in. (20.3 mm)

Power Requirements:

- +5 VDC (±5 percent), 10 A (typical), 14 A maximum
- +12 VDC (±5 percent), 100 mA (typical), 500 mA maximum
- -12 VDC (±5 percent), 50 mA (typical), 100 mA maximum

Note: The currents at +12 and -12 VDC are specified with the serial connectors open.

Operating Temperature: 0 to 45 °C for 733 MHz and 866 MHz options. 0 to 40 °C for 1 GHz and 1.26 GHz options.

A minimum of 450 LFM of forced air cooling (measured at the outlet top of the heatsink) is required to operate over the above temperature ranges.

Relative Humidity: 10 to 90 percent, noncondensing

VMEbus Interface:

- **DTB Master:** BLT32/BLT64, A32/D32, A24/D32, A16/D32
- **DTB Slave:** BLT32/BLT64, A32/D32, A24/D32, A16/D32
- **Requester:** Programmable, BR(3 to 0), ROR, RWD, BCAP
- **Interrupt Handler:** IH(1 to 7) D8(O)
- **Interrupter:** Programmable, IRQ7* to IRQ1*
- **Arbiter:** SGL, PRI, RRS
- **BTO:** Programmable (4 to 1,024 µs)
- **Compliance:** Rev. C.1

MTBF: 91,242 hours (Bellcore)

PMC Expansion Site Connector:

3.3 V signaling, types 1 and 2
64-bit PCI bus, 66 MHz maximum

COMPATIBLE PRODUCTS

The VMIVME-7765 can be used with a number of VMIC PMC bus and VMEbus products.

Floppy/Hard Disk:

VMIC produces floppy/hard drive modules to support the built-in IDE and floppy controller ports.

The VMIVME-7452 provides up to 18.0 Gbyte of hard disk storage and a 3.5-inch 1.44 Mbyte floppy drive. The unit fits into a standard VMEbus 6U single-slot form factor. The VMIACC-0562 converts P2 IDE/floppy signals to 40- and 34-pin headers for use at the rear of the VMEbus backplane.

PMC Capability:

VMIC supports PMC via the on-board PMC expansion site. This expansion site allows the VMIVME-7765 to take advantage of the many commercially available PMC boards.

CD-ROM Support:

Since much of today’s advanced software is delivered on CD-ROM, the VMIVME-7455 provides CD-ROM capability within a single 6U VME slot. Also, the on-board SCSI port can be used with an external CD-ROM drive.

VMEbus:

The VMIVME-7765 enables access to VMIC’s wealth of VMEbus products. If you have real-world control, monitoring and real-time networking requirements, VMIC has a solution for you. Today’s system requirements demand state-of-the-art solutions. Our advanced I/O features such as Built-in-Test, self-test, isolation, digital auto-calibration, and intelligent on-board DSP processing give our customers those solutions.

The I/O Solution for Your I/O Problem:

VMIC’s 16 years of experience in supplying high-performance deterministic controllers for multiple markets has led to the development of IOWorks software with features, benefits, and capabilities to solve just about any I/O problem. From PLC alternatives to data servers which support the seamless interconnection of dissimilar systems, VMIC has the solution for simple to complex, high-speed, deterministic requirements.

TRADEMARKS

IOWorks Manager, VMEbus Access, and VMEmanager are trademarks and IOWorks, Visual IOWorks, and the VMIC logo are registered trademarks of VMIC. MMX is a trademark and Intel and Pentium are registered trademarks of Intel Corporation. Visual Basic, Visual C++, Windows, and Windows NT are registered trademarks of Microsoft Corporation. BootWare is a registered trademark of Lanworks Technologies, Inc. Other registered trademarks are the property of their respective owners.
Figure 1. VMIVME-7765 Block Diagram