
All trademarks, brandnames, and brands appearing herein are the property of their respective owners.

• Critical and expedited services
• In stock / Ready-to-ship

• We buy your excess, underutilized, and idle equipment
• Full-service, independent repair center

Compumotor 4000-M

Motion Controller

Limited Availability
Used and in Excellent Condition

Open Web Page

https://www.artisantg.com/62774-2

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/PLC/62774-2/Parker-Compumotor-4000-M-Motion-Controller?pdf=62774-2
https://www.artisantg.com/62774-2?pdf=62774-2

U S E R G U I D E C H A N G E S U M M A R Y

User Guide Changes
The following is a summary of the primary technical changes to this user
guide since the last version was released. This reference guide p/n 88-
013526-01 C, supersedes 88-013526-01 B.

The entire user guide has been changed according to the new Compumotor
user guide styles, format, and illustration standards. Also, the chapters have
been renumbered and reorganized. Technical changes to each chapter are
summarized below.

Chapter ➀ IEEE-488
Minor technical changes were made to this chapter

Chapter ➁ Contouring
Minor changes were made to the VEL PATH statement

Chapter ➂ Multi-Tasking
There were no changes to this chapter

Chapter ➃ Following
The following changes were made to this chapter

❏ Added section on Cam Profiling

❏ Added section on Motor and Encoder Comparisons

❏ Technical changes made to Velocity Smoothing

❏ The following statements were added to this chapter

FOL CAM
FOL LEAD
FOL DIRSET
FOL ENCCHK

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

T a b l e o f C o n t e n t s

How To Use This User Guide... v
Assumptions...v
User Guide Contents ..v

Installation Process Overview..v
Developing Your Application...v
Installation Preparation...vi

Related Publication ..vi

➀ IEEE-488 ...1
Product Description.. 1
IEEE-488Installation ..1

Set-up Procedures...3
Use of the Serial Poll Register and SRQ.. 5
IEEE-488 Interface Pin-Out ...6

IEEE-488 Statements...7

➁ CONTOURING..11
Product Description.. 11
Installation Instructions ..12
Path Definition... 14

Participating Axes..15
Path Acceleration, Deceleration, and Velocity ... 16
Encoder Mode...16
Segment Endpoint Coordinates... 16
Lines...18
Arcs..18
Radius Tolerance Specifications ...19
Radius Specified Arcs...19
Center Specified Arcs...20
Circles ...21
Segment Boundary...21
Using the C Axis ..22
Using the P Axis ..23
Outputs Along the Path...23
Paths Built Using Model 4000 Statements... 23
Compiling the Path ...24
Executing the Path...25
Synchronizing Non-Path Statements ...26
Possible Programming
Errors ..26
Path Statement Summary..27

Contouring Statements ...32

➂ MULTI-TASKING...51
Product Description.. 51

Starting Another Task...51
Stopping A Task ..51
Interaction Between Tasks ..52
Contouring..53
Wait ..53
Interrupts...53
Communication Between Tasks ..53
Memory Upgrade..53

Multi-Tasking—Statements..56

➃ FOLLOWING ..61
Product Description.. 61
Technical Overview..62

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Installation ...62
Ratio Following ..64

Slave vs. Master Move Profiles... 66
Summary of Ratio Following Statements ... 67
Electronic Gearbox ..67
Trackball ..68

The Master Cycle Concept...69
Master Cycle Statements ..69
Following Wait Statements...70
Continuous Cut to Length ..71

Following Performance and Measurement ...73
Monitoring Following Error ..74
Window Error Detection...75
Motor and Encoder Comparison ..76
Summary of Following Performance and Measurement Statements .. 76

Periodic Master/Slave Synchronization..77
Master and Slave Marks, Synchronization Offset, Sync Error ... 77
Synchronization Offset and Synchronization Error Definitions .. 77
Master and Slave Sync Mark..78
Using Periodic Synchronization Features.. 78
Random Timing Infeed...79
Web Processing ..81

Cam Profiling...84
Profiling Applications..84
Defining and Compiling Cam Profiles ..86
Profiles and Master Cycles ..87
Executing a Profile ...87
Statements Affected by Cam Profiling.. 88
Use of Statements in Cam Profiling..88
Practical Profile Design Issues...88
Rotary Knife Cut to Length...89

Moving Positioning System..94
Defining and Entering the Moving Positioning System.. 94
Event Coordination and Master Cycle Positions ... 96
Summary of Moving Positioning System Statements ... 96
Multi-Axis Bottle Filling ..97
Special Features of the Moving Positioning System .. 100
Continuous Cut to Length ..100

Technical Considerations for Following ...102
Velocity Feed Forward...102
Velocity Smoothing ..103
Dynamic Position Maintenance...103
Preset vs. Continuous Following Moves.. 107
Master and Slave Distance Calculations ... 108
Using Other Features with Following... 110
Troubleshooting a Following Application.. 111

Following—Statements ...114
Error Codes ..141

INDEX...143

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 iii

O V E R V I E W

How To Use This User Guide
This user guide is designed to help you install, develop, and maintain your
system. Each chapter begins with a list of specific objectives that should be
met after you have read the chapter. This section should help you find and
use the information in this user guide.

Assumptions
This user guide assumes that the user has a fundamental understanding of
computers, basic electrical concepts, basic motion control concepts, and
basic serial communication (RS-232C) concepts.

User Guide Contents
This user guide contains the following information.

Chapter ➀
IEEE-488

This chapter provides a description of the IEEE_488 Option, installation
procedures, and command statements.

Chapter ➁
Contouring

This chapter provides a description of the Contouring Option, installation
procedures, and command statements.

Chapter ➂
Multi-Tasking

This chapter provides a description of the Multi-Tasking Option,
installation procedures, and command statements.

Chapter ➃
Following

This chapter provides a description of the Following Option, installation
procedures, and command statements.

Installation Process Overview
To ensure trouble-free operation, you should follow the installation
procedures outlined in this user guide. Pay special attention to the
environment in which the Model 4000 will operate, the layout and
mounting, and the wiring and grounding practices used.

Developing Your Application
Before you develop and implement your application, there are several issues
that you should consider.

➀ Clarify the requirements of your application. Clearly define what you expect the
system to do.

➁ Assess your resources and limitations. This will help you find the most
efficient and effective means of developing and implementing your application.

➂ Follow the guidelines and instructions outlined in this user guide. Proper
installation and implementation can only be ensured if all procedures are
completed in the proper sequence.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iv Model 4000 Options User Guide

Installation Preparation
Before you attempt to install this product, you should complete the following
steps. Successful completion of these steps should prevent subsequent
performance problems and allow you to resolve any potential system
difficulties before they affect your system's operation.

➀ Become familiar with the user guide's contents so that you can find information
that you need quickly.

➁ Develop a basic understanding of all system components, their functions, and
interrelationships (refer to the Model 4000 User Guide).

➂ Begin the installation process. Do not deviate from the sequence or installation
methods provided.

➃ Before you begin to customize your system, check the system functions and
features to ensure that you have completed the installation process correctly.

Related Publication
For more information on motion control concepts and Compumotor's
complete product line and product capabilities, refer to the current Parker
Compumotor Motion Control Catalog.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 1

C H A P T E R ➀
IEEE-488

Product Description
The Model 4000 IEEE-488 option allows the Model 4000 to act as a peripheral
instrument on the IEEE-488 bus of a host computer. The Model 4000 serves
as a talker-listener, it can not act as an IEEE-488 bus controller. The Model
4000 uses the TMS9914 GPIB controller chip, which provides handshake
signals according to the IEEE-488 standard. The Model 4000 offers a subset
of full IEEE-488 functionality, as summarized below:

❏ Talker-Listener
❏ EOI on End of Transmission
❏ Serial Poll Support
❏ Device Clear, Interface Clear
❏ Service Request (SRQ) generation
❏ Standard IEEE-488 addressing

Installation
Use the following steps to properly install the IEEE-488 Option card into
your Model 4000 if you have purchased the option separately. If you
purchased your Model 4000 with the IEEE-488 option factory installed,
proceed to Set-Up Procedures.

☛ These
devices are
sensitive to

static
discharge.

Wear a grounding strap when performing this installation. If a grounding
strap is not available you may discharge any buildup of static by touching a
grounded piece of metal before opening the Model 4000.

Step ➀ Remove AC Power.

To open the Model 4000 enclosure you must disconnect the phone cord and
remove screws 1 through 5. Slide internal assembly off, by pushing on the
fan side and remove completely.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2 Model 4000 Options User Guide

Top ViewSide ViewBottom View

25

1

4

3

Step ➁ To remove the connector end plate, remove the four axes and two AUX
phoenix connectors (make a note of the orientation of these connectors, you
will need to re-install them in the same order, do not remove the jumper
wire). Remove connector/end plate, by removing screws 1 through 6.

Step ➂ Lift end plate off as shown and replace with option card end plate.

☛J connectors
used with
IEEE-488
older units are
labeled J3 and
J2, newer
units are
labeled J5 and
J4

1

3

2

5

4

6

Connector End/Plate
I/O Board

Digital
Board

(Scr ews 1- 4 are longer)

Step ➃ Remove the J5 (phone cord) connector (on Digital Board), plug option cable
into connector J4 (50 Pin Connector).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 3

Digital Board

Colored
Wire
located on
this side

Option Card Cage

Battery
(2 batteries
for 12 mhz

Power
Supply Board

(on top)

Step ➄ Slide option card cage into position and plug option cable into option card
J1. Attach option card cage to end plate using HEX nuts supplied.

Digital
Board

Top View

End View F
an side

Step ➅
Plug option cable into option card.

Step ➆ Attach cover plate. Install jack screws into IEEE-488 connector and then
install screws into cover plate. Install J5 (phone cord) in its connector.

Step ➇ Attach the AUX and axis connectors. Slide enclosure cover over the fan end
and install the five screws. Plug in the Control Panel connector (phone cord)
and AC cord. Apply power.

When starting up your Model 4000 for the first time after installing your
IEEE-488 Card, an error message may appear on the front panel. You will
need to press the following keys in order to reset the Model 40000.

ACCESS
4000
ENTER
ETC (F6)
RESET (F2)
ENTER

Set-up Procedures
The following paragraphs contain a general discussion of set-up procedures,
followed by sample Model 4000 statements and getting started procedures.

The following group of statements are typical of the IEEE-488 definition
statements, include them in the 4000's power-up program. Please refer to the
statement descriptions for power-up default values. In this example, the

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4 Model 4000 Options User Guide

GPIB address is set to 4, and the host will expect to receive error messages
from the Model 4000, but not prompts. The host expects that an SRQ will be
generated when a message is ready, but not for other bits in the serial poll
register.

DEFINE GPIB ADDR = 4 'Set GPIB address to 4.

DEFINE GPIB ERR_MSG ON 'Enable Model 4000 error messages.

DEFINE GPIB PROMPTS OFF 'Disable prompts from Model 4000.

DEFINE GPIB SRQ IF SPAS Y N N N N N 'Generate SRQ when message ready.

All these statements are needed to set up the Model 4000 IEEE-488 Interface.
The Model 4000 automatically detects the presence of the IEEE-488 card, and
enables the interface. The serial ports (Port 1 and Port 2) may be used along
with the IEEE-488 Interface (Port 3). They are not mutually exclusive.

Step ➀ Be sure the host can address the Model 4000. The Model 4000 must be
powered up and execute the statements listed above. If the host software
addresses the Model 4000 properly, and the IEEE-488 cable is securely
fastened, the host will be able to read the serial poll register on the Model
4000. If no other IEEE-488 statements are executed, the value of the serial
poll register will be 128 in decimal (or 80 in hex). If the host times out while
attempting to read the serial poll register, the addressing could be wrong or
the cable not connected.

Step ➁ Be sure the host can communicate with the Model 4000. Most host computers
will have statements or functions that perform basic IEEE-488 functions.
These include:

➀ Issue device clear
➁ Conduct serial poll
➂ Enable interrupt from SRQ
➃ Read string from addressed device (e.g., the Model 4000)
➄ Write string to addressed device (e.g., the Model 4000)

The sample section of Model 4000 program below could be found inside a
typical Model 4000 application. Suppose the programmer wants Bit 0 in the
serial poll register to represent a process ready state for their application.
The IN statement serves to generate a message in the form of a prompt, and
causes the Model 4000 program to wait for a response from the host. The
main loop of the host program will act on this bit 0 when it is detected. Using
the statements in Step 1, the Model 4000 has been set up to generate an SRQ
when it has a message. The host program should be structured as follows:

➀ Issue Device Clear
➁ Enable interrupt from SRQ
➂ Write the string START with carriage return, line feed
➃ Do whatever else it does until interrupted by SRQ.

The Model 4000 statements STARTed by the host include:

OUT SPOL XXXX1 'Set bit 0 in serial poll register.

IN Q3 = PORT3 ^ READY ^ 'This will generate an SRQ and the
'Model 4000 will wait for host data.

The interrupt service routine of the host should include the following
functions:

➀ Conduct serial poll to identify requesting device

➁ If it is device 4 (in this example) is bit 0 high?

➂ If yes, Write a data string (e.g. "25000")

These examples illustrate the basic use of the IEEE-488 interface.

Use of the Serial Poll Register and SRQ
The Model 4000 takes advantage of the serial poll register as a means of
providing device handshake signals and status bits for the host computer.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 5

The lower five bits are strictly under user control, and may be programmed
to cause a service request on a low to high transition. The upper three bits
have fixed definitions, and may not be altered under direct program control.
The Model 4000 uses Bit #7 and Bit #5 as receive and transmit ready bits
respectively. Bit #6 indicates that the Model 4000 has generated a service
request (SRQ). The lower five bits do not carry any predefined meaning and
must be set and cleared with the use of the OUT SPOL statement. The OUT
SPOL statement may be placed in the body of the destination of ON and IF
statements, and allow the Model 4000 to indicate program status to a host.
The DISPLAY SPOL statement allows the current contents of the serial poll
register to be displayed on the Model 4000's display.

You can use the OUT SPOL statement to set and clear the serial poll register
bits. The DEFINE GPIB SRQ statement allows a low-to-high transition to
generate a service request. When the Model 4000 generates a service request,
bit #6 in the serial poll register becomes high. This allows a host computer
to receive a service request from any Model 4000 on the bus, and identify the
requesting Model 4000(s) by conducting a serial poll. Bit #6 goes low as soon
as the Model 4000 has received one serial poll, it is assumed that the host
services the request after the serial poll register is read.

Communication
with the 4000

The Model 4000 uses bits #7 and #5 of the serial poll register as receive and
transmit ready bits respectively. Bit #7, the most significant bit, is the
Model 4000's receive ready bit. This bit will be set whenever the Model 4000
is ready to receive at least 85 characters. The Model 4000 has a 256 character
receive buffer which must have room for 85 new characters before the receive
ready bit goes high. Host computer programs should verify that this bit is
high before sending a character string to the Model 4000.

Bit #5 is the transmit ready bit. This bit is set by the Model 4000 whenever it
has characters to send to the host computer. The transmit ready bit is
cleared when the host reads the last byte. Host computer programs may be
structured to accept characters in one of two ways. The simplest method
requires that the host program periodically monitor the serial poll register.
When the transmit ready bit is high, the host should read the Model 4000's
character string. The other method requires that the DEFINE GPIB SRQ
statement specify that SRQ should be generated whenever transmit ready is
high and the host is ready to receive another character. The host would then
service this request just as it would any other service request. If the host
services the request by reading characters from the Model 4000, but does not
read all the characters the Model 4000 has to send, then the Model 4000 will
issue another SRQ. The Model 4000 could issue more than one SRQ per string
sent, if the host reads the string slowly.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

6 Model 4000 Options User Guide

Just as with RS-232C communications, the Model 4000 analyzes the data in
its receive buffer as soon as it receives the carriage return character. It will
not automatically assume the end of a line if a character is received from the
host with the EOI line set. When the Model 4000 sends characters, there may
not be a unique character at the end of a line, but the EOI line will always be
set with the last character of each individual string the Model 4000 sends.
For this reason, the host computer should be set up to terminate reads on
EOI. The host may read one character at a time, checking the transmit ready
bit of the serial poll before each read. It is very important that the host
computer attempt to communicate with the Model 4000 when the bits in the
serial poll register indicate it is ready. If the Model 4000 is made a talker
when it is not ready to transmit, or if it is made a listener when it is not
ready to receive, it will lock out the IEEE-488 bus until it is ready.
Statements that send and receive characters are the OUT PORT3 and IN
PORT3 statements. It is recommended that more than one character be sent
to a host which is using a National Instruments GPIB card. When an OUT
PORT is used with a ; operator, the normal carriage return and prompt are
suppressed. This has been known to cause difficulty when the output text was
a single character to a National Instruments GPIB card.

Device Clear,
Interface Clear

The Model 4000 will respond to a device clear from the host controller by
stopping any motion and will empty it's IEEE-488 input and output buffers.
Device Clear stops all Model 4000 processes (motion will stop, program
printing will stop, etc.) programs are not lost, and program statements will
continue executing from the point where the Device Clear was encountered.
Device Clear clears the serial poll register with the exception of bit 7 (the
receive ready bit becomes true). The Model 4000 determines device clear is
active when the DCAS bit in the TMS9914 is set. The Model 4000's response
to Interface Clear is to return the IEEE-488 interface to an idle state.
Interface Clear has no effect on Model 4000 internal operation. Other IEEE-
488 commands that have no affect on the Model 4000 include:

❏ GET (Group execute trigger) ❏ PPC (Parallel poll)
❏ GTL (Go to local) ❏ REN (Remote enable)
❏ LLO (Local lockout)

IEEE-488 Interface Pin-Out
This 25-pin, double row, leaf connector complies with the IEEE-488
specifications and connects to an IEEE-488 bus device. The following table
lists the pin assignment for this connector.

Pin # Signal Pin # Signal
1 DI01 14 DI05
2 DI02 15 DI06
3 DI03 16 DI07
4 DI04 17 DI08
5 EO1 18 REN
6 DAV 19 SIGNAL GROUND (DC COMMON)
7 NRFD 20 SIGNAL GROUND (DC COMMON)
8 NDAC 21 SIGNAL GROUND (DC COMMON)
9 IFC 22 SIGNAL GROUND (DC COMMON)
10 SRQ 23 SIGNAL GROUND (DC COMMON)
11 ATN 24 SIGNAL GROUND (DC COMMON)
13 SHIELD (CASE GROUND)

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 7

IEEE-488 Statements
The following Model 4000 statements are designed to be used with the IEEE-
488 option.

DEFINE GPIB
SRQ IF SPAS

Name DEFINE GPIB SRQ IF SPAS
Descriptor Define a SRQ Generation
Type Set-Up
Default DEFINE GPIB SRQ IF SPAS * * * * * *
Syntax DEFINE GPIB SRQ IF SPAS Y N N N N N

Options TAB Y N NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The DEFINE GPIB SRQ IF SPAS statement specifies which bits in the
serial poll register will activate the service request signal (SRQ). The six
entries correspond to the six least significant bits of the serial poll response
register. The left-most entry is the most significant of the 6 bits: bit #5. The
right-most entry is the least significant of the 6 bits: bit #Ø. When any of
these six bits become active (1) and this statement has a Y for that entry, the
SRQ bit (bit #6) is set at the same time that specified bit is set.

Bits #7, #6, and #5 of the serial poll register have special meanings. Bit #7 is
active when the Model 4000 is ready to receive characters (a maximum of 85,
after which the bit must be checked again). Bit #6 is the SRQ bit. It represents
the current state of the service request signal. Bit #6 is only activated when
the GPIB SRQ IF SPAS statement has a Y in one or more of the bit
positions (Ø - 5) and the corresponding bit becomes active. Bit #5 is active
when the Model 4000 has a string message to transmit.

The data byte below is a common value for the serial poll register.

1 0 0 0 0 0 0 0 = 80 Hex

bit Ø - User definable
bit 1 - User definable
bit 2 - User definable
bit 3 - User definable
bit 4 - User definable

bit 5 - Set when ready to transmit
bit 6 - Set when service is requested

bit 7 - Set when ready to receive

See Also: OUT SPOL

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

8 Model 4000 Options User Guide

DEFINE GPIB
ADDR

Name DEFINE GPIB ADDR
Descriptor Define GPIB Address
Type Set-Up
Default DEFINE GPIB ADDR = n
Syntax DEFINE GPIB ADDR = n

Options TAB

F 1 F 2 F 3 F 4 F 5 F 6
Description

The DEFINE GPIB ADDR statement sets the address of the Model 4000 for
GPIB communication. The address may be 0 - 31 inclusive. The default
address is 1. You can control up to 32 Model 4000's with a single IEEE-488
interface.

DEFINE GPIB
ERR_MSG

Name DEFINE GPIB ERR_MSG
Descriptor Define GPIB Error Message
Type Set-Up
Default DEFINE GPIB ERR_MSG ON
Syntax DEFINE GPIB ERR_MSG ON

Options TAB ON OFF

F 1 F 2 F 3 F 4 F 5 F 6
Description

This statement turns on or off the sending of error messages when invalid
data is entered over the IEEE-488 interface. The default is to send an error
message string: Invalid data entered in line. This is followed by the
data that was invalid. The default is ERR_MSG ON.

DEFINE GPIB
PROMPTS

Name DEFINE GPIB PROMPTS
Descriptor Define Prompts On/Off
Type Set-Up
Default DEFINE GPIB PROMPTS
Syntax DEFINE GPIB PROMPTS ON

Options TAB ON OFF

F 1 F 2 F 3 F 4 F 5 F 6
Description

This statement turns ON or OFF the sending of the prompt string (>) after
receiving a string over the IEEE-488 interface. The default is ON (send the
prompt string). When the GPIB PROMPTS are on, you will receive a > as a
prompt for each remote statement send down. Prompts that you will receive
for different modes of operation are listed below:

Loading a program LOAD>
Inserting statements into an existing program INSERT>
In immediate mode IMMED>

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➀ IEEE-488 9

OUT SPOL

Name OUT SPOL
Descriptor Set Serial Poll Register Bits
Type Status
Default OUT SPOL XXXXX
Syntax OUT SPOL XØ11X

Options TAB X Q

F 1 F 2 F 3 F 4 F 5 F 6
Description

The OUT SPOL statement sets, clears, or leaves unchanged the least
significant 5 bits of the GPIB serial poll register. An X means leave the bit
unchanged, a 1 means set the bit, and a 0 means clear the bit. A variable (Q1-
Q99) may be used instead of the bit pattern.

If a variable is entered, the contents of the variable are used to create a
binary number of 5 bits of magnitude (less than 32, as in the example below).
The fractional portion and the sign of the variable is ignored (digits to the
right of the decimal). Also, the number must not exceed 31 or an execution
error will be generated.

If the DEFINE GPIB SPAS statement enables an SRQ for any of the 5 least
significant bits, the SRQ bit is also set when the corresponding serial poll
register is set. An OUT PORT3 statement will generate an SRQ if the
DEFINE GPIB SPAS statement's bit 5 is set.

The data byte below is a common value for the serial poll register.

1 0 0 0 0 0 0 0 = 80 Hex

bit Ø - User definable
bit 1 - User definable
bit 2 - User definable
bit 3 - User definable
bit 4 - User definable

bit 5 - Set when ready to transmit
bit 6 - Set when service is requested

bit 7 - Set when ready to receive

Statement Description

DEFINE GPIB SPAS Y N Y N N N 'Set SRQ when bit 3 or transmit ready.

MATH Q1 = 8

OUT SPOL Q1 'Same as OUT SPOL 01000. SRQ is generated.
'Serial poll register = 11101000 = ØE8H.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 11

C H A P T E R ➁
Contouring

Product Description
The Model 4000 allows the user to define and execute up to 100 two
dimensional motion paths. A path refers to the path traveled by the load in
an XY plane, and must be defined before any motion takes place along that
path. The Model 4000 assumes that the X and Y axes have the same linear
resolution (i.e., it takes the same number of steps from the Model 4000 to
make each axis go a specified distance in the XY plane). If you have either
different drive resolutions or mechanical translations, contact the Custom
Products Group at Compumotor (800-358-9068). They can provide
information on custom software that is available which allows
compensation for mechanical differences, or elliptical contouring if your
application requires. A third axis labeled the C axis may be included to keep
an angular position which changes linearly with the path direction. The
path direction is the vector addition of the travel of axes X and Y. A fourth
axis labeled the P axis may be included to keep a position which is
proportional to the distance traveled along the path described by X and Y.
The X, Y, C and P axes can be specified as any of the Model 4000's four axes.

A path consists of one or more line or arc segments whose endpoints are
specified in terms of X and Y positions. The endpoint position specifications
may be made using either absolute or incremental programming. The
segments may be lines or arcs, both of which are described in greater detail
in the following sections. Each path segment is determined by the endpoint
coordinates, and in the case of arcs, by the direction and radius or center. It
is possible to accelerate, decelerate or travel at constant velocity (feedrate)
during any type of segment, even between segments. For each segment, the
user may also specify an output pattern which can be applied to the POB
outputs at the beginning of that segment.

All paths are continuous paths (i.e., the motion will not stop between path
segments, but must stop at the end of a path). It is not possible to define a
path which stops motion and then continues that path. To achieve this
result, two individual paths must be defined and executed. A path may,
however, be stopped and resumed by using the STOP and RESUME functions,
either from the front panel or from the remote RS-232 interfaces. In this
case, motion will be decelerated and resumed along the path without loss of
position. If any of the participating axes are stopped due to any other reason,
all participating axes will stop abruptly, and motion may not be resumed.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

12 Model 4000 Options User Guide

These reason may include encountering an end of travel limit, issuing a
KILL command, or stall detection.

Installation Instructions
Use the steps below to properly install the -C option into your Model 4000 if
you have purchased the option separately. If you purchased the contouring
option factory installed, proceed to Path Definition. If you purchased the
-CFM option separately, please refer to the installation instructions in
Chapter 3, Following.

☛ These
devices are
sensitive to

static
discharge.

A grounding strap should be worn when performing this installation. If you
do not have a grounding strap available you may discharge any buildup of
static by touching a grounded piece of metal before opening the Model 4000.

Step ➀ Remove AC Power.

To open the Model 4000 enclosure you must disconnect the phone cord and
remove screws 1 through 5. Slide internal assembly off, by pushing on the
fan side and remove completely.

5

4

2

3

1

Top ViewSide ViewBottom View

Step ➁ Refer to the following tables to determine the IC's you will need to remove.
Carefully turn unit over and remove the appropriate IC's with a small
screwdriver between the IC and the socket.

Digital BoardI/O Board

Use the following table if the sticker on the outside sheet metal of your unit
has a serial number less than 91-1114XXXX.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 13

IC # Non-Contouring Contouring Memory Expansion

U2 92-010871-01 92-010871-01

U4 92-010871-11 92-010871-11

U14 32-011057-01

U15 32-011057-11

U58 32-011057-01

U59 32-011057-11

U62 92-010872-01 92-011619-01

U63 92-010872-11 92-011619-11

☛ The IC's for
slots U14, U15,

U58, and U59 are
unmarked and

interchangeable

U2 U4

U62 U63

Note notch
on chips.

DIGITAL BOARD

U58 U59

U14 U15

Use the following table if the sticker on the outside sheet metal of your unit
has a serial number greater than or equal to 91-1114XXXX.

IC # Non-Contouring Contouring Memory Expansion

U2 92-012117-01 92-012117-01

U4 92-012117-11 92-012117-11

U14 32-012051-01

U15 32-012051-11

U58 32-012051-01

U59 32-012051-11

U62 92-012118-01 92-012119-01

U63 92-012118-11 92-012119-11

Install the IC's from the upgrade kit. Verify that the IC's have been installed
with the notched position as shown and that no pins are bent.

☛ The IC's for
slots U14, U15,

U58, and U59 are
unmarked and

interchangeable

U2 U4

U62 U63

DIGITAL BOARD

U58 U59

U14 U15

or

Both RAM and PROM IC's
should be installed
so that the empty
slots are positioned
as shown.

Notched Line

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

14 Model 4000 Options User Guide

Step ➂ Reassemble the Model 4000. Slide enclosure cover over the fan end and
install the five screws. Plug in the Control Panel connector (phone cord) and
AC cord. Apply power.

Step ➃ When starting up your Model 4000 for the first time after installing your new
PROMS, an error message may appear on the front panel. You will need to
press the following keys in order to reset the Model 4000. This will clear the
error message.

ACCESS
4000
ENTER
ETC (F6)
RESET (F2)
ENTER

Path Definition
Path definition and execution may be done by using the X command language
or Model 4000 statements in a program. The Model 4000 compiles a
completed path definition and stores the compiled path data in a form which
can be used for subsequent execution. To compile means to translate a path
definition from a form that is meaningful to the programmer into one that is
optimum for the Model 4000 internal control.

Up to 100 individual paths may be defined and compiled, as long as each path
has at least one segment, and the sum of all the segments of all the paths does
not exceed 500. All 100 path definitions may be compiled and ready to
execute at any time. Paths defined using Model 4000 statements are specified
with a path name. Once a path definition is compiled, it may be executed
repeatedly without being re-compiled. Path compilation delay will be the
sum all of the individual segment compilation delays included in the path.
The following table gives the maximum compilation time for each type of
segment. Path execution delay will be 3-5 ms/per path.

Segment type Max. time (msec.)
line 25
circle 25
radius specified arc 50
center specified arc 80

If the Model 4000 application requires multiple paths whose combined
segment count exceeds 500, then an existing path compilation must be deleted
to make room for a new path compilation. Redefining an existing path name
will automatically delete the existing path compilation with that name. The
ability to delete and redefine paths allows a Model 4000 program to contain
multiple paths whose combined segment count exceeds 500, even though only
500 segments may exist in the pre-compiled form at one time. Path definitions
are common to all programs in the Model 4000's memory. The 100 path limit
means 100 paths total in all programs, not 100 paths per program. The PATH
UNCOMP statement would occur within any program which needed to make
room for a new compiled path.

In the following example, storage space is made available for the definition
of path WIDGET3 by first deleting the compiled version of paths WIDGET1
and WIDGET2. The PATH DEF statement begins the compilation of the path
WIDGET3.

Example
Statement Description

PATH UNCOMP WIDGET1 'Remove compilation of WIDGET1

PATH UNCOMP WIDGET2 'Remove compilation of WIDGET2

PATH DEF WIDGET3 4 2 1 3 'Begin definition of WIDGET3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 15

Participating Axes
Some Model 4000 contouring applications may require the execution of
more than one path in order to complete a part or finish an operation. The
application may require that different paths take place in different planes of
a three dimensional work area. In addition, some of the paths may require a
third axis to move either tangent, or proportional to the path. For these
reasons, the Model 4000 offers great flexibility in the specification of
participating axes.

A path definition must start with the Model 4000 statement or X command
which specifies the participating axes. The Model 4000 statement used to
specify the axes also contains a name for the path. The X, Y, C and P axes can
be specified as any of the four axes, and this specification must be made
before any of the path travel specifications are made. The X and Y axes must
be specified, the third axis labeled C and the fourth axis labeled P are
optional.

The C axis will maintain an angular position which changes linearly with
the direction of travel in the X-Y plane. This allows the C axis to control an
object, which must stay tangent (or normal) to the direction of travel such as
a cutting tool. The C axis must also be specified by its signed resolution. The
magnitude of the resolution is the number of C axis motor steps in 360
degrees of an arc drawn by the X and Y axes. The sign of the resolution
specifies the direction of rotation of the C axis.

The P axis will keep a position which is proportional to the distance traveled
along the X-Y path as the path is executed. This allows the P axis to act as the
Z axis in helical interpolation, or to control the motion of any object which
moves with distance and velocity proportional to the path. The P axis must
also be specified by the signed ratio of P axis travel to path travel. The
magnitude of this ratio may range from .to 1000. The sign of this ratio
specifies the direction of rotation of the P axis.

P

X

Y

A sewing machine application may require all four axes (X,Y,C, and P). The X
and Y axes would direct the sewing head along the required path. The C axis
would keep the sewing head pointed into the direction of travel. The P axis
would control the speed of the needle, so that an even stitch is made,
regardless of path speed.

The following example begins the definition of a path named DRAW1. The X
and Y axes are specified to be axes 4 and 2. The path includes the C axis to be
axis 1, with a resolution of 100,000 steps. It also includes the P axis to be axis
3, with a ratio of P axis travel to path travel specified as 2.5:1.

Example
Statement Description

PATH DEF DRAW1 4 2 1 3 'Begin definition of DRAW1.

PATH C_RES 100000 'Define C axis resolution.

PATH P_RATIO 2.5 'Define P axis ratio.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

16 Model 4000 Options User Guide

Path Acceleration, Deceleration, and Velocity
A path may be composed of many segments, each with their own motion
parameters. The path velocity, acceleration, and deceleration specifications
currently in effect at the time a segment is defined will apply to that segment.
This allows construction of a path which moves at one velocity for a section
of the path, then moves at a different velocity for another section. In most
cases, it will be desirable to maintain a constant velocity throughout the
path, but is easy to define a path in which each segment has its own velocity.
For example, this may be useful when a tool needs to slow down to round a
corner, or to allow the rate of glue application to be controlled by the path
speed. Acceleration and deceleration may also be specified separately. The
example below illustrates the specification of velocity, acceleration, and
deceleration in that order.

Example
Statement Description

VEL PATH 10000 'Path velocity 10,000 steps/sec.

ACCEL PATH 400000 'Path accel 400,000 steps/sec2.

DECEL PATH 700000 'Path decel 700,000 steps/sec2.

Encoder Mode
The Model 4000 does not recognize encoders for positioning during
contouring. If the present mode of operation is EABS or EINC, the Model
4000 will not position to encoder feedback steps. The user may need to adjust
their UNIT PATH POS statement to reflect the correct scale factor for
motor steps. However, during contouring the encoder can still be used for
stall detection.

Segment Endpoint Coordinates
The endpoint position specifications of lines and arcs may be either absolute
or incremental. The Model 4000 stores the endpoint data for all of its
compiled segments internally as incremental, relative to the start of the
segment. But in order to ease the programming task, absolute coordinates
and multiple coordinate systems may be used. When incremental
coordinates are used to specify an endpoint, the X and Y endpoint values
represent the distances from the X and Y start point of the segment being
specified. Center specifications of an arc are always incremental (i.e.,
relative to the start of that arc segment). When absolute coordinates are used
to specify an endpoint, the X and Y endpoint values represent that segment's
position in the specified coordinate system. Incremental and absolute
programming are specified with the PATH XY MINC and PATH XY MABS
statements. Incremental programming is the default at the beginning of a
path definition.

Coordinate systems allow the assignment of an arbitrary X-Y position as a
reference position for subsequent absolute endpoint specifications. The
Model 4000 allows the use of two coordinate systems for use with absolute
coordinate programming. These are called the Work coordinate system and
the Local coordinate system. These are specified with the PATH XY WORK
and PATH XY LOCAL statements. Neither coordinate system needs to
represent the set of absolute positions on the path when the path actually
executes. Those positions could be any value at the time path execution
begins.

The figure below illustrates a line with its coordinates labeled in three
coordinate systems. The first set represents the actual machine position at
the time the line is being drawn. The next set is the Work coordinate system,
used for a reference during definition of the path. The last is the Local
coordinate system.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 17

(24,10)
(21',11')
(16",7")

X" Local

X' Work

X Actual

Y Y' Y"

14 11' 7"

10 7' 3"

4"

9'

12

16"

21'
24

(12,10)

(9',7')

(4",3")

The Work and Local coordinate systems are provided to allow absolute
endpoint definition of a segment without needing to know the actual
position of that segment during execution. If no PATH XY statements
precede the first segment statement when a path definition begins, the Model
4000 will place the start of the first segment at location (0,0) in the Work
coordinate system. By using the PATH XY WORK Xpos Ypos statement,
the programmer defines subsequent absolute endpoints to refer to the Work
coordinate system, and also locates that coordinate system such that the
starting position of the next segment is at (Xpos, Ypos) of the Work
coordinate system.

The Local coordinate system is provided so that if a section of a path is to
appear in multiple locations along the path, the segments which compose
that section can be put in a subroutine and programmed in absolute
coordinates. By using the PATH XY LOCAL Xpos Ypos statement, the
programmer defines subsequent absolute endpoints to refer to the Local
coordinate system, and also locates that coordinate system such that the
starting position of the next segment is at (Xpos, Ypos) of the Local
coordinate system.

A single path definition may include both absolute and incremental
programming, and be required to switch between Work and Local
coordinates several times. At any point along a path definition, coordinates
may be switched from absolute to incremental, or from incremental to
absolute. When switching to absolute, all subsequent endpoint
specifications are assumed to be absolute with respect to the coordinate
system in effect at that time. This remains true until the reference system is
switched to incremental, or to a new absolute reference. When switching
from Work coordinates to Local coordinates, the Local X and Y start
positions of the following segment must be specified with the PATH XY
LOCAL Xpos Ypos statement. When starting a path definition with Work
coordinates, or when switching to Work coordinates, the starting position of
the next segment may either be specified or assumed. If Work X and Y start
positions are specified with the PATH XY WORK Xpos Ypos statement,
the Model 4000 returns to the Work coordinate system. The Work coordinate
system is also shifted so that the starting position of the next segment is
Xpos, Ypos. If Work X and Y start positions are not specified, by using the
PATH XY WORK * * statement, the Model 4000 returns to the Work
coordinate system, but does not shift the Work coordinate system.

Ease of programming results from the ability to switch between absolute and
incremental, and to re-define the coordinate systems between sections of a
path. This allows individual sections of path definition to have Local
coordinate systems, yet still be integrated into the complete path.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

18 Model 4000 Options User Guide

Lines
Lines are the simpler of the two types of segments which compose a path. The
placement, length, and orientation of the line is completely specified by the
endpoint of the line segment and the endpoint of the previous segment. As
described above, endpoints can be specified with absolute or incremental
coordinates. Each line may take up to 25 ms to compile. The example below
is specified with incremental coordinates and results in a line segment
10,000 steps in length, at 30 degrees in the X-Y plane.

Example
Statement Description

PATH LINE 8660 5000 'LINE segment to (8660,5000).

5000

8660
X

Y

(0,0)

(8660,5000)

Arcs
Arcs are more complex to specify than lines, because there are four possible
ways to get from the start point to the end point. The radius of an arc may
either be specified directly or implied by the center specification. In the
Model 4000, all path descriptions refer to the X-Y plane. The general
convention describing the X-Y plane, as viewed from a drawing, is as follows.
The X axis is shown as the left-right axis, with left being negative and right
being positive. The Y axis is the up-down axis with down being negative and
up being positive. Angles start at zero and increase in the CCW direction of
rotation. A line segment, or the radius of an arc is at zero degrees if the
incremental endpoint has a positive X component and zero Y component.
The angle is 90 degrees if the endpoint has a positive Y component and zero X
component.

90°

180° 0° or 360°

270°

+

-

Y Axis
Increasing
Degrees

+

-

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 19

Radius Tolerance Specifications
All arcs have an associated radius. In the Model 4000, the radius may either
be specified explicitly, or implied by an center specification. In both cases, it
is possible that the radius may not be consistent with the specified endpoint
of the arc. This could be a result of improper specification, user calculation
error, or of round-off error in the internal arithmetic of the Model 4000. For
this reason, the Model 4000 allows the specification of a radius tolerance.
The radius tolerance is specified in the same units as the radius and X and Y
data. The radius tolerance has a factory default of +/- one step, which is just
enough to overcome round-off errors. The radius tolerance may be specified
at any point along the path definition, and may be changed between one arc
and the next. Each arc definition will be compared to the most recently
specified radius tolerance. The radius tolerance should be about the same as
the dimension tolerances of the finished product. The following paragraphs
explain how the radius tolerance is used for the two types of arc
specifications, and give syntax examples for the radius tolerance
specification.

Radius Specified Arcs
Specification of an arc using the radius method requires knowledge of the
start point, the end point, and the sign and magnitude of the radius. The
Model 4000 knows the start point to be either the start of the path, or the end
of the previous segment. The end point and radius are provided by the user's
program. It is possible to specify an impossible arc by specifying an end
point which is more than twice the radius away from the start point. In this
case, the Model 4000 will automatically extend the radius to reach the
endpoint, provided that the automatic radius change does not exceed the user
specified radius tolerance. If the required radius extension exceeds the
radius tolerance, the Model 4000 will respond with an execute error, and no
arc will be generated.

R

EndpointStart

The following figure shows the four possible ways to move from the start
point to the end point using an arc of radius 1000. Arc 1 and 2 both travel in
the CW direction, arc 3 and 4 both travel in the CCW direction. Arc 1 and 3
are both less than 180 degrees. An arc of 180 degrees or less is specified with
a positive radius. Arc 2 and 4 are both greater than 180 degrees. An arc of
more than 180 degrees is specified with a negative radius. A radius specified
arc takes up to 50 milliseconds to compile. The example below shows the
radius tolerance specification and the specifications of arcs 1, 2, 3, and 4
respectively. In the Model 4000 statements, the order of the data is X, Y, R
from left to right.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

20 Model 4000 Options User Guide

ARC2

Start Point
(0,0)

ARC1

ARC3

End Point
(866,500)

ARC4

(0,1000)
r = 1000

r = 1000

Example
Statement Description

PATH RAD_TOL 5 'Five steps of radius tolerance.

PATH RCW 866 500 1000 'Arc 1, CW < 180 degrees.

PATH RCW 866 500 -1000 'Arc 2, CW > 180 degrees.

PATH RCCW 866 500 1000 'Arc 3, CCW < 180 degrees.

PATH RCCW 866 500 -1000 'Arc 4, CCW > 180 degrees.

Center Specified Arcs
Specification of an arc using the center method requires knowledge of the
start point, the end point, and the center point of the arc. The X coordinate of
the center is referred to with the letter I, and the Y coordinate of the center is
referred to with the letter J. When an arc is specified with the center, another
potential problem arises. It is possible to specify the center of an arc such
that the radius implied by the start point does not equal the radius implied
by the end point. In this case, the Model 4000 will re-locate the center so that
the resulting arc has a uniform radius and the starting and ending angles
come as close as possible to those implied by the user's center specification.
This automatic center relocation will take place only if the start point and
end point radius difference does not exceed the user specified radius
tolerance. If the radius tolerance is exceeded, an execute error will result,
and the arc will not be included in the compiled path. While automatic
center relocation will ensure a continuous path, it may result in an abrupt
change in path direction. This happens because a new location for the center
results in a new tangent direction for an arc about that center. A center
specified arc may take up to 80 milliseconds to compile.

The example below shows the specifications of arcs 1, 2, 3, and 4. In the
Model 4000 statements, the order of the data is X, Y, I, J from left to right.

Start Point
(0,0)

End Point
(150,50)

R = 50

R = 100

Center
(100,0)

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 21

Example
Statement Description

PATH OCW 866 500 866 -500 'Arc 1, CW < 180 degrees.

PATH OCW 866 500 0 1000 'Arc 2, CW > 180 degrees.

PATH OCCW 866 500 0 1000 'Arc 3, CCW < 180 degrees.

PATH OCCW 866 500 866 -500 'Arc 4, CCW > 180 degrees.

Circles
A circle is a special case of an arc whose endpoint is the same as the starting
point. Because these two points are the same, it is impossible to determine
the location of the circle's center from a radius specification. For this
reason, an arc which is a complete circle must be specified using the arc
center specification method. An arc with identical starting and ending
points specified with the radius method will be ignored. A circle may take up
to 25 milliseconds to compile.

Center
(0,500)

Start and
End Points

(0,0)

Example
Statement Description

PATH OCW 0 0 0 500 'Circle with center at (0,500).

Segment Boundary
So far, all the examples given have shown isolated line or arc segments.
Most paths will consist of many segments put together. The point at which
the segments are connected is called a segment boundary in this text. The
Model 4000 automatically ensures that the path is continuous, in that
segments are placed end to end. The path velocity may either be constant or
change from segment to segment, according to user specification. Velocity
changes use the specified acceleration and deceleration and may take place
even across segment boundaries. The programmer should ensure that
direction of travel is also continuous across segment boundaries. If the
direction change is abrupt the X and Y axes will suffer abrupt acceleration or
deceleration. The Model 4000 ensures that there will be no abrupt direction
change within a segment, but the programmer is responsible for ensuring
that the direction is continuous across segment boundaries. At low speeds,
some motor and mechanical configurations will tolerate such abrupt
changes, and the Model 4000 will accept such a program, but it is generally
good practice to design paths with smooth direction changes. This may be
done by designing a path using arcs to round corners.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

22 Model 4000 Options User Guide

Y

X

X Vel

Time

Y

X

X Vel

Time

Possible Stall

Using the C Axis
The C axis is an axis whose position changes in a manner linearly related to
the direction of travel in X and Y (i.e., the path direction). The C axis would
be used in applications that require a work piece or tool to remain tangent or
perpendicular to the path direction. Examples would be a knife always
pointing into the cut, or a welding head staying normal to the weld.

The magnitude of the C axis resolution refers to the number of steps of C axis
position change for 360 degrees of direction change in the X-Y plane. This
number may be the same as, or different from the C axis motor resolution,
allowing any gearing that is convenient for the mechanics. If the C axis load
is to be driven directly, the C axis resolution should be the same as the C axis
motor resolution. This will cause the C axis motor and load to rotate once
when a circle is drawn by the X and Y axes. If the C axis load is to be geared,
for example 5:1, the C axis resolution specifications should be five times the
C axis motor resolution. This will cause the actual motor to rotate five times
and the load to rotate once when a circle is drawn by the X and Y axes.

The number may be positive or negative, allowing greater flexibility in C
axis motor mounting orientation. If the sign is positive, the C axis will
rotate in the positive direction when CCW arcs are drawn. If the sign is
negative, the C axis will rotate in the negative direction when counter-
clockwise arcs are drawn.

The C axis is assumed to be in the proper position when path execution
begins. It will change position only as the direction of travel changes. The
program must position the C axis before the path is executed. This can be
done with the MOVE HOME statement or a MOVE to a position.

Because the C axis position changes linearly with the direction of X-Y travel,
it is important to avoid path definitions which result in an abrupt direction
change between segments. The segment boundary considerations for the C
axis are similar to those for the X and Y axes, except that abrupt direction
changes will result in abrupt C axis position changes. The X and Y axis would
only suffer large accelerations, which may or may not cause a stall. The C
axis will suffer impossibly high velocity commands, causing stall and
position loss.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 23

Using the P Axis
The P axis is an axis whose position and velocity are proportional to the
position and velocity traveled by the load along the path generated by X and
Y. It can be used as the Z axis in helical interpolation, or to control other
motion which must be proportional to the X-Y path motion. The
proportionality of the P axis is specified as a ratio, with a range of plus or
minus .to 1000. The sign of the ratio determines which direction the motor
will turn. The magnitude specifies the ratio of P axis travel to path travel,
regardless of path direction or segment type. This ratio is essentially a
position ratio, but because the ratio is maintained at every instant, it also
becomes a velocity ratio.

The P axis only responds to distance traveled along the path, and is not
affected by direction changes in the path. The only caution which must be
observed comes when a high ratio is specified. In this case, path velocity and
acceleration are amplified, which may result in stalls or impossible
velocities.

Outputs Along the Path
For each segment, the user may also specify an output pattern which is to be
applied to the POB outputs at the beginning of that segment and remain
throughout that segment. These segment defined POB output patterns are
stored as part of the compiled path definition. These outputs will change
state at some time in the range of 1.5 ms before the beginning of the segment
to 0.5 ms after the beginning of the segment. The POB outputs may not be
controlled more precisely than this, because the Model 4000 updates its
record of path position every 2 milliseconds. These are the most precise
outputs that the Model 4000 can provide. The OUT24 outputs and the POB
outputs may also be controlled via the standard OUT statements during path
execution, but with less accuracy in timing, because the desired output
patterns are not part of the compiled path definition.

The path segment defined POB outputs are provided so that plotting
applications may raise and lower the pen, laser cutters may turn the laser on
and off, glue applicators may be turned on and off, all at prescribed positions
along the path. The output specification is stated before the segment
definition which holds that output state. In the example below, POB1 is on
and the other have no change for the duration of the arc that follows.

Example
Statement Description

PATH POB 1XXX 'POB pattern for next segment.

PATH RCCW 500 500 500 'CCW quarter circle arc.

Paths Built Using Model 4000 Statements
When using the Model 4000 statements to define a given path, the statements
which specify all of the path definitions must be contained in a named block
defining that path. Each path definition block has a unique name (not a
label) which is used to distinguish one path from another. Because the path
definition is stored as part of the user's program, many different paths may
be stored, each defined with a unique name. A path definition block begins
with a PATH DEF statement which contains its name, and ends with a PATH
END statement. Each segment in a path may take up to 80 milliseconds to
compile. As a result, multi-segmented paths may take quite long to compile.
For this reason, the Model 4000 offers a statement to compile a named path
definition block, and a separate statement to execute a named path. Once a
named path is compiled, it may be executed repeatedly without delay.

A group of statements composing a path definition block may be executed by
three different methods. These are the PATH COMPILE statement, the

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

24 Model 4000 Options User Guide

PATH EXECUTE statement, and simply encountering a block as the next
group of statements. For programming clarity, it is recommended that the
PATH COMPILE statement, and the PATH EXECUTE statements are used.
These statements essentially perform subroutine calls to the path definition
block, requesting the block to be compiled or executed respectively. When
these statements are used, the path definition blocks should be placed in a
section of the program which is not part of the normal program flow. The
path definition blocks do not need LABEL statements or RETURN statements
when used in this manner.

It is also possible to simply encounter a path definition block via normal
program flow. In this case, the path name specified by the PATH DEF
statement is compared to an internal list of previously compiled path
names. If the path had never been compiled, it will first be compiled, then
executed. The statements following the path definition will then be executed.
If the path had been previously compiled, it will be executed without being re-
compiled. While this minimizes the delays associated with re-compiling a
path each time it is to be executed, it brings up two other possible problems.
One is the fact that the first execution includes a delay and that subsequent
executions do not. This constitutes non-repeatable execution delay. The
second involves the use of Q variables for path motion or position
parameters. If a path parameter is specified with a Q variable, that variable
is only read during the compile pass through the path definition block. If the
variable changes, the Model 4000 will not know to automatically re-compile
the path. The second execution of the path will be done using the old value of
the Q variable specified path parameter, not the current value. For these
reasons, it is advisable to use the PATH COMPILE and PATH EXECUTE
statements rather than simply encounter a path definition block.

Non-path statements, (i.e. statements other than path definition statements)
may be included within a path definition block. Because a path definition
block may be accessed in two ways, (i.e., PATH COMPILE and PATH
EXECUTE) the Model 4000 allows groups of non-path statements within a
block to be conditionally included. Statements to be included (acted on) only
during compile time may be preceded by the PATH ONLY IF COMPILING
statement and followed by the PATH ONLY ENDIF statement. Statements
to be included (acted on) only during execute time may be preceded by the
PATH ONLY IF EXECUTING statement and followed by the PATH ONLY
ENDIF statement. PATH statements may not be bracketed by PATH ONLY
IF and PATH ONLY ENDIF pairs. Attempting to do so will result in an
execute error. This feature is illustrated in the examples at the end the
contouring description in this chapter.

Compiling the Path
A PATH COMPILE statement will cause the Model 4000 to find the named
path definition block and compile the path described by those statements,
even if that path name had been previously compiled. The use of Q variables
as parameters in path definition statements allow the same basic path to be
re-defined with slightly different sizes and shapes. They may also be used to
conditionally include or omit sections of the path. The PATH COMPILE
performs the equivalent of a GOSUB to the named path definition block. The
Model 4000 executes the following statements in the path compiling mode
until a PATH END statement is encountered. It then does the equivalent of a
RETURN, allowing the statements following the PATH COMPILE statement
to execute.

During the path compiling pass through the named definition block, all
PATH statements are acted on in the order in which they are encountered.
All non-path statements will be executed normally except those which are
bracketed with PATH ONLY IF EXECUTING and PATH ONLY ENDIF
statements. Those bracketed statements will be ignored. The Model 4000

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 25

was designed to allow run- time determination of path parameters. There
may be cases when the Model 4000 should prompt the operator or host
computer for the value to be used for path velocity or segment endpoints.
Alternatively, these values may be read with the IN DATA or IN IN24
statements, allowing multiple calls of a single subroutine to define similar
path sections with different data values. Statements which retrieve this data
would be bracketed by the PATH ONLY IF COMPILING and PATH ONLY
ENDIF statements. This way, they would only be executed when they are
needed for path definition, but ignored during path execution.

The endpoints for path segments may not be taught using ENABLE
TCH_JOG or ENABLE TCH_JOY. Those statements affect only MOVE and
MOVI statements. It is possible to teach the Model 4000 path parameters
indirectly by using Q variables for those parameters and taking advantage of
the PATH ONLY IF COMPILING statement. For example, if Q1 and Q2
were used to specify the X and Y endpoints of a line, the operator could jog the
Model 4000 into position and read the positions into those variables. The
example below illustrates this, assuming axis 3 and 2 to be X and Y
respectively.

Example
Statement Description

PATH ONLY IF COMPILING 'Start of conditional block.

ENABLE JOG NO YES YES NO 'Enable jog on axes 2,3.

IN Q1 = POSITION OF AXIS3 MINC 'Q1 gets axis 3 motor position.

IN Q2 = POSITION OF AXIS2 MINC 'Q2 gets axis 2 motor position.

PATH ONLY ENDIF 'End of conditional block.

PATH LINE Q1 Q2 'LINE segment to (Q1,Q2).

Executing the Path
A PATH EXECUTE statement will cause the Model 4000 to find the named
path definition block and execute the path described by those statements, if
that path name has already been compiled. If the path name specified by the
PATH EXECUTE has not been compiled, the PATH EXECUTE statement will
first compile the new path, then execute it. In this case, the first time a path
is executed, it is delayed by the compilation time, but subsequent executions
will have no delay. If it is important that there be no delay in even the first
execution of a path, the PATH COMPILE statement should be executed first.

The use of Q variables as parameters in the path definition statement is a
method of allowing segment parameters to take new values each time the
path is compiled. When the path is executing, the values of the Q variables do
not affect the path parameters. If a change in a Q variable value is intended
to affect the path parameters, that path must be re-compiled. The PATH
EXECUTE statement performs the equivalent of a GOSUB to the named path
definition block. The Model 4000 executes the following statements in the
PATH EXECUTING mode until a PATH END statement is encountered. It
then does the equivalent of a RETURN, allowing the statements following the
PATH EXECUTE statement to execute.

During the PATH EXECUTING pass through the named definition block, all
PATH segment statements are executed in the order in which they were
compiled. PATH segment statements are LINE, RCW, RCCW, OCW, and OCCW.
All other PATH statement are ignored during the PATH EXECUTING pass,
because the information contained in them has already been incorporated
into the compiled path. When the Model 4000 encounters a PATH segment
statement, it waits for that segment to finish its motion before going on to
the next statement. This allows any non-path statement to be synchronized
with the end of a segment in a path.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

26 Model 4000 Options User Guide

All non-path statements will be executed normally except those which are
bracketed with PATH ONLY IF COMPILING and PATH ONLY ENDIF
statements. Those bracketed statements will be ignored. The Model 4000
was designed to allow other actions during path execution. There will
probably be cases in which outputs need to be set or other axes need to start
motion along certain sections of the execution of the path, but not during the
compilation of the path. Statements which command these actions would be
bracketed by the PATH ONLY IF EXECUTING and PATH ONLY ENDIF
statements. This way, they would only be executed during path execution, but
ignored when the path is being compiled.

Synchronizing Non-Path Statements
As explained earlier, the PATH ONLY IF statements were intended to
increase the flexibility of the use of non-path statements within a path.
During compilation, non-path statements may be used to prompt for
operator or computer input, or retrieve path parameters from DATA
statements. These statements would be placed before the PATH statements
affected by the retrieved data. During path execution, non-path statements
may be used to set outputs, send messages, read inputs used for path related
data collection, or initiate moves on other axes which must be coordinated
with the path motion. These statements would be placed after the path
segment statement whose endpoint specifies the desired path position for
statement's action. This means that if non-path actions are required at
certain path positions, the path segments must be designed so that the
endpoints of segments occur at those positions.

The Model 4000 waits for the travel specified by a path segment to be finished
before it executes the statement following that path segment. Under the best
circumstances, the non-path statements will be executed within 2
milliseconds of the end of the previous path segment. Just as with the PATH
POB statement, the precision is limited by the fact that the path position
record is updated every 2 milliseconds. The precision of the synchronization
of path and non-path statements is also dependent on the amount of
background processing occurring during path execution. Background
processing refers to display updates, polling for ON conditions, and servicing
the communication interfaces. Use of the display takes the most time, and
the precision degrades proportionally with the number of items being
continuously displayed and the number of ON conditions enabled. It is
possible for a non-path statement execution to be delayed by 10 to 20
milliseconds under these conditions.

Possible Programming Errors
The flexibility created by allowing separate Compiling and Executing passes
through the path definition block brings with it the possibility for
programming errors. The Model 4000 expects that the path segment
statements encountered and waited on during the PATH EXECUTE pass will
be exactly the same as those compiled during the PATH COMPILE pass. It is
possible, unfortunately, to create a situation in which the segment
statements during these two passes do not match. This could occur if
conditional branching is used, (i.e. IF ... GOTO) or if enabled ON
conditions cause either Compiling or Executing to miss part of the path. If
conditional branching is used, great care must be taken to ensure that the
conditions which would determine a branch are the same during PATH
COMPILE as they are during PATH EXECUTE. ON condition statements also
cause unexpected branches. Although it may be very useful to allow these
interruptions, care should be taken that they do not result in an unexpected
change in the way segments are encountered.

There is a significant exception to this general warning. It may be desirable
to allow ON FAULT or ON HLIMIT to result in a MOVE KILL statement and

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 27

not return to the path. In this case, the motion of all participating axes will
be stopped, and path execution will be terminated.

If part of the path compilation pass was missed but none of the path
execution pass is missed, the resulting path will not execute as intended.
Non-path statements will execute after waiting on path segments actually
compiled, so non-path actions will be out of synchronization with path
sections. At the end of the path, the Model 4000 will be waiting for one or
more segments than were actually compiled, so the program will become
stuck waiting for those segments. If part of the path execution pass is missed
but none of the path compilation pass is missed, a similar error in
synchronization will result. The Model 4000 will believe it has finished the
path execution before the last segment actually finishes moving, and will
proceed with the statements following the path.

Another possibility for problems can occur if a non-path statement which is
executed during PATH EXECUTING requires the Model 4000 to WAIT. Any
WAIT statement or any MOVE (not MOVI) statement could result in this. If the
resulting WAIT requires more time than the currently executing path
segment, statements intended to execute immediately following that path
segment will execute late. This is not necessarily an error, but if the
synchronization of path and non-path statements is important, this
situation should be avoided. In the example below, the programmer intends
for the MOVE on axis 3 and the LINE to begin together, and for the OUT24
statement to be executed immediately after the LINE is finished. This will
happen as intended as long as the LINE takes longer to execute than the axis
3 MOVE. If the axis 3 MOVE takes longer than the LINE, the OUT24 statement
will not execute until the MOVE is finished. If MOVI is used instead of MOVE,
the program will always execute as intended.

Example
Statement Description

PATH RCW 100 100 100 'CW 3/4 circle arc.

MOVE * * Q1 * 'Start and wait for axis 3 move.

PATH LINE 0 200 'LINE segment to (0,200).

OUT OUT24 PATT1 'Set OUT24 to PATT1.

Path Statement Summary
The following list of statements is intended to provide a summary of all the
PATH statements which may be contained in a Model 4000 program. The
statements are listed in an order which represents the way they would be
found in a Model 4000 program. Each statement provides one example of
syntax, and is accompanied by a very brief comment. Each statement is
described in greater detail later in this chapter.

Example
Statement Description

UNIT PATH POS 25000 'X, Y, and R steps/unit.

UNIT PATH VEL 25000 'Path steps/second per vel unit.

UNIT PATH ACCEL 25000 'Path steps/sec2 per accel unit.

VEL PATH 5 'Path velocity in PATH VEL units.

ACCEL PATH 100 'Path accel in PATH ACCEL units.

DECEL PATH 200 'Path decel in PATH DECEL units.

PATH UNCOMP CONTOUR2 'Remove compiled CONTOUR2.

PATH COMPILE CONTOUR1 'Compile CONTOUR1 (not execute).

PATH EXECUTE CONTOUR1 'Execute compiled path CONTOUR1.

PATH DEF CONTOUR1 2 1 4 3 'Start CONTOUR1 definition.

PATH C_RES 125000 'Specify C axis resolution.

PATH P_RATIO 2.5 'Specify P axis ratio.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

28 Model 4000 Options User Guide

PATH RAD_TOL .001 'Radius tolerance in PATH POS units.

PATH XY MINC 'Program in incremental coordinates.

PATH XY MABS 'Program in absolute coordinates.

PATH XY WORK 10 50 'Specify WORK coordinate system.

PATH XY LOCAL 5 3 'Specify LOCAL coordinate system.

PATH ONLY IF COMPILING 'Start of conditional block.

PATH ONLY ENDIF 'End of conditional block.

PATH ONLY IF EXECUTING 'Start of conditional block.

PATH POB 0011 'POB bit pattern for next segment.

PATH LINE 4 7 'Line segment to (4,7).

PATH RCCW 9 12 5 'CCW arc to (9,12) radius 5.

PATH RCW 4 7 5 'CW arc to (4,7) radius 5.

PATH OCCW 9 12 4 12 'CCW arc to (9,12) center (4,12).

PATH OCW 4 7 4 12 'CW arc to (4,7) center (4,12).

PATH END 'End of CONTOUR1 definition.

Programming
Examples

The following figures show two simple paths which illustrate most of the
Model 4000 segment types. For both figures, axis 3 is X, and axis 2 is Y. The C
and P axes are not included. The first figure specifies the endpoints with
absolute coordinates. The default Work coordinate system with start point
of (0,0) is used, so no PATH XY WORK statement is needed. The second figure
specifies the endpoints with incremental coordinates. The state of the POB
outputs needs to be different for Handles than for Knobs. No other Model
4000 actions take place during these paths.

(10,20)

(10,10)

(20,0)

R = 10

R = 5
(20,10)

(0,0)

Example
Statement Description

PATH DEF HANDLE 3 2 NONE NONE 'Begin HANDLE path definition.

PATH XY MABS 'Use absolute coordinates.

PATH POB 1100 'POB pattern for next segments.

PATH OCCW 10 10 0 10 'CCW quarter circle.

PATH LINE 10 20 'Vertical LINE segment.

PATH RCW 20 10 -10 'CW 3/4 circle.

PATH RCCW 20 0 5 'CCW half circle.

PATH END 'End of HANDLE path definition.

(30,0)

10

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 29

Example
Statement Description

PATH DEF KNOB 3 2 NONE NONE 'Begin KNOB path definition.

PATH XY MINC 'Use incremental coordinates.

PATH POB 0011 'POB pattern for next segments.

PATH LINE 30 0 'Long LINE into circular knob.

PATH OCCW 0 0 0 10 'CCW circle for the knob.

PATH LINE 10 0 'Short LINE out of knob.

PATH END 'End of KNOB path definition.

In the above example, the two paths are separate, each with their own name.
We can create a new path by combining the segment statements of the two
original paths. In the program example below, we've re-organized the
program layout of Handle and Knob with subroutines. This allows us to use
the segment statements for a third path named Parts. The program example
below consists of three path definition blocks and two subroutines. Notice
that the paths for Handle and Knob are unchanged. Notice also that the
starting and ending directions of travel for both paths are the same. This
allows them to be connected and does not result in an abrupt change in
direction.

Example
Statement Description
PATH DEF HANDLE 3 2 NONE NONE 'Begin HANDLE path definition.
GOSUB HANDLE 'Statements describing HANDLE.
PATH END 'End of HANDLE path definition.
PATH DEF KNOB 3 2 NONE NONE 'Begin KNOB path definition.
GOSUB KNOB 'Statements describing KNOB.
PATH END 'End of KNOB path definition.
PATH DEF PARTS 3 2 NONE NONE 'Begin PARTS path definition.
LABEL PARTS 'LABEL for GOTO use.
PATH XY MABS 'Use absolute coordinates.
PATH XY WORK 20 20 'Establish WORK coordinates.
PATH LINE Q1 20 'LINE to (Q1,20).
GOSUB HANDLE 'Statements describing HANDLE.
GOSUB KNOB 'Statements describing KNOB.
PATH XY MABS 'Use absolute coordinates.
PATH XY WORK * * 'Return to WORK coordinates.
PATH LINE Q2 20 'LINE to (Q2,20).
GOSUB HANDLE 'Statements describing HANDLE.
GOSUB KNOB 'Statements describing KNOB.
PATH END 'End of PARTS path definition.
LABEL HANDLE 'LABEL for GOSUB use.
PATH XY MABS 'Use absolute coordinates.
PATH XY LOCAL 0 0 'Specify LOCAL coordinate system.
PATH POB 1100 'POB pattern for next segments.
PATH OCCW 10 10 0 10 'CCW quarter circle.
PATH LINE 10 20 'Vertical LINE segment.
PATH RCW 20 10 -10 'CW 3/4 circle.
PATH RCCW 20 0 5 'CCW half circle.
RETURN 'End of subroutine.
LABEL KNOB 'LABEL for GOSUB use.
PATH XY MINC 'Use incremental coordinates.
PATH POB 0011 'POB pattern for next segments.
PATH LINE 30 0 'Long LINE into circular knob.
PATH OCCW 0 0 0 10 'CCW circle for the knob.
PATH LINE 10 0 'Short LINE out of knob.
RETURN 'End of subroutine.

Our third path consists of two pairs of the first two. Each pair is placed at
variable locations within the Work coordinate system and the two pairs are
connected with a Line segment. The line leading into the first pair starts at
(20,20) in the Work coordinate system. The first pair starts at (Q1,20) and the
second pair starts at (Q2,20) in the Work coordinate system. Handle is

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

30 Model 4000 Options User Guide

defined using the Local coordinate system. Even though Handle is defined in
absolute coordinates and appears in two different places along the path in
Parts, the statements describing it appear only once, in a subroutine using
local coordinates.

R=10

(30,0)

R=5

(30,0)

R=5

R=10

10 10
20

Q1
Q2

20

Work Coordinate System

The path Parts is very simple now, but suppose that the path velocity needs to
be different for Handles and Knobs, and that the operator wants to specify
the velocity for each individual Handle and Knob. The program should
prompt the operator for PATH VELOCITY during compile time, but these
prompts should not appear while the path is executing. Also, axis 1 needs to
make a short move when a Knob is started, but this move should not take
place during path compilation. To be complete, some setup statements and
the PATH COMPILE and PATH EXECUTE statements are shown first.
Notice that even though all axis are specified as motor incremental, this does
not affect the absolute coordinate specification for Handles.

Example
Statement Description

MODE M_INC M_INC M_INC M_INC 'All axes are motor incremental.

UNIT PATH POS 10000 'Path position steps/unit.

UNIT PATH VEL 10000 'Path steps/sec per unit.

UNIT PATH ACCEL 10000 'Path steps/sec2 per unit.

ACCEL PATH 50 'Path accel in path accel units.

OUT LCD3,01 ^COMPILING PARTS^ 'Send message to line 3.

PATH COMPILE PARTS 'Compile the path PARTS.

OUT LCD3,01 ^MAKING PARTS ^ 'Send message to line 3.

PATH EXECUTE PARTS 'Execute path PARTS.

.

.

.

PATH DEF PARTS 3 2 NONE NONE 'Begin PARTS path definition.

LABEL PARTS 'LABEL for later GOTO use.

PATH XY MABS 'Use absolute coordinates.

PATH XY WORK 20 20 'Establish WORK coordinates.

PATH LINE Q1 20 'LINE to (Q1,20).

GOSUB ONEPART 'Statements for handle and knob.

PATH XY MABS 'Use absolute coordinates.

PATH XY WORK * * 'Return to WORK coordinates.

PATH LINE Q2 20 'LINE to (Q2,20).

GOSUB ONEPART 'Statements for handle and knob.

PATH END 'End of PARTS path definition.

.

.

.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 31

LABEL ONEPART 'LABEL for use with GOSUB.

PATH ONLY IF COMPILING 'Start of conditional block.

IN Q1 = LCD2,01 ^HANDLE VEL?^ 'Prompt for handle velocity.

VEL PATH Q1 'Set path vel to user's value.

PATH ONLY ENDIF 'End of conditional block.

GOSUB HANDLE 'Statements describing HANDLE.

PATH ONLY IF COMPILING 'Start of conditional block.

IN Q1 = LCD2,01 ^KNOB VEL? ^ 'Prompt for knob velocity.

VEL PATH Q1 'Set path vel to user's value.

PATH ONLY ENDIF 'End of conditional block.

PATH ONLY IF EXECUTING 'Start of conditional block.

MOVI 25000 * * * 'Start short move on axis 1.

PATH ONLY ENDIF 'End of conditional block.

GOSUB KNOB 'Statements describing KNOB.

RETURN 'End of subroutine.

To amplify on this example, suppose some of the Handles need a stripe of red
paint on the outside surface, and that the paint is applied with a nozzle
which is controlled by the POB output state defined at the beginning of the
handle path. The nozzle needs to be located outside the path and always
point in. This requires that axis 4 (the C axis) rotate the paint nozzle. The C
axis rotates 360 degrees in 10000 steps. Our new path definition Redparts
takes advantage of everything developed for Parts. Even though the path
definition block Redparts shares most of its programs statements with the
path definition Parts, and is identical in X and Y, the two have separate
PATH DEF statements, and are separate and unique paths. As before, the
path is compiled before it is executed. In this example, however, the C axis is
also positioned before the path is executed.

Example
Statement Description

OUT LCD3,01 ^COMP. REDPARTS^ 'Send message to line 3.

PATH COMPILE REDPARTS 'Compile the path REDPARTS.

OUT LCD3,01 ^MAKE REDPARTS ^ 'Send message to line 3.

MOVE * * * HOMECW 'Position C axis before path starts.

PATH EXECUTE REDPARTS 'Execute path REDPARTS.

.

.

.

PATH DEF REDPARTS 3 2 4 NONE 'Define REDPARTS with C axis.

PATH C_RES 10000 'C axis resolution.

GOTO PARTS 'LABEL PARTS has remainder of path.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

32 Model 4000 Options User Guide

Contouring Statements
The following statements are designed to be used with the Model 4000
Contouring option.

ACCEL PATH

Name ACCEL PATH
Descriptor Set Linear Interpolation Path Acceleration
Type Motion
Default ACCEL PATH *
Syntax ACCEL PATH 25000

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The ACCEL PATH statement specifies the acceleration used for a linear

interpolation move and the contouring option. The path acceleration is the
vector sum of the accelerations of the axis participating in the interpolation.
The ACCEL parameters for preset moves are not used for the axis in an
interpolated move. The ACCEL PATH statement uses the UNIT PATH
ACCEL value when scaling the path acceleration.

See Also: DECEL PATH, VEL PATH, UNIT PATH ACCEL

Example In the calculations below the path acceleration is 250,000. Using the
distances given in the statement example, the individual accelerations for
axes 1, 3, and 4 calculated by the Model 4000 are:

Axis 1 ACCEL = X (250000) = 27777.78
((25000)+(200000)+(100000))√

25000

Axis 3 ACCEL = X (250000) = 222222.22((25000)+(200000)+(100000))√
200000

Axis 4 ACCEL = X (250000) = 111111.11
((25000)+(200000)+(100000))√

100000

222

222

222

Axes #1, #3, and #4 will start moving, reach their peak velocity, start
decelerating, and stop at the same time. Axis #2 will not participate in the
linear interpolated move, it does a preset move of 50,000 steps.

DECEL PATH

Name DECEL PATH
Descriptor Deceleration for Interpolation Moves
Type Motion
Default DECEL PATH *
Syntax DECEL PATH Q10

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The DECEL PATH statement specifies the PATH deceleration used in an

interpolation move and the contouring option. For each linearly
interpolated move, each axis' deceleration is computed based upon each axis
distance component of that move. The DECEL PATH statement uses the
UNIT PATH ACCEL value when scaling the path deceleration.

See Also: ACCEL PATH, VEL PATH, UNIT PATH ACCEL

Example In the calculations below, the path velocity is 250,000. Using the distances
given, the individual deceleration's calculated by the Model 4000 are:

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 33

Axis 1 DECEL = X (250000) = 27777.78
((25000)+(200000)+(100000))√

25000

Axis 3 DECEL = X (250000) = 222222.22((25000)+(200000)+(100000))√

200000

Axis 4 DECEL = X (250000) = 111111.11
((25000)+(200000)+(100000))√

100000

222

222

222

Axes 1, 3, and 4 will start moving, reach their peak velocity, start
decelerating, and stop at the same time. Axis #2 will not participate in the
linear interpolated move, it does a preset move of 50,000.

See Also: LINT, MOVE, MOVI

PATH

Name PATH
Descriptor Define Path Taken
Type Set-Up
Default PATH
Syntax PATH

Options TAB
TAB
TAB
TAB

DEF
RCW
LINE
C_RES

EXECUTE
RCCW
TYPE

P_RATIO

END
OCW
ONLY
UNCOMP

COMPILE
OCCW
POB

RAD_TOL

ETC
ETC
ETC
ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH statements define and initiate circular interpolated motion.

These are also known as contouring statements. They are functional with
the Model's 4000 contouring option. The following is a summary of the
contouring statements.

PATH DEF Begin a path definition and specify the X,Y, and optional C or P axes.

PATH XY Set line and arc statements' end point coordinate system to absolute or
incremental.

PATH LINE Define end point of a line segment.

PATH RCW Define an arc segment via end point and radius, load travels CW.

PATH RCCW Define an arc segment via end point and radius, load travels CCW.

PATH OCW Define an arc segment via end point and center point, load travels CW.

PATH OCCW Define an arc segment via end point and center point, load travels CCW.

PATH POB Define a bit pattern to be sent to the four axis outputs at the beginning of
the next arc or line segment.

PATH ONLY IF EXECUTING Define place in path definition after which statements are only executed if
PATH EXECUTE is in progress.

PATH ONLY IF COMPILING Define place in path definition after which statements are only executed if
PATH COMPILE is in progress.

PATH ONLY ENDIF All statements are executed while both COMPILE and PATH EXECUTE
are in progress. End of conditional statement execution.

PATH EXECUTE Begin motion of path name specified. (If path has not previously been
compiled then it will first be compiled, then executed.)

PATH COMPILE Compile path name specified. This involves pre-calculating the line and
arc statements which causes a delay of roughly 80 ms per line or arc.

PATH UNCOMP Uncompile the path name specified. This allows other path(s) to be
compiled. Used if the 500 arc or line limitation is reached.

PATH C_RES Define the motor steps required to move the load on the C axis 1
revolution. This informs the Model 4000 of the gearing on the C axis.

PATH P_RATIO Define the ratio of P axis velocity to the path velocity. This is also the
ratio of the P axis distance traveled to the path distance traveled.

PATH RAD_TOL Define the maximum error in radius calculations allowed. This error is
measured when an arc statement is COMPILED.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

34 Model 4000 Options User Guide

PATH DEF

Name PATH DEF
Descriptor Define Path Taken
Type Set-Up
Default PATH DEF CONTOURØ x y c p
Syntax PATH DEF BIG_CIRC 1 2 3 4

Options TAB ALPHA FND_PATH

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH DEF statement begins the definition of a path for the Model

4000's contouring option. A path is defined as any combination of line, arc
(and other statements) that result in continuous motion along a path. If
motion must stop, another path must be defined and executed for motion to
continue. Up to 100 paths may exist in their compiled form at one time.
These 100 paths may contain up to 500 line and arc statements.

CONTOURØ is a default path name that can be modified using the ALPHA
option or the numeric keys. Each path name must be unique, less than 9
characters long, and have a letter for the first character. The four numbers
following the path name specify the X, Y, C, and P axes respectively. The X
and Y axes must be specified, but the C and P axes are optional.

If numbers are not specified for C or P, it signifies that the C or P axis should
not be included in that path definition. The axis specification for the entire
path is done with this statement, and may not be changed within a path
definition.

Following the PATH DEF statement there must be at least one PATH LINE
or PATH ARC statement. The path definition is completed with a PATH
END statement.

Example
Statement Description

PATH DEF CIRCLE89 1 2 'Defines path CIRCLE89 and sets axis
'1 & 2 to be the X and Y axis,
'respectively.

PATH
EXECUTE

Name PATH EXECUTE
Descriptor Execute Path Taken
Type Set-Up
Default PATH EXECUTE CONTOURØ
Syntax PATH EXECUTE CONTOUR8

Options TAB ALPHA Q FND_PATH

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH EXECUTE statement is used in the Model 4000's contouring

option to start execution of a previously compiled (defined) path. The PATH
EXECUTE statement is like a GOSUB statement in that a branch is taken to
the PATH DEF label and statements within the path are executed. When the
PATH END statement is encountered, a return is done so that execution then
continues with the statement following PATH EXECUTE.

If the path name specified has not been compiled, the path will first be
compiled and then execution will start. By compiling the program before the
PATH EXECUTE statement, the time delay associated with compiling the
program may be isolated from path execution.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 35

If any of the axes included in the specified path are not ready, an execution
error will result and the program will stop. An axis is not ready if it is
shutdown, moving in mode continuous, or in joystick mode. When path
execution begins, all included axes become busy until path execution is
finished.

Example
Statement Description

PATH EXECUTE CIRCLE89 'Create a circle with path named
'CIRCLE89. This will execute the
'path as if the path were a
'subroutine. Execution will then
'continue with line 2.

PATH EXECUTE CIRCLE89 'Create a second circle.

DONE 'Without a DONE statement we would
'hit the PATH DEF statement which
'would cause us to execute the path
'a third time.

PATH DEF CIRCLE89 1 2 'Defines path CIRCLE89 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH OCCW 0 0 0 89 'Draw a circle of radius 89 in the
'CCW direction.

PATH END 'A path must finish with a PATH END.

PATH END

Name PATH END
Descriptor End Path Taken
Type Set-Up
Default PATH END
Syntax PATH END

Options TAB

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH END statement completes the definition of a path for the Model

4000's contouring option. A path is defined as any combination of line, arc
(and other statements) that result in continuous motion along a path. If
motion must stop, then to continue motion another path must be defined and
executed. Each path must start with a PATH DEF statement, have at least
one line or arc statement, and finish with a PATH END statement.

The path definition is started with the PATH DEF statement, and remains
under definition as segments are added. The PATH END statement tells the
Model 4000 that the previous segment was the last segment, and that motion
is to stop at the end of that segment. Only one path may be under definition
at one time. If one path is currently under definition, the PATH END
statement must be issued before another path may be defined.

Example
Statement Description

PATH DEF CIRCLE89 1 2 'Defines path CIRCLE89 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH OCCW 0 0 0 89 'Draw a circle of radius 89 in the
'CCW direction.

PATH END 'A path must finish with a PATH END.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

36 Model 4000 Options User Guide

PATH
COMPILE

Name PATH COMPILE
Descriptor Compile Path Taken
Type Set-Up
Default PATH COMPILE CONTOURØ
Syntax PATH COMPILE CONTOUR3

Options TAB ALPHA FND_PATH

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH COMPILE statement is used with the Model 4000's contouring

option to do all the necessary calculations for a path before the path motion
begins. The path name specified by the statement is a unique path. The
name may have up to 8 characters and the first character must be a letter. Up
to 100 paths can be entered and all may be compiled at the same time. The
sum of all the line and arc statements contained in all the compiled paths
must not be greater than 500. The number of line and arc statements that
can exist in the 100 paths is limited only by program memory, and this
number can be greater than 500. However, only 500 line and arc statements
can be compiled at one time. The UNCOMP statement may be used to
uncompile one path so that another path can be compiled.

The PATH COMPILE function has a delay of 25 to 80 milliseconds for each
PATH line or arc statement within the path. This delay could be unwanted,
so care should be taken to place PATH COMPILE statements in the program
at places that are not time critical. These places in the program could be in
the beginning of a program or in a POWER_UP program. A path does not have
to be re-compiled unless it has been changed in some way. This allows the
PATH to be executed within the program many times without the compile
delay. A path needs to be re-compiled only if one of three situations exist.

➀ If a variable is used in a PATH statement and that variable has changed.

➁ If the current path must be uncompiled and a new path compiled because of the
500 line/arc limitation.

➂ If branching statements such as IF or ON would cause the path to execute a
different number of PATH statements during a subsequent path execution.

The path needs to be re-compiled so that the PATH COMPILE encounters the
same number of PATH statements as the PATH EXECUTE. When a different
number of PATH line or arc statements are encountered during PATH
EXECUTE than were encountered during PATH COMPILE, errors will occur.

Example
Statement Description

PATH COMPILE CIRCLE89 'Do the pre-calculations now so that the delay
'will not occur at the PATH EXECUTE.

PATH EXECUTE CIRCLE89 'Execute a circle with path named CIRCLE89. This
'will execute the path as if the path were a
'subroutine. Execution will then continue with
'line 2. Another PATH COMPILE is not needed.

PATH EXECUTE CIRCLE89 'Execute a second circle.

DONE 'If a DONE statement is not entered it would
'cause a third path to be 'executed.

PATH DEF CIRCLE89 1 2 'Defines path CIRCLE89 and sets axis 1 & 2 to be
'the X and Y axis, respectively.

PATH XY MABS 'Use absolute coordinates.

PATH OCCW 0 0 0 89 'Draw a circle of radius 89 in the 'CCW direction.

PATH END 'A path must finish with a PATH END.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 37

PATH RCW

Name PATH RCW
Descriptor Define Endpoint and Radius of CW Arc
Type Set-Up
Default PATH RCW x y r
Syntax PATH RCW Ø 5 2.5

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH RCW statement is used in the Model 4000's contouring option to

specify a CW arc segment using endpoint X-Y coordinates and radius . The
first two numbers following RCW are the endpoint X-Y positions or distances
and the last number is the radius of the arc. The values are each scaled by the
UNIT PATH POS value during PATH COMPILE. Executing the PATH RCW
statement does not initiate motion. The placement, length, radius of
curvature, and orientation of the arc are completely specified by the
endpoint and radius specifications of the RCW statement and the endpoint of
the previous segment. The direction of rotation in the X-Y plane will be CW.
Segment endpoint position specifications may be either absolute with
respect to the current coordinate system, or incremental, relative to the start
of each individual segment.

Radius specifications are signed values. A positive radius specifies an arc
which is less than 180°. A negative radius specifies an arc which is 180° or
more.

If the end point and start point of an RCW are the same, a circle will not be
created. The statement will be ignored. A more complete description of
contouring, can be found at the beginning of this chapter.

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH RCW 0 5000 2500 'Defines a half circle arc segment
'to travel CW to endpoint 0,5000 in
'the X-Y plane.

PATH END 'A path definition is completed with
'a PATH END.

PATH RCCW

Name PATH RCCW
Descriptor Define Endpoint and Radius of CCW Arc
Type Set-Up
Default PATH RCCW x y r
Syntax PATH RCCW 5 Ø 2.5

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH RCCW statement is used in the Model 4000's contouring option to

specify a CCW arc segment using endpoint X-Y coordinates, and radius. The
first two numbers following RCCW are the endpoint X-Y positions or
distances and the last number is the radius of the arc. The values are each
scaled by the UNIT PATH POS value during PATH COMPILE. Executing
the PATH RCCW statement does not initiate motion. The placement, length,

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

38 Model 4000 Options User Guide

radius of curvature, and orientation of the arc are completely specified by the
endpoint and radius specifications of the RCCW statement and the endpoint
of the previous segment. The direction of rotation in the X-Y plane will be
CCW. Segment endpoint position specifications may be either absolute with
respect to the current coordinate system, or incremental, relative to the start
of each individual segment.

Radius specifications are signed values. A positive radius specifies an arc
that is 180° or less. A negative radius specifies and arc that is 180° or more.

If the end point and start point of an RCCW are the same, a circle will not be
created. The statement will be ignored.

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH RCCW 0 5000 2500 'Defines a half circle arc segment
'to travel CCW to endpoint 0,5000 in
'the X-Y plane.

PATH END 'A path definition is completed with
'a PATH END.

PATH OCW

Name PATH OCW
Descriptor Define Endpoint and Centerpoint of CW Arc
Type Set-Up
Default PATH OCW x y i j
Syntax PATH OCW Ø 50 0 25

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH OCW statement specifies a CW arc segment using endpoint and

centerpoint X-Y coordinates. The first two numbers following OCW are the
endpoint X-Y positions or distances. The last two numbers are the center
point X-Y distances relative to the start of the arc. The values are each scaled
by the UNIT PATH POS value during PATH COMPILE. Executing the PATH
OCW statement does not initiate motion. The placement, length, radius of
curvature, and orientation of the arc are completely specified by the
endpoint and center point specifications of the OCW statement and the
endpoint of the previous segment. The direction of rotation in the X-Y plane
will be CW. Segment endpoint position specifications may be either absolute
with respect to the current coordinate system, or incremental, relative to the
start of each individual segment. Center point position specifications are
always incremental, relative to the start of the arc segment, even if a PATH
XY MABS statement has been executed.

If the end point and start point of an OCW are the same, a circle will be
created.

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH OCW 0 0 0 8000 'Defines a arc segment to travel in
'a circle of radius 8000.

PATH END 'A path definition is completed with
'a PATH END.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 39

PATH OCCW

Name PATH OCCW
Descriptor Define Endpoint and Centerpoint of CCW Arc
Type Set-Up
Default PATH OCCW x y j k
Syntax PATH OCCW

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH OCCW statement is used in the Model 4000's contouring option to

specify a CCW arc segment using endpoint and centerpoint X-Y coordinates.
The first two numbers following OCCW are the endpoint X-Y positions or
distances. The last two numbers are the center point X-Y distances relative
to the start of the arc. The values are scaled by the UNIT PATH POS value
during PATH COMPILE. Executing the PATH OCW statement does not
initiate motion. The placement, length, radius of curvature, and orientation
of the arc are completely specified by the endpoint and center point
specifications of the OCCW statement and the endpoint of the previous
segment. The direction of rotation in the X-Y plane will be CCW. Segment
endpoint position specifications may be either absolute with respect to the
current coordinate system, or incremental, relative to the start of each
individual segment. Center point position specifications are always
incremental, relative to the start of the arc segment, even if a PATH XY
MABS statement has been executed.

If the end point and start point of an OCW are the same, a circle will be
created.

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH OCCW 0 0 0 8000 'Defines an arc segment to travel in
'a circle of radius 8000.

PATH END 'A path definition is completed with
'a PATH END.

PATH LINE

Name PATH LINE
Descriptor Define Endpoint of a Line
Type Set-Up
Default PATH LINE x y
Syntax PATH LINE 5 6

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH LINE statement is used in the Model 4000's contouring option to

specify a line segment. The first number specifies the position or the
distance to travel on the X axis, and the second number specifies the position
or the distance to travel on the Y axis. The values entered are scaled by the
UNIT POS value during PATH COMPILE. The PATH LINE statement does
not initiate motion of the line. The placement, length, and orientation of the
line are completely specified by the endpoint of the line segment and the
endpoint of the previous segment. Segment endpoint position specifications
may be either absolute with respect to current coordinate system, or
incremental, relative to the start of each individual segment.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

40 Model 4000 Options User Guide

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

PATH LINE 25000 35888 'Defines a line segment to travel
'25000 in the X and 35888 in the Y.

PATH END 'A path definition is completed with
'a PATH END.

PATH XY

Name PATH XY
Descriptor Set Path Mode for Endpoint Specification
Type Set-Up
Default PATH XY *
Syntax PATH XY WORK Ø Ø

Options TAB MINC MABS WORK LOCAL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH XY statement is used in the Model 4000's contouring option to

indicate that subsequent segment endpoints are specified in either
incremental or absolute coordinates. PATH XY MABS is used to indicate
absolute position endpoints will be used in subsequent path line and arc
statements. PATH XY MINC is used to indicate incremental endpoints will
be used in subsequent path line and arc statements. Using incremental
endpoints means that each path line or arc is specified by the X and Y
distances from the start of the segment to the end of the segment. Using
absolute coordinates means that each path line or arc is specified by the X
and Y position of its endpoint in the current X-Y coordinate system.
Incremental programming can be inter-mixed with absolute programming
without loss of the absolute coordinate system(s) defined.

There are 3 levels of coordinate systems available on the Model 4000. The
over-all coordinate system is the machine coordinate system. This is the
coordinate system to which the actual motor step positions refer during
program execution. The MODE M_ABS statement enables absolute position
programming (for MOVE and MOVI) statements within the machine
coordinate system. The PDEF statement defines the machine coordinate
systems origin.

When using absolute endpoint programming in path definitions, the
machine coordinate system is not used, and may not be referenced or
changed by PATH statements. When a path definition is started, incremental
programming is the default, and a temporary coordinate system called the
Work coordinate system is created for the duration of that path definition.
To enter that work coordinate system in absolute mode, a PATH XY MABS
statement must first be executed. A PATH XY WORK Xpos Ypos
statement may then be executed to set the start position for the first line or
arc statement. The default is PATH XY WORK ØØ.

In addition to the work coordinate system a local coordinate system may be
defined. To enter a local coordinate system, execute the PATH XY LOCAL
Xpos Ypos statement.

The local coordinate system allows a path section to use local absolute
coordinates and be defined in a subroutine. This section may then be
repeated multiple times within a path definition via a subroutine call. Once
the local section is defined, it is possible to return to the work coordinate
system for subsequent segment definitions. If the work coordinate system is
being re-entered and you do not want to change the origin of the coordinate
system, then use the NULL option for the Xpos and Ypos values. This would
look like PATH XY WORK * *.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 41

The work and local coordinate systems are only used to define the endpoints
of arc and line statements. The center point of an arc is always an
incremental value from the start of the arc. This is true both for X,Y,R
specifications and for X,Y,J,K specifications of the center point.

At any point along a path definition, coordinates may be switched from
incremental to absolute, or from absolute to incremental. To change to
absolute coordinates, the PATH XY MABS statement must be executed. Then
the PATH XY WORK Xpos Ypos or PATH XY LOCAL Xpos Ypos
statements may be executed to locate and enter those coordinate systems.

The PATH XY statement does not affect the DISPLAY statements position
report for either incremental or absolute position nor does it affect the MODE
or PDEF statements parameters. Also, the PDEF and MODE statements do not
affect path endpoint or center point specifications. The MODE statement is
ignored for all axis involved in a path. All path axis are temporarily placed
into motor step mode while involved in a path.

Example #1
Statement Description

PATH XY MABS 'Enter absolute programming mode.

PATH XY WORK 0 0 'Sets a reference value of 0,0 for
'the X,Y endpoints for subsequent
'path line and arc statements. The
'center point is always an
'incremental value from the start of
'the current segment.

Example #2 This example shows how you can enter absolute mode, change to
incremental mode and change back to absolute mode, several different ways.

Statement Description
PATH DEF GOOD1 2 1 NONE NONE 'Start path definition. The default is

'incremental mode.
PATH RCW 5 0 2.5 'Endpoint is in incremental 'coordinates.
PATH XY MABS 'The default is WORK 0 0.
PATH RCW 0 0 2.5 'Endpoint is in work coordinates.
PATH XY MINC 'Now we go into incremental mode
PATH RCW 5 0 2.5 'Endpoint is in incremental 'coordinates.
PATH XY MABS 'Return to absolute endpoint specifications

'in the WORK coordinate system.
PATH XY LOCAL 0 0 'Start a new coordinate system without

'changing the previous work 'system.
PATH LINE 5 0 'Endpoint is in local coordinate 'system.
PATH OCW 15 0 5 0 'Endpoint is in local coordinate 'system.
PATH XY MINC 'Return to incremental coordinates.
PATH LINE -15 0 'Endpoint is in incremental system.
PATH OCW 10 0 5 0 'Endpoint is in incremental system.
PATH XY MABS 'Now return to the local coordinate

'system.
PATH XY WORK 0 0 'Return to work coordinates, and make

'current position the origin.
PATH OCCW 10 0 5 0 'Endpoint is in work coordinates.
PATH LINE -15 0 'Endpoint is in work coordinates.
PATH END 'Complete path definition.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

42 Model 4000 Options User Guide

Example #3 This example shows how to integrate the machine coordinate statements
with the path coordinate systems.

Statement Description

MODE MABS MABS * * 'Set axis 1 and 2 to absolute
'positioning.

PDEF 0 0 0 0 'Define the current motor positions
'to be the origin in the machine
'coordinate system.

MOVE 12 15 * * 'Start the path at absolute position
'X=12, Y=15.

PATH EXECUTE GOOD1 'Do the path motion.

MOVE 12 15 * * 'Return to where the path started.

PATH ONLY

Name PATH ONLY
Descriptor Begin or End Selective Execution of Statements
Type Set-Up
Default PATH ONLY IF *
Syntax PATH ONLY IF EXECUTING

Options TAB COMPILING EXECUTING ENDIF

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH ONLY statement is used with the Model 4000's contouring option to

allow statements within a path to be executed either during a PATH COMPILE
or during a PATH EXECUTE. This prevents the statement from being executed
both during PATH COMPILE and PATH EXECUTE. For instance, an IN
statement could be used to read in data from the LCD for use as an endpoint
during a PATH COMPILE, but the IN statement delay would not be desirable
during execution of the path. On the other hand, you may want to set an output
using the OUT OUT24 statement at the start of the PATH, but that may not
desirable when the path is being compiled. The ONLY IF EXECUTING option
causes the statements between that statement and the next PATH ONLY
ENDIF statement to be executed only when the path is executing. The ONLY
IF COMPILING option causes the statements between that statement and the
next PATH ONLY ENDIF statement to be executed only when the path is
compiling.

Example
Statement Description
PATH COMPILE BALL1 'Gosub to the PATH DEF BALL1 code

'to begin compile.
PATH EXECUTE BALL1 'Gosub to the PATH DEF BALL1 code

'to begin execute.
DONE
PATH DEF BALL1 1 2 'Begin path definition.
PATH XY MABS 'Use absolute programming.
PATH ONLY IF COMPILING 'Execute following statements only

'during PATH COMPILE.
IN Q98 = LCD1,1 ^Enter circle radius^ 'Wait for data to be entered.
PATH ONLY ENDIF 'Return to both compile & execute

'mode for lines or 'arcs.
PATH ONLY IF EXECUTING 'Execute following statements only

'during PATH EXECUTE
OUT OUT24 PATT19 'Send output pattern 19 to the 24

'outputs.
PATH ONLY ENDIF 'Return to both compile & execute

'mode for lines or arcs.
PATH OCW 0 0 0 Q98 'Define a circle of radius Q98,

'endpoint at starting point.
PATH END 'Complete PATH definition.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 43

PATH POB

Name PATH POB
Descriptor Set or Clear Outputs at Start of Path Line or Arc
Type Set-Up
Default PATH POB XXXX
Syntax PATH POB Ø1Ø1

Options TAB Q X

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH POB statement is used in the Model 4000's contouring option to

specify the output pattern which is to be applied to the 4 programmable
outputs at the beginning of the next path line or arc statement. The outputs
will remain in that state until changed by another PATH POB statement or
an OUT POB statement. The XXXX specify axis outputs 1 thru 4, respectively.
An X means don't change the state of the output. A 1 means set the
output to 5V (current not flowing). A 0 means set the output to 0 volts (current
flowing). Or, a variable can be substituted for the XXXX in which case all for
outputs are set or cleared depending on the value of the variable. Add the
following values to set the desired outputs to 5V:

 8 ⇒output 1 (pin #5 of axis I/O connector 1) is set to 5V.
 4 ⇒output 2 (pin #5 of axis I/O connector 2) is set to 5V.
 2 ⇒output 3 (pin #5 of axis I/O connector 3) is set to 5V.
+1 ⇒output 4 (pin #5 of axis I/O connector 4) is set to 5V.
15

To set all 4 outputs with a variable at the time the PATH RCW executes, use
the following:

MATH Q99 = 15

OUT POB Q99

PATH RCW 5 5 2.5

To change the state of the outputs at the end of a path, or outside of a path
definition, the OUT POB statement must be used. The advantage of using the
PATH POB statement over the OUT POB statement is that the PATH POB
statement sets the outputs within a shorter and more repeatable time. The
window is 1.5 ms before to 0.5 ms after the start of the next path line or arc
statement. The OUT POB statement sets the outputs typically from 2 to 20
ms after executing the OUT POB statement, and is not as repeatable.

Example
Statement Description

MATH Q97 = 6 'Set variable Q97 to 6.

PATH POB Q97 'Sets the outputs at the start of
'the next path segment to the
'contents of variable Q97. Axis
'Outputs 1 and 4 are set to ØV
'(current flowing) and outputs 2 and
'3 are set to 5V (current not
'flowing).

PATH XX01 'Leave axes outputs 1 and 2
'unchanged, set axis 3 to ØV, and
'set axis 4V to 5V.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

44 Model 4000 Options User Guide

PATH C_RES

Name PATH C_RES
Descriptor Set Number of Motor Steps per C Axis Rev
Type Set-Up
Default PATH C_RES *
Syntax PATH C_RES 125000

Options TAB

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH C_RES statement is used to specify the C axis resolution in the

Model 4000's contouring option. The C axis will keep an angular position
which changes linearly with the direction of travel implied by X and Y. This
allows the C axis to control an object which must stay at a constant angle to
the direction of travel.

The C axis resolution is the number of motor steps in 360 degrees of arc. C
axis resolution does not necessarily equal the number of steps per revolution
of the motor, but if the motor directly drove the rotating piece, then these
numbers would be the same. If a 2 to 1 gear ratio were connected to a motor
that has 25,000 steps per revolution, the C_RES would be 50,000.

The PATH C_RES statement should be given only once during a path
definition, since the last PATH C_RES statement issued within a path
definition will specify the C axis resolution for the entire path.

A negative value for the C axis resolution causes rotation in the negative
direction as angle in the X-Y plane gets larger. Thus, if the motor is installed
upside down or in such a way that the C axis does not track the path as
desired, then changing the sign of the C resolution should correct the
problem.

Example
Statement Description

PATH C_RES 75000 'Sets the resolution for the C axis
'to be 75000 steps/rev. This would
'be correct if a 3 to 1 gear ratio
'is used with a 25,000 step per
'revolution motor.

PATH
P_RATIO

Name PATH P_RATIO
Descriptor Set Ratio of (P Axis Velocity) (Path Velocity)
Type Set-Up
Default PATH P_RATIO *
Syntax PATH P_RATIO 3.125Ø

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH P_RATIO statement is used to specify the P axis to path travel

ratio in the Model 4000's contouring option. The P axis will travel a distance
which is proportional to the distance traveled along the X-Y path. Also, the P
axis will travel at a velocity which is proportional to the velocity traveled by
the load along the X-Y path. The P axis motion occurs at the same time that
the load is moved along the X-Y path. This proportionality constant is the
PATH P_RATIO.

This allows the P axis to act as the Z axis in helical interpolation or to
control the motion of any object which moves with distance and velocity
proportional to the path. The PATH P_RATIO statement should be given
only once during a path definition, since the last PATH P_RATIO statement
issued within a path definition will specify the P axis travel to path travel
ratio for the entire path. A negative value for the P axis ratio causes rotation

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 45

in the negative direction on the P axis as the path is traveled in the X-Y
plane.

The maximum P_RATIO is 1,000. The default P_RATIO is 1.

Example
Statement Description

PATH P_RATIO 2.5 'Set the distance and velocity to be
'traveled by the P axis as 2.5
'times that traveled by the load
'along the path.

PATH
UNCOMP

Name PATH UNCOMP
Descriptor Uncompile a Path to Make Room for Another
Type Set-Up
Default PATH UNCOMP CONTOURØ
Syntax PATH UNCOMP BIG_SHOE

Options TAB ALPHA Q FND_PATH

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH UNCOMP statement is used with the Model 4000's contouring

option to uncompile a path name specified to make room for another path.

The path name specified by the statement is a unique path. The name may
have up to 8 characters and the first character must be a letter. Up to 100
paths may be in the compiled state at the same time as long as the total sum
of line and arc statements within those 100 paths is less than 500. The
number of line and arc statements that can exist uncompiled is limited only
by program memory and this number can be greater than 500. The UNCOMP
statement can be used to uncompile one path so that another path can be
compiled.

Example
Statement Description

PATH COMPILE CONTOUR5 'Fill the 500 available path segments.

PATH EXECUTE CONTOUR5 'Execute 500 circles.

PATH UNCOMP CONTOUR5 'Make space available for another path to be
'compiled.

PATH COMPILE CONTOUR6 'Fill the 500 segments with a different paths line
'and arc statements.

PATH EXECUTE CONTOUR6 'Execute 500 different circles.

DONE 'If a DONE statement is not entered, it would
'cause a third path to be executed.

PATH DEF CONTOUR5 1 2 'Defines path CONTOUR5 and sets axis 1 and 2 to be
'the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

LOOP 500 'Do 500 circles without stopping.

PATH OCCW 0 0 0 89 'Draw a circle of radius 89 in the CCW direction.

ENDLOOP

PATH END 'A path must finish with a PATH END.

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis 1 and 2 to be
'the X and Y axes.

PATH XY MABS 'Use absolute coordinates.

LOOP 500 'Do 500 circles without stopping.

PATH OCW 0 0 0 54 'Draw a circle of radius 54 in the CW direction.

ENDLOOP

PATH END 'A path must finish with a PATH END.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

46 Model 4000 Options User Guide

PATH
RAD_TOL

Name PATH RAD_TOL
Descriptor Set Allowable Error for Radius Value
Type Set-Up
Default PATH RAD_TOL*
Syntax PATH RAD_T0L

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The PATH RAD_TOL statement is used to specify the allowable radius error

that is encountered in the Model 4000's contouring option. The radius
tolerance specified in the statement is scaled by the UNIT PATH POS value.

The radius error is encountered in one of two ways. The first way is through
use of the RCW or RCCW statements. This error is the difference between the
radius value specified in the RCW or RCCW statement and the minimum
radius implied by the starting point and endpoint. If the radius provided in
the statement is smaller than the minimum radius implied by the distance
from starting to endpoints and the error is within the radius tolerance then
just enough is added to the radius to make a half circle.

A second way to encounter a radius tolerance error is with the OCCW and the
OCW statements. This error is the difference between the radius implied by
the start point and center point and the radius implied by the endpoint and
center point. If the difference in the two radius values is within the radius
tolerance specified, then the center point is moved such that an arc can be
traveled thru the start point and endpoint. The PATH RAD_TOL statement
can be executed many times within a path definition allowing some arcs to
be exactly known and others to be approximated.

The maximum RAD_TOL is 99,999,999 after scaling with UNIT PATH POS.
The default RAD_TOL is 1.

Example
Statement Description

PATH DEF CONTOUR6 1 2 'Defines path CONTOUR6 and sets axis
'1 and 2 to be the X and Y axis,
'respectively.

PATH XY MABS 'Use absolute coordinates.

PATH RAD_TOL 5 'Set the radius tolerance to 5 motor
'steps.

PATH RCCW 0 5000 2495 'Defines a half circle arc segment
'to travel counter CCW to endpoint
'0,5000 in the X-Y plane. Note that
'the radius specified is short by 5
'steps, since this is within the
'tolerance give, the radius is
''automatically lengthened to 2500
'by the 4000.

PATH END 'A path definition is completed with
'a PATH END.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 47

UNIT PATH
POS

Name UNIT PATH POS
Descriptor Set Scale Factor for Path Position Parameters
Type Set-Up
Default UNIT PATH POS *
Syntax UNIT PATH POS

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The UNIT PATH POS statement scales the endpoint, center point and

radius parameters of the PATH line and arc statements. Fractional values
are allowed, but truncation errors may occur. Variables (Q1 - Q99 or pointer
variables QQ1 - QQ99) could also be used as the scale factor. The default
value is 1. After scaling the PATH parameter with the UNIT PATH POS
parameter, the result must not be larger than 99,999,999 or an execution
error will result.

See Also: PATH

Example
Statement Description

PATH DEF LINECIRC 1 2 'Start definition of a path with
'axes 1 and 2 being X and Y.

UNIT PATH POS 125000 'Set path position scale factor to
'125000. This would be appropriate
'to allow programming PATH lines and
'arcs in inches/sec assuming a 25000
'step/rev motor drive and a 5 turn
'per inch table for both path axes
'are installed.

UNIT PATH VEL 125000 'Set path velocity scale factor to
'125000. Subsequent VEL PATH
'parameters will be in inches per
'second (ips).

VEL PATH 4 'Define the path velocity to be 4 *
'(the scale factor) steps per
'second. Resulting in 4 ips.

UNIT PATH ACCEL 125000 'Set path acceleration scale factor
'to 125000. Subsequent ACCEL PATH
'parameters will be in ips.

ACCEL PATH 99 'Define the path acceleration to be
'99 * (the scale factor)
'steps/second squared. Resulting in
'99 ips2.

PATH LINE 3 3 'During PATH EXECUTE, move the load
'on the table 3 inches at 4 ips.

PATH XY MINC 'Define endpoint to be incremental
'from start of arc.

PATH OCCW 0 0 0 25 'During PATH EXECUTE, move the load
'in a circle of radius 25 inches.

PATH END 'Finish path definition.

Example This example shows how to use variables to change the over-all dimensions
of a contoured figure.

Statement Description

MATH Q80 = 1 'Set a scale factor to scale the
'position scale factor.

MATH Q81 = 125000 'Set the position scale factor.

MATH Q82 = Q81 * Q80 'Set the variable used in the UNIT
'PATH POS statement.

UNIT PATH POS Q82

LABEL TRYAGAIN 'Display F-KEY functions on LCD line
'4.

OUT LCD4,01

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

48 Model 4000 Options User Guide

0 ^UP DOWN START^

ON F-KEY1 GOTO SCALE_UP 'Increase Q80 scale factor so that
'all PATH position parameters are
'scaled up.

ON F-KEY2 GOTO SCALE_DN 'Decrease Q80 scale factor so that
'all PATH position parameters are
'scaled down.

ON F-KEY3 GOTO START

GOTO TRYAGAIN

LABEL START 'This section does the motion.

ON F-KEY1 DISABLE 'Disable the F-KEY ON statements so
'that the motion is 12ON F-KEY2
'DISABLE is not interrupted.

ON F-KEY3 DISABLE

PATH COMPILE CIRCLE 'Re-compile to account for any
'changes made to scale factors.

PATH DEF CIRCLE 1 2 'Start a path definition.

PATH OCCW 0 0 0 9 'Define a circle of radius 9.

PATH END

GOTO TRYAGAIN 'Go back and allow dimensions to be
'adjusted.

LABEL SCALE_UP

MATH Q80 = Q80 + .01 'Increase dimensions by 1%.

OUT LCD1,01 ^Overall scaling factor is: ^ Q80 'Display scaling factor on LCD.

GOTO TRYAGAIN 'Go back and allow dimensions to be
'adjusted.

LABEL SCALE_DN

MATH Q80 = Q80 - .01 'Decrease dimensions by 1%.

OUT LCD1,01 ^Overall scaling factor is: ^ Q80 'Display scaling factor on LCD.

GOTO TRYAGAIN 'Go back and allow dimensions to be
'adjusted.

UNIT PATH
VEL

Name UNIT PATH VEL
Descriptor Set Scale Factor for Path Velocity Parameters
Type Set-Up
Default UNIT PATH VEL *
Syntax UNIT PATH VEL

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The UNIT PATH VEL statement scales the VEL PATH statements

parameters. Fractional values are allowed, but truncation errors may occur.
Variables (Q1 - Q99 or pointer variables QQ1 - QQ99) could also be used as
the scale factor. The default value is 1. After scaling the VEL PATH
parameter with the UNIT PATH VEL parameter, the result must not be
larger than 99,999,999 or an execution error will result.

See Also: PATH

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➁ Contouring 49

UNIT PATH
ACCEL

Name UNIT PATH ACCEL
Descriptor Set Scale Factor for Path Acceleration
Type Set-Up
Default UNIT PATH ACCEL *
Syntax UNIT PATH ACCEL

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The UNIT PATH ACCEL statement scales the ACCEL PATH statements

parameters. Fractional values are allowed, but truncation errors may occur.
Variables (Q1 - Q99 or pointer variables QQ1 - QQ99) could also be used as the
scale factor. The default value is 1. After scaling the ACCEL PATH
parameter with the UNIT PATH ACCEL parameter, the result must not be
larger than 99,999,999 or an execution error will result.

See Also: PATH

Example This following example shows how to use variables to change the overall
dimensions of a contoured figure.

Statement Description
MATH Q80 = 1 'Set a scale factor to scale the

'position scale factor.
MATH Q81 = 125000 'Set the position scale factor.
MATH Q82 = Q81 * Q80 'Set the variable used in the UNIT

'POS statement.
UNIT PATH POS Q82
LABEL TRYAGAIN 'Display F-KEY functions on LCD line

'4.
OUT LCD4,01
0 ^ UP DOWN START^
ON F-KEY1 GOTO SCALE_UP 'Increase Q80 scale factor so that

'all PATH position parameters are
'scaled up.

ON F-KEY2 GOTO SCALE_DN 'Decrease Q80 scale factor so that
'all PATH position parameters are
'scaled down.

ON F-KEY3 GOTO START
GOTO TRYAGAIN
LABEL START 'This section does the motion.
ON F-KEY1 DISABLE 'Disable the F-KEY ON statements so

'that the motion is 12ON F-KEY2
'DISABLE is not interrupted.

ON F-KEY3 DISABLE
PATH COMPILE CIRCLE 'Re-compile to account for any

'changes made to scale factors.
PATH DEF CIRCLE 1 2 'Start a path definition.
PATH OCCW 0 0 0 9 'Define a circle of radius 9.
PATH END
GOTO TRYAGAIN 'Go back and allow dimensions to be

'adjusted.
LABEL SCALE_UP
MATH Q80 = Q80 + .01 'Increase dimensions by 1%.
OUT LCD1,01 ^Overall scaling factor is: ^ Q80 'Display scaling factor on LCD.Go

'back and allow dimensions to be
'adjusted.

GOTO TRYAGAIN
LABEL SCALE_DN
MATH Q80 = Q80 - .01 'Decrease dimensions by 1%.
OUT LCD1,01 ^Overall scaling factor is: ^ Q80 'Display scaling factor on LCD.
GOTO TRYAGAIN 'Go back and allow dimensions to be

'adjusted.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

50 Model 4000 Options User Guide

VEL PATH

Name VEL PATH
Descriptor Set Linear Interpolation Path Velocity
Type Motion
Default VEL PATH *
Syntax VEL PATH 25000

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The VEL PATH statement specifies the velocity used for a linear

interpolated move and for Contour or Path definitions. The path velocity is
the vector sum of the velocity of the axis participating in the interpolation.

Example In the calculations below the path velocity is 250,000. Using the distances
and VEL PATH given, the Model 4000 calculates the peak velocity for each
axis. The peak velocity is reached, if the move is long enough for each axis.
The Model 4000 makes the calculations shown below when the MOVE
statement is executed. The VEL PATH statement is scaled by the UNIT
PATH VEL parameter.

Axis 1 VEL = X (250000) = 27777.78
((25000)+(200000)+(100000))√

25000

Axis 3 VEL = X (250000) = 222222.22((25000)+(200000)+(100000))√
200000

Axis 4 VEL = X (250000) = 111111.11
((25000)+(200000)+(100000))√

100000

222

222

222

Axes 1, 3, and 4 will start moving at the same time, reach their peak velocity
at the same time, start decelerating at the same time, and stop at the same
time. Axis 2 will not participate in the linear interpolated move, it does a
preset move of 50,000.

☛ NOTE: The Path velocity for a contour is evaluated when a Path is compiled.
Changes in the VEL PATH will not effect the velocity of precompiled paths.

See Also: MOVE, MOVI

Example
Statement Description
LINT MODE YES NO YES YES 'Axis #2 is not participating in LINT move
ACCEL PATH 250000
DECEL PATH 250000
VEL PATH 250000
MOVE 25000 50000 200000 100000 'These are distances used in the above

'calculation

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➂ Multi-Tasking 51

C H A P T E R ➂

Multi-Tasking

Product Description
Multi-Tasking functionality is only present in the -CFM (or Following)
option. The TASK statement has been added to allow the 4000 to run as many
as 5 programs at the same time. Each concurrently executing program is
called a task. The first task is started using the RUN command or the START
command, just as in the standard Model 4000. Once a program is started, it
can start other tasks using the TASK statement. Any of the 5 tasks are
masters in the sense that each can start, stop and resume any of the 4 other
tasks, although it is usually convenient to think of one task as the master
when programming.

Starting Another Task
When editing on the front panel, a default name PROG1 is provided as the
program name to start or stop. If the options: START, RESUME or STOP are
not present when the enter key is pressed, START is assumed. The
FND_PROG option is provided over F6, this option allows the names of the
programs already created to be recalled. The FND_PROG option will place
previously defined program names where ever the cursor is located. After
pressing FND_PROG, the up and down arrow keys then scroll through all the
existing program names.

The TASK program-name START statement should only be executed once for
each program you want to run as a separate task. If the same program is
started a second time, and it is still running, an execution error will result.
After starting another task, statement execution alternates among all the
tasks. If a task is waiting for a MOVE to complete or an input to become
active, the other tasks continue executing.

Stopping A Task
If a TASK program-name STOP is executed, it does not stop a MOVE in
progress on that task. A TASK program-name STOP suspends the task from
executing more statements, and it stops statements that were in progress.
The TASK stop interrupts any WAIT statement, IN LCD, IN PORT, Jog or
Joystick modes in progress, just as if an ON statement had become true.
Because the TASK STOP does not stop motion, the task that executes the
TASK STOP should stop the motion after the TASK STOP is executed. A
better way to suspend a task is to use the combination of MATH Qn = 1 in a

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

52 Model 4000 Options User Guide

master task and the ON Qn = 1 in a slave task to allow the master task to
communicate to another task that it must do something. The example at the
end of this discussion uses this combination to allow the main task to tell
the other tasks to stop. An ON condition interrupt is better than the TASK
STOP when using an IN LCD or IN PORT statement because the IN
statements are terminated without error instead of just being suspended. A
MOVE STOP should be executed to stop motion if that is the desired
functionality.

Interaction Between Tasks
Many statements when executed affect the other currently running
programs. The programs must be written to prevent one task from changing
parameters of the other tasks. If the tasks are programmed to control
different axes, then using the asterisk option to prevent changing another
tasks' set-up parameters is one way to prevent problems. An example of this
is the UNIT POS 125ØØØ * * *, if the program controls only axis 1 then
the other axes' parameters should not be set. Another way to prevent
problems is to program all the tasks to use the same parameters so that they
are not changed by other tasks. An example of this is ENABLE ON NO
(Since it affects all tasks it should not be changed by different tasks.) The
first word of the statements that can affect other tasks are:

ACCEL MODE LINT VEL ENABLE
DECEL POSM SLIMIT DEFINE RS232
ENCO SEG UNIT

Keep all the various options these in mind when programming.

Since most statements execute in less than 2 milliseconds, the swapping of
programs will not appear to slow the operation of any one program.
However, there are a few statements that will slow the operation of all
programs. These are: the DISPLAY, ON, MATH SQRT, MATH division, MATH
multiplication, and MATH trigonometric statements. Also, there are
statements which slow down only the programs that use them. These are:
OUT LCD, IN LCD, OUT PORT, IN PORT, MOVE, PATH COMPILE, and
WAIT statements. ON and WAIT statements are checked after all of the tasks
execute a statement, but if no ON or WAIT statements are ever executed then
they are not checked, and thus more processing time is available for the
execution of statements.

If a statement can complete execution before the program must be swapped,
then that statement will not slow down another program which executes that
same statement. Statements which can not complete execution before the
program must be swapped include: MOVE, MOVI, PDEF, MODE, PATH, FOL,
OUT LCD, and the IN LCD statement. When more than one program execute
these statements at the same time, then the later programs are delayed until
that resource becomes available. For example, if one task executes a MOVE
on axis 1, then any other TASK's which also execute a MOVE on axis 1 will
have to wait for the first TASK's move to finish before they continue. But
those other tasks could have MOVEs on axis 2, 3, and 4 and they would not
have to wait for the move on axis 1 to finish.

Only one task may execute either an IN LCD or an IN PORT at one time, not
one of each, one of either. Subsequent tasks that issue an IN LCD or IN
PORT are suspended until the first task's IN statement is complete. Only one
TASK may execute an ENABLE JOG, ENABLE JOY or be in Teach mode at
one time. Subsequent TASKS are suspended until the first TASKs' JOG or
JOY mode is complete, i.e., Multiple tasks using JOY and JOG TEACH mode
can cause task suspension if they overlap each other.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➂ Multi-Tasking 53

Contouring
Contouring statements can be executed by one task ONLY. Two tasks can
NOT execute contouring statements at the same time, even if they are
commanding different axes.

Wait
All 5 tasks may execute any of the WAIT statement options at the same time.
For instance, all 5 tasks can each issue a WAIT FOR n SECONDS statement
with n different for each task: the tasks will wait independent of each other.

Interrupts
Only one of the 5 tasks may execute one of the approximately 98 individual
ON statements at a time. If another task executes an ON statement that was
already activated, then only the second task will be interrupted if the ON
condition becomes true. An execution error is not generated when a second
task executes the same ON as a previous task. All 5 tasks may execute ON
statements, just not the same exact type. See the ON statement for all of the
98 individual ON types. The ENABLE ON statement enables or disables ON
statement checking for all 5 tasks.

ON statements will interrupt the task that was running when they were
initiated. If that task is STOPed, and the interrupt then becomes true, the
interrupt is ignored and disabled (after each ON becomes true it must be re-
initiated to be active again). If the task is RESUMED, all ON statements
previously initiated remain enabled. Keep in mind that if an ON condition
becomes true but is not serviced because the task is STOPed, and then a
subsequent ON condition becomes true ONLY the last ON condition that
became true is serviced.

Communication Between Tasks
Variables are global to all tasks. There are no variables that are local to any
task. Variables are a good way to communicate between tasks. The DEFINE
VAR statement allows the number and type of variables to be increased or
decreased. An ON Qn (n= 1-10) statement will interrupt a task based upon a
variable having a certain value.

Each TASK can GOSUB or GOTO many different programs. A TASK starts
executing one program, but it may branch to another program. Tasks and
programs are not correlated to the axes in any particular way. Any task or
program can use the MOVE, PATH, SEG statements etc. All 5 tasks have a
GOSUB stack, and LOOP stack. The BREAK statement clears the GOSUB and
LOOP stacks for the task that executes it, it does not clear the GOSUB and
LOOP stacks of the other programs.

The DATA statements are searched for starting with the first line of the
program named in the TASK program name START statement. The
RESTORE statement resets the IN Qn = DATA pointer for the task the
issued it, not for the other tasks.

Memory Upgrade
An optional memory size of 256K bytes can be purchased. The 256K byte
memory is only available with the -CFM software option and allows much
larger program storage and variable storage. The DEFINE VAR statement
allows up to 32,764 numeric and 32,763 string variables if the 256K memory
is installed. This option can be purchased through Compumotor's Custom
Product Group.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

54 Model 4000 Options User Guide

Multi-Tasking
Example

This example waits for the user to press F-Keys 1 through 6 to cause moves on
axis 1, 2 and 3. Also, the arrow up and down keys increase and decrease the
velocity of the 4th axis. The following 5 example programs show how 5
programs can be run at the same time. The first program is the master
program which is the program name to run using the RUN command on the
front panel. When running the master program receives operator input from
the front panel and then uses variables to control the other 4 programs.

The following statements are for the first task, the program is named
TASKMAST

Q1 = 0 'Default to no moves commanded on axis 1.
Q21 = 0 'Default to no moves commanded on axis 2.
Q2 = 0 'Default to no moves commanded on axis 2.
Q22 = 0 'Default to no moves commanded on axis 2.
Q3 = 0 'Default to no moves commanded on axis 3.
Q23 = 0 'Default to no moves commanded on axis 2.
Q4 = 0 'Default to no velocity commanded on axis 4.
Q5 = 0 'Default to no velocity commanded on axis 4.
Q10 = 0 'Default to zero velocity on axis 4 slew move.
UNIT POS 25000 25000 25000 25000 'Setup scale factors for all axis
UNIT VEL 25000 25000 25000 25000
UNIT ACCEL 25000 25000 25000 25000
VEL 8 4 2 0
ACCEL 99 50 25 10
DECEL 50 75 50 50
GOSUB BLANK 'Clear the LCD.
OUT LCD1,1 ^ THIS IS A MULTI-TASKING MODEL 4000 ^ 'Menu.
OUT LCD2,1 ^ Arrow up&down control axis 4 velocity.^
OUT LCD4,1 ^ START STOP START STOP START STOP ^
'
TASK AXIS1 START 'Start a second task running program: AXIS1
TASK AXIS2 START 'Start a third task running program: AXIS2
TASK AXIS3 START 'Start a fourth task running program: AXIS3
TASK AXIS4 START 'Start a fifth task running program: AXIS4
'
LABEL BEGIN 'Main loop starts here, display the menu on LCD.
OUT LCD3,1 BLANK
OUT LCD3,1 ^PART1 ^ Q1 'Display commanded number of part 1.
OUT LCD3,12 ^^ Q21 'Display completed number of part 1.
OUT LCD3,15 ^PART2 ^ Q2 'Display commanded number of part 2.
OUT LCD3,25 ^^ Q22 'Display completed number of part 2.
OUT LCD3,29 ^PART3 ^ Q3 'Display commanded number of part 3.
OUT LCD3,38 ^^ Q23 'Display completed number of part 3.
'
ON F-KEY1 GOTO START1 'Enable F-key 1 interrupt to start axis 1 move.
ON F-KEY2 GOTO STOP1 'Enable F-key 2 interrupt to stop axis 1 move.
ON F-KEY3 GOTO START2 'Enable F-key 3 interrupt to start axis 2 move.
ON F-KEY4 GOTO STOP2 'Enable F-key 4 interrupt to stop axis 2 move.
ON F-KEY5 GOTO START3 'Enable F-key 5 interrupt to start axis 3 move.
ON F-KEY6 GOTO STOP3 'Enable F-key 6 interrupt to stop axis 3 move.
ON TIME = 1.25 GOTO BEGIN 'After 1.25 sec goto begin to update the LCD.
LABEL WAITK 'Program waits in this loop until a key is

'pressed.
IF ARROWU GOTO INC_VEL 'Check if arrow up key pressed to inc axis 4

'vel.
IF ARROWD GOTO DEC_VEL 'Check if arrow down pressed to dec axis 4 vel.
GOTO WAITK
'
LABEL START1
 MATH Q1 = Q1 + 1 'Another task running program AXIS1 uses Q1 as a
 GOTO BEGIN 'command counter of moves to make.
LABEL STOP1
 MATH Q1 = -1 'Reset command counter of AXIS1 moves.
 WAIT FOR .5
 GOTO BEGIN
LABEL START2
 MATH Q2 = Q2 + 1 'Another task running program AXIS2 uses Q2 as a
 GOTO BEGIN 'command counter of moves to make.
LABEL STOP2
 MATH Q2 = -1 'Reset command counter of AXIS2 moves.
 WAIT FOR .5
 GOTO BEGIN
LABEL START3
 MATH Q3 = Q3 + 1 'Another task running program AXIS3 uses Q3 as a
 GOTO BEGIN 'command counter of moves to make.
LABEL STOP3
 MATH Q3 = -1 'Reset command counter of AXIS3 moves.
 WAIT FOR .5
 GOTO BEGIN
'
'

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➂ Multi-Tasking 55

'
'
LABEL BLANK 'Clear all lines of the LCD.
 OUT LCD1,1 BLANK
 OUT LCD2,1 BLANK
 OUT LCD3,1 BLANK
 OUT LCD4,1 BLANK
RETURN
'
'
LABEL INC_VEL 'Another task running program AXIS4 uses Q4 to
MATH Q4 = Q4 + 1 'change the velocity of a slew move on axis 4.
GOTO BEGIN

LABEL DEC_VEL 'Another task running program AXIS4 uses Q4 to
IF Q4 <= -1 GOTO BEGIN 'If Q4 is already at -1, cannot be decreased.
MATH Q4 = Q4 - 1 'change the velocity of a slew move on axis 4.
GOTO BEGIN
'
'
' The following statements are for the second task, the program is named AXIS1
'
ON Q1 = -1 GOTO STOP1 'The main program sets Q1=1 when axis 1 should

'stop.
IF Q1 > Q21 GOTO DO_MOVE1 'Check if commanded number is greater than

'completed.
GOTO BEG 'BEG is a reserved label name, the program jumps

'to the first program statement.
LABEL STOP1
MATH Q1 = Q21 'Set commanded number of part 1 to completed

'number of part 1.
MOVE STOP * * * 'Stop move on axis 1 only.
GOTO BEG
LABEL DO_MOVE1
MATH Q21 = Q21 + 1 'Increase counter of completed part 1 parts.
MOVE 2 * * * 'Now start making part 1.
WAIT FOR .1
MOVE 3.2 * * *
WAIT FOR .1
MOVE 4.4 * * *
WAIT FOR .1
MOVE 0 * * *
GOTO BEG 'Now go back to beginning and see if there any

'more to make.
'
'
' The following statements are for the third task, the program is named AXIS2
'
ON Q2 = -1 GOTO STOP
IF Q2 > Q22 GOTO DO_MOVE
GOTO BEG
LABEL STOP
MATH Q2 = Q22 'Set commanded number of part 2 to completed

'number of part 2.
MOVE * STOP * *
GOTO BEG
LABEL DO_MOVE
MATH Q22 = Q22 + 1
MOVE * 4 * *
WAIT FOR .1
MOVE * 3.2 * *
WAIT FOR .1
MOVE * 2.4 * *
WAIT FOR .1
MOVE * 0 * *
GOTO BEG
'
'
' The following statements are for the 4th task: program named AXIS3
'
ON Q3 = -1 GOTO STOP
IF Q3 > Q23 GOTO DO_MOVE
GOTO BEG
LABEL STOP
MATH Q3 = Q23 'Set commanded number of part 3 to completed

'number of part 3.
MOVE * * STOP *
GOTO BEG
LABEL DO_MOVE
MATH Q23 = Q23 + 1
MOVE * * 5 *
WAIT FOR .1
MOVE * * 6.2 *
WAIT FOR .1
MOVE * * 5.4 *

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

56 Model 4000 Options User Guide

WAIT FOR .1
MOVE * * 0 *
GOTO BEG
'
'
' The following statements are for the 5th task: program named AXIS4
'
MATH Q5 = Q4
Q10 = 0
LABEL MAIN
ON Q4 = -1 GOTO STOP
IF Q4 > Q5 GOTO DO_INC
IF Q4 < Q5 GOTO DO_DEC
GOTO MAIN
LABEL STOP
MOVE * * * STOP
MATH Q4 = 0
GOTO BEG
LABEL DO_INC
IF Q10 >= 20 GOTO TOO_HIGH 'Don't allow any further increase beyond max.
Q5 = Q5 + 1 'Increase local velocity change counter.
MATH Q10 = Q10 + .2 'Increase axis 4 velocity by .2 rps.
IF Q10 <= 20 GOTO VEL_OK
MATH Q10 = 20 'Set to maximum possible.
LABEL VEL_OK
VEL * * * Q10
MOVI * * * SLEWCW
GOTO MAIN
LABEL DO_DEC
IF Q10 <= 0 GOTO TOO_LOW 'Don't allow any further decrease below min.
Q5 = Q5 - 1 'Decrease local velocity change counter.
MATH Q10 = Q10 - .2 'Decrease axis 4 velocity by .2 rps.
IF Q10 >= 0 GOTO VEL_OK2
MATH Q10 = 0 'Set to minimum possible.
LABEL VEL_OK2
VEL * * * Q10
MOVI * * * SLEWCW
GOTO MAIN
LABEL TOO_HIGH
LABEL TOO_LOW
MATH Q4 = Q5
GOTO MAIN

Multi-Tasking—Statements
This statement is designed to be used with the Multi-Tasking Option.

TASK
Name TASK
Descriptor Control other TASKs
Type Set-Up
Default TASK PROG1
Syntax TASK PROG1 START

Options TAB RESUME START ALPHA STOP FND_PROG

F 1 F 2 F 3 F 4 F 5 F 6
Description

The TASK statement causes another program to start running at the same
time the program that executes it runs. The program name to start running
is specified in the TASK statement. Once another program is started, it is
called another task. Five TASKs can run at the same time.

The TASK statement can also stop and resume TASKs that have been started.
To stop a TASK, place STOP after the program name. The STOP parameter
only stops the TASK specified from executing more statements, it does not
stop statements in progress. For example, if a MOVE was in progress, the
TASK program name STOP does not stop the move. Also, if a TASK
program name RESUME is then issued, it does not re-execute the move,
and it does not execute a MOVE RESUME.

When editing on the front panel, the FND_PROG option is provided over F6.
This option recalls program names and replaces PROG1 with them. The

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➂ Multi-Tasking 57

cursor should be under PROG1 before the FND_PROG option is used. The
ALPHA option is used to create new program names.

Example 1
This example shows how two tasks can command moves on different axes at
the same time.

TASK PROG2 START 'Program named prog2 starts running now as a
'second TASK

MOVE 5000 * * * 'Start a move on axis 1
OUT LCD1,1^AXIS1 DONE^ 'When finished moving display message to LCD1

Example 2
Program PROG2

MOVE *1000 * * 'Start a move on axis 2
OUT LCD2,1^AXIS2 DONE^ 'When finished moving display message to LCD2

DISPLAY ON
PORTn
TRACE

Name DISPLAY ON PORTn TRACE
Descriptor Display Program Statements
Type Set-Up
Default DISPLAY ON PORTn TRACE
Syntax DISPLAY ON PORT1 TRACE

Options TAB PORT LNUM OFF LCD

F 1 F 2 F 3 F 4 F 5 F 6
Description

To help debug programs, the DISPLAY statement has been expanded. To see
a program trace for each task on the LCD, use the DISPLAY ON LCDn
TRACE statement. Place a DISPLAY ON LCDn statement in each program
that is multi-tasking, and use a different LCDn number in each program.
The 4000 will display only that tasks statements on the display as they are
executed. Not every statement is displayed on the LCD when executed because
that would slow down program execution to about 5% of the speed of program
execution without the LCD Trace option. Instead, the 4000 samples each
tasks' program execution every 250 milliseconds and displays whatever
statement was executing at that time.

Another version of program trace mode is the DISPLAY ON PORTn
TRACE statement. Each task that executes the DISPLAY ON PORTn
statement will have its statements displayed to the port specified as they are
executed. So that each tasks' statements can be distinguished, a Tn where n=
1 - 5 is displayed just in front of each statement, that allows all the tasks to
specify a single port to which to have the strings displayed. A difference
between the LCD trace mode and the PORT trace mode is that program
execution is slowed down much more in PORT trace mode. This is because
every statement that executes is displayed to the port, not just those sampled
every 250 milliseconds. Because serial communications take about 40
milliseconds per statement, and normal statement execution take 2 to 3
milliseconds to execute, the program is slowed to about 5% of the normal
execution rate.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

58 Model 4000 Options User Guide

DEFINE ON
RET

Name DEFINE ON RET
Descriptor Configure how an interrupt returns
Type Set-Up
Default DEFINE ON RET *
Syntax DEFINE ON RET YES

Options TAB YES NO NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

Another statement added is DEFINE ON RET. This statement only affects
RETURN statements that are returning from an ON GOSUB (the RETURN
from an interrupt destination). This statement has no affect on GOSUB or IF
GOSUB statements. This statement tells a RETURN statement whether to
return to the statement interrupted or the statement following the one
interrupted. The default for this statement is NO: return to the statement
following the one interrupted. This statement remains in effect until it is
disabled with the NO option or power is cycled. All TASKS and programs are
affected by it. The statement can be executed within an interrupt service
routine. This allows the return destination from that interrupt to be
configured by the interrupt.

This statement can be used to return to re-execute a WAIT or IN statement but
probably would not be used to return to a MOVE statement (unless the MODE
was M_ABS or E_ABS so that no additional move would be commanded).

ENABLE TRIG
REV

Name ENABLE TRIG REV
Descriptor Enable inversion of active trigger level
Type Set-Up
Default ENABLE TRIG REV * * * *
Syntax ENABLE TRIG REV YES * * NO

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The ENABLE TRIG REV statement enables or disables the inversion of the

active state of the specified trigger input. The power-up default for all four
trigger inputs is active high, i.e, a transition from a low to a high TTL level is
required for activation of the functions associated with a trigger. These
functions may include registration and several functions associated with
Following. Refer to the Model 4000 Options Guide for a description of
these Following functions. If the active level of a trigger is inverted with the
ENABLE TRIG REV YES statement, a transition from a high to a low TTL
level is required for activation of the functions associated with that trigger.

See Also: SEG REG, ENABLE REG, DEFINE TRIGDB, FOL, FOLM

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➂ Multi-Tasking 59

ENABLE
REGSRV

Name ENABLE REGSRV
Descriptor Enable registration compensation of servo following error
Type Set-Up
Default ENABLE REGSRV * * * *
Syntax ENABLE REGSRV YES * * NO

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The ENABLE REGSRV statement enables or disables servo following error

compensation in registration moves. When a Model 4000 is controlling a
servo drive axis, that axis is usually in Motor Step mode. This allows the
drive to close its own position control loop. While in motion, however, there
will often be drive following error, i.e., the actual load position may not
match the commanded position. In registration applications, it is the actual
load motion which triggers the registration input. When a Motor Step mode
registration move input occurs, the Model 4000 normally issues the
additional commanded steps to the drives, as specified in the registration
move definition. If drive following error exists when the input occurs, this
error becomes static overshoot after the move finishes and the drive corrects
its following error.

This problem may be avoided by using the registration compensation feature
of the Model 4000. To use this feature, the actual position of the load (or
shaft) must be available to the Model 4000 through the encoder input of that
axis, and the ENCO MRES and ENCO ERES values must be correctly
specified. Although the encoder position is not used to control the move
profile, it is captured along with the motor step position upon receipt of the
registration input. If servo following error compensation is enabled
(ENABLE REGSRV YES), these values are used along with the motor and
encoder resolutions to calculate the servo drive following error in terms of
motor steps. The registration moves (Motor Step mode only) are adjusted by
this error to result in correct positioning of the load after the drive has
corrected its following error. The reference encoder position is captured
when motion begins, so it important that the load be stable and in position
before the next move which results in registration actually starts.

See Also: SEG REG, ENABLE REG, MODE, ENCO MRES, ENCO ERES

DEFINE
TRIGDB

Name DEFINE TRIGDB
Descriptor Define trigger debounce time
Type Set-Up
Default ENABLE TRIGDB* * * *
Syntax ENABLE TRIGDB 80 * Q1 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The DEFINE TRIGDB statement defines the the total debounce time for the

four trigger inputs. The debounce prevents noise or mechanical switch
bounce from causing a false interrupt on the trigger input. A trigger is
initially recognized on the rising edge of the input. That trigger will not be
recognized again until it has gone low again and the debounce time,
measured from the rising edge, has been exceeded. This debounce time

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

60 Model 4000 Options User Guide

affects registration and all of the FOL and FOLM statements which include
triggers as a parameter. The initial value of 80 milliseconds will usually be
long enough to debounce most mechanical and electronic switches, but this
time may be lengthened if needed. In some applications, registration marks
or master/slave synchronization marks may occur more frequently than 80
milliseconds. In these cases, the debounce time may be shortened, provided
the signal bounce is short enough. The debounce times are only accurate to
±2 milliseconds of the specified value, and the actual values used will always
be between 4 and 1000 milliseconds. The debounce times are specified for
triggers 1, 2, 3, and 4 left to right on the statement line.

See Also: FOL MOVEWT, FOL NEWCYC, FOL WAIT, FOL M_SYNC, FOL S_SYNC, FOLM
DEF

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 61

C H A P T E R ➃

Following

Product Description
The Following option with the Model 4000 provides to users the
functionality and programmability to solve applications requiring encoder
or motor step ratioing. This section of the manual is designed to highlight
the capabilities of the Following option with useful descriptions and
examples, however, if you need more details on the operation or syntax of a
particular command, please refer to the Statements section of this
document.

For all the functionality, following with the 4000 can be categorized into one
of three main application types: Ratio Following, Cam Profiling, and
Moving Positioning System (MPS). Ratio following includes simple concepts
such as an electronic gearbox, trackball, slave feed-to-length, as well as
complex changes of ratio as a function of master position. Cam profiling
allows rapid execution of predefined complex profiles. The moving
positioning system allows users to super-impose standard positioning
moves, like point-to-point or contouring, on top of ratio following.

Ratio following can include continuous, preset, and registration-like moves
in which the velocity is replaced with a ratio. The slave may follow in either
direction and change ratio while moving, with phase shifts allowed during
motion at otherwise constant ratio. Ratio changes or new moves may be
dependent on master position or based on receipt of a trigger input. Also, a
slave axis may perform following moves or normal time-based moves in the
same application because following can be enabled and disabled at will. In
ratio following, acceleration ramps between ratios may be either time-based
or dependent upon a specified master distance. Product cycles can be easily
specified with the master cycle concept.

Complex applications such as coil winding and cam profiling can be solved
with the definition of slave profiles which are precompiled. By predefining
the profiles, the requirement for real time execution of statements is
eliminated. This allows complex profiles with frequent ratio changes to be
run at very high rates.

The moving positioning system allows familiar move functions to be
performed on moving targets, but programmed as if the targets were
stationary. For example, if a conveyor belt carries trays of parts which are
to be unloaded, the 4000 can detect and track motion of the tray as it
performs pick and place operations on those parts. The stationary reference
is also maintained, so the parts can be placed on a stationary target. The
pick and place moves on the tray are programmed using positions on the tray

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

62 Model 4000 Options User Guide

and velocities with respect to the tray. In a similar fashion, complex
contours can be applied to a part on a moving production line using standard
PATH definition and execution.

Before delving into the specifics of ratio following, cam profiling, and
moving positioning system, lets take a look at how the Model 4000 follows.
First of all, what can be a master, and what can be a slave? The 4000 allows
standard incremental or absolute encoder input, as well as the commanded
step output of an axis to act as the master signal. Any axis can be slaved to
the encoder input or motor output of any other axis. Also, an axis may be
slaved to its own encoder input, as long as that axis does not need encoder
feedback for encoder positioning or stall detection. Up to 4 axes can be
following at the same time with the same or different inputs as the master
signals. For more information on assigning a master for a particular slave,
refer to the FOL MASTER statement.

Technical Overview
When a slave is following a master, the 4000 does not simply measure the
master velocity to derive slave velocity. Instead, the Model 4000 samples
master position every two milliseconds and corresponding slave setpoint
positions are calculated. This is true even if the slave is in the process of
changing ratios. A slave is not simply following velocity, but rather
position. With this algorithm, the master and slave position or phase
relationship is maintained indefinitely, without any drift over time due to
velocity measurement errors.

The 4000 also measures master velocity by measuring the change in master
position over a number of sample periods. The present master velocity and
position may be used to calculate the next commanded slave position, so the
slave has no velocity dependent phase delay. This concept is known as
Velocity Feed Forward and may be enabled or disabled as needed.

The 4000 even allows the user to change the default following algorithm if
their application requires. By default, the master's velocity is calculated
over two sample periods (4 msec), and for most applications this will prove to
work very well. Suppose, however, that the speed of the master is very slow,
or has some vibration. For a case like this, the 4000 allows the user to extend
the number of sample periods used to calculate the master velocity. This is
known as Velocity Smoothing and more information can be found in the
section titled Velocity Smoothing and the FOL SMOOTH statement.

The major points of emphasis in the design of the Model 4000's following
features are its ability to maintain the programmed phase relationships
between master and slave, and easy to use statements for the design of precise
motion profiles.

More details on the technical aspects of following with the 4000 can be found
at the end of this chapter, in the section titled Technical Considerations.

Installation Instructions
Use the steps below to properly install the -CFM option into your Model 4000
if you have purchased the option separately. If you purchased the following
option factory installed, proceed to Ratio Following.

☛ These
devices are
sensitive to

static
discharge.

A grounding strap should be worn when performing this installation. If you
do not have a grounding strap available you may discharge any buildup of
static by touching a grounded piece of metal before opening the Model 4000.

Step ➀ Remove AC Power.

To open the Model 4000 enclosure you must disconnect the phone cord and
remove screws 1 through 5. Slide internal assembly off, by pushing on the
fan side and remove completely.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 63

5

4

2

3

1

Top ViewSide ViewBottom View

Step ➁ Refer to the following tables to determine the IC's you will need to remove.
Carefully turn unit over and remove the appropriate IC's with a small
screwdriver between the IC and the socket.

Digital BoardI/O Board

Use the following table if the sticker on the outside sheet metal of your unit
has a serial number greater than or equal to 91-1114XXXXX. The four
unmarked IC's are all interchangeable and go in slots U14, U15 U58, and
U59.

IC # Following Upgrade

U2 92-013550-01

U4 92-013550-11

U62 92-013083-01

U63 92-013083-11

Install the IC's from the upgrade kit. Verify that the IC's have been installed
with the notched position as shown and that no pins are bent. If the serial
number of your unit is less than 91-1114XXXXX, the Following Option
cannot be installed. Please contact your distributor or Compumotor
Applications for more information.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

64 Model 4000 Options User Guide

U2 U4

U62 U63

DIGITAL BOARD

U58 U59

U14 U15

or

Both RAM and PROM IC's should be installed
so that the empty slots are positioned as above.

Notched Line

Step ➂ Reassemble the Model 4000. Slide enclosure cover over the fan end and
install the five screws. Plug in the Control Panel connector (phone cord) and
AC cord. Apply power.

Step ➃ When starting up your Model 4000 for the first time after installing your new
PROMS, a message may appear on the front panel saying Your battery has
failed. You will need to press the following keys in order to reset the Model
4000. This will clear the error message.

ACCESS

4000

ENTER

ETC (F6)

RESET (F2)

ENTER

Ratio Following
Ratio following is the most basic type of following. It provides the ability to
follow a master continuously or for preset distances, it may take place at one
fixed ratio or through many different ratios, and a slave can follow in the
same or opposite direction as a master.

Ratio Following Statements
In order to command a following move, there are several set-up parameters
which must be specified prior to the move taking place. First, it is useful to
define master and slave multipliers so later programming can take place in
user units. The UNIT POS statement defines the slave's scale factor, and the
UNIT MASTER statement defines the master's scale factor. Usually, these
scale factors are both programmed so that both master and slave units are
the same, but this is not required. For example, if the slave is a 25000
step/rev microstepper mounted to a 4 pitch leadscrew, a UNIT POS of
100000 allows programming in inches. Similarly, if the master is a 1000
line encoder (which gives 4,000 steps per revolution after quadrature)
mounted to a motor on a similar leadscrew, a UNIT MASTER of 16000 (4 *
4000) would allow the same programming units.

If the scale factor values are not immediately obvious, it is possible to set up
some simple tests in the 4000 to provide those numbers. To find the UNIT
MASTER parameter, use the IN POS or DISPLAY statements for the master
axis absolute position (either E_ABS or M_ABS) to read positions before and
after the master moves. Be sure UNIT POS for that axis is set to 1, so the
positions will be read in steps. Now move the master a known distance in the
desired units, for example 50 inches. The difference between master position

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 65

before and after that move divided by the move distance in the desired units
is the UNIT MASTER parameter. The UNIT POS could similarly be
determined by commanding the slave axis to move a known distance (i.e. 1
inch) in a simple motor mode move. The difference between motor position
before and after that move is the UNIT POS parameter.

The FOL MASTER statement defines the masters and the slaves. Any
incremental or absolute encoder input or any motor step output on the 4000
can be used as the master. If the master is an encoder input, the axis number
of the slave need not match the axis number of the encoder input. For
example axis #1 can use the encoder input connections for axis #3. If
mechanics dictate that the master pulses are counting in the negative
direction, the user can enter a minus (-) sign on the argument of the FOL
MASTER statement and the 4000 will reverse the counting direction.

☛ Important
Terminology

The FOL MASTER statement configures an axis as a slave, and is required
before any other FOL or FOLM statement may be executed. Execution errors
will result if this rule is violated. In the remainder of this text, the term
Following Mode will be used frequently. A slave is in following mode if FOL
MASTER and FOL ENABLE YES statements have been executed. It means
that it's motion is dependent on the master. If a FOL ENABLE NO is
executed, the slave is not in following mode, and its move will be the normal
time based on moves independent of the master. Most FOL and FOLM
statements may be executed regardless of whether the slave is in following
mode. However, a FOL MASTER must be executed before any FOL or FOLM
statement may be executed.

To allow subsequent moves to be completed as a slave to the specified master,
it is necessary to use the FOL ENABLE statement to enable following mode.
In order to enable following mode, it is necessary to have previously defined
a master.

The FOL RATIO statement establishes the maximum allowed ratio for a
preset move, or the final ratio for a continuous move. This statement defines
the relationship between master and slave velocities and positions after
acceleration to the ratio has been completed. The format of the statement is
slave value:master value with each of the values scaled by their respective
unit multipliers. If the scale factors are set up to program in inches, and a
user has an FOL RATIO of 1:1.5, the slave will travel 1 inch for every 1.5
inches the master travels.

The FOL MDIST statement defines the master distance over which a preset
slave move will take place, or the master distance over which a continuous
slave move will accelerate to commanded ratio. Acceleration for either type
of slave move can alternately be defined with the ACCEL statement.
Whichever statement has most recently been specified prior to a slave move,
ACCEL or FOL MDIST, will be the parameter used to determine the move's
acceleration and deceleration ramps. The FOL MDIST value is specified in
user units and is scaled by the UNIT MASTER parameter. Examples and
more information on this topic can be found below in the section titled Slave
vs. Master Move Profiles.

When a slave is following a master continuously, it may be necessary to
adjust the slave's position with respect to the master while maintaining an
otherwise constant ratio. The FOL SHIFT statement allows time-based
slave moves to be super-imposed upon continuous following moves. Both
continuous and preset distance moves can be executed with the FOL SHIFT
statement. The most recently defined velocity and acceleration for the slave
will determine the shift move profile. Commanded velocity will be added to
the current velocity at which the slave is performing the following move.

The current slave position (denoted SLV_P) and the net slave shift
accumulated since being at a constant ratio (denoted SHIFT) may be read

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

66 Model 4000 Options User Guide

into Q variables using the IN Qn = FOL AXISn statement, and may also
be used for subsequent decision making.

Slave vs. Master Move Profiles
Before an axis begins moving in Following mode, the program should define
how the slave will reach the commanded ratio. The acceleration of the slave
can be defined in two ways: a time-based acceleration ramp with the ACCEL
statement, or acceleration over a certain master distance with the FOL
MDIST statement. If the slave is to accelerate over a specified master distance,
a precise position relationship is maintained throughout the acceleration
ramp and the constant ratio portion of the move. If a time-based acceleration
is specified, the slave accelerates to the commanded ratio, but no position
relationship to the master is maintained until the commanded ratio is
reached.

For continuous moves, FOL MDIST specifies the exact master travel over
which the slave ratio changes. This will be required for any application which
uses multiple ratios and continuous moves for the construction of precisely
defined multi segment moves. In the profile below, the first two moves change
ratio over one master inch, and the final ramp to zero takes place over two
master inches.

1 2 3 4 5 6 7 8

3

2

1

Master Travel (inch)

R
at

io

In the example above, FOL MDIST was executed after an ACCEL statement. If
the ACCEL statement had been the most recent, its slave would use that
acceleration to ramp to the new ratio, but the corresponding master travel
would be unknown. This may be preferred in velocity based applications such
as mixing or pumping, in order to match the acceleration to the motor's torque
and load.

For preset moves, the FOL MDIST parameter has a different purpose, it is the
master distance over which the entire slave move is to take place. If a slave is
to move 20 inches over a master distance of 25 inches with a maximum ratio of
1:1, the diagram below illustrates the move profiles:

5 10 15 20 25

R
at

io

Master Profile

Slave Profile

Master Travel
(inches)

1

If the master distance specified is too large for the slave distance and FOL
RATIO commanded, the slave will never actually reach the commanded FOL
RATIO, and the move profile will look similar to that below. Here, the FOL
MDIST is 25 inches and the slave is commanded to move 10 inches:

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 67

Master Profile

Slave Profile

5 10 15 20 25

R
at

io

Master Travel
(inches)

1

If the master distance is too small for the slave distance and FOL RATIO
commanded, the 4000 will not perform the move at all. For example if the
FOL MDIST is 25, the FOL RATIO is 1:1, and the slave is commanded to
move 30 inches, the move will not even be attempted.

Summary of Ratio Following Statements
UNIT POS 'Sets the slave distance scale factor

UNIT MASTER 'Sets the master distance scale factor

FOL MASTER 'Defines masters for slave axes

FOL RATIO 'Establishes the maximum ratio for a preset move
or the 'final ratio for a continuous move

FOL MDIST 'Defines the master distance over which slave
'acceleration or moves are to take place

FOL SHIFT 'Allows adjustment of slave position on the fly
during 'continuous following moves

FOL ENABLE 'Enables or disables following mode

IN Qn=FOL AXISn SLV_P 'reads the current slave posiiton

IN Qn=FOL AXISn SHIFT 'reads the net shift since constant ratio

The examples below will help to clarify the concept of Ratio Following.

Electronic Gearbox
An electronic gearbox is a classic application for Ratio Following, and very
easy to program. Suppose we need a three output gearbox, with all three
outputs geared off the same input. Also, each gear ratio must be individually
programmed. In this example, a 1000 line encoder is mounted to the shaft of
a master giving 4000 master counts per revolution after quadrature. This
encoder is fed into the encoder input on axis #1 of the Model 4000. The
motors on axes 1, 2, and 3 have resolutions of 200, 1000, and 25000
steps/revolution.

In this example, a precise position relationship is not required between
master and slaves, so a standard acceleration will be specified. The slaves
will accelerate to a 1 to 1 ratio (in terms of revolutions), and after 10 seconds,
the gear ratio on each axis will change to 10 slave revolutions for each
master revolution.

☛ The external
master encoder
is wired to Axis

#1

In this example ENC1 is specified as the master. This means that the
external master encoder is wired to the Model 4000's axis #1 encoder input.
It does not mean that an encoder driven by Axis #1 is the master. That would
result in a circular following becoming unstable or running away.

UNIT POS 200 1000 25000 * 'Slave scale factors set to motor
'resolutions

UNIT ACCEL 200 1000 25000 * 'Acceleration scale factors to motor
'resolutions

UNIT MASTER 4000 4000 4000 * 'Master scale factor to number of pulses
'per rev

FOL MASTER ENC1 ENC1 ENC1 * 'Encoder #1 assigned as master to all
'three inputs

FOL ENABLE YES YES YES * 'Enable slaves to follow

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

68 Model 4000 Options User Guide

ACCEL 5 5 5 * 'Acceleration rate from current ratio to
'new

FOL RATIO 1:1 1:1 1:1 * 'Initial following ratio is 1 to 1 for
'each axis

MOVE SLEWCW SLEWCW SLEWCW * 'Begin slave continuous following move

WAIT FOR 10 SECONDS 'Wait to change to new ratio

FOL RATIO 10:1 10:1 10:1 * 'Assign new following ratio

MOVE SLEWCW SLEWCW SLEWCW * 'Start moving to new ratio

Trackball
Another example of Ratio Following is that of trackball. A trackball is a two
axis, two dimensional positioning device. Its operation is similar to that of
a two axis joystick, except it controls position rather than velocity. Just as a
mouse is used to position the cursor on a computer screen, a trackball could
be used to position an X-Y stage.

In this example, a two axis trackball is needed which can do fine and coarse
positioning of an X-Y stage. The fine or coarse setting is selected by the user
with a two position switch connected to trigger #1 on the 4000. A second
trigger on the 4000 is used to transfer the stage back and forth from trackball
to standard point-to-point positioning mode. Unlocking the stage from the
trackball is necessary because of other point-to-point move requirements
elsewhere in the 4000 program.

The trackball housing has two encoders mounted at 90 degrees to each other
which are driven by rubber wheels in contact with the ball. The stage is
driven by motors and leadscrews, and for one inch of trackball motion to
result in one inch of stage motion, the slave to master ratio must be 10 to 1.
This will be the ratio for coarse positioning. The fine positioning ratio will
be one tenth of that. When trigger #1 is low, coarse positioning is selected,
and when trigger #2 goes low, the stage becomes locked to the trackball. Each
change of state of the triggers calls a different subroutine in the Model 4000
program, however, the ratios can only change if the stage is locked to the
trackball. The trackball is initially unlocked and fine positioning is
selected.

FOL MASTER ENC1 ENC2 * * 'Master encoders are assigned
FOL RATIO 1 1 * * 'Initial ratio is set to fine positioning
FOL ENABLE NO NO * * 'Following is initially disabled
ON TRIG1 = 0 GOSUB COARSE 'Interrupt to allow change to coarse

'positioning
ON TRIG2 = 0 GOSUB LOCK 'Interrupt to allow trackball to be

'engaged
LABEL MAINLOOP 'Start of users main program loop
. 'Other program operation takes place
. 'Within this loop
.
GOTO MAINLOOP 'Repeat main program loop

LABEL COARSE 'Subroutine to assign coarse positioning
IF TRIG2 = 1 GOTO C_EXIT 'Allow ratio change only if stage is

'locked to trackball
FOL RATIO 10 10 * * 'Coarse positioning ratio of 10 to 1
MOVE SLEWCW SLEWCW * * 'Move to begin travel at new ratio
LABEL C_EXIT 'Label to exit subroutine if not locked
ON TRIG1 = 1 GOSUB FINE 'When switch #1 changes state, change to

'fine
RETURN 'Return to main program loop

LABEL FINE 'Subroutine to assign fine positioning
IF TRIG2 = 1 GOTO F_EXIT 'Allow ratio change only if stage is

'locked to trackball
FOL RATIO 1 1 * * 'Fine positioning ratio is 1 to 1
MOVE SLEWCW SLEWCW * * 'Move to begin travel at new ratio
LABEL F_EXIT 'Label to exit subroutine if not locked
ON TRIG1 = 0 GOSUB COARSE 'When switch #1 changes state, change to

'coarse
RETURN 'Return to main programming loop

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 69

LABEL LOCK 'Subroutine to lock stage to trackball and
'enter following mode

FOL ENABLE YES YES * * 'Enable following on axes #1 and 2
MOVE SLEWCW SLEWCW * * 'Start move at current ratio
ON TRIG2 = 1 GOSUB UNLOCK 'If switch #2 changes state, unlock the

'stage
RETURN 'Return to main programming loop

LABEL UNLOCK 'Subroutine to unlock the stage and enter
'standard positioning mode

MOVE STOP STOP * * 'Stop current move in progress
FOL ENABLE NO NO * * 'Disable following on both axes
ON TRIG2 = 0 GOSUB LOCK 'If switch #2 changes state, lock into

'following
RETURN 'Return to main programming loop

The Master Cycle Concept
The previous examples illustrated the basics of Ratio Following but did not
address applications which require precise programming synchronization
between moves and I/O control based on master positions or external
conditions. The concept of the master cycle will greatly simplify the
required synchronization.

A master cycle is simply an amount of master travel over which one or more
related slave events take place. The distance traveled by the master in a
master cycle is called the master cycle length. A master cycle position is the
master position relative to the start of the current master cycle. The value of
master cycle position increases as positive master cycle counts are received,
until it reaches the value specified for master cycle length. At that point, the
master cycle position becomes zero, and the master cycle number is
increased by one. This condition is called rollover.

The master cycle concept is analogous to minutes and hours on a clock. If the
master cycle is considered an hour, then the master cycle length is 60
minutes, the number of minutes past the hour is the master cycle position,
and current hour is the master cycle number. The master cycle position goes
from 59 to zero as the hour increases by one.

By specifying a master cycle length, periodic actions may be programmed in
a loop or with subroutines which refer to cycle positions, even though the
master may be running continuously. To accommodate applications where
the feed of the product is random, the start of the master cycle may be defined
with trigger inputs. Two types of waits are also programmable to allow
suspension of program operation or slave moves based on master positions
or external conditions.

Master Cycle Statements
The FOL MAS_CYC statement is used to define the length of the master cycle
in user units. This statement is scaled by the UNIT MASTER parameter to
get the master cycle length in steps. For periodic master cycle operation, this
parameter must be defined before those statements which wait for certain
master positions are executed. The default value of FOL MAS_CYC is zero,
which means the master cycle length is practically infinite. (It is an
extremely large number i.e., 4,294,967,246 steps.) If a value of zero is chosen
the master cycle position will keep increasing until this value is exceeded or
a new cycle is defined with the FOL NEWCYC statement described below. If a
non-zero value for FOL MAS_CYC is chosen, the internally maintained
master cycle position will keep increasing until it reaches the value of FOL
MAS_CYC. At this point, it immediately rolls over to zero and continues to
count.

Once the length of the master cycle has been specified, the FOL NEWCYC
statement is used to define the start of a master cycle. A new cycle can be
started either immediately when this statement is executed, or when a
specified trigger input becomes true. If a trigger is to define a new master

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

70 Model 4000 Options User Guide

cycle, the 4000 program will not wait for the trigger to occur before
continuing on with normal program execution. In this case, master cycle
definition is pending the trigger input, and some statements which use
master cycle position will not operate correctly until the trigger occurs. To
halt program operation, one of the wait statements mentioned below can be
used. A new master cycle will also start automatically when the full master
cycle length is reached. This will be useful in continuous feed applications.

By using the FOL CYC_OFF statement it is possible to assign for the first
cycle only, an initial Master Cycle Position to be a value other than zero.
When a master cycle is defined with the FOL NEWCYC statement or the
trigger specified in the FOL NEWCYC statement, the master cycle position
takes the initial value previously specified with the FOL CYC_OFF
statement. The value for FOL CYC_OFF is given in user units and scaled by
UNIT MASTER. FOL CYC_OFF was designed to accommodate situations in
which the trigger that defines the new cycle occurs either before the desired
cycle start, or somewhere in the middle of what is to be the first cycle. In the
former case, the FOL CYC_OFF value would be negative. The master cycle
position would be initialized with that value, and would increase right
through zero until it reached master cycle length. At that point, it would roll
over to zero as usual. The continuous cut to length example illustrates the
use of a negative FOL CYC_OFF. If it is desired that the first cycle is defined
as already partially complete, the FOL CYC_OFF value would be greater
than zero, but less than the master cycle length.

To give a value for FOL CYC_OFF which is greater than master cycle length
is meaningless since master cycle positions are always less than the master
cycle length. The 4000 responds to this case as soon as a new cycle begins by
using zero instead of the initial value specified with FOL CYC_OFF.

The concept of an initial master cycle position is useful when the first cycle
of a periodic operation must begin at some place other than the beginning of
the cycle. A typical example is when a trigger that senses the motion of the
master is physically offset from master position at which some action must
take place. This is illustrated in the Cut to Length example.

The master cycle length may be changed with the FOL MAS_CYC statement,
even after a master cycle has been started. The new master cycle length takes
affect as soon as it is issued. If the new master cycle length is greater than the
current master cycle position, the cycle position will not change, but will
rollover when the new master cycle length is reached. If the new master cycle
length is less than the current master cycle position, the new master cycle
position becomes equal to the old cycle position minus one or more
multiples of the new cycle length.

The current master cycle position, denoted MAS_P, and the current master
cycle number, denoted MAS_C, may both be read into Q variables at any time
using the IN Qn = FOL AXISn statement. Very often, the master cycle
number will be directly related to the quantity of product produced in a
manufacturing run, and the master cycle position can be used to determine
what portion of a current cycle is complete.

Following Wait Statements
Two types of wait statements may be used with following in the Model 4000,
they are intended for distinctly different uses. The first type of wait that can
be specified, FOL WAIT, will cause the 4000 program to halt operation until
the condition specified is satisfied. The FOL WAIT statement allows
program operation to halt based on a specified trigger becoming active, or
until a particular master cycle position has been reached. If a master
position is specified, it is to be entered in user units, as the value is scaled by
the UNIT MASTER parameter. This function will be useful in delaying
subsequent I/O activation until the master has achieved the required
position or an object has been sensed.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 71

The second type of wait, FOL MOVEWT, will not cause immediate program
suspension, but rather the next slave move specified will not begin until the
condition specified is satisfied. The FOL MOVEWT statement is useful in
synchronizing subsequent moves with a master cycle position, or a specified
trigger input. As with the FOL WAIT statement, a master cycle position
should be entered in user units. The FOL MOVEWT statement is preferred
over the FOL WAIT statement if precise synchronization of master and
slave moves is required. If the slave's move is to take place over a certain
number of master steps (see FOL MDIST), that master step count starts with
the master position specified by this statement, or the master position is
latched when the trigger occurs. This eliminates variations in move profiles
due to processing delays.

Both FOL WAIT and FOL MOVEWT may wait on a master cycle position. It
is possible for the wait caused by either of these statements to occur while a
master cycle is pending definition on a trigger. In that case, the
corresponding wait will include waiting for the trigger and the cycle position
in the master cycle defined by that trigger. If the pending status is cleared by
either a FOL NEWCYC NO or a FOL NEWCYC IMMED, the wait is cleared
also. It is also possible for specified master cycle position to have been
already exceeded by the time the wait takes place. Please refer to the FOL
WAIT and FOL MOVEWT descriptions for the respective responses to this
situation.

Summary of Master Cycle and Wait Statements
FOL MAS_CYC 'Defines the length of the master cycle

FOL NEWCYC 'Allows a new master cycle to begin immediately or upon a
'trigger input

FOL CYC_OFF 'Defines the initial position of a new master cycle

FOL WAIT 'Suspends program execution until a specified master
'position or trigger input is activated

FOL MOVEWT 'Suspends execution of the next slave move until a
'specified master position or trigger input is activated

The next example illustrates the use of the master cycle concept and the
commands above.

Continuous Cut to Length
This application calls for automobile trim to be cut to a pre-defined length.
The saw is controlled by axes #1 and #2 on the 4000. It must be moving with
the material while the cut is being made (axis #1), and also move
perpendicular to the trim (axis #2) to actually make the cut. The trim comes
in long stock which moves continuously under the cutting area.

The leading edge of the trim stock is detected with a sensor connected to
trigger #1 which is located 4 inches from the home position of the saw. Axis
#1 will be following the trim based on an encoder mounted on the trim via a
friction wheel. The encoder is a 1000 line encoder and the wheel is geared to
give 2 revolutions per inch of trim. This results in 8,000 post quadrature
steps per inch of trim. Axis #1 has a resolution of 25000 steps per rev, and is
connected to a 2 pitch leadscrew 24" in length. Axis #2 is similar in
mechanics but its length is 10". The travel on Axis #1 will be controlled by
the speed at which axis #2 makes its cut. Limit switches are in place for
safety.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

72 Model 4000 Options User Guide

Raw Stock

Sensor

❇
4"

Axis #1

Axis #2

E

Encoder
When stock is sensed, the master cycle
position is assigned to -3.7"

Axis #1, initially 4.0 inches from the sensor,
begins to accelerate when stock reaches
master cycle position Ø

Synchronization takes place over 0.5
inches of Axis 1 travel, and 1 inch of
stock travel. Axis #1 travel becomes
synchronized 0.2 inches from end of stock

Raw Stock

Sensor

❇

3.7"

Axis #1

Axis #2

E

Encoder

4"

Raw Stock

Sensor

❇

4.7"

Axis #1

Axis #2

E

Encoder

4.5"

Below, the master cycle length will be set equal to the desired cut length (36"
in the example below), which the operator can change by modifying variable
Q1. The cut cycle will be a continuous loop, but the first cut will be made 0.2"
from the end of the stock to ensure an even first edge. Axis #1 will accelerate
to the desired tracking ratio over 1 inch of master travel for all cuts. Assume
that the home position of both axes is at position 0".

The Cut to Length example takes advantage of being able to change master
cycle length, while being careful to change it only at the beginning of a
current cycle this ensures that the current master cycle position will be less
than the new master cycle length, and will not change as a result of a change
in cycle length. In this example the master cycle length and corresponding
waits are redefined every cycle to the current value of Q1. The value of Q1
becomes the cut length, and can be changed via remote command during
program execution. With minor modifications, cut lengths, and number of
iterations could be read from DATA statements.

UNIT POS 50000 50000 * * 'Set axes #1 and #2 scale factors for
'programming in inches

UNIT VEL * 50000 * * 'Axis #2 velocity scale factor for
'inches/sec

UNIT ACCEL * 50000 * * 'Axis #2 accel scale factor for
'inches/sec/sec

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 73

UNIT MASTER 8000 * * * 'Master scale factor for programming in
'inches

ACCEL * 20 * * 'Accel for axis #2 (axis #1 accel set with
'FOL MDIST)

VEL * 5 * * 'Velocity on axis #2 to 5 inches/sec

MODE M_ABS M_ABS * * 'Absolute positioning mode for non-
'following moves

MATH Q1 = 36 'Desired cut length is 36"

MATH Q2 = 4 'Sensor is 4" from home position of axis #1

MATH Q2 = Q2 + 0.2 '1st cut to be 0.2" from end of stock

MATH Q3 = 1 'FOL MDIST to be set to 1"

MATH Q4 = Q3 / 2 'Slave will travel 1/2" when accelerating
'to 1:1 ratio while master travels 1"

MATH Q2 = Q2 - Q4 'Take distance slave travels during accel
'into account so we'll be up to speed at
'position = 0.2" from end of stock. Then
'the cut will be made.

MATH Q2 = -Q2 'Initial master cycle position will be
'negative of distance traveled during
'slave wait and accel

FOL MASTER ENC1 * * * 'Encoder input #1 is the master for axis #1

FOL CYC_OFF Q2 * * * 'Set initial master cycle position to wait
'length

FOL MDIST Q3 * * * 'Acceleration to constant ratio will take
'place over Q3" (1" here) of master travel

FOL RATIO 1:1 * * * 'Following ratio is 1 to 1

FOL ENABLE YES * * * 'Enable following mode on axis #1

FOL NEWCYC TRIG1 * * * 'Define a new master cycle on trigger input
'#1

FOL WAIT TRIG1 * * * 'Suspend program execution until stock is
'sensed

OUT BIT7 = 1 'Turn on output for saw blade to move down
'into position

FOL MOVEWT Ø * * * 'Wait on first move for necessary master
'travel. This will ensure being at 1:1
'ratio at exactly 0.2" from end of stock.

LABEL NEW_CUT 'Subroutine label for continuous cutting

MOVE SLEWCW * * * 'Start move on axis #1

MATH Q5 = Q1 'Set Q5 = Q1 (Snapshot of Q1)

FOL MAS_CYC Q5 * * * 'New master cycle length is cut length

MOVE * 10 * * 'Once axis #1 is up to speed, move axis #2
'across stock to make the cut

MOVE STOP * * * 'Stop following move on axis #1

FOL ENABLE NO * * * 'Exit following mode

OUT BIT7 = 0 'Raise the saw blade

MOVE 0 0 * * 'Move both axes back to home positions

OUT BIT7 = 1 'Move saw blade into position for next cut

FOL ENABLE YES * * * 'Enable following on axis #1

FOL MOVEWT Q5 * * * 'Wait for next move to start until next
'master cycle

GOTO NEW_CUT 'Repeat the cut cycle

Following Performance and Measurement
Following performance includes such topics as following error, following
smoothness, response to changes in master speed, and safety limitations.
The overall following performance is determined by how the motion of the
master is measured and constraints on the slave. These are parameters
which may be specified by the user, and the resulting performance may be
monitored.

Following Performance Statements
The FOL SMOOTH and FOL VELFF statements allow users to modify the
default Following algorithm as necessary to optimize performance in their
applications. Values of 1, 2, 3, or 4 for the FOL SMOOTH parameter correspond

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

74 Model 4000 Options User Guide

to velocity averaging periods of 4, 8, 16, or 32 milliseconds. Applications
where the master speed is slow or if the master changes velocity rapidly may
see smoother slave motion if the FOL SMOOTH parameter is larger than the
default of 1. FOL VELFF allows the user to enable or disable velocity feed
forward. Velocity feed forward eliminates the dependence of following error
on master velocity, but may result in rough motion. Master velocity is
measured for this feature, and may be read using the IN Qn=FOL AXISn
MAS_V statement. The DEFINE TRIGDB FOR DIRSET, and FOL LEAD
statements allow the user to account for the specific requirements or
performance of the motor drive and load. DEFINE TRIGDB allows the user to
individually specify the debounce times for the trigger inputs. FOL DIRSET
lets the user specify if a change in the direction output signal requires a set-up
time. FOL LEAD lets the Model 4000 compensate a velocity dependent lag in
the drive or load. The Technical Considerations section of this manual
contains more details on these topics and others of the Following algorithm.

The FOL MAXVEL and FOL MAXACC statements define the maximum
velocity and acceleration at which the slave will be allowed to move. Preset
following moves and FOL SHIFT moves may command velocities and
accelerations that the slave axis is physically not able to complete. The FOL
MAXVEL and FOL MAXACC statements allow the user to set these limits. If
the slave is commanded to move at rates beyond the defined maximums, the
slave will begin falling behind it's commanded position. If this happens, the
position error is made up as soon as the commanded velocity and
acceleration fall within the limitation of FOL MAXVEL and FOL MAXACC.

These statements should be used only to protect against worst case
conditions, and should be avoided altogether if they are not needed. If an
axis is not able to follow its profile because of limitations imposed by these
statements, some correction motion will occur when a MOVE statement is
completed. This is due to the following error and the resulting Dynamic
Position Maintenance. Refer to Technical Considerations for Following in
this chapter. If the maximum acceleration is set very low, some oscillation
about the setpoint may occur. This is because the slave is not allowed to
decelerate fast enough to prevent overshoot.

Monitoring Following Error
As soon as an axis becomes configured as a slave, the slave setpoint position
is continuously updated and maintained. The setpoint position is calculated
from the master position and velocity and the current ratio or velocity of the
slave. This continuously updated setpoint is used as the target position for
the dynamic position maintenance, which is described in detail in the
Technical Considerations for Following section of this chapter. Whenever
the setpoint position is not equal to the actual slave position, a following
error exists. This following error, if any, may be positive or negative,
depending on both the reason for the error and the direction of slave travel.
The following error is defined as the difference between the setpoint position
and the actual position.

Following Error = Setpoint position - Actual position

If the slave is traveling in the positive direction and the actual position lags
the setpoint position, the error will be positive. If the slave is traveling in
the negative direction and the actual position lags the setpoint position, the
error will be negative. This error is always monitored, and may be read into
a variable at any time using the IN Qn = FOL AXISn FOL_ERR
statement. The error value in slave steps is inversely scaled by UNIT POS
for the axis, so the resulting value in the variable is the error expressed in the
user's units. This value may be used for subsequent decision making, or
simply recording the error corresponding to some other event.

Although it is useful to be able to read the current error, it is not a fast and
convenient method of continuously monitoring error. The 4000 does this for
the user, and the user may specify a following error tolerance using the FOL

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 75

PTOL statement. The tolerance value is given in slave position units and
scaled by UNIT POS. This statement allows the user to specify the
magnitude, or absolute value, of acceptable slave following error. Although
the sign of the following error is reported when it is read into a variable, it is
ignored during the continuous comparison to the value specified with FOL
PTOL. If the magnitude of the actual following error ever exceeds the
specified tolerance, the 4000 latches the condition of following error
tolerance exceeded. The ON FOL_ERR statement allows the user's program
to detect this condition, and allows the user complete flexibility in the
response. If the following error tolerance is exceeded and the ON FOL_ERR
statement has been executed, program execution will branch (GOTO or
GOSUB) to the destination specified in that statement. This condition is
cleared only by re-executing the FOL PTOL statement, executing a FOL
MASTER NO statement, or when the program finishes. If the user's program
requires that the 4000 respond to a new occurrence of excess following error,
the FOL PTOL statement should first be executed to clear the old error, and
then the ON FOL_ERR statement executed to allow detection of the
condition.

Error Detection Windows
The discussion so far has considered only the continuous detection of
excessive following error. There are many applications, however, in which a
periodic repetitive operation takes place, and precise synchronization is
only important during a portion of the cycle. For example, consider a
printing application in which a continuous sheet of paper moves under a
rotating print drum. Only a portion of the circumference of the drum has the
print pattern, which is raised to make contact with the paper. The
application may require a very tight tolerance during the portion of print
drum rotation in which the drum contacts the moving paper. For the
remainder of the drum rotation, there may be accelerations on either the
drum or the paper. During this time, holding a tight following error
tolerance is not required, and may even be impossible due to large loads and
mechanical constraints. For such an application, it should be possible to
define a portion, or window of a cycle in which excess following error is
detected, and ignored in the remainder of the cycle. The 4000 provides for
this by allowing for definition of a error detection window within a master
cycle. The master cycle concept has been discussed in great detail earlier in
this chapter, and is important to the understanding of an error detection
window.

The 4000 allows the user to define the starting position of this window
within the master cycle using the FOL WIN_P statement. This window
starting position is given as a master cycle position, scaled by UNIT
MASTER. Because it is a position within a master cycle, its value must be less
the master cycle length to be valid, i.e., meaningful. The width of the window
may be defined using the FOL WIN_W statement. This window width is
given as a master distance, scaled by UNIT MASTER. Because it is a distance
within a master cycle, its value must also be less the master cycle length to be
valid, i.e., meaningful. If either of these values are greater than the master
cycle length, the error detection window will not be valid, and error detection
will occur continuously. Even if these values are larger than the master
cycle length, however, they are saved as given. If the master cycle length is
subsequently made larger than the window values, (using the FOL MAS_CYC
statement), the window definition becomes valid. This allows the three
statements, FOL MAS_CYC, FOL WIN_P, and FOL WIN_W to be given in
any order.

As a special case, it is possible to give a window width (FOL WIN_W) of zero.
This is also its value on power-up and after a FOL MASTER statement. The
result of this is that the error detection window will not be valid, and error
detection will occur continuously. It is also possible and valid to specify a
window starting position (FOL WIN_P) close enough to the end of a cycle

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

76 Model 4000 Options User Guide

that the end of the window (start position plus width) exceeds the end of the
master cycle. In this case, the remainder of the window simply applies to the
start of the next cycle. It is perfectly valid for an error detection window to
span the end of one cycle and the start of the next.

Motor and Encoder Comparison
The 4000 has a feature (FOL ENCCHK) which allows a comparison between
the commanded position in motor steps, i.e. controlled in motor step mode,
and the actual position in encoder steps. This is especially useful when the
slave is a Compumotor servo drive such as the Z Drive or the Dynaserv. Its
first major purpose is to assist in the tuning of the drive for minimum
following error. It also facilitates rapid electronic response to excess
following error.

The previous discussion about following error holds true whether the slave is
in motor step mode or encoder step mode. When the slave is encoder step
mode, the measured following error is the difference between the
commanded and actual encoder step positions, and this error is corrected
with dynamic position maintenance (refer to Technical Considerations for
Following). But Compumotor servo drives have their own position control
feedback loop, and it is usually not desirable to have the 4000 doing position
maintenance. For this reason, the 4000 should be in motor step mode with
these servo drives.

These servo drives accept step and direction input and provide pseudo-
quadrature encoder output to indicate the actual position. They can be
configured to make the input step resolution and encoder feedback
resolution the same. The FOL ENCCHK feature assumes the input step
resolution and encoder feedback resolution are the same when comparing
the commanded position in motor steps to the actual position in encoder
steps. This allows the 4000 to continuously monitor the following error of
the servo drive without interfering with the drive's own position control.
The error detection window, error tolerance, and ON FOL_ERR features may
thus be applied to the servo drive's following error. In addition, when this
feature is enabled, the POB output for that slave axis becomes an indicator
for following error out of tolerance. When error detection is occurring (either
in a window or continuously) and the following error is greater than the
specified tolerance, the output will be ON (low). Otherwise it will be OFF
(high). Using this output in combination with an oscilloscope could assist in
tuning a drive for minimum following error.

Summary of Following Performance and Measurement Statements
FOL MAXVEL 'Sets the maximum velocity at which a slave may

'travel
FOL MAXACC 'Sets the maximum acceleration a slave may use

'to change ratio
FOL SMOOTH 'Sets the sample time over which master velocity

'is calculated
FOL VELFF 'Allows velocity feed forward to be enabled or

'disabled
FOL WIN_P 'Defines master window position
FOL WIN_W 'Defines master window width
FOL PTOL 'Defines following error tolerance
IN Qn=FOL AXISn FOL_ERR 'Reads the current following error
ON FOL_ERR 'Interrupts program when following error

'tolerance is exceeded.
IN Qn=FOL AXISn MAS_V 'read current master velocity
DEFINE TRIGDB 'sets debounce time for trigger inputs
FOL DIRSET 'enables or disables direction change setup time
FOL ENCCHK 'enable or disable encoder/motor step check
FOL LEAD 'advance setpoint proportional to slave speed

Periodic Master/Slave Synchronization
For many applications discussed so far, simply maintaining constant ratio
or performing a sequence of moves with respect to a master cycle positions

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 77

and triggers will solve the application needs. If these operations are
repeatably periodic in nature, master cycle positions may be used to achieve
the required synchronization between master and slave. There are other
applications in which periodic operations must occur in intervals which are
not perfectly repeatable. For these, the master and slave must be re-
synchronized every cycle. These applications will be able to make use of the
4000's master/slave synchronization features.

Two examples may illustrate this concept. In many packaging operations, a
product may enter on a conveyor with non-repeatable, or random timing, yet
must leave on a conveyor with perfect spacing and position. Such
applications will be referred to here as Random Timing Infeed. In these
applications, a major spacing correction may occur every cycle. In other
applications, the operation may be nearly perfectly repeatable, but vary
slightly over the course of many cycles. For example, a web may have
periodic registration marks which must be aligned with a periodic operation
such as printing or cutting. Small variations in the location of the
registration mark may occur, particularly if the web can stretch or slip.
These types of applications will be referred to here as Web Processing. In
both applications the actual slave position may differ from the expected
slave position when a synchronization input occurs.

Master and Slave Marks, Synchronization Offset, Sync Error
The 4000 allows the user to define two external events, or marks, which
capture the slave position. These are called Master Sync Mark and Slave
Sync Mark, and are defined with the FOL M_SYNC and FOL S_SYNC
statements respectively. The nomenclature helps to distinguish one mark
from the other, and also helps when it is assumed that the Master Sync Mark
occurs as a result of motion from the master, and the Slave Sync Mark
occurs as a result of motion from the slave. Each time either mark occurs,
the corresponding slave position is captured and saved internally. These
positions may be read into Q variables using the IN Qn = FOL AXISn
M_SYNC and IN Qn = FOL AXISn S_SYNC statements. The user may
also pre-define an expected difference between these captured slave
positions. This expected difference is called the Slave Synchronization
Offset and is defined using the FOL SYNC_OFF statement. There is an
important reason for defining the offset expected between two positions
instead of defining the position expected at a single synchronization mark.
It allows continuous motion in one direction without requiring a continuous
re-calculation of the expected slave position. The difference between the
actual offset and the expected offset is called the Sync Error. This error may
be read into a Q variable using the IN Qn = FOL AXISn SYNC_ERR
statement. To understand exactly how to use this, more precise definitions
of actual synchronization offset and sync error are required.

Synchronization Offset and Synchronization Error Definitions
Although these features may be used in a variety of combinations, the
synchronization marks and offset are named with the idea that the master
sync mark records a slave position reference, and the slave sync mark
records a slave position measurement. The difference between the
measurement and reference is the actual offset.

Actual sync offset = slave position at slave mark - slave position at
master mark.

The sign of the actual sync offset will depend on the order in which the
marks are encountered, and the direction of slave travel. If the slave is
traveling in the positive direction, and the master sync mark occurs first,
the actual sync offset will be positive. Of course, the slave may travel in the
negative direction, and the master sync mark could occur either before, after,
or at the same time as the slave sync mark. It is important to understand
how the actual sync offset is calculated, so that the expected sync offset may
be programmed correctly. The difference between the actual offset and the
expected offset is called the Sync Error.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

78 Model 4000 Options User Guide

Sync Error = Actual sync offset - Expected sync offset

Again, this is defined with the idea that the master sync mark records a slave
position reference, and the slave sync mark records a slave position
measurement. Under this assumption, motion of the slave either represents
or actually drives an object toward the sensor defined as the slave sync
mark. After both master and slave sync marks have been received for a
given cycle, the error may be read. The Q variable used with the IN Qn =
FOL AXISn SYNC_ERR statement may be used without modification in a
subsequent FOL SHIFT statement to bring the error to zero. Alternatively,
comparisons or modifications may be made to the variable, depending on
the needs of the application.

Master and Slave Sync Mark Definitions
So far, the master and slave sync marks have simply been referred to as
external events which capture the slave position. These external events may
be any of the four trigger inputs TRIG1 through TRIG4, or a master cycle
position. In many cases, one sync mark will be a TRIG input, while the other
is a master cycle position. If the sync mark is defined as a trigger, the slave
position is captured on each occurrence of that trigger. Typically, a sensor
which detects a passing object or registration mark would be connected to the
trigger input. The characteristics of trigger inputs are described in the
Model 4000 User Guide.

If the sync mark is defined a master cycle position, the slave position is
captured on only the first occurrence of that cycle position each cycle. This
happens each time a new cycle is defined, or a master cycle has completed
and rolled over to start a new cycle. In most cases, the master will be moving
continuously in positive direction, so a given cycle position will occur only
once per cycle anyway. If rollovers do not occur because the cycle length is
nearly infinite (i.e., defined as zero), or a cycle definition is pending a trigger
input, the slave position will not be captured. Also, if the master position
specified as a sync mark is greater than the master cycle length, it will never
occur. For a complete understanding of a sync mark defined as a master
cycle position, it is important to understand master cycles. Please refer to
the section titled The Master Cycle Concept earlier in this chapter.

Using Periodic Synchronization Features
The basic features of periodic synchronization and their use have been
discussed in a general manner. The program must define master and slave
sync marks and the expected synchronization offset. The sync error may be
requested and used in subsequent decision making. In order to ensure
maximum flexibility in their use, very few restrictions and error checks
have been placed in these statements. The only requirement is that the sync
marks must have been defined before a request for the captured position or
the sync error is given with the IN Qn = FOL AXISn statements.

By contrast, the requests do not check to see that the sync marks have
actually occurred, assume any order of occurrence, or attempt to determine if
the reported error is a realistic value. These things must be done by the user
through thoughtful application design and programming. For example, to
ensure that both marks have occurred in a given cycle, the FOL WAIT
statement may be used to wait for either a trigger or a master cycle position.
This solution also requires the application to be designed so the marks
always occur in the same order. If this is not possible, the request could wait
for some other event which is known to take place after both marks occur.
Another solution is to poll for cycle position using the IN Qn = FOL
AXISn MAS_P and using IN or ON statements to detect the transition of
trigger inputs. In any case, it will be up to the program to determine whether
and when to correct the error, and whether to correct all or some portion of
the error.

The expected synchronization offset may be changed at any time using the
FOL SYNC_OFF statement, even while moves are in progress. The sync

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 79

error request (IN Qn = FOL AXISn SYNC_ERR) uses the expected offset
value in currently in effect to calculate the sync error. This means that the
desired synchronization offset must be established before the sync error is
requested, but not necessarily before the slave positions are captured with
the sync marks. The ability to change expected offset independently of other
synchronization parameters makes it possible to write a program which
allows independent manual correction of automatic alignment routines.
The FOL SHIFT statement with a correction distance would be used for the
automatic correction routine, and the FOL SHIFT CW or CCW statement
would probably be used for the manual correction routine. The manual
routine initiated by the operator could read the slave net shift value before
and after manual correction and modify the expected offset with the
difference. This would ensure that the automatic correction routine did not
undo the operator's manual intervention in the next cycle. This is
illustrated in the Random Timing Infeed example below.

Summary of Periodic Master/Slave Synchronization Statements
FOL M_SYNC 'Define Master Synchronization Mark

FOL S_SYNC 'Define Slave Synchronization Mark

FOL SYNC_OFF 'Define expected Synchronization Position
'Difference

IN Qn = FOL AXISn SYNC_ERR 'Read Following Synchronization Error

IN Qn = FOL AXISn M_SYNC 'Read Slave position captured by master
'synchronization mark

IN Qn = FOL AXISn S_SYNC 'Read Slave position captured by slave
'synchronization mark

Random Timing Infeed
Random timing infeed refers to operations in which a product may enter on a
conveyor with non-repeatable, or random timing, yet must leave on a
conveyor with perfect spacing and position. Typically, there may be an
infeed conveyor on which products are randomly spaced, a short conveyor
on which the correction move is made, and an exit conveyor with dividers
called flights. As the products move onto the exit conveyer, they must be
correctly positioned between flights. All three conveyers must have the same
line speed while the product moves from one to the other.

In this example, a previous operation has placed product on the infeed
conveyer for subsequent wrapping. The product dimension in the direction
of travel is 2 inches. The wrapping machine on the exit conveyer is
mechanically triggered by the raised flights, and expects the products to be
centered between the flights. The flights are 4 inches apart, so the maximum
correction move required will be 4 inches. The length of the correction
conveyer must accommodate this move length (4 inches), plus the product
dimension (2 inches), plus the travel due to following which occurs during
the correction move. The conveyer will move slowly while following, so an 8
inch overall length will be adequate.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

80 Model 4000 Options User Guide

Randomly
spaced by
product

Sensor for Slave
synchronization mark To Wrapping machine

centered product

Infeed Conveyor
Correction
Conveyor

Sensor for master
sensor mark

Encoder

Axis #1 Axis #2

2"

8"

Ratio 1:1

Correction between 0 and 4 inches

Slave Synchronization mark = object sensed

Trig 2

Trig 1

Although the product arrives randomly, it will never be closer than 9 inches
apart, ensuring that each product can enter and exit the correction conveyer
before the next arrives, even if no correction move occurs. As a result of
longer spacing, however, some flights will be empty, a condition detected by
the wrapping machine. When the product has moved completely onto the
correction conveyer, it is detected by a sensor connected to TRIG1, which will
be used as the slave sync mark. The sensor is mounted 2.5 inches from the
beginning of the conveyer, ensuring that the entire product is on the
conveyer before any correction move occurs. The flights on the exit conveyer
are detected by a sensor connected to TRIG2, which will be used as the master
sync mark. The master sync mark sensor is mounted so that the expected
synchronization offset will be zero inches. The fact that product will never
be closer than 9 inches apart also ensures that at least two master marks will
occur for every slave mark, so the program may simply wait for the slave
mark before determining the appropriate correction move.

The infeed conveyer is controlled by another machine, and its motion is
measured by an encoder which is geared to give 5000 steps per inch. This
encoder is connected to the axis 4 encoder input and will be the master for the
other axes. The correction and exit conveyers are both controlled by motors
geared to give 50000 steps per inch, and are connected to axes 1 and 2
respectively. The exit conveyer simply tracks the infeed motion at a
constant 1:1 ratio. The correction conveyer will also starting moving at
constant 1:1 ratio, but may perform correction FOL SHIFTs which are
superimposed on the ratio. The correction axis is the only axis which has
synchronization parameters specified, because its position is used as a
measurement of the product position. Notice that in this example, no master
cycle is defined, because trigger inputs are used for both sync marks.

The mechanically triggered wrapping machine is manually adjusted,
assuming products will centered between the flights. Over time, it tends to
drift out of adjustment, making the ideal product position something other
than centered between flights. Because of this, the operator must be able to

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 81

manually and visually adjust the target of the correction moves so that
product arrives on the exit conveyer in the desired position with respect to
the flights. In the example below, the operator may shift the product after
the correction move. A button connected to IN24 BIT1 commands a shift in
the CW direction, and a button connected to IN24 BIT2 commands a shift in
the CCW direction. The amount of shift is measured and the expected
synchronization offset is adjusted accordingly. As a result, the next
correction move will place the product in an adjusted position with respect to
the exit conveyer flights.

UNIT POS 50000 50000 * * '50000 steps per inch, both conveyers
UNIT MASTER 5000 5000 * * '5000 encoder steps per inch
FOL MASTER ENC4 ENC4 * * 'axes 1,2 use encoder 4 as master input
FOL RATIO 1:1 1:1 * * 'both conveyers track master infeed at 1:1

'ratio
FOL ENABLE YES YES * * 'correction and exit conveyers will both

'follow
ACCEL 10 10 * * 'conveyers will simply accel to ratio
VEL 5 * * * 'super-imposed correction velocity
FOL M_SYNC TRIG2 * * * 'correction conveyer master sync mark
FOL S_SYNC TRIG1 * * * 'correction conveyer slave sync mark
MATH Q1 = 0 'initial expected synchronization offset
FOL SYNC_OFF Q1 * * * 'expected synchronization offset
MOVE SLEWCW SLEWCW * * 'start the conveyers to track infeed
LABEL NEXT_P 'main loop for each product
FOL WAIT TRIG1 * * * 'wait for product on correction belt
IN Q5 = FOL AXIS1 SYNC_ERR 'read correction amount
FOL SHIFT Q5 * * * 'perform correction move
IF BIT1 = 1 GOTO SHF_CW 'check for CW shift command
IF BIT2 = 1 GOTO SHF_CCW 'check for CCW shift command
GOTO NEXT_P 'no shifts, wait for next product
LABEL SHF_CW 'routine to adjust target move CW
VEL .1 * * * 'use low shift velocity
IN Q2 = FOL AXIS1 SHIFT 'get current net shift
FOL SHIFT CW * * * 'start shifting
LABEL CW_LOOP 'tight loop while checking input
IF BIT1 = 1 GOTO CW_LOOP 'shift as long as input active
GOTO SHF_OK 'go to common exit
LABEL SHF_CCW 'routine to adjust target move CCW
VEL .1 * * * 'use low shift velocity
IN Q2 = FOL AXIS1 SHIFT 'get current net shift
FOL SHIFT CCW * * * 'start shifting
LABEL CCW_LOOP 'tight loop while checking input
IF BIT1 = 1 GOTO CCW_LOOP 'shift as long as input active
LABEL SHF_OK 'common routine after shifting
FOL SHIFT STOP * * * 'stop shift now
IN Q3 = FOL AXIS1 SHIFT 'get new net shift
MATH Q3 = Q3 - Q2 'change in net shift
MATH Q1 = Q1 - Q3 'change in expected offset
FOL SYNC_OFF Q1 * * * 'new expected synchronization offset
VEL 5 * * * 'super-imposed correction velocity
GOTO NEXT_P 'wait for next product

Web Processing
In a typical web processing application the master is the web which has
periodic registration marks, and the slave drives a rotary print drum. The
drum has a raised print portion which contacts the web during a certain
segment of its rotation. During this portion, the drum surface speed must
match the web speed, and the print portion must be aligned with the
registration mark on the web. During the remainder of the drum rotation,
the drum may rotate at a higher or lower ratio, depending on the cycle length
of the pattern on the web below. During that portion, the drum may be
shifted to correct for errors in registration.

A program could be developed which could handle variable web cycle lengths
and print portion lengths, making extensive use of Q variables in the
following parameters. For clarity in this example, however, we will assume
a fixed drum circumference of 12 inches, and a print portion of 4 inches. The
nominal distance between registration marks (web cycle length) will be 19
inches, requiring that the slave ratio be lower than 1:1 during the non-print
portion of the cycle. The slave ratio changes will take place twice per cycle,
each over 1 inch of web travel. As a result of these numbers, the non-print

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

82 Model 4000 Options User Guide

portion of the slave travel takes place at a ratio of 0.5:1 and covers 6.5 inches
of drum circumference. If no registration correction is required, this 6.5
inches of drum travel occurs over 13 inches of web. If the registration
spacing varies from its nominal 19 inches, however, a shift in drum position
must be introduced to compensate.

Drum Sensor

Registration Marks

Registration
Sensor

Prin
t D

ru
m

Encoder

Registration Marks
Drum
Sensor

Registration
Sensor

Print Drum

T
o

40
00

To 4000

Drum is in the center of 1:1 constant ratio print
portion when drum sensor occurs

Registration Marks

Drum
Sensor

Registration
Sensor

Print Drum

T
o

40
00

To 4000

Drum is near the center of non-print portion when
web registration occurs, and correction made

The slave sync mark will be a sensor connected to TRIG1 and mounted to
detect the leading edge of the print portion of the drum. It is mounted so that
the edge is detected exactly halfway into the print portion of the cycle. By
then, the drum is well into the constant 1:1 ratio phase of its rotation. This
ensures that the sensor measures the current corrected alignment of the
drum, not its alignment during the correction portion of the previous cycle.
The master sync mark will be a sensor connected to TRIG2 and mounted to
detect the web registration mark exactly one half web cycle after the leading
edge of the print portion of the drum is detected.

With this arrangement, perfect registration would result in the TRIG1 and
TRIG2 occurring one half cycle apart, and an expected synchronization offset
of negative 6 inches, just one half of the drum circumference. This value
could be modified slightly during an initial alignment procedure to
compensate for misalignment in mounting the upstream master sync mark
sensor. If the registration mark arrives early, the sync error will be
positive, and if the mark is late, the sync error will be negative. The sync
error for the next cycle may be read as soon as the web registration mark in
received. By that time, the drum will be near the center of the non-print
portion of the cycle, and positive or negative corrections may be made safely.
The sync error may be used in a subsequent FOL SHIFT statement to correct
the drum alignment.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 83

The sensor which detects the web registration will double as the input which
is used to define the beginning of a master cycle. This master cycle reference
in turn defines when the drum should change ratios during the cycle. In this
example, the web registration mark should be detected exactly halfway
through the non-print portion of the drum cycle. At that time, the master
cycle is defined with an initial position of zero. If the web sensor is slightly
misaligned, the initial master cycle position established with FOL
CYC_OFF could be changed to a small non-zero value. When this mark is
received, the drum alignment is corrected for the next cycle and the master
cycle definition takes place. The remainder of the drum cycle ratio changes
take place at master cycle positions which represent positions within that
web cycle.

Web Registration Print portion
Next Reg. markCorrection

Move
Correction
Move

0 6.5 7.5 11.5 19 master cycle position

Ratio 1:1

0.5:1

The sensor on the drum will double as a registration input which is used for
the initial positioning of the drum. The registration distance is calculated so
that if the drum begins it ramp to the 0.5:1 ratio when the first web mark is
detected, the initial alignment will be correct. If the sensors are mounted
correctly and registration is perfect, the web registration mark will
normally occur exactly 6 inches of drum travel after the drum sensor, with
the drum already at 0.5:1 ratio. During startup however, the drum will only
travel 0.25 inches during the ramp to ratio, so the registration distance must
be 6.25 inches.

The example below illustrates the use of periodic master/slave
synchronization statements for the situation described above. For the sake
of brevity, assume all units are in inches, an encoder which measures the
web is the master, and the velocity and acceleration are appropriate for the
slave shift. Assume that the initial drum positioning has already occurred,
and that the drum is now stationary and waiting for the first web
registration mark.
FOL MASTER ENC4 * * * 'use encoder 4 as master input
FOL RATIO 0.5:1 * * * 'track master initially at .5:1 ratio
FOL ENABLE YES * * * 'drum will follow web
FOL M_SYNC TRIG2 * * * 'master sync mark on web
FOL S_SYNC TRIG1 * * * 'slave sync mark on drum
MATH Q1 = 6 'initial expected synchronization offset
FOL SYNC_OFF Q1 * * * 'expected synchronization offset
MATH Q2 = 0 'initial master cycle position
FOL CYC_OFF Q2 * * * 'assume initial cycle position
FOL MAS_CYC 0 * * * 'zero cycle length ensures long cycle
FOL NEWCYC TRIG2 * * * 'cycle starts on TRIG2
FOL MDIST 1 * * * 'all ramps over 1 inch of web
FOL MOVEWT TRIG2 * * * 'sync startup move with first reg mark
MOVE SLEWCW * * * 'start the drum, no initial correction
LABEL NEXT_P 'main loop for each product
FOL MOVEWT 6.5 * * * 'wait for correct position to change ratio
FOL RATIO 1:1 * * * 'new ratio of 1:1 during print
MOVE SLEWCW * * * 'make the ratio change at 6.5 web inches
FOL MOVEWT 11.5 * * * 'results in 4 inches of 1:1 ratio
FOL RATIO 0.5:1 * * * 'new ratio of 0.5:1 for non-print portion
MOVE SLEWCW * * * 'make ratio change at 11.5 web inches
FOL NEWCYC TRIG2 * * * 'cycle starts again at TRIG2
FOL WAIT TRIG2 * * * 'wait for the new cycle
IN Q5 = FOL AXIS1 SYNC_ERR 'read correction amount
FOL SHIFT Q5 * * * 'perform correction move
GOTO NEXT_P 'no shifts, wait for next product

Cam Profiling
Some following applications will require very rapid cycle times with several
ratio changes during a cycle. It may not be possible to execute individual

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

84 Model 4000 Options User Guide

statements that are required for ratio changes rapidly enough to meet the
cycle time requirements. For these cases, it is useful to be able to pre-define a
profile of master and slave position relationships and ratios. This profile is
defined with statements before it is actually run, and it is saved in a
compiled form. In this sense, it is the same as a single complex move
command. Only a single statement is required to start the move, when the
profile is run, it is not affected by the execution speed of concurrent program
statements.

A cam profile consists of a set of segments that describe the motion of the
slave (the cam) pertaining to the motion of the master over a specified range
of travel. A profile is constructed with sequential motion segments. Each
segment describes a portion of the overall profile with data for master and
slave travel and segment end ratio. Because the segments are sequential, the
ending ratio of each segment will be the starting ratio of each subsequent
segment. The starting ratio of the first segment defined will automatically
be zero. The final ratio of the last segment may be non-zero if desired. The
resulting profile has no sudden changes in ratio, and therefore no sudden
changes in slave velocity.

0 Master Travel

segments

Repetitive Cycle Repetitive Cycle

lead in segment

R
at

io

These profiles may be executed as one-shot moves, or as repetitive cycles, as
appropriate for the application. Progress through the profile may take place
either forwards or backwards, following the direction of the master. If the
profile is executed as a repetitive cycle, it is possible to designate some
segment other than the first segment as the start of the repetitive portion of
the profile. This allows one or more lead-in segments to precede a repetitive
pattern. Once master travel has gone beyond the lead in segment(s),
repetition will take place only within the repetitive cycle, even if the master
moves backwards.

Profiling Applications
Several different types of applications benefit from the rapid cycle times
available with cam profiling and the ability to progress either forward and
backward through the profiles. Included in these are mechanical cam
replacements, rotary knife, and coil winding. Each of these applications
uses the concepts of master travel, slave travel, and ratio, but they
correspond to different physical parameters for each application.

The term cam profiling is derived from the fact that many applications that
require motion along a prescribed profile have been solved with the use of
mechanical cams. These are often rotary cams, which have no beginning
and no end. For an application that replaces a rotary cam, the profile is
designed to execute repetitively. The angular travel corresponds to master
travel, the radius at a given angle corresponds to slave position, and the
slope of the cam surface for a given angle corresponds to ratio. In designing a
profile that replaces an actual mechanical rotary cam, it is important that
the final ratio and final position of the profile match the starting ratio and
starting position of the first repetitive segment. A mismatch in these ratios
would result in an abrupt change in velocity at the end of the cam cycle. A
mismatch in these positions would result in a net position change for each
cycle execution. A graph of slave versus master positions for a repetitive
cycle of a rotary cam profile would have no sharp corners, and the starting
and ending slopes and slave positions would be the same.

Another application that uses repetitive profiles with no net slave position
change is coil winding. A typical configuration for winding is called bobbin

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 85

winding. The bobbin is a core onto which one or more layers of wire or
filament is wound. The bobbin is usually the master, and its motion is
measured in turns. The slave is a wire guide that traverses back and forth
along the length of the coil. In this case, the ratio of the traverse of the wire
guide to the rotation of the bobbin determines the pitch of the wind on the
coil. The pitch is expressed in turns per inch, and would be the inverse of the
ratio if the bobbin were the master.

Bobbin axis

Encoder

Controller

Transverse Axis

Feed Axis

A repetitive cycle of the profile would be two complete layers, one down the
length of the coil and another back. By using a cam profile, complex patterns
may be wound reliably at high speeds. These might include variable pitch
within a layer, or special end of layer variations to accommodate the
reversal of the wire guide. Layers could be designed to be offset by one half of
the width of the wire, to tightly pack the layers. A graph of slave versus
master positions for several repetitive cycles of a coil winding profile may
look like a zigzag with rounded corners. Like the cam profile, the starting
and ending slopes and slave positions would be the same.

By contrast, there are many applications that require a repetitive profile, but
require a net change in slave position from the start to the end of a cycle. A
rotary knife that makes periodic cuts in a moving web is a good example.
The word web is a general purpose term for a continuously fed material. It
may be paper, glass, plastic, or many other types of material. The web travel
corresponds to master travel, the rotary knife position around the
circumference corresponds to slave position, and the ratio refers to the ratio
of knife travel to web travel. This is similar in concept to the web printing
application described earlier. During the cut portion, the speed of the knife
tip must match the speed of the web. During the remainder of the cycle, the
knife must go through a profile of changing ratio to match the cut length
with the circumference of the wheel. In designing a profile that controls a
rotary knife, it is necessary for the final slave position of the final repetitive
segment to be one full revolution from the starting slave position of the first
repetitive segment. This allows continuous rotation of the knife as the web
material moves through its cut cycles. If the slave cycle length is off even by
one step, the cut portion of the profile will gradually drift away from the
required physical position. A detailed example of a rotary knife application
is given at the end of this section on Cam Profiling.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

86 Model 4000 Options User Guide

Defining and Compiling Cam Profiles
This software allows one profile per axis to be defined and stored. Once a
profile is defined, it may be executed repeatedly without re-definition. The
stored profile is automatically deleted if another profile is defined on that
axis. This arrangement is similar to segmented moves on the 4000. The
profiles are stored in the same data area used for PATH storage, therefore, no
PATHs may be defined if any profiles are defined. Definition of a cam profile
on an axis begins with the FOL CAM YES statement on that axis. To delete a
profile, the FOL CAM NO statement must be executed. As soon as a cam
profile is defined on any axis, all existing PATH definitions will be deleted.
The resulting RAM is divided into four sequential blocks of 120 segments
each for cam profile storage, one for each axis. This allows a maximum of
120 segments for each axis, if all four axes have profiles defined. It is
possible, however, for the segment storage of a lower numbered axis to
continue into the area allocated for a higher numbered axis. This flexibility
allows better use of the RAM when fewer than four axes have profile
definitions. For example, axis 1 could use all 480 segments, or use 360
segments with 120 left for axis 4. Many other permutations are possible, but
all involve blocks of 120 segments.

Each segment describes sequential portions of the overall profile and
contains three pieces of data. They must be given with profiling enabled
(FOL CAM YES), and following enabled (FOL ENABLE YES). The first is
the master distance (not position) over which the segment motion takes
place. The FOL MDIST statement establishes this value for the axis on
which a profile is being defined. The second is the ending ratio of that
segment. The ratio value may be positive or negative, and is established with
the FOL RATIO statement. The third is the slave distance or final slave
position of that segment. It is specified with a MOVE or MOVI statement
containing a distance or position. As long as profiling and following are
enabled, these statements define segments but do not cause motion. If either
profiling or following are not enabled, these statements will cause motion. It
is this slave distance or position specification that causes the 4000 to
compile and save the segment, using the previously established master
distance and ratio values. The segments are compiled and linked one
segment at a time, no separate statement is required for compilation.

The master and slave data for each segment of a profile are stored as starting
and ending positions, from which the distances are calculated internally.
This allows a profile to be started at any master and slave position, and
facilitates repetitive cycles. When specifying the slave positions for the
profile, however, the current position of the slave is important. If the slave
is in an absolute mode (i.e., M_ABS or E_ABS) the value in the MOVE or MOVI
statement is interpreted as the commanded segment end position. In this
case, the slave's current position and commanded segment end position are
used to calculate the distance for the profile's first segment only. Subsequent
slave distances will be calculated using the previous commanded segment
end position and the new commanded segment end position. In many cases
it will be convenient to give the first slave position data as zero, even if the
current position is not zero. In this case, a PDEF statement may be used
before defining the profile, or the slave data may be offset by the current
position using IN and MATH statements. If the slave is in an incremental
mode (i.e., M_INC or E_INC) the value in the MOVE or MOVI statement is
interpreted as the commanded segment distance. In this case, the slave's
current position does not affect profile definition.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 87

Profiles and Master Cycles
When profiling is enabled, the commands that establish master cycle
parameters outside profiling are either ignored, invalid, or have new
meaning. Please refer to the section in this chapter titled The Master Cycle
Concept for a discussion of master cycles. The previous discussion has
referred to lead in segments that precede the repetitive portion of a profile.
The default number of lead in segments is zero, i.e., the entire profile is
designated as the repetitive portion. This default takes effect when profiling
is enabled, but any segment may be designated as the start of the repetitive
portion. This is done by preceding that segment with the FOL NEWCYC
IMMED statement. This does not immediately initiate a new master cycle.
Instead, it indicates which segment of a profile will initiate a new master
cycle. The sum of the master distances in the segments preceding this
statement constitutes a negative value for master cycle offset position (FOL
CYC_OFF), and the sum of the master distances in the repetitive segments
after this statement constitute a value for master cycle length (FOL
MAS_CYC). When executing a profile these parameters become defined
automatically, and the repetitive portion of a profile will automatically
constitute a master cycle. This allows the master cycle number to indicate
the number of profile cycles that have been completed, and the master cycle
position to indicate the progress into the current profile cycle. The fact that
it is done automatically eliminates the application programming that would
be required to calculate the values, and allows the master cycle to be
synchronized with the start of the repetitive profile.

Executing a Profile
Execution of the profile is accomplished with the MOVE SLEWCW or MOVE
SLEWCCW statements for one shot or repetitive executions respectively. The
same profile may be executed in either manner. When these statements are
given, the currently constructed profile is executed as is. Because a profile is
not deleted until a FOL CAM NO statement is given, it is possible to add
more segments to a profile even after having executed it. The profile may be
started at a specific trigger by using the FOL MOVEWT statement. This is
useful in synchronizing the start of two axes that are both profiling from the
same master. The FOL MOVEWT may not use master cycle position as
parameter when profiling is enabled, because the master cycle position is
not defined until the profile is started.

Execution may take place forwards and backwards through the profiles. If
the profile is started with MOVE SLEWCW, it is executed only once, and the
profile is not complete until the master position reaches the end of the
profile. If the master moves backward before the end of the profile is
reached, the profile will also execute backwards, but only up to the beginning
of the profile. If the profile is started with MOVE SLEWCCW, the lead in
segments is executed as described in one shot mode. The last lead in segment
(if any) links to the remainder of the profile, which is executed repetitively.
If the master moves backward, the profile is executed backward until the
beginning of the first repetitive segment. It then loops back to the end of the
last repetitive segment. If the master moves forward, the profile is executed
forward until the end of the last repetitive segment. It then loops back to the
beginning of the first repetitive segment.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

88 Model 4000 Options User Guide

Statements Affected by Cam Profiling
Enabling cam profiling via the FOL CAM YES statement affects several
statements. All master cycle definition statements are ignored except FOL
NEWCYC IMMED. That will define the start of the repetitive portion of a
profile, and FOL NEWCYC TRIGn will result in an error. It also changes the
meaning of following mode (i.e., FOL ENABLE YES) MOVEs to define or
execute a profile. MOVE statements executed out of following mode (i.e., FOL
ENABLE NO) will be normal time based moves, even if profiling is enabled.
This is useful for repositioning a slave between profile executions without
losing the profile. The most recent values of FOL MDIST and FOL RATIO
become the master travel and ending ratio values respectively for a segment.
Negative ratios may be specified with FOL RATIO, and the sign is used to
determine the direction of motion in that segment. In normal following
moves, only the magnitude of the ratio is recorded, and the direction is
determined by SLEWCW or SLEWCCW in the MOVE or MOVI statement. The
following table shows the method of deleting, building and executing a
profile.

Use of Statements in Cam Profiling
Statements Function Description
FOL CAM NO Delete profile If profiling is already disabled on this axis, the

statement is ignored. If profiling is enabled on
this axis, the profile is deleted.

FOL CAM YES Enable profiling If profiling is already enabled on this axis, the
statement is ignored. If profiling is disabled on
this axis, the profile is initialized

FOL MDIST #
FOL RATIO #
MOVE # or Q

Create a
segment

These 3 statements provide the master travel,
final ratio, and slave position or distance of the
segment.

FOL NEWCYC
IMMED

Define
repetitive cycle

This marks the beginning of the repetitive portion
of a profile.

FOL MDIST #
FOL RATIO #
MOVE #

Add another
segment, etc.

These 3 statements provide the master travel,
final ratio, and slave position or distance of the
segment.

MOVE SLEWCW Perform profile
once

If the MOVE parameter is SLEWCW, the profile is
performed once, i.e., the MOVE is complete
when enough master travel has occurred to
finish the profile.

MOVE SLEWCCW Perform profile
repetitively

If the MOVE parameter is SLEWCCW, the lead in
segments are performed once, and the
remainder of the profile is performed repetitively.
When enough master travel has occurred to
finish the profile, the profile starts over from the
first repetitive segment if the master continues
to move.

FOL MDIST #
FOL RATIO #
MOVE #

Add another
segment, etc.

Even if the profile has already been performed,
additional segments may be added to the end of
the profile.

Practical Profile Design Issues
Some practical precautions must be taken when designing the cam profile.
As discussed earlier, the starting and ending ratios of repetitive cycles must
match to avoid abrupt changes in slave velocities. If there is no net change in
slave position over the cycle, the starting and ending positions of repetitive
cycles must also match.

The use of lead in segments allows a graceful entrance from zero ratio into a
cycle that never comes to rest. This especially useful if the profile is to be
started when the master is already in motion. If the master will not be in
motion when the profile starts, it may be desirable to have the profile start
with a specific non-zero ratio. This can be effectively accomplished with a
lead in segment that has zero master travel, the specific final ratio, and zero
slave distance. This segment has no effect other than initalize the starting

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 89

ratio of the subsequent segment. Although it takes zero master travel to
finish this segment, some internal execution time is required to process it.
These types of segments should not be constructed sequentially. Also
because of process time considerations, the segments should average at least
8 milliseconds of travel at the maximum master speed.

For a given segment, the user effectively specifies the starting and ending
ratios as well as both the master and slave travel of a segment. This means
that the segment's average ratio (slave travel divided by master travel) may
not be equal to the average of the starting and ending ratios. To satisfy all
the user specifications, the segment is broken internally into two halves,
and an intermediate ratio goal is reached halfway through the master travel
of the segment. The 4000 calculates this ratio internally using the formula
below.

Rmid =
(2*S - M*Rave)

M
where:

Rmid = Intermediate ratio
Rave = Average of starting and ending ratio
S = Slave travel
M = Master travel

If the user's data results in a value for Rmid after scaling by UNIT POS and
UNIT MASTER that is greater than 127 or less than -127, the profile will not
execute properly, but no error message is generated. To avoid this, care must
be taken in the design of the individual segments to ensure that intermediate
ratio magnitudes do not exceed ±127.

Another important precaution must be taken when cam profiling is used in
applications that require a segment of constant ratio. Because all the user
segments are divided internally into two segments, care must be taken in the
specification of constant ratio segments. The starting and ending ratios
must be the same, of course, but the master and slave travels must result in
an average ratio that is equal to the starting and ending ratios. The
requirement is:

S/M = starting and ending ratios
where:

S = Slave travel
M = Master travel

Rotary Knife Cut to Length
A continuous cut to length application uses a rotary knife to cut material
moving under the knife. The motion of the material is measured with an
encoder turned by a pinch roller on the material. To make a clean cut
requires that the rotary knife match the material speed during 1 inch of the
overall cut cycle. This prevents the knife from tearing or bunching the
material. The circumference of the wheel at the tip of the knife is 25 inches,
requiring that the knife tip move 24 inches during the remaining portion of
cut cycle. The cut length varies from 10 inches to several feet, which means
that a knife profile must be designed to match the knife circumference to the
cut length. The material web is the master, and the knife is the slave.

cutting wheel

start position

at speed here

reg mark sensed

cutting tip

Q2

Q16+Q17

travel
sensor

web material
Q12=1" 3 inches

Q13

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

90 Model 4000 Options User Guide

The cutting wheel has a once per revolution sensor that is used for initial
positioning of the wheel. This sensor is connected to trigger 3 and causes a
registration move to bring the wheel to the start position. There is also a
sensor mounted 3 inches away from the start of the cut position. It is
connected to trigger 2 and is used to detect the leading edge of the material.
The wheel is first positioned with the registration move, and then waits for
the detection of the material. As soon as the material is detected, the wheel
ramps to the cut speed and position. This occurs over 3 inches of material
travel and Q2 steps of wheel travel. This positions the knife tip at the start of
the material for the beginning of the repetitive portion of the cycle. The
wheel distances are programmed in steps, to ensure that the sum of the steps
in a cycle adds up to 25000. The material distances are programmed in
inches, to allow the cut length to be entered in inches.
UNIT POS = 1 25000 step circumference
UNIT MASTER = 500 encoder steps per inch of material

The ratio during the one inch cutting portion of the cycle must be 1:1,
expressed in terms of inches of knife travel to inches of material travel. The
remainder of the cycle takes place over the cut length minus 1 inch. In the
program below, this remaining master distance is called Q14. The average
ratio during the remainder of the cycle must be (remaining 24 inch's
circumference: Q14). The profiles shown below meet these requirements.
The variable Q16 is the additional distance (beyond the 1 inch of constant
ratio) the wheel would travel if it stayed at constant ratio for the entire cut
length. This however, will usually result in the incorrect wheel cycle length.
The variable Q17 is the component of travel required for the wheel to make
one complete revolution during one cut length. The top profile illustrates the
case in which the cut length is shorter than the circumference, and Q17 is
positive. The bottom profile illustrates the case in which the cut length is
somewhat longer than the circumference, and Q17 is negative. In both cases,
the component of slave travel represented by Q17 requires acceleration and
deceleration, and can be considered for this discussion as a separate motion
profile.

R
at

io

Master travel

Constant Ratio

Q17

Q2
Q16

R
at

io

Master travel

Q17

Repetitive Profile Portion

Repetitive Profile Portion

Q13

Q12

This Q17 motion profile was designed to minimize the overall jerk, i.e., the
magnitude of changes in acceleration. Low jerk allows the wheel to run
smoothly, resulting in less servo drive oscillation and better accuracy in cut
lengths. The Q17 profile uses three segments of equal master travel. The
outer segments each command 1/5 of Q17, and the inner segment commands
the remaining 3/5's of Q17. The 4000 automatically calculates the kinks in
these segments to satisfy all the segment specifications. The resulting Q17
profile is a close approximation to a sine wave, which minimizes jerk.

The program below assumes that the slave is axis 1, and that the master is
axis 2 encoder input. This allows axis 2 to be used as a controlled master for
the purpose of demonstration. In actual application, the master may simply
be measured, rather than controlled by the 4000. This application also takes

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 91

advantage of the automatic assignment of master cycle parameters during
cam profiling. The master cycle length is simply the cut length, and the
master cycle number is displayed as the number of cuts made.

UNIT POS 1 * * * 'slave units in steps
UNIT VEL 25000 125 * * '
UNIT ACCEL * 25000 * * '
UNIT MASTER 500 * * * 'encoder steps per inch
OUT LCD1,01 BLANK TO END OF LINE '
OUT LCD2,01 BLANK TO END OF LINE '
OUT LCD3,01 BLANK TO END OF LINE '
OUT LCD4,01 BLANK TO END OF LINE '
IN Q1 = LCD3,05 ^CUT SPEED? (inches/s) ^ 'get cut speed
VEL 1 Q1 * * 'cut speed
MATH Q3 = 2000 'steps from reg mark to start

'position
SEG REG3 Q3 * * * 'defines reg move from TRIG3
ENABLE REG3 YES * * * 'enable TRIG3 as registration

'input
MOVE SLEWCW * * * 'find the reg mark
IN Q10 = LCD2,05 ^CUT LENGTH? (inches) ^ 'get cut length
ENABLE REG3 NO * * * 'disable TRIG3 as registration

'input
MATH Q11 = 25000 'total slave cycle (steps)
MATH Q12 = 1 'master travel during cut

'segment (inches)
MATH Q13 = 1000 'slave travel during cut segment

'(steps)
MATH Q14 = Q10 - Q12 'master travel during non-cut

'portion
MATH Q15 = Q11 - Q13 'slave travel during non-cut

'portion
MATH Q9 = Q15 * 1.9 'intermediate calculation of

'MRMAX
MATH Q9 = Q9 * Q12 'intermediate calculation of

'MRMAX
MATH Q9 = Q9 / Q13 'final calculation of MRMAX
IF Q14 > Q9 GOTO LONGCUT 'profile will come to rest
MATH Q16 = Q13 * Q14 'intermediate calculation of

'non-cut base
MATH Q16 = Q16 / Q12 'base portion of slave non-cut

'travel
MATH Q17 = Q15 - Q16 'profile portion of slave non-

'cut travel
MATH Q18 = Q16 / 3 '1/3 slave base portion
MATH Q19 = Q14 / 3 '1/3 master non-cut portion
MATH Q20 = Q17 / 5 '1/5 slave profile portion
MATH Q20 = Q20 + Q18 'intermediate calculation of

'slave outer-profile seg
MATH Q23 = Q17 / 2 'intermediate calculation

'numerator of profile ratio
MATH Q23 = Q23 + Q18 'final calculation numerator of

'profile ratio
GOTO COMMON '
LABEL LONGCUT '
MATH Q19 = Q9 / 2 'master outer profile seg
MATH Q22 = Q14 - Q19 'intermediate calculation of

'master mid-profile seg
MATH Q22 = Q22 - Q19 'final calculation of master

'mid-profile seg
MATH Q20 = Q15 / 2 'final calculation of slave

'outer-profile seg
MATH Q23 = 0 'final calculation numerator of

'profile ratio
LABEL COMMON '
MATH Q20 = Q20 / 10000 'truncate all fraction
MATH Q20 = Q20 * 10000 're-create integer
MATH Q21 = Q15 - Q20 'intermediate calculation of

'mid-profile seg
MATH Q21 = Q21 - Q20 'final calculation of slave mid-

'profile seg
MATH Q22 = Q14 - Q19 'intermediate calculation of

'master mid-profile seg
MATH Q22 = Q22 - Q19 'final calculation of master

'mid-profile seg
MATH Q2 = 1500 '1.5 inch of tip travel during

'ramp to ratio
MATH Q3 = 3 '3 inches master travel during

'ramp to ratio
OUT LCD3,01 BLANK TO END OF LINE '

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

92 Model 4000 Options User Guide

OUT LCD4,01 BLANK TO END OF LINE '
OUT LCD3,01 ^Press when knife is
stopped^

'

OUT LCD4,01 ^ OK ^ '
WAIT FOR F-KEY1 TO BE PRESSED '
OUT LCD3,01 BLANK TO END OF LINE '
OUT LCD4,01 BLANK TO END OF LINE '
FOL MASTER ENC2 * * * 'use axis 2 encoder input for

'master.
FOL SMOOTH 3 * * * 'this may require trial and

'error
FOL ENABLE YES * * * 'moves will be following type
FOL CAM YES * * * 'generate cam profile

'
FOL MDIST Q3 * * * 'ramp from rest to ratio over Q3

'inches glass
FOL RATIO Q13:Q12 * * * 'ratio while tip contacts glass
MOVE Q2 * * * 'create seg slave travel during

'ramp
'

FOL NEWCYC IMMED * * * 'first repetitive cycle starts
'on here
'

FOL MDIST Q12 * * * 'cut portion over Q12 inches
FOL RATIO Q13:Q12 * * * 'ratio while tip contacts glass
MOVE Q13 * * * 'create seg slave travel during

'cut
'

FOL MDIST Q19 * * * 'outer profile seg portion over
'Q19 inches

FOL RATIO Q23:Q19 * * * 'final ratio of outer segment
MOVE Q20 * * * 'create seg slave travel during

'outer seg
'

FOL MDIST Q22 * * * 'mid profile seg portion over
'Q22 inches

FOL RATIO Q23:Q19 * * * 'final ratio of outer segment
MOVE Q21 * * * 'create seg slave travel during

'outer seg
'

FOL MDIST Q19 * * * 'outer profile seg portion over
'Q19 inches

FOL RATIO Q13:Q12 * * * 'final ratio of outer segment
MOVE Q20 * * * 'create seg slave travel during

'outer seg
'

FOL MOVEWT TRIG2 * * * 'first ramp starts on TRIG2
MOVI SLEWCCW * * * 'start profile
MOVE * SLEWCW * * * 'start master
OUT LCD3,01 ^Simulate detection of stock
TRIG2^

'

OUT LCD4,01 ^Use BIT1 = 1 to stop ^ '
FOL WAIT TRIG2 * * * '
OUT LCD3,01 BLANK TO END OF LINE
OUT LCD4,01 BLANK TO END OF LINE

LABEL NEXT_CUT 'start of cycle loop
IF BIT1 = 1 GOTO EXIT 'signal to exit cut loop
IN Q25 = FOL AXIS1 MAS_C 'read cycle count
OUT LCD4,01 ^Cycle count is: ^ Q25
GOTO NEXT_CUT 'do next cut when length passes

LABEL EXIT
MOVE * STOP * * * 'stop master
MOVE STOP * * * 'stop profile
DONE
*

The application example and program above can be briefly summarized. The
main reason the cutting wheel can achieve high cycle rates with smooth
motion is that the entire profile is defined and compiled before motion ever
starts. The profile is also designed to minimize the jerk, i.e., changes in
acceleration required, to match the wheel cycle with the cut length. The
three segments that accelerate and decelerate the wheel roughly approximate
a sinusoidal wave form, and all the math in the program is used to calculate
the distances required for this.

The questions and answers below may be typical for this type of application.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 93

Question Answer
Is it possible to change the cut
length on the fly, i.e, while
moving?

It is not possible to change cut length on the fly.
Everything about the profile is pre-compiled, including the
master travel (i.e., cut length) over which the profile takes
place. To change cut length, you must stop and compile a
new profile.

How can I stop the profile at a
pre-defined spot?

The only way to stop at a pre-defined spot is with a
registration input. The program above already makes use
of a registration input on the wheel for initial positioning.
Define an ON STOPK destination in front of the main
portion of the program. In the destination routine, simply
enable registration on the wheel sensor input, and the
registration move will exit the profile at the desired
position. It is not possible to stop at a predefined spot as
part of the pre-compiled profile definition.

Will there be any drift due to
roundoff errors?

There will never be any drift due to roundoff errors. The
profile is designed in terms of segments, as shown above.
Each segment has the master travel in inches, and the
exact travel of the slave in terms of steps. The sum of
slave travel for the segments adds up to exactly 25,000.
This was ensured by truncating any fractional results of all
segments but the middle segment, and calculating a
subsum. The program then assigns the middle segment a
distance of 25000 less the subsum of the others. During
execution, the 4000 adjusts its setpoint at the end of each
segment, eliminating any accumulated roundoff error
during that segment.

How can I synchronize a second
identical wheel to do a sealing
operation downsteam from the
cut?

This wheel would use the same profile, only delayed to
accommodate the physical separation from the first wheel.
The profile for this second wheel could be designed using
the same program and numbers, but would have one more
lead in segment than the first wheel. This additional lead in
segment would have zero slave travel and end in zero
ratio, but would specify a master travel equal to the
physical separation from the first wheel. This essentially
dwells for a master distance.

Can I define a new profile on one
axis while I'm running on
another?

Yes. Because the profiles are pre-defined, only a single
MOVE or MOVI statement is required to get them started.
Because a repetitive profile never finishes, a MOVE
statement would never finish. To simply start a profile and
continue program execution, use a MOVI statement.
Once a profile is started, no further statement execution is
required for their continued operation. The program could
be doing anything else, including definition of a profile on
another axis.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

94 Model 4000 Options User Guide

Moving Positioning System
Up to this point, the discussion has been related to how the slave follows the
master. The point of view has been that of a stationary observer watching
both the master and slave move. With a ratio of 1:1, the two move together.
This is referred to in the following discussion as the stationary positioning
system (not moving means no motion at the motor). Suppose instead that
the observer is moving with the master, watching the slave. From this point
of view, the slave is not moving at all. This viewpoint is the moving
positioning system (MPS). Standard moves which can be super-imposed on
the MPS include point-to-point, contouring, and even ratio following.
Implementation of the moving positioning system is so easy because each of
the other moves is programmed as if in the standard positioning system.

In the stationary positioning system, moves may be either continuous or
preset, with both types requiring acceleration and velocity specifications.
The same is true in the moving positioning system, except that the velocity
and acceleration specifications are concerning the moving positioning
system, not a stationary point. In both positioning systems, preset moves
may be either incremental or absolute. In the stationary positioning system,
the absolute position is defined as zero on power-up, and defined elsewhere
with the PDEF statement. The MOVE HOME statement is often used to
establish the zero position based on a known physical location. In the
moving positioning system, the PDEF statement may also be used to
establish absolute position, as long as the slave is at rest within the MPS. No
MOVE HOME statements may be issued while in the MPS, but initial absolute
positions within the moving positioning system can be based on trigger
inputs.

Defining and Entering the Moving Positioning System
The MPS can best be described with an example. Suppose the master
represents a conveyor belt that holds trays of bottles, and the slave is
controlling the position of a dispensing nozzle. From the tray's point of
view, the nozzle must be at rest when filling the bottles. The application is
such that the nozzle moves to the first bottle, stop and fill the bottle, move to
the next bottle, stop and fill the bottle, etc. This is point-to-point positioning
with output control, except that the positioning is being performed within
the moving positioning system, not a stationary positioning system. The
bottle filling machine must continually accept new trays of empty bottles at
one end of the belt, and fill the bottles as the tray moves under the filling
nozzle.

We have already noted that for the nozzle to be at rest in the MPS, it must be
following the tray (the master) at a 1:1 ratio, moving in the same direction as
the tray. To move to a particular position on the tray, it must also have
established a position reference. The FOLM RATIO command forms one
part of the definition of a moving positioning system, i.e., how to stay at rest
in the MPS. Establishing the absolute position reference is the other part of
the MPS definition. The FOLM DEF statement allows a trigger input to be
used to establish the master and slave position reference. In the bottle filling
example, trigger #1 is connected to a sensor that detects the leading edge of
the tray and this initiates the recording of master and slave positions in the
MPS.

The nozzle starts out at rest in the stationary positioning system as the tray
approaches on the conveyor. The sensor is located 4 inches away from the
nozzle, towards the approaching tray. The FOLM PDEF statement allows
definition of the slave's position at the time the MPS is defined. If the
moving positioning offset, FOLM PDEF, has not been defined for the slave,
the initial slave position when the MPS is defined will be zero. When the
tray gets to the position sensor, the 4000 defines the moving positioning
system by reading the position counts of both the master and the slave, and
the slave's position is set to that defined with FOLM PDEF. In this example,

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 95

since the tray is 20 inches long and the sensor detecting the tray is 4 inches
from the nozzle, the slave's initial position will be defined as 24 inches. This
way all position references will be with respect to the far edge of the tray, or
position 0.

❊

0" 20" 24"

4"

Once the MPS is defined, in this case when the trigger is made, master and
slave positions are read, but the 4000 has not entered the reference point of
view of the tray. The 4000 has separate commands for defining and entering
the MPS. This allows switching between the moving and stationary
positioning systems at will without losing position in either reference
frame. The moving positioning system is entered with the FOLM ENABLE
statement. After this is issued, all subsequent slave moves will be with
reference to the defined MPS.

In the case of the bottle filling machine, the program will be designed so that
the MPS is entered immediately after it is defined. The nozzle is at rest in the
stationary reference frame when the trigger is sensed, but it is moving
toward the tray in the moving reference frame. When the switch is made
from stationary to moving positioning system, the nozzle enters the MPS at
a non-zero velocity with respect to that system, even though the motor shaft
of that axis does not start to rotate. While in the MPS, to stop or position
means come to rest with respect to the moving reference. For the slave to
stop within the MPS and track the master at the predefined ratio, a MOVE
STOP must be issued, or the slave must be commanded to some position
within the MPS. In this case it will stop with respect to the tray and track the
master after the commanded position is reached.

The example above illustrates that when a moving positioning system is
defined, there are two sets of positions to which the slave may be sent.
Positions with respect to a stationary reference may be commanded when
the slave axis is in the stationary positioning system (i.e., FOLM ENABLE
NO). In this case, the IN Qn = FOL AXISn SLV_P statement will read a
stationary position. Positions with respect to the moving reference, for
example, the tray of bottles, may be commanded when the slave axis is in the
moving positioning system (i.e., FOLM ENABLE YES). In this case, the IN
Qn = FOL AXISn SLV_P statement will read a position with respect to
the moving reference. In other words, the FOLM ENABLE YES/NO
statement changes context for the position request as well as the positioning
command.

Below is a summary of the moving positioning system commands required
for the bottle filling machine, assuming axis #1 is the axis controlling the
nozzle:

FOLM RATIO 1:1 * * * 'Set slave to master ratio at 1:1, assuming unit
'scale factors previously defined

FOLM PDEF 24 * * * 'Slave position is 24 inches at time of MPS
'definition

FOLM DEF TRIG1 * * * 'Define the MPS on trigger #1
FOL WAIT TRIG1 * * * 'Halt program operation until trigger #1 active
FOLM ENABLE YES * * * 'Enable moving positioning system

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

96 Model 4000 Options User Guide

Event Coordination and Master Cycle Positions
The fact that moves are simply super-imposed on ratio following makes
programming within the MPS easier because slave profiles do not need to be
calculated as a function of master position. There are situations, however,
when slave event timing must be coordinated with respect to master position.
One situation arises from limited travel on the slave axis.

☛ In this
example the

slave axis
controls the

nozzle position
and velocity

❊

0" 20" 24"

4"

End of Travel

3 106.5 13.5 17

8"

In the bottle filling machine described above, the nozzle's initial position is 8
inches away from the physical end of travel closest to the tray. Suppose there
are 5 bottles per tray, spaced every 3.5 inches, with the center of the first bottle
3 inches from the edge. At the time the MPS is defined, the slave is at position
24, moving toward the first bottle. After the MPS is enabled, the desired
command sequence should simply move the nozzle to positions 17, 13.5, 10,
6.5, and 3, pausing at each long enough to fill the bottle. Notice, however, that
if the nozzle's velocity is high enough, the nozzle may be commanded beyond
its end of travel. To avoid this situation a master cycle of 24 inches should be
defined using the same trigger input which defines MPS. Each slave's move
should be preceded by a command to wait for a master position within that
cycle which is 3.5 inches greater than the previous master position. This will
ensure room for the slave's next move. While waiting for each master position,
keep in mind that the slave will be tracking the master's velocity, remaining
stationary in the moving reference frame, but moving away from the critical
end of travel in the stationary reference frame.

The above need is accommodated by the ability to define a new master cycle
upon the same trigger input which defines the MPS, and wait for positions
within that cycle. The master cycle position and cycle count are set to zero
when the new master cycle is defined (with the FOL NEWCYC statement). In
the case of the bottle filling machine, the trays are not evenly spaced, so a new
cycle is defined with each new tray. Once a tray is sensed, a new cycle begins
and the MPS is defined. Waiting for positions within that cycle will take care
of the limited travel situation described above.

The Multi-Axis Bottle Filling example below shows how the use of FOL WAIT
statements solves the problem arising from limited travel on the bottle filling
axis.

It is important to note that any command processing delay associated with the
wait for a cycle position will have no effect on the positioning accuracy of the
slave in the MPS. The position relationship between the master and slave
remains locked while the slave waits for a master cycle position.

Summary of Moving Positioning System Statements
FOLM RATIO 'Defines the required ratio of slave to master

'velocity for the slave to stay at rest in the MPS
FOLM PDEF 'Determines the slave's initial position in the MPS
FOLM DEF 'Establishes the moving positioning system at the time

'of statement execution or upon a trigger input
FOLM ENABLE 'Enables or disables a slave's positioning within the MPS

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 97

Multi-Axis Bottle Filling
The text above described in detail the relationship between the bottle tray
and the fill nozzle, and the text below expands on that example to illustrate
multi-axis coordination and the ability to position between moving and
stationary positioning systems. In addition to filling each bottle, the
machine must move the finished tray off the first belt onto a second moving
belt. The second belt is moving perpendicular to the first belt at a velocity
unrelated to that of the first belt.

Axis #1 controls the nozzle, and its motion requirements have already been
described. Axis #2 and #3 move a clamping device that removes the tray
from the first belt and deposits it onto the second belt. The 4000 program
controlling the entire machine is described and listed below.

The motor resolution for all three axes will be 25,000 and the encoders will
be 1000 line rotary encoders. Rack and pinion systems are used which yield
one revolution per inch for both the motors and the encoders. This gives
25000 slave steps per inch and 4000 post quadrature master steps per inch.
Programming units for master and slave positions will be inches, and slave
velocity units will be inches/second.

It is important to note that when the nozzle is moving with respect to the
moving positioning system, the defined velocity of 10 inches/second refers
to the velocity of the nozzle with respect to the tray. Because the nozzle's
moves will be in the negative direction and the tray is moving at 5
inches/second in the positive direction, the net velocity in the stationary
positioning system will be 5 inches/second in the negative direction.

After defining the MPS parameters, the axes are sent home, positions are set
to zero, and the nozzle and clamp outputs are turned off. After these
statements are completed, the axes are enabled as slaves. The encoder which
measures the speed for the first belt acts as a master to axes #1 and #2, and it
is connected to encoder input #1 on the 4000. The encoder which measures
the speed of the second belt is fed into encoder input #4 on the 4000, and acts
as the master for axis #3. Stall detect is enabled on axes #2 and #3, with
stalls detected by encoders mounted right on those motors.

UNIT POS 25000 25000 25000 * 'Slave scale factors set for steps/inch

UNIT MASTER 4000 4000 4000 * 'Master scale factors to encoder
'steps/inch

UNIT VEL 25000 25000 25000 * 'Velocity scale factor set for inches/sec

UNIT ACCEL 25000 25000 25000 * 'Acceleration scale factor set to
'inches/sec/sec

VEL 10 10 10 * 'Velocity of 10 ips on all axes

ACCEL 20 20 20 * 'Acceleration of 20 ips2 on all axes

MOVE HOMECW HOMECW HOMECW * 'Start move towards home in CW direction

PDEF 0 0 0 * 'Position at home set to 0

OUT POB 11XX 'Set programmable outputs 1 and 2

FOL MASTER ENC1 ENC1 -ENC4 * 'Encoder input #1 to act as master for
'axes 1 and 2, while encoder input on axis
'4 to be master to axis #3. Physical
'limitations require the master encoder
'for the second belt to be mounted such
'that it rotates in the negative direction
'while the belt moves forward. Therefore,
'the minus (-) sign is present on the axis
'#3 argument.

The next three statements initialize the remaining parameters required
before the three moving positioning systems can be defined. These are the
MPS ratio, offset, and master cycle length.

The nozzle's initial offset is 24 inches, allowing programming with respect to
the far edge of the tray. The initial position of the clamp is 20 inches further
away from the nozzle, allowing plenty of room for all the bottles to be filled
before the tray moves into the area where it is to be clamped. To allow
programming of the clamp positions to be done with respect to the far edge of

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

98 Model 4000 Options User Guide

the tray, the moving positioning offset is set to 44 inches for axis #2. Notice
that because the nozzle and clamp are in front of the tray as it is moving
toward them on the first belt, their initial positions are positive. The second
belt is moving away from the clamp, and because there is no particular
destination the tray must be placed on, there is no need to define an initial
offset position for axis #3.

Because the trays do not arrive with even spacing each tray represents a new
cycle for all the axes. The cycle lengths for all the axes may be set to 0 to
allow waiting for all necessary master cycle positions. With the FOL
MAS_CYC value set to 0, the master cycle length is actually infinite. A new
master cycle will be started with each tray that is sensed (FOL NEWCYC), so
master positions will be referenced with respect to the leading edge of the
tray. This is different than the slave axis reference point, remember its
absolute positions will be referenced to the far edge of the tray.

FOLM RATIO 1:1 1:1 1:1 * 'Set MPS ratio to 1:1 on all slave axes

FOLM PDEF 24 44 0 * 'Initial positions when MPS is defined (in user
'defined units, inches)

FOL MAS_CYC 0 0 0 * 'Set master cycle lengths to 0 (infinite master
'cycle length)

0" 20" 24"

4"

End of Travel

3 106.5 13.5 17

8"

Clamping Device

44"

Axis #1

Ax
is

#3

Axis #2

At this point the machine is set up and ready to accept the trays of bottles to
be filled. The next block of program statements performs those functions
which were used to illustrate the concepts of the moving positioning system.
For each tray, the first step is to wait for the sensor connected to trigger #1 to
become active, signaling the leading edge of a tray. The moving positioning
systems of axes #1 and #2 are defined at this time. Axis #1 enters the MPS,
because it will begin moving to the bottles immediately. Axis #2 does not
enter the MPS, because it remains at rest in the stationary positioning
system until all the bottles have been filled. Axis #1 moves to tray positions
17, 13.5, 10, 6.5, and 3 inches. In between it toggles a programmable output
for 1 second to fill each bottle and then waits for another 3.5 inches of
master travel. It is still important to install end of travel limits, even
though the slave waits for master positions to ensure that it never reaches
it's negative end of travel. If the master is traveling more rapidly than
expected, the slave may encounter its positive end of travel before all bottles
are filled.

LABEL NEWTRAY 'Subroutine label for each tray

FOL NEWCYC TRIG1 TRIG1 * * 'Begin new master cycle on trigger #1 for
'axes #1 and #2

FOLM DEF TRIG1 TRIG1 * * 'Define MPS on axes #1 and #2 upon trigger #1
'activation

FOL WAIT TRIG1 TRIG1 * * 'Pause here until the trigger goes active

FOLM ENABLE YES * * * 'Enter the moving positioning system

MOVE 17 * * * 'Move axis #1 to position 17 inches on the
'tray

OUT POB 01XX 'Output #1 activated

WAIT FOR 1 SECONDS 'Time delay for bottle filling

OUT POB 11XX 'Release output #1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 99

FOL WAIT 3.5 * * * 'Wait for 3.5 inches of master travel

MOVE 13.5 * * * 'Move to position 13.5 inches on the tray

OUT POB 01XX 'Output #1 activated

WAIT FOR 1 SECONDS 'Time delay for bottle filling

OUT POB 11XX 'Release output #1

FOL WAIT 7 * * * 'Wait for 3.5 more inches of master travel

MOVE 10 * * * 'Move to position 10 inches on the tray

OUT POB 01XX 'Output #1 activated

WAIT FOR 1 SECONDS 'Time delay for bottle filling

OUT POB 11XX 'Release output #1

FOL WAIT 10.5 * * * 'Wait for 3.5 more inches of master travel

MOVE 6.5 * * * 'Move to position 6.5 inches on the tray

OUT POB 01XX 'Output #1 activated

WAIT FOR 1 SECONDS 'Time delay for bottle filling

OUT POB 11XX 'Release output #1

FOL WAIT 14 * * * 'Wait for 3.5 more inches of master travel

MOVE 3 * * * 'Move to position 3 inch on the tray

OUT POB 01XX 'Output #1 activated

WAIT FOR 1 SECONDS 'Time delay for bottle filling

OUT POB 11XX 'Release output #1

At this point the nozzle has just finished filling the last bottle. The next task
is to move the tray off the first moving belt onto the second moving belt.
First, it is necessary to wait for the tray to come within range of the clamp.
This is handled by axis #2 waiting for a master position of 44, the length of
travel needed to clear the nozzle axis. Notice that because the moving
positioning systems for axes #1 and #2 were both defined by trigger #1, their
master cycle positions will always be the same.

Before the clamp is activated, both axes #2 and #3 must be positioned to the
center of the tray. The home position of axis #3 has been placed so that it
will be centered side to side. In order for axis #2 to become centered on the
tray, it must enter the MPS, and then move to position 10. The same two
statements take axis #1 back into the stationary positioning system, and
return the nozzle to its starting position.

FOL WAIT * 44 * * 'Pause here until tray has moved into area for
'clamping

FOLM ENABLE NO YES * * 'Exit the MPS on axis #1 and enter on axis #2

MOVE 0 10 * * 'Move to stationary reference position 0 on
'axis #1 and MPS referenced position 10 inches
'on axis #2 (center of tray)

Setting programmable output #2 low causes the clamp to lower, close on the
tray, and rise with the tray. A low signal on trigger #2 indicates that this is
complete. The clamp must now place the tray on the second moving belt.
Axis #3 must define and enter a moving positioning system based on the
second belt, and move to position 0 within that reference frame. While this
occurs, axis #2 enters the stationary reference frame, and moves to position
0, the center of the second belt. In order to be sure that the tray physically
reaches the second belt, axis #3 must wait for a cycle position of the width of
the tray, 6 inches in this case. Only then, the second programmable output
bit can be set high, which causes the clamp to lower, release the tray, and
rise. A high signal on trigger #2 indicates that this is complete. The last step
is to prepare for the next tray. Axis #3 returns to the stationary positioning
system and moves back to position 0.

OUT POB 10XX 'Set output #2 low

WAIT FOR TRIG2 = 0 'Wait for trigger #2 to go low - clamping
'complete

FOLM DEF * * IMMED * 'Define MPS on axis #3

FOL NEWCYC * * IMMED * 'Begin new master cycle immediately

FOLM ENABLE * NO YES * 'Exit the MPS on axis #2 and enter on axis #3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

100 Model 4000 Options User Guide

MOVE * 0 0 * 'Move to stationary reference position 0 on
'axis #2 and MPS referenced position 0 inches
'on axis #3

FOL WAIT * * 6 * 'Wait for 6 inches of master travel (width of
'tray)

OUT POB 11XX 'Set output #2 high to release clamp

WAIT FOR TRIG2 = 1 'Wait for trigger #2 to go high - clamp
'released

FOLM ENABLE * * NO * 'Exit the MPS on axis #3

MOVE * * 0 * 'Move to stationary reference position 0

GOTO NEWTRAY 'Goto label NEWTRAY and repeat the process

Special Features of the Moving Positioning System
Notice that in the bottle filling example, the first positioning command
given on axis #1 after the tray is sensed is given while the slave is already in
motion with respect to the moving reference frame. The 4000 allows normal
time-based preset moves to be made in a moving positioning system while
the slave is already moving, even if the slave's current direction is away from
the new commanded position. This means that the slave does not need to
waste time stopping before moving to the first commanded position.

A second special feature is that of super-imposed contouring on a moving
target. Imagine an application where glue must be dispensed in a pattern
onto a web as it moves through a machine. The obvious three axis solution
would be to mount a two axis X-Y stage used for contouring onto a one axis
table which would follow the web. A more cost effective and reliable solution
would be to use one axis of the X-Y stage to follow the web. Now the
mechanics are reduced and only two motors are required. The programming
from the user's point of view would be identical to the contouring of the three
axis approach, but the X axis would have entered the moving positioning
system and started tracking the master before the contour is drawn.

In this contouring case, as with normal positioning, the path velocity of the
contour with respect to the moving web is not dependent on the speed of the
master. This allows uniform application of the glue along the pattern,
regardless of master speed.

Another possibility to discuss is that of differential following. Imagine an
application in which trackball positioning must be performed above a web
as it moves through a machine. The same three axis versus two axis
solutions exist as with the contouring example described above. Once again,
the programming for the two solutions is the same, except that one axis of
the trackball would be the same as the web following axis. This is a case
where ratio following is super-imposed on a moving positioning system.

The obvious benefit to the use of the moving positioning system is the ability
to program positioning on a moving target in exactly the same way it would
be programmed in the stationary reference frame. In both cases, the
programmer need not be concerned with velocity versus position along the
move profile, only to command end positions, contours, following ratios,
I/O, or whatever the application requires.

A second application of the moving positioning system is described below.

Continuous Cut to Length
Let's take another look at the automobile stock cutting application discussed
earlier in this chapter. Below is another programming solution for that
example using the moving positioning system.

Once again, this application calls for automobile trim to be cut to a pre-
defined length. The saw is controlled by axes #1 and #2 on the 4000. It must
be moving with the material while the cut is being made (axis #1), and also
moving perpendicular to the trim (axis #2) to actually make the cut. The
trim comes in long stock which moves continuously under the cutting area.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 101

The leading edge of the trim stock is detected with a sensor connected to
trigger #1 which is located 4 inches from the home position of the saw. Axis
#1 will be following the trim based on an encoder mounted on the trim via a
friction wheel. The encoder is a 1000 line encoder and the wheel is geared to
give 2 revolutions per inch of trim. This results in 8,000 post quadrature
steps per inch of trim. Axis #1 has a resolution of 25000 steps per rev, and is
connected to a 2 pitch leadscrew 24" in length. Axis #2 is similar in
mechanics but its length is 10". The travel on Axis #1 will be controlled by
the speed at which axis #2 makes its cut. Limit switches are in place for
safety.

Raw Stock Sensor

❇

4"

Axis #1

Axis #2
E

Encoder

Below, the initial cut length is 36", established with each cut by the current
value of variable Q1. Minor modifications to this program could allow Q1 to
be read from DATA statements or modified in other ways. The cut cycle will
be a continuous loop, but the first cut will be made 0.2" from the end of the
stock to ensure an even first edge. Assume that the home position of both
axes is at position 0". The moving position system offset will be set to the
distance from axis #1's home position to the desired cut position, 4.2". This
means that the desired cut position will be position 0 in the MPS. This
example differs slightly from the first Cut to Length example in that the
initial master is set to be -4.2".The program below differs from the first look
at this example in that as soon as axis #1 enters the MPS and moves to the
moving position 0, it starts tracking the speed of the master. As soon as this
happens, the cut with axis #2 takes place. Notice that as soon as axis #1
moves to the moving cut position, 0", the position is then defined as the cut
length. This enables the loop to execute continuously.

UNIT POS 50000 50000 * * 'Set axes #1 and #2 scale factors for
'programming in inches

UNIT VEL * 50000 * * 'Axis #2 velocity scale factor for
'inches/sec

UNIT ACCEL * 50000 * * 'Axis #2 accel scale factor for
'inches/sec/sec

UNIT MASTER 8000 * * * 'Master scale factor for programming in
'inches

ACCEL * 20 * * 'Accel for axis #2

VEL * 5 * * 'Velocity on axis #2 to 5 inches/sec

MODE M_ABS M_ABS * * 'Absolute positioning mode for non-
'following moves

MATH Q1 = 36 'Desired cut length is 36"

MATH Q5 = Q1 'Set Q5 cut length

MATH Q2 = 4 'Sensor is 4" from home position of axis #1

MATH Q2 = Q2 + 0.2 '1st cut to be 0.2" from end of stock

MATH Q3 = -Q2 'Q3 = offset for 1st cut

FOL MASTER ENC1 * * * 'Encoder input #1 is the master for axis #1

FOL CYC_OFF Q3 * * * 'Initial master cycle position

FOLM RATIO 1:1 * * * 'MPS tracking ratio is set to 1:1

FOLM PDEF Q2 * * * 'Slave position when the MPS is defined
'(upon trigger #1) will be distance to
'first cut location.

FOLM DEF TRIG1 * * * 'Define moving positioning system upon trig
'#1

FOL NEWCYC TRIG1 * * * 'Also define a new master cycle on that
'trigger

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

102 Model 4000 Options User Guide

FOL WAIT TRIG1 * * * 'Suspend program until edge of product is
'sensed

OUT BIT7 = 1 'Lower the saw blade into position

FOL WAIT Ø * * * 'Wait for desired master travel before
'executing first move

LABEL NEW_CUT 'Subroutine label for continuous operation

FOLM ENABLE YES * * * 'Enter the MPS

MOVE 0 * * * 'Move to position 0" within the MPS (the
'cut position

PDEF Q1 * * * 'Set current position to desired cut length

MOVE * 10 * * 'Move axis #2 to make cut

FOLM ENABLE NO * * * 'Exit the MPS

OUT BIT7 = 0 'Raise the saw blade

MOVE 0 0 * * 'Move both axes back to home positions

OUT BIT7 = 1 'Move saw blade into position for next cut

FOL WAIT Q5 * * * 'Wait for end of cycle

MATH Q5 = Q1 'Set Q5 = Q1 (new cut length)

FOL MAS_CYC Q5 * * * 'New master cycle length is cut length

GOTO NEW_CUT 'Repeat the cut cycle

Technical Considerations for Following
In the Technical Overview section at the start of this chapter, the algorithm
for Model 4000 Following was briefly discussed. Here we will address some
of the more technical aspects of Following. Topics covered include Velocity
Feed Forward, Velocity Smoothing, Dynamic Position Maintenance, Preset
vs. Continuous Following Moves, and Master and Slave Distance
Calculations. Keep in mind that in all cases, the slave position is calculated
from a sampled master position.

Velocity Feed Forward
Velocity feed forward is simply a technique used to compensate for the fact a
slave position setpoint can not be calculated and implemented infinitely
fast. As noted in previous paragraphs, the 4000 measures master position
every two milliseconds, and calculates a corresponding slave setpoint. This
calculation and achieving the subsequent slave setpoint position require 4
milliseconds. If velocity feed forward is not turned on, this results in a slave
position lag. In other words, by the time the slave reaches the position which
corresponds to the sampled master position, 4 milliseconds have gone by,
and the master may be at a new position. Measured in time, the lag is 4
milliseconds. Measured in position, the lag is 4 msec * current slave velocity.
For example, suppose our slave is traveling at a speed of 25000 counts per
second. Without velocity feed forward enabled, the slave will lag the master
by 100 counts (25000 counts/sec * 4msec = 100 counts).

By measuring the change in master position over a number of sample
periods, the master's velocity is calculated every two milliseconds. The
present master velocity and position are used to predict future master
position. If velocity feed forward is enabled, the predicted future master
position is used to determine the commanded slave position setpoint. In this
case the slave has no velocity dependent phase delay. The slave's velocity for
a given sample will always be the velocity required to move from its current
position to the next calculated setpoint. Velocity feed forward is activated by
default in the Following algorithm, but can be turned off as desired with the
FOL VELFF statement.

If the master velocity is fairly smooth and constant, the measurement of its
recent velocity will be very accurate, and a good way of predicting future
position. But the master motion may be rough, changing, or measured over a
very short sample period (see Velocity Smoothing). In this case, the predicted
master position and the corresponding slave setpoint will have some error,
which may vary in sign and magnitude from one sample to the next. This

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 103

random variation in slave setpoint error results in rough motion. The
problem is particularly pronounced if there is vibration on the master.

It may be desirable to deactivate velocity feed forward when maximum slave
smoothness is important and minor phase delays can be accommodated.

Velocity Smoothing
In the default Following algorithm, invoked when the FOL MASTER
statement is executed, the master's velocity is calculated over 2 two
millisecond sample periods. This default algorithm will work well for most
Following applications. If master pulses are received at a very slow rate or if
the master is actually vibrating, it may be necessary to change the velocity
smoothing factor. If coarse velocity measurement is used in velocity feed
forward due to fluctuations in master velocity speed, there will be a
corresponding roughness in the motion of the slave.

Increasing the velocity smoothing value from the default value of 1 up to its
maximum value of 4 has two effects. One is to increase the filtering done by
the 4000 on each individual master position measurement, and the other is
to lengthen the velocity averaging sample period. The Model 4000 filters
master position measurements by averaging the actual position with the
master position which would be expected based on previous velocity
measurements. Increasing the smoothing number increases the weight of
the expected position in these calculations. This serves as a software
damping for vibration on the master.

Lengthening the sample period by increasing the velocity smoothing number
also increases the velocity measurement resolution (i.e. how many pulses are
coming in per sample period). The 4000 allows sample periods of 4, 8, 16, or
32 milliseconds with the FOL SMOOTH statement values of 1, 2, 3, and 4
respectively. (These correspond to velocity measurement resolutions of
250Hz, 125Hz, 62Hz, and 31Hz.) This affects accuracy of the velocity read
using the IN Qn = FOL AXISn MAS_V statement. For example, if the
actual master velocity if 500Hz, and a value of FOL SMOOTH 2 is chosen,
the reported velocity will be ±25% accurate.

Lengthening the sample period gives smoother motion on the slave, but will
also result in a slower response to master velocity changes. For those
applications in which the master undergoes rapid velocity changes, it may
not be desirable to have the velocity smoothing factor set very high. Here, a
high velocity smoothing factor will cause sluggish velocity response on the
slave.

If acceleration and deceleration of the master result in significant velocity
changes within the sample period, temporary tracking error will occur if the
4000 is smoothing the velocity measurement. However, this does not mean
that the overall position relationship between master and slave is lost.
Because velocity measurement includes data from the previous sample
period, slave position will temporarily lag during master acceleration, and
lead during master deceleration. These temporary errors are corrected
during constant master velocities, and minimized by using a low velocity
smoothing factor.

Dynamic Position Maintenance
Even while following a master, a slave axis can be in encoder mode with stall
detection, position maintenance, and/or deadband wait enabled. In this
mode of operation, a difference between actual slave position and the desired
slave position may arise just as it may with normal encoder mode moves.
Systems with an encoder mounted on a load where mechanical backlash or
product stretching is present will be most prone to these desired vs. actual
position differences.

An axis becomes a slave by specifying a master with the FOL MASTER
statement. When an axis in encoder step positioning becomes a slave axis, it
automatically begins the equivalent of position maintenance. This remains

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

104 Model 4000 Options User Guide

true even if the ENABLE POSM NO statement is given, and even while the
axis is in motion. There is a very important reason for the continuous
dynamic position maintenance. In regular time based moves, the axis has
no defined position relationship with anything while it is moving but it does
have a position goal while at rest. Therefore position maintenance is only
meaningful when the axis is not moving. When a slave axis is following a
master, there is always a defined position goal, calculated from the position
of the master. Therefore, position maintenance occurs even while the axis is
moving. The position error each sample period will usually be very small, so
only a small correction velocity is added to that required for the slave to
follow the master at the commanded ratio. The 4000 limits the maximum
correction velocity to that specified with the POSM MAXVEL statement.

Setpoint Lead,
Direction
Change Set-Up,
and Trigger
Debounce

Most of the concepts discussed above will apply to all applications and all
equipment used with those applications. There are, however, some
differences in drive electronics and sensors which need to be addressed in
following applications. One of the these is a velocity dependent lag in the
controlled position in some drives. Drives which must convert step and
direction input into the corresponding torque control via software may have
some inherent delay in their response to these input. Among such drives are
the Dynaserv step and direction versions, which have up to 6 milliseconds of
lag.

In normal positioning applications, a delayed response to step and direction
input will not cause a problem, because the final position is the only position
of interest. In following, however, every position along the profile is
important, because it must correspond to a master position. A velocity
dependent lag causes a synchronization error. When the drive is a servo
drive, it is not feasible to use the the dynamic position maintenance which is
associated with encoder mode, because the drive is attempting its own
position control. The setpoint lead feature allows the Model 4000 to
dynamically advance the slave setpoint beyond what would be normally
resulting from the profile. It is advanced by the product of the instantaneous
velocity and the lead value specified with the FOL LEAD statement. This
helps to compensate for lag in the drive, but at the expense of stabilty in
commanded position. The commanded advance is a function of the velocity,
but also affects the velocity. This can cause the profile to be skewed during
slave acceleration and deceleration. It is best to avoid this feature when
possible (i.e., use the default value of zero). If it is necessary to compensate
for drive lag, the proper value will need to be determined empirically.

Another attribute of some drives is the requirement for a direction input
change setup time. Most Compumotor steppers have this requirement. It
simply means that some minimum time must be allowed for the drive to
respond to a change on the direction input before any steps are given in the
new direction. This mimimum time is generally much less than the 2
milliseconds allowed by the default condition of the Model 4000. In normal
positioning applications, motion always stops before a move is commanded
in the opposite direction, so this requirement is of no consequence. In
following however, the master may change direction, resulting in a direction
change on the slave without a new move command. When the set-up time is
enabled, the Model 4000 temporarily saves the steps which would have been
sent with the direction change. These steps are sent during the next 2
millesecond update. Some drives, such as the Dynaserv and Z Drive, do not
have a direction change set-up requirement. In order to facilitate smooth
following on these drives, the FOL DIRSET statement may be used to disable
the default 2 millisecond direction change set-up.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 105

Finally, the variety of sensors and their electronics demands that the
debounce time for the trigger inputs be programmable. Debounce time refers
to the time that trigger input change will be ignored after receipt of a rising
edge on that input. The DEFINE TRIGDB statement allows the debounce
times of the trigger inputs to be individually programmed. This allows
flexibility in the choice of sensors, switches, and inputs. For example, a
clean electronic signal could be used at a fairly high rate for Master/Slave
Synchronization Sync Marks, while a mechanical switch with significant
bounce could be used on some other input.

Factors Affecting Following Accuracy
Many references have been made throughout this chapter to the additional
accuracy requirements of following applications beyond those of standard
positioning. The slave must maintain positioning accuracy while in
motion, not just at the end of moves, because it is trying to stay synchronized
with the master. Assuming parameters such as master and slave scaling and
ratios have been specified correctly, the overall positioning accuracy for an
application depends on several factors. Just as with a mechanical
arrangement, the accuracy errors can build up with every link from the
beginning to the end. The overall worst case accuracy error will be the sum of
all the sources of error listed below. The errors fall into two broad
catagories, namely, master measurement errors and slave errors. These
both ultimately affect slave accuracy, because the commanded slave position
is based on the measured master position.

It is important to understand how master measurement errors result in slave
position errors. In many applications, master and slave units will be the
same, e.g., inches, millimeters, degrees. These applications will require
linear speeds or surface speeds to be matched, i.e., a 1:1 ratio. For example,
in the rotary knife application discussed in the Cam Profiling section, there
were 500 master steps per inch of material, so an error in master
measurement of one encoder step would result in .002 inches of slave
position error. If the master and slave units are not the same, or the ratio is
not 1:1, the master error times the ratio of the application gives the slave
error. For example, suppose one revolution of a wheel gives 4000 master
counts, and results in 10 inches of travel on the slave. The ratio is then 10
inches:one revolution. The slave error is which results from one step of
master measurement error is (1/4000) * 10 inches:one revolution = .0025
inches.

➀ Resolution of the master. The best case master measurement precision
is the inverse of the number of master steps per user's master unit.
Even if all other sources of error are eliminated, slave accuracy will
only be that which corresponds to 1 step of the master.

➁ The 4000's sampling accuracy. The 4000 has a nominal sampling rate
of 2 milliseconds, but the precision of this rate may vary by as much as
100 microseconds from one sample to the next. This affect is may
reduced to something less than 50 microseconds by using higher
smoothing values . This means that measurement of master position
may be off by as much as (50 to 100 microseconds * master speed). This
may appear to be a significant value at high master speeds, but it should
be noted that this error changes in value (and usually sign) every 2
milliseconds. It is effectively like a 500 Hz noise to the overall system.
If the mechanical frequency response of the motor and load is much
less than 500 Hz, the load can't respond to this error.

➂ Velocity Feed Forward. This feature may be turned on or off, but each
state contributes a different error. If velocity feed forward is turned off,
the slave setpoint command is based on a master position that is 4
milliseconds old. This means that master measurement error due to
velocity feed forward being off will be (4 milliseconds* master speed).
If velocity feed forward is turned on (the default case), its accuracy is
also affected by sampling accuracy, master speed and velocity
smoothing. The error due to velocity feed forward being on is about

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

106 Model 4000 Options User Guide

twice that due to sampling accuracy, i.e., (100 to 200 microseconds *
master speed). As with the error due to sampling accuracy, error due to
velocity feed forward being on is a 500 Hz error, which is not noticed by
large loads.

➃ Master Speed Variation, Velocity Feed Forward, and Velocity
Smoothing. Although increasing velocity smoothing helps reduce the
error due to sampling accuracy, it increases the error due to variations
in master speed when velocity feed forward is on. Most applications
keep a constant master speed, or change very slowly, so this effect is
minimal. But if the master is changing rapidly, there is a significant
master speed measurement error. This master speed error is about one
half the master speed change over the velocity smoothing sample
period. Please refer to the section titled Velocity Smoothing for a
discussion of sample periods. This corresponding master
measurement error will be (4 milliseconds * master speed error). This
effect will always be smaller than that due to velocity feed forward
being turned off.

➄ Resolution of the slave. The best case slave precision is the inverse of
the number of slave steps per user's position unit. Even if all other
sources of error are eliminated, slave accuracy will only be that which
corresponds to 1 step of the slave. This must be at least as great as the
required precision.

➅ Dynamic Position Maintenance. Even when the slave is in motor step
mode, there may be one slave step of error inherent to the algorithm.
When the slave is in encoder step mode, the user specified position
maintenance gain is used to correct position. This gain is expressed as
motor steps per second per encoder step error, and has a maximum
value of 250. If a value lower than this is used, the position error in
encoder steps due to low gain is given by: error = (250/gain) * (encoder
resolution/motor resolution).

➆ Accuracy of the slave motor and drive. The precision also depends on
how accurately the drive follows its commanded position while
moving. Even if master measurement were perfect, if the drive
accuracy is poor, the precision will be poor. In the case of stepper
drives, this amounts to the specifed motor/drive accuracy. In the case
of servo drives, the better the drive is tuned for smoothness and zero
following error, the better the precision of the positioning. Often, this
really only matters for a specific portion of the profile, so the drive
should be tuned for zero following error at that portion.

➇ Accuracy of load mechanics. This is fairly self explanatory. The
accuracy (not repeatability) of the load mechanics must be added to the
overall build up of accuracy error. This includes backlash for
applications which involve motion in both directions.

➈ Repeatability of the trigger inputs and sensors. Some applications may
use the trigger inputs for functions like registration moves, movewaits,
new cycles, master/slave synchronization, or moving positioning
system definition. For these applications, the repeatability of the
trigger inputs and sensors add to the overall position error. In the
4000, the trigger inputs have 100 microsecond repeatability, and the
sensor repeatability (SR) should be determined too. Velocity * time =
distance, so the error due to repeatability is (SR +.0001 seconds) * speed
= error. If the sensor repeatability is given in terms of distance, that
value can be added directly.

Preset vs. Continuous Following Moves
When a slave performs a preset move in Following mode, the commanded
position is either incremental or absolute in nature, but it does have a
commanded endpoint. The direction traveled by the slave will be determined
by the commanded endpoint position, and the direction the master is
counting. Let's illustrate this with an example. Assume all necessary setup

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 107

statements have been previously issued for our slave (axis #1) and master so
that distances specified are in revolutions:

FOL RATIO .75:1 'Following ratio of .75 rev on the slave to 1
'rev on the master

FOL ENABLE YES * * * 'Enable following on axis #1

FOL MDIST 10 * * * 'Preset move to take place over 10 master
'revolutions

MODE M_ABS * * * 'Slave in absolute mode

PDEF 0 * * * 'Set current position to 0

MOVE 5 * * * 'Move to position 5 revolutions

If the master is stationary when the MOVE statement is executed, the slave
will remain stationary also. If the master begins to move and master pulses
are positive in direction, the slave will begin the preset move in the positive
direction. If the master pulses stop arriving before 10 master revolutions
have been traveled, the slave will also stop moving, but that MOVE statement
will not be completed. If the master then starts to count in the negative
direction, the slave will follow in the negative direction, but only as far as
it's starting position. If the master continues to count negative, the slave will
remain stationary. The MOVE statement will not actually be completed until
the master has traveled at least 10 revolutions in the positive direction from
where it was at the time the MOVE command was executed. If the master
oscillates back and forth between it's position at the start of the MOVE
command to just under 10 revolutions, the slave will oscillate back and forth
as well.

The master must be counting in the positive direction for any preset MOVEs
commanded on the slave to be completed. If mechanics of the system dictate
that the count on the source of the master pulses is negative, a minus (-) sign
should be entered in the FOL MASTER statement so that the 4000 sees the
master counts as positive.

Continuous slave moves react much differently to master pulse direction.
Whereas a preset move will only start the profile if the master is moving in
the positive direction, a continuous move will begin the ramp to its new ratio
following the master in either direction. As long as the master is counting in
the positive direction, the direction towards which the slave starts in a
continuous move is determined by the argument of the MOVE statement. The
slave direction is positive for MOVE SLEWCW and negative for MOVE
SLEWCCW.

If the master is counting in the negative direction when slave begins a
continuous move, the direction towards which the slave moves is opposite to
that commanded with the MOVE statement. The slave direction is positive
for MOVE SLEWCCW and negative for MOVE SLEWCW.

If the master changes direction during a continuous slave move, the slave
will also reverse direction. As with standard continuous moves, the MOVE
SLEW will continue until terminated by MOVE STOP, MOVE KILL, end of
travel limits, stall condition, or command to go to zero velocity. As with
preset moves, the sign on the FOL MASTER statement determines the
direction of master pulses.

In both types of moves, acceleration to commanded ratio may take place
with respect to master steps or a time-based acceleration. If FOL MDIST has
been executed more recently than ACCEL, the ratio change will take place
with respect to master steps. In this case, no change in ratio will result when
a MOVE is commanded until some master pulses have been received. If a
time-based ACCEL is used, the slave will accelerate until it reaches the
velocity implied by the commanded ratio and the current master velocity. If
the current master velocity is zero, the slave acceleration takes no time.

Master and Slave Distance Calculations

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

108 Model 4000 Options User Guide

As described earlier in the chapter, a slave's acceleration to a commanded
ratio can be defined in one of two ways. A standard time-based acceleration
ramp may be defined with the ACCEL statement or the FOL MDIST
statement can be used to determine the master distance over which the
acceleration (mode continuous moves) or entire move (preset moves) takes
place.

For the latter case, the formulas below show the relationship between master
move distances and the corresponding slave move distances. These formulas
may be re-arranged to solve for the desired parameters:

Mode
Continuous
Moves

D =
MD * (R2 + R1)

2

where:

MD = Master Distance (FOL MDIST)

R2 = New Ratio

R1 = Current Ratio

D = Slave Distance Traveled During Ramp

Trapezoidal
Preset Moves

Dmax = (MD * Rmax)

D1 =
(Dmax - D)

2

MD1 =
2 * D1
Rmax

D2 = D - (2 * D1)

MD2 =
D2
Rmax

MD = (2 * MD1) + MD2

where:

MD = Master Distance (FOL MDIST)

MD1 = Master Distance During Accel and Decel Ramps

MD2 = Master Distance During Constant Ratio

D = Total Slave Preset Distance

D1 = Slave Travel During Accel and Decel Ramps

D2 = Slave Travel During Constant Ratio

Dmax = Maximum Slave Distance Possible

Rmax = Maximum Ratio

☛ Dmax results
in rectangular
move profile.

If (Dmax - D) > D, then the move will be triangular.

D = (D2 +2*D1)<Dmax

Rmax

Rmax
D2 = D
D1 = Ø
MD2 = MD
MD1 = Ø

D2

Trapezoidal

Rectangular

MD1MD2MD1

MD2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 109

Triangular
Preset Moves

D =
Rpeak * MD

2

where:

MD = Master Distance (FOL MDIST)

Rpeak = Peak Ratio Reached During Move

D = Total Slave Steps

Rmax
Rpeak

Triangular

D

MD

S< (Dmax -D1)

These relationships may be used to assist in the design of following mode
moves in which both the position and duration of constant ratio are
important. In such calculations, it is very helpful to use UNIT MASTER and
UNIT POS values which allow the master and slave distances to be
expressed in the same units, e.g., inches or millimeters. In this case, many
applications will be designed to reach a final ratio of 1:1, and the distances
in these figures can be easily calculated. For a trapezoidal preset move with a
maximum ratio of 1:1, the master and slave distances during the constant
ratio portion will be the same. The slave travel during acceleration will be
just half of the corresponding master travel, and will also occur during
deceleration. In the example below, the desired travel during constant ratio
is already contained in Q1, and may have been read from thumbwheels or a
DATA statement. The corresponding MOVE distance and FOL MDIST are as
shown:

MATH Q2 = 2 'desired slave travel during accel and decel combined
MATH Q3 = 2 * Q2 'required master travel during these ramps
MATH Q4 = Q1 + Q2 'move distance is constant ratio portion plus ramps
MATH Q5 = Q1 + Q3 'master travel for entire slave move
FOL MDIST Q5 * * * 'establish calculated master travel
MOVE Q4 * * * 'make desired slave move

Similar calculations may be done for a series of continuous move ramps to
ratios, separated by FOL MOVEWT for master cycle positions. These ramps
may be repeated in a loop to create a continuous cyclical slave profile. The
Web Processing example earlier in this chapter uses this technique.

Some potential for roundoff error exists if the scaling of a move distance or
master distance by UNIT POS and UNIT MASTER respectively do not result
in an integer number of steps. Some additional care must be taken in the
segment by segment construction of profile using ramps to continuous ratio.
The 4000 maintains a slave position setpoint which is calculated from the
commanded constant ratios, the ramps to the new ratios, and the master
travel over which these take place. At the end of each ramp or constant ratio
portion, this setpoint is calculated to the nearest integer slave step. If the
ratios and master travel result in a non-integer slave travel for a segment,
the fractional part of that segment's calculated travel will be lost. In a
cyclical application, repeated truncations could build up to significant error.
This may be avoided through the use of sync marks, as in the Web Processing
example, or through careful attention to design of the profile.

Using Other Features with Following
The 4000 has many features which may be used in the same application as its
following features are. In some cases, having configured an axis as a slave
with the FOL MASTER statement will affect the operation of other features.
These are described in the paragraphs below.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

110 Model 4000 Options User Guide

Setups used by
FOL MASTER

The FOL MASTER statements uses the motor resolution (ENCO MRES), the
velocity range (VEL RANGE), and the choice of motor step positioning or
encoder step positioning MODE data to configure an axis as a slave. If encoder
step positioning is chosen, the encoder resolution (ENCO ERES) data is also
used. In order for this data to be used correctly, these statements must be
given before FOL MASTER. These statements will simply be ignored after
FOL MASTER is given. The MODE statement may be used to change from
incremental to absolute positioning and back, but a change to encoder or
motor step positioning will be ignored.

MOVE and
MOVI

If a slave axis is in following mode (FOL ENABLE YES) moves will ramp to
a ratio (FOL RATIO). If it is not in following mode, moves will ramp to a
velocity (VEL). Switching in and out of following mode does not change the
value for final ratio or final velocity goals, but simply changes which
parameter is used as the goal.

MOVE STOP
and MOVE
KILL

These cause the slave to do a non-following decel, even if the slave is in
following mode. If the slave is currently in the MPS, a STOP will decelerate
the slave to a position within the MPS, so the slave may still be moving with
respect to a stationary reference. A KILL will instantly stop motion with
respect to a stationary reference, and automatically exit MPS. Both will
clear a FOL MOVEWT pending condition, and both will clear (i.e., zero) any
accumulated following error.

MOVEs while
moving

In some cases, it is possible for a slave to perform a preset move, i.e., move to
a position, while it is already moving. The need arises whenever a preset
move must be made immediately after a switch is made to or from MPS. The
move may always be done if the slave is not in following mode. If the target
position is too close, the slave simply overshoots and comes back. If the
slave is in following mode, the move may only be done if the profile is
determined by ACCEL. In this case, if the target position is too close, the
slave decelerates abruptly until it can reach the target with the commanded
deceleration. If the profile is determined by FOL MDIST, the MOVE
command will be ignored.

Not while in
MPS

MOVE HOME moves and MOVE SEG moves will be ignored while the slave is
in the Moving Positioning System. These moves are not normally allowed
while the axis is already moving. In these cases, that includes being at rest in
MPS.

Jog and Joystick Entering jog mode and joystick are normally not allowed while the axis is in
motion. In these cases, that does not includes being at rest in MPS. If an
axis is at rest in MPS when either of these modes is entered, the axis
automatically and immediately exits MPS, and implements the jog or
joystick velocity with respect to a stationary reference. It does not return to
MPS when jog or joystick mode is exited.

Registration
Moves

Registration inputs may be enabled while an axis is a slave, and registration
moves may interrupt either a following mode move or a time based move.
They may also interrupt an axis which is either at rest or moving in MPS.
The registration move itself, however, is always a time based move, and
implements the registration velocity with respect to a stationary reference.
It does not return to MPS when move is completed. Any trigger input may be
used for a registration input or it may be used for any following feature
which uses triggers, but not at the same time. A trigger input used for any
following feature will disable that trigger as a registration move input and
vice versa.

Entering and
Exiting
Following Mode
while Moving

The FOL ENABLE NO command may be given while a slave is moving at
constant ratio. In this case, the current velocity becomes the constant
velocity, and the slave may accelerate or decelerate to other velocities. The
FOL ENABLE YES command may not be given while the slave is moving
out of following mode. Attempting to do so will result in an execution error.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 111

Done, Stop and
Resume

A program may be stopped and resumed, even if one or more axes is
configured as a slave. Those axes do not lose track of the master input, even
though motion is stopped. As usual, if a program finishes normally, is
aborted, or if MENU RECALL is pressed, the program may not be resumed. In
these cases, the equivalent of FOL MASTER NO is automatically executed,
and no axis is configured as slave. As a result, the POWER_UP program may
not configure a slave for a program which is to be run separately afterwards.
If a program is resumed, partially completed following moves will be
completed. If these moves were done using FOL MDIST however, the
remainder of the move is completed over the entire original master distance.

Troubleshooting a Following Application
Following applications are often more complex than others, because motion
of the slaves is programmed as a function of the motion of master. This
requires the motion of the master to be well characterized, and accurately
specified in the program, It often requires an unfamiliar way of thinking
about the motion of the desired slave. The table below offers some possible
reasons for troubles which may be encountered in achieving the desired
slave motion.

Trouble Symptom Possible Causes
Slaves do not follow master •Improper FOL MASTER

•Poor connection if master is encoder
•Master running backward
•No encoder power

Slave motion is rough •FOL SMOOTH too low
•Unnecessary FOL VELFF amplifies master
roughness.

Ratio seems wrong •FOL RATIO slave: master numbers reversed.
•UNIT POS or UNIT MASTER wrong.
•ENCO MRES or ENCO ERES wrong for
encoder step slaves.
•Following limited by FOL MAXVEL or FOL
MAXACC

Slave loses previously specified
following commands

•FOL MASTER has been re-executed, re-
establishing defaults

Slave profile wrong, or
unrepeatable

•Accel vs. FOL MDIST correct?
•FOL WAIT used where FOL MOVEWT
should be.
•Too little master travel between FOL MOVEWT
and MOVE, wait is missed.

Master/slave alignment drifts
over many cycles

•Roundoff error due to fractional steps resulting
from UNIT POS or UNIT MASTER and users
parameters.
•Ratios and master distances specified result in
fractional slave steps covered during ramps,
constant ratio.

Slaves ignore ACCEL statement •FOL MDIST given more recently.
•Slaves reached ratio at low master speed, then
followed master acceleration.
•Slaves inhibited by FOL MAXACC.

Excess following error
constantly detected.

•FOL PTOL too small.
•FOL PTOL statement not re-executed before
new ON FOL_ERR.

Slave lags following position •Inhibited by FOL MAXVEL
•FOL MAXACC clips acceleration peaks
resulting from attempt to follow rough master.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

112 Model 4000 Options User Guide

Slave dithers, or oscillates about
desired position.

•POSM GAIN too high for encoder step slave.

•FOL MAXACC too low for POSM MAXVEL.

The Model 4000 does as much error checking as possible during the execution
of a program. If an illegal parameter is discovered, the Model 4000 responds
with an execution error message, and the program is aborted.

The table below lists all the error messages that relate to following, and
indicates the statement and cause which may generate them.

Error Messages Description
Big RAM not installed in U14, U15 This occurs if any FOL or FOLM statement or any INQ request for a following

parameter is executed without the RAM required for the following option installed.
Invalid FOL master specified This indicates that an illegal master was specified in FOL MASTER. A slave may

never use its own motor step count as its master. A slave in encoder step mode or
with stall detect enabled may not use its own encoder step count as master.

This FOL not valid while moving This indicates the statement is not allowed while the slave is moving. Moving means
moving with respect to the current positioning system. A slave may be stationary
with respect to a stationary reference, yet be moving in the moving positioning
system.

FOL MASTER
FOL ENABLE

FOL MASTER not executed This indicates that no FOL MASTER for the axis is currently specified. It will occur
if any FOL or FOLM statement defining or enabling parameters or any INQ request
for a following parameter is executed and no FOL MASTER statement was
executed, or FOL MASTER NO was executed.

FOLM DEF not completed This indicates that the statement is not allowed if no moving positioning system is
defined. It could occur if FOLM DEF was never executed, or if the trigger which
defines the moving positioning system has not occurred.

FOLM ENABLE YES

FOL parameter too large This indicates that the numeric parameter supplied with the statement is too large.
FOL MDIST— Error if: master steps > 999999999
FOL MAS_CYC—Error if: master steps>999999999
FOL WIN_P—Error if: master steps>999999999
FOL WIN_W—Error if: master steps>999999999
FOL CYC_OFF—Error if: master steps>999999999 or <-999999999
FOL PDEF—Error if: slave steps>999999999 or <-999999999
FOL SHIFT—Error if: slave steps>999999999 or <-999999999
FOL SYNC_OFF—Error if: slave steps>999999999 or <-999999999
FOL PTOL—Error if: slave steps>999999999
FOL MOVEWT—Error if: master steps >999999999 or <-999999999
FOL WAIT—Error if: master steps >999999999 or <-999999999
FOL RATIO—Error if specified or calculated ratio >127 or <-127
FOLM RATIO—Error if specified or calculated ratio >127 or <-127
FOL WAIT—Error if: master steps >999999999 or <-999999999
FOL MSYNC—Error if: master steps>999999999
FOL SSYNC—Error if: master steps>999999999

FOL parameter not valid This indicates that the parameter supplied with the statement is not valid.
FOL MDIST —Error if: master steps are negative
FOL MAS_CYC —Error if: master steps are negative
FOL RATIO —Error if: ratio denominator is negative
FOLM RATIO—Error if: ratio denominator is negative
FOL SMOOTH —Error if: smooth number is not 1-4
FOL WIN_P—Error if: master steps are negative
FOL WIN_W —Error if: master steps are negative
FOL PTOL —Error if: slave steps are negative
FOL MSYNC —Error if: slave steps are negative
FOL SSYNC —Error if: slave steps are negative

Master cycle definition pending This indicates a master cycle definition is pending a trigger, the master cycle
position is unknown.

IN Qn AXISn MAS_P
IN Qn AXISn MAS_C
IN Qn AXISn SYNC_ERR - Error if either the slave sync mark or master sync
mark is specified as a master cycle position, but master cycle definition is

still pending.
FOL MSYNC - Error if defined as a master position
FOL SSYNC - Error if defined as a master position

FOL SHIFT cannot start move This indicates that a command phase shift cannot be performed.
FOL SHIFT # - Error is already shifting or performing other time based move or
VEL or ACCEL is zero
FOL SHIFT CW,CCW - Error if ACCEL is zero

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

➃ Following 113

Master sync mark undefined This indicates that no master sync mark definition exists. This may be because the
FOL MSYNC statement was never executed, or was executed with NO as the
parameter.

IN Qn AXISn SYNC_ERR

Slave sync mark undefined Indicates that no slave sync mark definition exists. This may be because the FOL
SSYNC statement was never executed, or was executed with NO as the parameter.

IN Qn AXISn SYNC_ERR

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Following—Statements
These statements are designed to be used with the Model 4000-CFM Option.

FOL
Name FOL
Descriptor Following Parameters
Type Set-Up
Defauxlt N/A
Syntax FOL

Options TAB

TAB

TAB

TAB

TAB

TAB

MASTER

MDIST

WAIT

VELFF

SYNC_OFF

LEAD

SHIFT

MOVEWT

SMOOTH

CYC_OFF

WIN_P

DIRSET

ENABLE

NEWCYC

MAXACC

M_SYNC

WIN_W

ENCCHK

RATIO

MAS_CYC

MAXVEL

S_SYNC

PTOL

CAM

ETC

ETC

ETC

ETC

ETC

ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description

FOL statements can be used only if you have purchased the Model 4000's
Following option. FOL statements define master and slave parameters when
one or more axes is involved in following an encoder or step output signal.
Below is a summary of the Following statements.

FOL MASTER Specify following master input.

FOL SHIFT Execute time-based moves upon ratio following moves

FOL ENABLE Enable and disable following mode.

FOL RATIO Establish maximum allowed ratio for preset moves, or final ratio for continuous moves.

FOL MDIST Set master distance for subsequent MOVE statements. MDIST specifies master
distance over which preset moves take place, or master distance over which continuous
moves change from one ratio to another.

FOL MOVEWT Next move wait for trigger or master cycle position.

FOL NEWCYC Define the start of a new master cycle, i.e., set the master cycle position to 0.

FOL MAS_CYC Define master cycle length.

FOL WAIT Wait for trigger or master cycle position.

FOL SMOOTH Specify velocity measurement smoothing.

FOL MAXACC Define following maximum acceleration

FOL MAXVEL Define following maximum velocity

FOL VELFF Enable or disable velocity feed forward

FOL CYC_OFF Define initial master position

FOL M_SYNC Define master synchronization mark

FOL S_SYNC Define slave synchronization mark

FOL SYNC_OFF Define expected synchronization position difference

FOL WIN_P Define master window position

FOL WIN_W Define master window width

FOL PTOL Define following error tolerance
FOL CAM Enable or disable cam profiling
DEFINE TRIGDB Sets debounce time for trigger inputs

FOL DIRSET Enables or disables direction change setup time

FOL ENCCHK Enable or disable encoder/motor step check

FOL LEAD Advance setpoint proportional to slave speed

See Also: FOLM, UNIT MASTER

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL MASTER
Name FOL MASTER
Descriptor Assign Master to Slave
Type Set-Up
Initial value None
Range ± MOT or ENC, 1-4
Default FOL MASTER * * * *
Syntax FOL MASTER ENC2 MOT4 NO -ENC4

Options TAB ENC NULL MOT NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL MASTER statement configures an axis to be a slave, but does not

automatically enable following. To enable following use the FOL ENABLE
YES statement. Any incremental or absolute encoder input, or any motor
step output can be used as the master for any axis. As soon as the master is
specified with the FOL MASTER statement, a continuously updated
relationship between the position of the slave and the position of the
specified master is maintained. The slave motor resolution and velocity
ranges are used in these calculations. If the slave is in encoder step
positioning (i.e., MODE E_ABS or MODE E_INC) then the encoder resolution
of the slave axis is also used. For that reason, these parameters may not be
changed after the FOL MASTER statement configures an axis as a slave.
FOL MASTER NO releases an axis from a slave configuration, and returns it
to normal operation.

Notice that the master input axis number does not need to be the same as the
slave axis number. Axis 1 uses the encoder input on axis #2 as the master,
axis #2 is a slave to the step output of axis #4, axis #3 is not configured as a
slave, and axis 4 is a slave to the encoder input of that axis. If a slave axis is
in encoder mode (MODE E_INC or E_ABS), or if stall detect or position
maintenance is enabled, that axis can not use its own encoder input as the
master. Also, a slave can not use its own motor step output as the master
input. On power-up, and at the end of every program, no axis is configured as
a slave.

A minus sign is allowed as a parameter for the FOL MASTER when
describing the encoder or motor step master. The minus sign will be needed
for applications in which the desired direction of positive master motion
results in negative counts on the master. This is particularly true for preset
moves as described below. The master can be the motor step output or
encoder step input of any axis. Putting a minus sign in front of the master
parameter specification in the FOL MASTER statement causes the incoming
count to be negated before it is used by the slave. The term master count
refers to the count after negation, if any.
For preset slave moves, the direction the slave travels depends on the mode of
operation (absolute or incremental) and the commanded position. However,
once a preset slave move is commanded, it will only start moving if the master
is counting up. This is true no matter the commanded direction of the slave
move.
For continuous slave moves, the master count direction has a different
affect. If the commanded move is positive in direction, MOVE SLEWCW, and
the master is counting up, the actual slave travel direction will be positive. If
the commanded move is positive in direction, MOVE SLEWCW, and the
master is counting down, the actual slave travel direction will be negative.
Similar cases exist for slave moves commanded in the negative direction.
Each of the statements described below indicates the initial value taken as a
result of the FOL MASTER statement

The FOL MASTER statement re-initializes all FOL and FOLM parameters
each time it is executed. More information about preset and continuous
slave moves can be found in the Technical Considerations section of this
chapter.
See Also: FOL, FOLM

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL SHIFT
Name FOL SHIFT
Descriptor Following Phase Shift Move
Type Motion
Initial value None
Range ±99999999 steps after scaling
Default FOL SHIFT * * * *
Syntax FOL SHIFT 12500 CW Q1 -525.67

Options TAB
TAB

Q
STOP

NULL
KILL

CW CCW ETC
ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL SHIFT statement allows time-based slave moves to be super-

imposed on continuous following moves. Continuous shift moves in the CW
or CCW direction, as well as preset shift moves of defined or variable
distances may be commanded while a slave is performing a SLEWCW or
SLEWCCW ratio move at any constant ratio. The velocity and direction of the
SHIFT is independently super-imposed on whatever velocity and direction
results from the ratio and motion of the master. The SHIFT is not a change
in ratio. It is a velocity added to a ratio. Distances are scaled by UNIT POS.
The FOL SHIFT parameters STOP and KILL can be used to halt a
continuous or preset FOL SHIFT move (CW or CCW). The example below
shows how to stop a FOL SHIFT continuous move. It should be noted that
FOL SHIFT is similar in execution to MOVE and not MOVI. The entire preset
distance shift or ramp to shift velocity must finish before the Model 4000
proceeds to the next statement. As with MOVE, however, a FOL SHIFT
statement may be interrupted by an ON condition becoming true.

The most recently commanded VEL and ACCEL for the slave axis will
determine the speed at which the FOL SHIFT move takes place. The
velocity commanded will be added to the present speed at which the slave is
moving, up to the velocity limit defined with the FOL MAXVEL statement.
For example, assume a slave is traveling at 1 rps in the positive direction
while following a master. If a FOL SHIFT move is commanded in the
positive direction at 2 rps, the slave's actual velocity (after acceleration) will
be 3 rps, assuming that FOL MAXVEL is greater than 3 rps.

A FOL SHIFT move may be needed to adjust slave position on the fly
because of some load condition which changes during the continuous
following move. For example, suppose an operator is visually inspecting the
slave's motion with respect to the master. If they notice that the master and
slave are out of synchronization, it may be desirable to have an interrupt
programmed that will allow the operator to move the slave at a super-
imposed correction speed until the operator chooses to have the slave start
tracking the master again. The example below illustrates this.

See Also: FOL RATIO, FOL ENABLE

Example Assume all scale factors and set-up parameters have been entered for the
master and slave. In the example below, the slave (axis #1) is continually
following the master at a 1:1 ratio. If the operator notices some mis-
alignment between master and slave, there is 1 of 2 pushbuttons he can press
to move the slave in the CW or CCW direction until the button is released.
After the adjustment, the program continues on as before.
Statement Description
PATT1 XXXX ... XX10 'Define input pattern #1
PATT2 XXXX ... XX01 'Define input pattern #2
ON IN24 = PATT1 GOTO SHIFT+ 'Interrupt to shift slave in the CW

'direction when pattern 1 active
ON IN24 = PATT2 GOTO SHIFT- 'Interrupt to shift slave in the CCW

'direction when pattern 2 active
FOL MASTER ENC 4 * * * 'Axis 4 Encoder input is the master
FOL RATIO 1:1 * * * 'Set slave to master following ratio
FOL ENABLE YES * * * 'Enable following mode on axis #1
MOVE SLEWCW * * * 'Start following master continually
LABEL MAINLOOP 'Main program loop

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

 . 'All other program operation takes place
'within this loop

GOTO MAINLOOP 'Repeat main program loop
DONE 'End of program
LABEL SHIFT+ 'Subroutine to shift in the CW 'direction
FOL SHIFT CW * * * 'Start slave shift in CW directions
WAIT FOR BIT2 = 0 'Continue shift until bit2 is 'deactivated
FOL SHIFT STOP * * * 'Stop shift move
ON IN24 = PATT1 GOTO SHIFT+ 'Re-enable interrupt for future shifts
GOTO MAINLOOP 'Return to main program loop
LABEL SHIFT- 'Subroutine to shift in the CCW 'direction
FOL SHIFT CCW * * * 'Start slave shift in the CCW 'direction
WAIT FOR BIT1 = 0 'Continue shift until bit #1 is

'deactivated
FOL SHIFT STOP * * * 'Stop shift move
ON IN24 = PATT2 GOTO SHIFT- 'Re-enable interrupt for future shifts
GOTO MAINLOOP 'Return to main program loop

FOL ENABLE
Name FOL ENABLE
Descriptor Enable or Disable Following
Type Programming
Initial value NO
Default FOL ENABLE * * * *
Syntax FOL ENABLE NO * YES YES

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL ENABLE statement indicates whether subsequent moves will be

following a master (FOL ENABLE YES) or normal time-based moves (FOL
ENABLE NO). The term Following mode simply means that FOL ENABLE
YES has been given, and that the motion of the slave is dependent on the
motion of the master at all times. If FOL ENABLE NO is given the motion of
the master is still monitored but the motion of the slave is independent of the
master. In order to enable following mode, the master must have been
previously specified with the FOL MASTER statement. The FOL ENABLE
statement may be used in the standard stationary positioning system, or in the
moving positioning system.

See Also: FOL RATIO, FOL MDIST

FOL RATIO
Name FOL RATIO
Descriptor Slave to Master Following Ratio
Type Set-Up
Initial value Ø
Range Maximum of 127 slave steps per master step
Default FOL RATIO * * * *
Syntax FOL RATIO 10:1.4 Q5:1 * 1

Options TAB Q NULL :

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL RATIO statement establishes the ratio between slave and master

speed and position in terms of user units. For a preset move, it is the
maximum allowed ratio, and for a continuous move, it is the final ratio
reached by the slave. The ratio can be specified either with standard decimal
numbers, or numeric Q variables. FOL RATIO is specified with two positive
numbers, but it applies to moves in both directions. Actual slave direction
will depend on commanded moves and master direction.

Assume FOL RATIO is set to 0.5:0.3 for an axis. The first parameter is
scaled by the UNIT POS value to give slave steps. The second parameter is
scaled by the UNIT MASTER value to give master steps. For a UNIT POS of
25000 and a UNIT MASTER of 4000, the slave to master step ratio would be
0.5*25000 to 0.3*4000, or 125 slave steps for every 12 master steps. If no
second parameter is specified, it is assumed to be 1. Numeric Q variables can
be used with this statement for slave and/or master parameters. The Model

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4000 divides the scaled numerator and denominator to calculate the ratio.
After scaling, the maximum value is 127 slave steps for every master step.

See Also: FOL ENABLE, UNIT MASTER, UNIT POS

Example In the statements below, assume the master has a 1000 line incremental
encoder on the back of a motor and programming units are to be rps. This
yields a post quadrature UNIT MASTER scale factor of 4000. The motor
resolution of the slave axis is 25000 steps/rev. A slave UNIT POS scale
factor of 25000 provides consistent user units.

The slave will start ramping to a ratio of 1:1 when trigger #1 goes active.
This means the actual step ratio of slave to master is 25000 to 4000, or 6.25
slave steps for every master. After 25 master revolutions, the slave will
decelerate to a 0.5:1 ratio (3.125 slave steps for every master). After a total of
75 master revolutions, the slave will stop and repeat the cycle on trigger #1.

Statement Description

UNIT POS 25000 * * * 'Set slave scale factor to 25000 steps/rev

UNIT MASTER 4000 * * * 'Set master scale factor to 4000 steps/rev

FOL MASTER ENC1 * * * 'Assign encoder input #1 as master for axis
'#1

FOL MDIST 1 * * * 'Slave should accelerate over 1 master
'revolution

FOL MAS_CYC 100 * * * 'Set master cycle length to 100 revs

FOL RATIO 1:1 * * * 'Initial slave to master ratio is 1 to 1

FOL ENABLE YES * * * 'Enable following on axis #1

LABEL ST_MOVE 'Label to repeat move

FOL NEW_CYC TRIG1 * * * 'New master cycle (counter at 0) on trigger
'#1

FOL MOVEWT TRIG1 * * * 'Wait on next move until trigger 1 is
'active

FOL RATIO 1:1 * * * 'Following ratio is back to 1 to 1

MOVE SLEWCW * * * 'Start continuous following move on trigger
'#1

FOL MOVEWT 25 * * * 'Wait on next move for master position 25

FOL RATIO .5:1 * * * 'Set new following ratio

MOVE SLEWCW * * * 'Move to new following ratio at master
'position 25

FOL MOVEWT 75 * * * 'Wait on next move for master position 75

FOL RATIO 0:1 * * * 'Set new following ratio for slave to stop

MOVE SLEWCW * * * 'Move to new following ratio at master
'position 75

GOTO ST_MOVE 'Repeat the cycle

DONE 'End of program

FOL MDIST
Name FOL MDIST
Descriptor Master Move Distance
Type Set-Up
Initial value Ø
Range ±99999999 master steps
Default FOL MDIST * * * *
Syntax FOL MDIST 250.32 Q2 * 0.0

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description If a slave is doing preset moves, the FOL MDIST statement indicates the

master distance over which the next preset moves will take place. Or, if a
slave is in continuous mode, FOL MDIST is the master distance over

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

which acceleration or deceleration from the current ratio to the new ratio
takes place. FOL MDIST is specified in user units and is scaled by the UNIT
MASTER parameter. Numeric Q variables can be used with this statement.

In 4000 Following, acceleration for a slave can be specified either by master
distance (FOL MDIST), or by the ACCEL statement. Whichever of these
statements most recently precede the MOVE or MOVI statement will give the
parameter used to determine the move profile. Specifying an acceleration
for the slave means that the acceleration ramp is time-based and there is no
position relationship between master and slave until the commanded
following ratio is reached. Specifying a master distance for the slave's move
profile ensures a precise position relationship between master and slave
during all phases of the profile. Whenever the position relationship between
master and slave is important, the FOL MDIST method should be used.

If a slave is in continuous mode and the master is starting from rest, setting
FOL MDIST to 0 will ensure precise tracking of the master's acceleration
ramp. The example below illustrates how this might take place.

See Also: FOL ENABLE, UNIT MASTER, FOL RATIO

Example
Statement Description

UNIT MASTER 4000 * * * 'Master scale factor is 4000 steps/rev

FOL MASTER ENC1 * * *

FOL MDIST 0 * * * 'Assign following acceleration distance to 0
'master revs, i.e., instantaneous

FOL RATIO 1 * * * 'Set following ratio to 1 to 1

FOL ENABLE YES * * * 'Enable following on axis #1

MOVE SLEWCCW * * * 'Begin following master, if the master is
'not moving, slave will remain at rest until
'master moves. At this time it will track
'master precisely

FOL MOVEWT
Name FOL MOVEWT
Descriptor Wait for Trigger or Cycle Position, Next Move
Type Programming
Initial value NO
Range TRIG 1-4, ±99999999 master steps
Default FOL MOVEWT * * * *
Syntax FOL MOVEWT TRIG1 NO 236.50 Q4

Options TAB Q NULL TRIG NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL MOVEWT statement does not cause the 4000 to suspend program

execution immediately. It specifies that the next move will not start until
the specified trigger or master cycle position has been reached. This
statement is useful in delaying subsequent moves until the master has
reached the required position or an object has been sensed. When a master
cycle position is specified, it is always an absolute position relative to the
start of the last master cycle.

If a MOVEWT has been specified, and the 4000 program reaches a MOVE
statement, the following sequence of events takes place. Moves for axes
which do not have a wait condition specified will start and complete their
moves as normal. This includes axes which are not configured as slaves.
Axes that have a wait condition specified will wait for that condition to be
satisfied before beginning their moves. The next program statement will
execute when all preset moves (following or non-following) are complete
and/or the cruise velocity has been reached for continuous moves.

For a MOVI statement after a MOVEWT, the program action taken is quite
different. Axes that have no wait condition specified, or are not configured
as slaves, will begin their moves. Axes that have a wait condition specified
will wait to begin their moves until the condition becomes true, but program
execution will continue immediately.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

The Model 4000 records the MOVEWT condition as soon as the statement is
executed, but will not start checking and waiting for the MOVEWT condition
until the MOVE or MOVI statement is executed. If the condition is a trigger,
and the trigger input goes active before the MOVE or MOVI statement is
executed, it will not be noticed, and the move will wait for the next trigger. If
FOL MOVEWT NO is given, or if a MOVE STOP or MOVE KILL is executed,
all wait conditions for that axis are cleared, and the next MOVE or MOVI for
that axis begins immediately. If the MOVEWT condition is a master cycle
position, and that position has already been exceeded before the MOVE or
MOVI statement is executed, that axis flags a MOVEWT MISSED condition.
This condition can be detected with the ON WT_ERR statement, and is
cleared by the next FOL MOVEWT command for that axis.

If a master cycle position is used in a FOL MOVEWT statement, the wait may
occur while a master cycle is pending definition or a trigger. In that case the
wait will include the trigger, then the cycle position in the master cycle
defined by that trigger. If the pending status is cleared by either a FOL
NEWCYC NO or a FOL NEWCYC IMMED, the wait is cleared also.

If the master cycle position specified with FOL MOVEWT is larger than the
master cycle length, (FOL MAS_CYC), the 4000 simply waits for the specified
position relative to the start of the current cycle. For example, if the master
cycle length is 10 inches, current master cycle position is 5, and an FOL
MOVEWT is issued for master cycle position 38 inches, the 4000 will wait for
33 more master inches before starting the next move. The value 38 is not
referenced from where the master is currently, but rather total master inches
from the start of the current cycle, even if it is necessary to wait for more
than one complete cycle length. The actual master cycle position counter is
still being reset to 0 when the master cycle is complete, but the FOL WAIT
and MOVEWT will allow waiting for more than 1 cycle if necessary.

The master cycle position specified is in terms of user units and is scaled by
the UNIT MASTER parameter. Numeric Q variables may be used to specify
master cycle positions. Note that a trigger input number does not need to
match the axis number to which the FOL MOVEWT is assigned. Also, keep in
mind that an axis does not need to be in following mode (FOL ENABLE YES)
to utilize the FOL MOVEWT and master cycle concept. However, a master
must have been previously assigned using the FOL MASTER statement.

If cam profiling is enabled (FOL CAM YES), master cycle positions are
determined by execution of the profile. For this reason, master cycle
positions may not be used as a pararmeter with FOL MOVEWT when cam
profiling is enabled. For a complete discussion of master cycle parameters
with cam profiling, please refer to the section titled Profiles and Master
Cycles.

The section titled Following Wait Statements provides general information
about FOL WAIT and FOL MOVEWT, as well as the differences in their use.
The Continuous Cut to Length example in that section uses FOL MOVEWT Ø
to ensure precise cut lengths.

See Also: FOL MAS_CYC, FOL NEWCYC, FOL WAIT, FOL CYC_OFF, IN FOL TRIG, ON
WT_ERR

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL NEWCYC
Name FOL NEWCYC
Descriptor Define Master Cycle
Type Programming
Initial value NO
Range TRIG 1-4
Default FOL NEWCYC * * * *
Syntax FOL NEWCYC TRIG1 TRIG3 IMMED *

Options TAB TRIG NULL IMMED NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL NEWCYC statement defines the beginning of a master cycle by

setting the master cycle position to the value most recently specified with
FOL CYC_OFF. If IMMED is specified, the master cycle position is set
immediately. If a trigger is specified as the parameter, the 4000 will record
the instruction to set the master cycle position when the specified trigger
occurs. In either case, program flow continues normally. In the latter case,
the master cycle is pending definition on the specified trigger, even though
statements continue to execute. If an application requires suspending
program flow until the trigger or a subsequent master cycle position occurs,
the FOL WAIT statement may be used. FOL NEWCYC NO and FOL NEWCYC
IMMED will remove the pending status of the master cycle definition. In this
case, the former master cycle definition becomes effective again, and the
specified trigger will not cause a new cycle definition. This also clears or
undoes any FOL WAIT or FOL MOVEWT for master cycle position which was
issued while the new cycle definition was pending a trigger input.

A new cycle automatically occurs, i.e., the master cycle position is set to 0,
when the master cycle length (FOL MAS_CYC) is reached, even if no FOL
NEWCYC statement has been executed.

If cam profiling is enabled (FOL CAM YES), the beginning of a master cycle is
determined by execution of the profile. When cam profiling is enabled, The
FOL NEWCYC statement is used to mark the repetitive portion of a cycle, and
may only use the IMMED parameter. For a complete discussion of master
cycle parameters with cam profiling, please refer to the section titled
Profiles and Master Cycles.

See Also: FOL MAS_CYC, FOL WAIT, FOL MOVEWT, FOL CYC_OFF, IN FOL TRIG

FOL
MAS_CYC

Name FOL MAS_CYC
Descriptor Master Cycle Length
Type Set-Up
Initial value Ø
Range Ø - 99999999 master steps
Default FOL MAS_CYC * * * *
Syntax FOL MAS_CYC * 100 4.737 Q8

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL MAS_CYC statement defines the length of the master cycle in user

units. This value is scaled by the UNIT MASTER parameter. Numeric Q
variables can be used with this statement. The initial value for FOL MAS_CYC
is 0, which means that the default master cycle length is infinite.

The concept of a master cycle may be useful when moves or other events must
be initiated at certain master positions. By specifying a master cycle length,
periodic actions may be programmed in a loop or with subroutines which
refer to cycle positions, even if the master runs continuously. It is possible to
program the 4000 to suspend program operation or wait for moves until
certain master cycle positions or trigger inputs. The master cycle length,
FOL MAS_CYC, should be defined before the functions which wait for
periodic master cycle positions are used. An axis need not be in following

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

mode (i.e., FOL ENABLE YES) to utilize the concept of a master cycle.
However, a master must have been previously assigned with the FOL
MASTER statement.

If cam profiling is enabled (FOL CAM YES), the master cycle length is
determined by the sum of the master distances in the repetitive portion of the
profile. For this reason, the FOL MAS_CYC statement is ignored when cam
profiling is enabled. For a complete discussion of master cycle parameters
with cam profiling, please refer to the section titled Profiles and Master
Cycles.

See Also: FOL NEWCYC, FOL WAIT, FOL MOVEWT, FOL CYC_OFF

FOL WAIT
Name FOL WAIT
Descriptor Wait for Trigger or Master Cycle Position
Type Programming
Initial value NO
Range TRIG 1-4, ±99999999 master steps
Default FOL WAIT * * * *
Syntax FOL WAIT TRIG2 NO 14.53 Q8

Options TAB Q NULL TRIG NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL WAIT statement causes the 4000 to suspend program execution

until the specified trigger or master cycle position has occurred. This
function is useful in delaying subsequent I/O operation until the master has
achieved the required position or an object has been sensed. When a master
cycle position is specified, it is always an absolute position relative to the
start of the last master cycle.

If the FOL WAIT condition is a master cycle position, and that position has
already been exceeded when the FOL WAIT statement is executed, then
program flow proceeds immediately to the next statement. No error
condition results from this.

If a master cycle position is used in a FOL WAIT statement, the wait may
occur while a master cycle is pending definition or a trigger. In that case the
wait will include the trigger, then the cycle position in the master cycle
defined by that trigger. If the pending status is cleared by either a FOL
NEWCYC NO or a FOL NEWCYC IMMED, the wait is cleared also.

If the master cycle position specified with FOL WAIT is larger than the
master cycle length, (FOL MAS_CYC) the 4000 simply waits for the specified
position relative to the start of the current cycle. For example, if the master
cycle length is 25 inches, current master cycle position is 5, and an FOL
WAIT is issued for master cycle position 67, the 4000 will wait for 62 more
inches of master travel before continuing program execution. The value 67 is
not referenced from where the master is currently, but rather total master
inches from the start of the current cycle, even if it is necessary to wait for
more than one complete cycle length. Here, our wait was for about 2.5 master
cycles. The actual master cycle position counter is still being reset to 0 when
every master cycle is complete, but the FOL WAIT and MOVEWT will allow
waiting for more than 1 cycle if necessary.

The master cycle position specified is in terms of user units and is scaled by
the UNIT MASTER parameter. Numeric Q variables may be used to specify
master cycle positions. Note that a trigger input number need not match the
axis number to which the FOL WAIT is assigned. For example, axis #2 could
be performing a FOL WAIT, waiting for Trigger 4. Also, keep in mind that
an axis does not need to be in following mode (i.e., FOL ENABLE YES) to
utilize the FOL WAIT and master cycle concept. However, a master must
have been previously assigned using the FOL MASTER statement.

FOL WAIT is similar to other WAITs in that an ON condition may clear the
FOL WAIT and allow subsequent statements to execute. A FOL WAIT NO

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

will also clear the wait. If one program is waiting on a FOL WAIT, another
program may clear the wait by executing a FOL WAIT NO, assuming both
programs are running under Multi Tasking

See Also: FOL MAS_CYC, FOL NEWCYC, FOL MOVEWT, FOL CYC_OFF, IN FOL TRIG

Example In the example below, the master is an encoder mounted to gearing on a
conveyor line. The gearing results in 16,000 encoder steps per conveyor inch.
The slave on axis one is a 25,000 step/rev microstepper on a 36" long, 4 pitch
leadscrew. The slave waits for the product to be sensed on the conveyor,
accelerates to a 1 to 1 ratio, waits for a safe location to actuate the stamping
equipment, then applies an inked stamp to the product at the correct
location. After the stamp is placed, the slave quickly moves back to the
starting position and waits for the next product. The example illustrates
how the FOL WAIT command can be used to wait for master cycle positions
in order to coordinate motion.

Statement Description
UNIT VEL 100000 * * * 'Set slave velocity scale factor to

'100000
UNIT ACCEL 100000 * * * 'Set slave accel scale factor to 100000
UNIT POS 100000 * * * 'Set slave position scale factor to

'100000 to program in inches
ACCEL 10 * * * 'Acceleration = 10 inches/sec/sec
VEL 5 * * * 'Velocity = 5 inches/sec (non-following

'moves)
MODE M_ABS * * *
UNIT MASTER 16000 * * * 'Set master scale factor to program in

'inches
FOL MASTER ENC1 * * * 'Assign encoder input #1 as master
FOL RATIO 1 * * * 'Following ratio 1 to 1 slave to master

'inch.
FOL MDIST 1 * * * 'Accelerate the slave over 1 master inch

'for following moves
FOL MAS_CYC 40 * * * 'Master cycle length is 40 inches
LABEL INK_ON 'Label to repeat inking process
FOL ENABLE YES * * * 'Enable following on axis #1
FOL NEWCYC TRIG2 * * * 'Begin new master cycle on trigger #2

'(product sensed on conveyor)
FOL MOVEWT TRIG2 * * * 'Start next move when trigger #2 is

'active
MOVE SLEWCW * * * 'Start continuous slave move on trigger

'#2
FOL WAIT 10.5 * * * 'Wait until master position is 10.5

'inches, this is when the stamping
'device can be actuated without
'mechanical damage to the leadscrew
'assembly

OUT BIT7 = 1 'Turn on actuator to place ink stamp on
'product

FOL WAIT 12.0 * * * 'Wait until master position is 12
'inches. The ink stamp is pressed in
'place by a stationary roller 1.5" in
'length

OUT BIT7 = 0 'Turn actuator off
MOVE STOP * * * 'Stop slave move
FOL ENABLE NO * * * 'Disable following on axis #1
MOVE 0 * * * 'Move back to home position
GOTO INK_ON 'Begin cycle again on trigger #2
DONE 'End of program

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL SMOOTH
Name FOL SMOOTH
Descriptor Velocity Measurement Smoothing
Type Set-Up
Initial value 1
Range 1-4
Default FOL SMOOTH * * * *
Syntax FOL SMOOTH 4 2 * 1

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL SMOOTH statement specifies the degree to which the Model 4000

filters and smoothes the measurements of master position and velocity.
Valid choices of 1, 2, 3, and 4 for the FOL SMOOTH statement correspond to
velocity averaging periods of 4, 8, 16, and 32 milliseconds, respectively.

The 4000 samples the master position every 2 msec, and by measuring the
change in master position over a fixed number of samples, the master
velocity is calculated. The current master position, the current ratio, and the
estimation of current master velocity are all used to calculate the setpoint
slave position for the next sample. If left unspecified, the following
algorithm defaults to FOL SMOOTH 1.

For applications in which the master is vibrating or moving very slowly,
smoother slave velocity may result with an FOL SMOOTH parameter greater
than 1. When the master is changing velocity very quickly, or if the number
of master pulses per sample period is large, an FOL SMOOTH value of 1 is
recommended. Setting this value will best be done on a trial and error basis,
since each application has widely varying components and requirements.

See Also: FOL MAXVEL, FOL MAXACC, FOL VELFF

FOL MAXACC
Name FOL MAXACC
Descriptor Slave Maximum Acceleration
Type Set-Up
Initial value Maximum for motor resolution
Default FOL MAXACC * * * *
Syntax FOL MAXACC 200 Q3 * *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL MAXACC statement sets the maximum acceleration for slave axes.

The FOL MAXACC statement accepts numeric Q variables as an argument
and is scaled by the UNIT ACCEL parameter.

The profile of the acceleration for a slave axis can be defined with one of two
statements: ACCEL or FOL MDIST. If the ACCEL command is used to
determine slave acceleration, the acceleration ramp will be a time-based
acceleration at the value specified, as long as the ACCEL value is not larger
than FOL MAXACC. If the FOL MDIST command is used to define a move
profile, the resulting acceleration will be determined in part by the speed of
the master, however, the acceleration ramp the slave takes will never exceed
the FOL MAXACC value.

For both cases above, if the required acceleration is larger than FOL
MAXACC, the slave will begin falling behind its commanded position. The
4000 will attempt to make up this position error as soon as the commanded
accel falls below FOL MAXACC. An error correction velocity is added to that
implied by the ratio setpoint. The velocity used to make up the error is
limited to that specified with POSM MAXVEL.

As with FOL MAXVEL, FOL MAXACC should be determined and defined
early in the development stage of an application to prevent any damage to
the load on the slave axis when unexpectedly high accelerations are

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

commanded. The torque available from the slave motor will also be a
determining factor in this parameter in order to prevent motor stalls.

See Also: FOL SMOOTH, FOL MAXVEL, FOL VELFF

FOL MAXVEL
Name FOL MAXVEL
Descriptor Slave Maximum Velocity
Type Set-Up
Initial value Maximum for motor resolution
Range Limited by slave motor resolution maximum velocity
Default FOL MAXVEL * * * *
Syntax FOL MAXVEL 100 Q2 * *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL MAXVEL statement sets the maximum velocity at which slave axes

may travel. The FOL MAXVEL statement accepts numeric Q variables as an
argument and is scaled by the UNIT VEL parameter.

Normally in a following application, the slave velocities will be known
based on the normal speed of the master and the commanded following
ratios. In some cases, however, the master speed may be higher than normal,
the slave may be commanded to perform a shift move, or some other event
may occur which will cause the slave to travel at a velocity higher than
expected. In these cases, the 4000 will raise the speed of the slave as
necessary to perform the required move, but only up to the FOL MAXVEL. If
the commanded speed is higher than FOL MAXVEL, the slave axis will start
falling behind its commanded position. The 4000 will attempt to make up
this position error as soon as the commanded speed falls below FOL
MAXVEL. An error correction velocity is automatically added to that
implied by the ratio setpoint. The velocity used to make up the error is
limited to that specified with POSM MAXVEL.

The FOL MAXVEL should be determined and defined early in the
development stage of an application to prevent any damage to the load on the
slave axis when unexpectedly high velocities are commanded.

See Also: FOL SMOOTH, FOL MAXACC, FOL VELFF

FOL VELFF
Name FOL VELFF
Descriptor Enable or Disable Velocity Feed Forward
Type Set-Up
Initial value YES
Default FOL VELFF YES YES YES YES
Syntax FOL VELFF YES NO * *

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL VELFF statement allows the user to enable or disable velocity feed

forward in the 4000 Following algorithm. Velocity feed forward is activated
by default in the Following algorithm, but can be turned off as desired with
the FOL VELFF statement.

The 4000 measures master position every two milliseconds, and calculates a
corresponding slave setpoint. This calculation and achieving the subsequent
slave setpoint position require 4 milliseconds. Enabling velocity feed-forward
(FOL VELFF YES) eliminates any lag in slave position which would be
dependent on master speed. It may be desirable to deactivate velocity feed
forward when maximum slave smoothness is important and minor phase
delays can be accommodated. A detailed discussion of velocity feed-forward is
given in the section Technical Considerations for Following.

See Also: FOL SMOOTH, FOL MAXACC, FOL MAXVEL

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL
CYC_OFF

Name FOL CYC_OFF
Descriptor Master Cycle Offset Position
Type Set-Up
Initial value Ø
Range ±99999999 motor steps
Default FOL CYC_OFF * * * *
Syntax FOL CYC_OFF * -10.2 Q8 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOL CYC_OFF statement defines the initial master cycle position in user

units. The initial master cycle position is assigned with a new master cycle
defined via the FOL NEWCYC statement. This value is scaled by the UNIT
MASTER parameter. Numeric Q variables can be used with this statement. The
default value for FOL CYC_OFF is 0, which means that the master cycle
position will be 0 upon definition of a new master cycle (see FOL NEWCYC).

The concept of an initial master cycle offset may be useful if new master cycle
definition must take place at a master position which is different from what
needs to be considered the beginning of a periodic cycle. The initial position
defined with FOL CYC_OFF applies to the first cycle only. When a master
cycle is complete, the master cycle position rolls over to zero. A negative offset
would be used if some master travel were desired before master cycle position
was zero. A positive offset would be used if it was necessary to enter the first
master cycle at a position other than 0. For example, suppose FOL MAS_CYC
was set to 20 and FOL CYC_OFF was set to 7. When the FOL NEWCYC
definition takes place, either via FOL NEWCYC IMMED or the specified
trigger, the initial master cycle position will be 7. Rollover will occur after the
master travels 13 more units, and the master cycle position would go to zero.

If cam profiling is enabled (FOL CAM YES), the master cycle offset position is
determined by the sum of the master distances in the lead in portion of the
profile. For this reason, the FOL CYC_OFF statement is ignored when cam
profiling is enabled. For a complete discussion of master cycle parameters
with cam profiling, please refer to the section titled Profiles and Master
Cycles.

See Also: FOL NEWCYC, FOL MAS_CYC, FOL_WAIT, FOL_MOVEWT

FOL M_SYNC
Name FOL M_SYNC
Descriptor Define Master Synchronization Mark
Type Set-Up
Initial value NO
Range Trig 1-4, 0 - 99999999 master steps
Default FOL M_SYNC * * * *
Syntax FOL M_SYNC TRIG1 Q1 * 50

Options TAB Q NULL TRIG NO

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL M_SYNC statement defines an event which will cause the slave
position to be read and saved for future periodic synchronization
calculations. This external event may be any of the four trigger inputs
TRIG1 through TRIG4, or a master cycle position. If a master cycle position
is used, the value is scaled by the UNIT MASTER parameter. Numeric Q
variables may be used with this statement. The default value for FOL
M_SYNC is that the master sync mark is not defined, which means that the
periodic synchronization features may not be used.

There are many applications in which periodic operations must occur in
intervals which are not perfectly repeatable. The 4000 allows the user to
define two external events, or "marks", which capture the slave position.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

These are called Master Sync Mark and Slave Sync Mark, and are defined
with the FOL M_SYNC and FOL S_SYNC statements respectively. If the
sync mark is defined as a trigger, the slave position is captured on each
occurrence of that trigger. If the sync mark is defined a master cycle
position, the slave position is captured on only the first occurrence of that
cycle position each time a new cycle is defined, or a master cycle has
completed and rolled over to start a new cycle. For a complete understanding
of a sync mark definitions and their use in periodic synchronization, please
refer to the section titled Periodic Master/Slave Synchronization earlier in
this chapter.

See Also: FOL M_SYNC , FOL SYNC_OFF, IN Qn = FOL AXISn SYN_ERR, IN Qn = FOL
AXISn M_SYNC

FOL S_SYNC
Name FOL S_SYNC
Descriptor Define Slave Synchronization Mark
Type Set-Up
Initial value NO
Range Trig 1-4, ±99999999 slave steps
Default FOL S_SYNC * * * *
Syntax FOL S_SYNC TRIG1 Q1 * 50

Options TAB TRIG Q NO NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL S_SYNC statement defines an event which will cause the slave
position to be read and saved for future periodic synchronization
calculations. This external event may be any of the four trigger inputs
TRIG1 through TRIG4, or a master cycle position. If a master cycle position
is used, the value is scaled by the UNIT MASTER parameter. Numeric Q
variables may be used with this statement. The default value for FOL
S_SYNC is that the slave sync mark is not defined, which means that the
periodic synchronization features may not be used.

There are many applications in which periodic operations must occur in
intervals which are not perfectly repeatable. The 4000 allows the user to
define two external events, or marks, which capture the slave position.
These are called Master Sync Mark and Slave Sync Mark, and are defined
with the FOL M_SYNC and FOL S_SYNC statements respectively. If the
sync mark is defined as a trigger, the slave position is captured on each
occurrence of that trigger. If the sync mark is defined as a master cycle
position, the slave position is captured on only the first occurrence of that
cycle position each time a new cycle is defined, or a master cycle has
completed and rolled over to start a new cycle. For a complete understanding
of a sync mark definitions and their use in periodic synchronization, please
refer to the section titled Periodic Master/Slave Synchronization earlier in
this chapter.

See Also: FOL M_SYNC, FOL SYNC_OFF, IN Qn = FOL AXISn SYN_ERR, IN Qn = FOL
AXISn S_SYNC

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOL
SYNC_OFF

Name FOL SYNC_OFF
Descriptor Define Expected Synchronization Position Difference
Type Set-Up
Initial value Ø
Range ±99999999 slave steps
Default FOL SYNC_OFF * * * *
Syntax FOL SYNC_OFF Q2 10 -5 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL SYNC_OFF statement defines the expected synchronization offset
in the user's slave position units. This value is scaled by the UNIT POS
parameter. Numeric Q variables may be used with this statement. The
default value for FOL SYNC_OFF is 0, which means that a master and slave
sync marks are expected to occur simultaneously.

Each time either a master or slave sync mark occurs, the corresponding
slave position is captured and saved internally. The FOL SYNC_OFF
statement defines the expected difference between these captured slave
positions. This expected difference is called the Slave Synchronization
Offset. By defining the offset expected between two positions instead of
defining the position expected at a single synchronization mark, continuous
motion in one direction is allowed without requiring a continuous re-
calculation of the expected slave position. The difference between the actual
offset and the expected offset is called the Sync Error. This error may be read
into a Q variable using the IN Qn = FOL AXISn SYN_ERR statement. To
understand exactly how to use this, please refer to the section titled Periodic
Master/Slave Synchronization earlier in this chapter.

See Also: FOL M_SYNC, FOL S_SYNC, IN Qn = FOL AXISn SYN_ERR

FOL WIN_P
Name FOL WIN_P
Descriptor Define Master Window Position
Type Set-Up
Initial value Ø
Range 0 - 99999999 master steps
Default FOL WIN_P * * * *
Syntax FOL WIN_P Q1 10 * *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL WIN_P statement defines the position of a following error
detection window in the user's master position units. This value is scaled by
the UNIT MASTER parameter. Numeric Q variables may be used with this
statement. The default value for FOL WIN_P is 0, which means that the
start of a following error detection window would coincide with the start of a
master cycle.

The concept of an error detection window is useful in applications in which a
periodic repetitive operation takes place, and precise synchronization is
only important during a portion of the cycle. For such an application, the
window defines the portion of a cycle in which excess following error is
detected, while being ignored in the remainder of the cycle. For a complete
discussion of the conditions which may result in following error, please
refer to the section titled Following Performance earlier in this chapter. The
error detection window start position must be less the master cycle length to
be valid, i.e., meaningful. If its value is greater than master cycle length, the
error detection window will not be valid, and error detection will occur
continuously. Programmed response to detection of following error is

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

enabled through use of the ON FOL_ERR statement. The FOL WIN_P
statement may be issued at any time, even while motion is in progress, and
takes effect immediately. For a complete discussion of error detection
windows and related topics, please refer to the section titled Monitoring
Following Error earlier in this chapter.

See Also: FOL PTOL, FOL WIN_W, ON FOL_ERR, IN Qn = FOL AXISn FOL_ERR

FOL WIN_W
Name FOL WIN_W
Descriptor Define Master Window Width
Type Set-Up
Initial value Ø
Range 0 - 99999999 master steps
Default FOL WIN_W * * * *
Syntax FOL WIN_W Q3 2 * *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL WIN_W statement defines the width of a following error detection
window in the user's master position units. This value is scaled by the UNIT
MASTER parameter. Numeric Q variables may be used with this statement.
The default value for FOL WIN_W is 0, which means that the following error
detection window is not valid.

The concept of an error detection window is useful in applications in which a
periodic repetitive operation takes place, and precise synchronization is
only important during a portion of the cycle. For such an application, the
window defines the portion of a cycle in which excess following error is
detected, while being ignored in the remainder of the cycle. For a complete
discussion of the conditions which may result in following error, please
refer to the section titled Following Performance earlier in this chapter. The
error detection window width must be less the master cycle length and
greater than zero to be valid, i.e., meaningful. If its value is less than master
cycle length or zero, the error detection window will not be valid, and error
detection will occur continuously. Programmed response to detection of
following error is enabled through use of the ON FOL_ERR statement. The
FOL WIN_W statement may be issued at any time, even while motion is in
progress, and takes effect immediately. For a complete discussion of error
detection windows and related topics, please refer to the section titled
Monitoring Following Error earlier in this chapter.

See Also: FOL PTOL, FOL WIN_P, ON FOL_ERR, IN Qn = FOL AXISn FOL_ERR

FOL PTOL
Name FOL PTOL
Descriptor Define Following Error Tolerance
Type Set-Up
Initial value Ø
Range 0 - 99999999 slave steps
Default FOL PTOL * * * *
Syntax FOL PTOL Q4 * .01 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL PTOL statement defines the following position error tolerance in
the user's slave position units. This value is scaled by the UNIT POS
parameter. Numeric Q variables may be used with this statement. The
default value for FOL PTOL is 0, which means that a following position
error of any magnitude may be detected.

The concept of an allowable position following error is useful when there is a
limit to the acceptable following error in the course of following operation.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Mechanical constraints as well as those imposed by user programming may
cause the actual position of the slave to differ from the commanded position.
For a complete discussion of the conditions which may result in following
error, please refer to the section titled Following Performance earlier in this
chapter. Programmed response to the detection of following error is enabled
through use of the ON FOL_ERR statement, and may be limited to specific
portions of a master cycle. If the error value ever exceeds the tolerance given
with FOL PTOL when error detection is enabled, the 4000 will branch to the
location specified in the ON FOL_ERR statement. The FOL PTOL statement
may be issued at any time, even while motion is in progress. The new value
takes effect immediately, and also clears any previously detected error. This
avoids unwanted detection of previous errors. For a complete discussion of
related topics, please refer to the section titled Monitoring Following Error
earlier in this chapter.

See Also: FOL WIN_P, FOL WIN_W, ON FOL_ERR, IN Qn = FOL AXISn FOL_ERR

FOL LEAD
Name FOL LEAD
Descriptor Define Setpoint Lead Time
Type Set-Up
Initial value Ø milliseconds
Range 0-250 milliseconds
Default FOL LEAD * * * *
Syntax FOL LEAD 0.82 * Q1 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL LEAD statement defines the lead time for the specified axes. Some
drives, such as the Dynaserv step and direction versions, have up to 6
milliseconds of lag, i.e., delayed response to step and direction input. This
creates a velocity dependent position lag, which causes a synchronization
error. In following, however, every position along the profile is important,
because it must correspond to a master position. The setpoint lead feature
allows the 4000 to dynamically advance the slave setpoint beyond what
would be normally resulting from the profile. It is advanced by the product
of the instantaneous velocity and the lead value specified with the FOL
LEAD statement. Because of possible instability and profile skew, it is best to
avoid this feature when possible, i.e., use the default value of zero. If it is
necessary to compensate for drive lag, the proper value will probably need to
be determined empirically.

See Also: FOL DIRSET, FOL ENCCHK

FOL DIRSET
Name FOL DIRSET
Descriptor Enable direction change setup time
Type Setup
Initial value YES
Range FOL DIRSET * * * *
Default FOL DIRSET YES NO * YES
Syntax FOL LEAD 0.82 * Q1 *

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL DIRSET statement enables or disables the default 2 millisecond
direction input change setup time of the 4000. Most Compumotor steppers
require some minimum time for the drive to respond to a change on the
direction input before any steps are given in the new direction. In normal
positioning applications, motion always stops before a move is commanded
in the opposite direction, so this requirement is of no consequence. In
following however, the master may change direction, resulting in a direction

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

change on the slave without a new move command. When the setup time is
enabled, the 4000 temporarily saves the steps which would have been sent
with the direction change. These steps are sent during the next 2
millesecond update. Some drives, such as the Dynaserv and Z drives, do not
have a direction change setup requirement. In order to facilitate smooth
following on these drives, the FOL DIRSET statement may be used to
disable the default 2 millisecond direction change setup.

See Also: FOL LEAD, FOL ENCCHK

FOL ENCCHK
Name FOL ENCCHK
Descriptor Enable encoder and motor step comparison
Type Setup
Initial value NO
Range FOL ENCCHK * * * *
Default FOL ENCCHK YES NO * YES
Syntax FOL LEAD 0.82 * Q1 *

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL ENCCHK statement enables or disables the comparison between the
commanded position in motor steps, i.e. controlled in motor step mode, and
the actual position in encoder steps. This is especially useful when the slave
is a Compumotor servo drive such as the Z drive or the Dynaserv. Its first
major purpose is to assist in the tuning of the drive for minimum following
error. It also facilitates rapid electronic response to excess following error.
For a complete discussion of the purposes and uses of this feature, please
refer to the section titled Motor and Encoder Comparison.

See Also: FOL LEAD, FOL DIRSET

FOL CAM
Name FOL CAM
Descriptor Enable cam profiling
Type Programming
Initial value NO
Range FOL CAM * * * *
Default FOL CAM YES NO * YES
Syntax FOL LEAD 0.82 * Q1 *

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description

The FOL CAM statement enables or disables the cam profiling mode of
following motion. Cam profiling is used to delete and create pre-defined
motion profiles. These profiles may then be executed at very high cycle rates.
When cam profiling is enabled, motion definition and intitiation statements
have changed meaning. Master cycle parameters also change. For a
complete discussion of the purposes and uses of this feature, please refer to
the section titled Cam Profiling.

See Also: FOL MAS_CYC, FOL CYC_OFF, FOL NEWCYC

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOLM
Name FOLM
Descriptor Moving Positioning System Parameters
Type Set-Up
Default N/A
Syntax FOLM

Options TAB DEF RATIO PDEF ENABLE

F 1 F 2 F 3 F 4 F 5 F 6
Description FOLM statements define the moving positioning system (MPS). The MPS

allows point-to-point, contouring, ratio following, and many other types of
moves to be super-imposed on the slave following the master. All of these
moves are programmed as if the slave was standing still, making
implementation of the MPS very easy. Below is a summary of the moving
positioning system statements.

FOLM PDEF Define slave's initial position when MPS is defined.

FOLM RATIO Establish the ratio of slave to master required to keep the slave stationary with respect to
the master.

FOLM DEF Define the MPS. This involves setting the master cycle count and position to 0 and the
slave position to that specified with the FOLM PDEF statement.

FOLM ENABLE Enable the moving positioning system. Subsequent slave moves are now with respect to
the MPS coordinate system.

See Also: FOL, UNIT MASTER

FOLM PDEF
Name FOLM PDEF
Descriptor Moving Positioning Offset
Type Set-Up
Initial value Ø
Range ±99999999 slave steps
Default FOLM PDEF * * * *
Syntax FOLM PDEF 0 Q7 12.35 *

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOLM PDEF statement is used to define the slave's initial position when

the moving positioning system is defined. This parameter is entered in user
units, and is scaled by the UNIT POS parameter. This number will be used
each time the MPS is defined, so it must be defined before the MPS is defined
for the first time. Numeric Q variables can be entered for this statement, and
the default value for FOLM PDEF is 0.

The Moving Positioning System in the 4000 allows programming of slave
moves with respect to moving reference. Point-to-point, contouring, even
ratio following moves can be performed by the slave while it's following the
master. For more information on the moving positioning system, refer to the
example under the FOLM ENABLE statement.

See Also: FOLM RATIO, FOLM DEF, FOLM ENABLE, UNIT POS

FOLM RATIO
Name FOLM RATIO
Descriptor Moving Positioning Ratio
Type Set-Up
Initial value Ø
Range ±127 slave steps per master step
Default FOLM RATIO * * * *
Syntax FOLM RATIO 1:1 -.5:1 Q2:Q9 *

Options TAB Q NULL :

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOLM RATIO statement establishes the ratio of slave to master

required to keep the slave stationary in the moving positioning system.
Assume FOLM RATIO is set to .5:.3 for an axis. The first parameter is

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

scaled by the UNIT POS value to give slave steps. The second parameter is
scaled by the UNIT MASTER value to give master steps. For a UNIT POS of
25000 and a UNIT MASTER of 4000, the slave to master step ratio would be
.5*25000 to .3*4000, or 125 slave steps for every 12 master steps.

If no second parameter is specified, it is assumed to be 1. Numeric Q
variables can be used with this statement for slave and/or master
parameters. The first, or slave, parameter is a signed number, which will be
negative if the slave counts in the opposite direction from the master. This
statement must be executed before the moving positioning system is defined
by the FOLM DEF statement. For more information on the moving
positioning system, refer to the Moving Positioning System section earlier
in this chapter, and the example under the FOLM ENABLE statement.

See Also: FOLM PDEF, FOLM DEF, FOLM ENABLE, UNIT MASTER, UNIT POS

FOLM DEF
Name FOLM DEF
Descriptor Define Moving Positioning System
Type Programming
Initial value NO
Range TRIG 1-4
Default FOLM DEF * * * *
Syntax FOLM DEF TRIG1 TRIG3 IMMED *

Options TAB TRIG NULL IMMED NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOLM DEF statement defines the moving positioning system (MPS).

When the MPS is defined the 4000 establishes the position reference for
master and slave with respect to the MPS. At the time of MPS definition, the
slave position within the MPS is set to that defined with the FOLM PDEF
statement. If the application requires that the master cycle position also be
set to zero at the time of the MPS definition, the FOL NEWCYC statement
should be used. The same trigger could be used to initiate both MPS
definition and a new master cycle.

If IMMED is specified, the MPS is defined immediately. If a trigger is
specified, the 4000 defines the moving positioning system when the trigger
occurs. Program flow is not affected in either case. If the application
requires that the program be halted until a specific master cycle position or
the trigger occurs, the FOL WAIT and FOL MOVEWT statements may be used.

Just because the MPS is defined, it does not mean that subsequent slave
moves will be with reference to the MPS. The FOLM ENABLE statement
allows reference to the stationary or moving positioning systems. For more
information on the moving positioning system, refer to the Moving
Positioning System section earlier in this chapter, and the example under
the FOLM ENABLE statement.

See Also: FOLM PDEF, FOLM RATIO, FOLM ENABLE, IN FOL TRIG

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

FOLM
ENABLE

Name FOLM ENABLE
Descriptor Enter or Exit Moving Positioning System
Type Programming
Initial value NO
Default FOLM ENABLE * * * *
Syntax FOLM ENABLE YES NO * YES

Options TAB YES NULL NO

F 1 F 2 F 3 F 4 F 5 F 6
Description The FOLM ENABLE statement is used to enter and exit the moving

positioning system (MPS). The MPS must have been previously defined
when this command is executed, and executing this command does not affect
the master and slave position coordinates already established at the time the
FOLM DEF command was executed. Even if the moving positioning system
is not entered right after definition, the master and slave positions are
constantly kept track of in both positioning systems. This ensures that no
position information is lost when transferring from the stationary
positioning system to the moving positioning system and back.

Entering and exiting the MPS simply means taking the point of view of the
moving object or stationary reference, respectively. It does not affect the
shaft speed of the slave. If an application requires that the slave start
tracking the master immediately upon entry into the MPS (i.e., remain
stationary in the MPS), a MOVE STOP or MOVE to a position should be
commanded right after the MPS is defined and entered.

If the slave is in absolute mode, move commands issued while in the MPS
will be performed with respect to the moving absolute position, and those
executed while not in the MPS will be performed with respect to the
stationary absolute position. The 4000 keeps track of both absolute
coordinate systems. The moving positioning system can be illustrated more
clearly with the example below.

See Also: FOLM PDEF, FOLM RATIO, FOLM DEF

Example In the example below, a pattern of coordinates needs to be traced on a grid
tray which is located on a moving conveyor belt. The part is moved with an
XY stage, where the X axis will be following the speed of the conveyor. The
third axis of the 4000 is controlling the conveyor, so the X axis will be
following the step output of axis #3. Assume that the third motor is mounted
to a pulley of 3" diameter driving the conveyor. The X and Y motors, 4000
axes 1 and 2, respectively, are coupled to 4 pitch leadscrews and are driven
with drives of 25,000 step/rev resolution.

The XY stage will initially be homed and the absolute position set to 0. The
operator enters the required pattern number, and a subroutine is called from
another program location (not shown here) which determines the required
values for Q variables used in the MOVE commands. The conveyor is set in
motion and the trays start moving down the line.

When a tray is sensed, the moving positioning system is defined and entered
immediately. When the system is defined, the X position is defined to be at
23.4". The trays are 20" in length and the home position of the X axis is 3.4"
from the sensor which detects the leading edge of the tray. Setting our initial
X coordinate to 23.4" means that the far edge of the tray is at position 0. This
assumption was used in the subroutine SET_VARS where the coordinate
location variables are set. After the MPS is entered by the X axis, the XY
stage makes three linearly interpolated moves to the proper tray locations,
turning on an actuator at each location. The X axis then exits the MPS and
the XY stage returns to the home position to await the next tray.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Statement Description

UNIT POS 100000 100000 25000 * 'X and Y positioning scale
'factors for inches, third axis
'motor resolution

UNIT VEL 100000 100000 1326.291 * 'Velocity scale factors for
'inches/sec

UNIT ACCEL 100000 100000 1326.291 * 'Acceleration scale factors for
'inches/sec/sec

VEL 5 5 12.25 * 'Velocity

ACCEL 10 10 35 * 'Acceleration

UNIT PATH VEL 100000 'Unit path velocity for LINT
'mode move

UNIT PATH ACCEL 100000 'Unit path acceleration for
'LINT mode move

PATH VEL 5 'Path velocity

PATH ACCEL 10 'Path acceleration

LINT MODE YES YES * * 'Enable LINT mode on axes #1
'and 2

UNIT MASTER 1326.2912 * * * 'Master scale factor for inches

FOL MASTER MOT3 * * * 'Master for axis #1 is step
'output of axis #3

FOLM RATIO 1:1 * * * 'MPS slave to master ratio is 1
'to 1

FOLM PDEF 23.4 * * * 'Define initial slave position
'to 23.4"

FOLM MAS_CYC 35 * * * 'Master cycle length is 35
'inches (well larger than the
'slave offset + tray length)

MOVE HOMECW HOMECCW * * 'Move XY stage to home

MODE M_ABS M_ABS * * 'Absolute mode

PDEF 0 0 * * 'Define home position as 0

IN Q1 = LCD1,1 ^ENTER PATTERN ^ 'Operator enters required grid
'pattern

GOSUB SET_VARS 'Subroutine that contains the
'grid coordinates (i.e., values
'of Q2 - Q7) for the possible
'patterns

MOVE * * SLEWCW * 'Start conveyor moving

LABEL PLACE_PT 'Label to repeat part placement
'on tray

FOL NEWCYC TRIG3 * * * 'Set master position to 0 on
'trigger #3

FOLM DEF TRIG3 * * * 'Define MPS on trigger #3

FOL WAIT TRIG3 * * * 'Suspend program operation
'until 1st tray is sensed

FOLM ENABLE YES * * * 'Enter MPS on axis #1, does not
'start motor

MOVE STOP * * * 'Must stop the X axis within
'the MPS, since when the MPS
'was entered, we are at rest in
'the stationary reference
'frame, but actually in motion
'in the MPS reference frame - a
'LINT mode move can not be
'started while an axis is in
'motion.

MOVE Q2 Q3 * * 'Do LINT mode move to 1st grid
'coordinates

OUT POB3 = 1 'Actuate part placement device

WAIT FOR .2 SECONDS 'Wait for placement

OUT POB3 = 0 'Turn actuator back off

MOVE Q4 Q5 * * 'Do LINT mode move to 2nd grid
'coordinates

OUT POB3 = 1 'Actuate part placement device

WAIT FOR .2 SECONDS 'Wait for placement

OUT POB3 = 0 'Turn actuator back off

MOVE Q6 Q7 * * 'Do LINT mode move to last grid
'coordinates

OUT POB3 = 1 'Actuate part placement device

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

WAIT FOR .2 SECONDS 'Wait for placement

OUT POB3 = 0 'Turn actuator back off

FOLM ENABLE NO * * * 'Exit the MPS, does not stop
'motor

MOVE 0 0 * * 'Move XY stage back to home
'position, motor now at rest

GOTO PLACE_PT 'Repeat the cycle

DONE 'End of program

UNIT
MASTER

Name UNIT MASTER
Descriptor Set Master Unit Scale Factor
Type Set-Up
Initial value 25000
Default UNIT MASTER * * * *
Syntax UNIT MASTER 4000 Q23 * 25000

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description The UNIT MASTER statement, used with the Following option, allows

master positions to be programmed in user units. In most cases, the user
units for master and slave will be the same since they refer to the same
physical system, (i.e., inches or revolutions) but this is not required.

The number in the first column of the UNIT MASTER statement does not
necessarily represent the steps/unit for the encoder input for axis #1.
Instead, it represents the steps/unit for whichever encoder input or step
output will be the master for the slave on axis 1. This is shown in the
example below.

Fractional values are allowed, but truncation errors may occur if the product
of the scale factor and the value scaled is not a whole number. Numeric Q
variables can also be used as the scale factor, and the default value of UNIT
MASTER is 1. The UNIT MASTER parameter scales the following
statements: master parameter of FOL RATIO, FOL MDIST, FOL
MAS_CYC, FOL WAIT, FOL MOVEWT, FOL WIN_P, FOL WIN_W, FOL
M_SYNC, FOL S_SYNC, IN Qn = FOL AXISn MAS_P and master
parameter of FOLM RATIO. After scaling, the result must not be larger than
99,999,999 or an execution error will result.

See Also: FOL, FOLM

Example
In the example below, axis 1 is following the encoder input on axis #3. Unit
scale factors, master and slaves axes, and the following ratio are set.

Statement Description

UNIT POS 25000 * * * 'Sets slave scale factor to 25000 for axis 1

UNIT MASTER 4000 * * * 'Sets master scale factor to 4000 for axis 1

FOL MASTER ENC3 * * * 'Axis 1 using encoder input #3 as master

FOL RATIO 1:1 * * * 'Set the slave to master ratio at 1 to 1
'based on user units. Actual ratio in steps
'= 1*25000 to 1*4000 or 6.25 slave steps for
'each master step.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

IN FOL
Name IN FOL
Descriptor Get Following Axis Information
Type Programming
Initial value N/A
Range N/A
Default IN Qn = FOL AXISn MAS_P
Syntax IN Q10 = FOL AXIS4 MAS_P

IN Q1 = FOL AXIS2 TRIG1

Options TAB
TAB
TAB

Q
SHIFT
S_SYNC

MAS_P
SYN_ERR
M_SYNC

MAS_C
FOL_ERR
MAS_V

SLV_P
TRIG

ETC
ETC
ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description

MAS_P The IN Qn = FOL AXIS MAS_P statement assigns to the Q variable the
current master cycle position for the following axis specified. It is important to
remember that this is not a position of that slave, but instead it is the position
of that slave's master. The position returned is the position of the master
within its current cycle. For a complete discussion of master cycles, please
refer to the section titled The Master Cycle Concept earlier in this chapter. The
master cycle position in master steps is inversely scaled by UNIT MASTER
for the axis, so the resulting value in the variable is the cycle position
expressed in the user's units. This value may be used for subsequent decision
making, or simply recording the cycle position corresponding to some other
event.
See Also: FOL MAS_CYC, FOL NEWCYC, FOL CYC_OFF, IN Qn=FOL

AXISn MAS_C

MAS_C The IN Qn = FOL AXIS MAS_C statement assigns to the Q variable the
current master cycle number for the following axis specified. It is important to
remember that this is not a position of the master (or the slave), but instead it is
the current cycle number. The master cycle number is set to zero when a new
cycle is defined, and is incremented each time a master cycle finishes, i.e.,
rollover occurs. For a complete discussion of master cycles, please refer to
the section titled The Master Cycle Concept earlier in this chapter. The master
cycle number is not a unit of position, and has no scaling factor. The reported
master cycle number is the number of completed master cycles since the last
new cycle definition. It will often correspond to the number of complete parts in
a production run. This value may be used for subsequent decision making, or
simply recording the cycle number corresponding to some other event.
See Also: FOL MAS_CYC, FOL NEWCYC, FOL CYC_OFF, IN Qn=FOL

AXISn MAS_P

SLV_P The IN Qn = FOL AXIS SLV_P statement assigns to the Q variable the
current slave absolute position for the following axis specified. The position
returned will depend on the positioning mode (motor or encoder) of the slave
and whether or not the slave is currently in the Moving Positioning System
(FOLM ENABLE YES). Please refer to the section titled Moving Positioning
System earlier in this chapter. If the slave is not currently in the Moving
Positioning System, the reported position will be identical to that reported with
the IN POS MABS or EABS statement, for motor and encoder positioning
respectively. If the slave is currently in the Moving Positioning System, the
reported position will be the absolute motor or encoder position with respect to
the moving positioning system zero reference, for motor and encoder
positioning respectively. In other words, this statement may be used to obtain
the position of the slave with respect to a moving object or a stationary
reference. The position in slave steps is inversely scaled by UNIT POS for
the axis, so the resulting value in the variable is the slave position expressed
in the user's units. This value may be used for subsequent decision making, or
simply recording the slave position corresponding to some other event.
See Also: FOLM DEF, FOLM ENABLE, FOLM PDEF

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SHIFT The IN Qn = FOL AXIS SHIFT statement assigns to the Q variable the
current value of the net, or absolute slave shift which has occurred at the
current ratio for the following axis specified. This ratio may zero, i.e., the slave
is at rest, or its current constant ratio reached as a result of a MOVE SLEWCW
or MOVE SLEWCCW. The position returned will be the sum of all shifts
performed on that axis since that axis reached constant ratio. Each time a new
commanded constant ratio is reached, and at the end of preset distance
move, the shift value is set to zero. The reported position will be the net motor
or encoder shift for motor and encoder positioning respectively. The shift
value in slave steps is inversely scaled by UNIT POS for the axis, so the
resulting value in the variable is the slave shift expressed in the user's units.
This value may be used for subsequent decision making, or simply recording
the slave's net shift corresponding to some other event.
See Also: FOL SHIFT

FOL_ERR The IN Qn = FOL AXIS FOL_ERR statement assigns to the Q variable
the current slave following error for the following axis specified. The following
error is defined as the difference between the setpoint position and the actual
position. For a complete discussion of the conditions which may result in
following error, please refer to the section titled Following Performance earlier
in this chapter. The error value returned will be the motor or encoder position
error for motor and encoder positioning respectively. The error in slave steps
is inversely scaled by UNIT POS for the axis, so the resulting value in the
variable is the slave following error expressed in the user's units. This value
may be used for subsequent decision making, or simply recording the slave
following error corresponding to some other event.
See Also: FOL MAXACC, FOL MAXVEL

SYNC_ERR The IN Qn = FOL AXIS SYNC_ERR statement assigns to the Q variable
the current slave synchronization error for the following axis specified. The
4000 allows the user to define two external events, or "marks", which capture
the slave position. These are called Master Sync Mark and Slave Sync Mark,
and are defined with the FOL M_SYNC and FOL S_SYNC statements
respectively. Each time either a master or slave sync mark occurs, the
corresponding slave position is captured and saved internally. The FOL
SYNC_OFF statement defines the expected difference between these
captured slave positions. This expected difference is called the Slave
Synchronization Offset. The difference between the actual offset and the
expected offset is called the Sync Error. This error may be read into a Q
variable using the IN Qn = FOL AXISn SYNC_ERR statement. To
understand exactly how to use this, please refer to the section titled Periodic
Master/Slave Synchronization earlier in this chapter.
See Also: FOL MSYNC, FOL SSYNC, FOL SYNC_OFF

TRIGn This is useful in determining whether or not the trigger input has occurred, the
first 4 bits in this table will be set when the trigger is defined for a function, then
cleared when the trigger occurs. The latter two will be set if the trigger defines
the corresponding sync mark, and will remain set until that sync mark is re-
defined or defined with a NO parameter. Suppose for example that the trigger
had been defined to start a new master cycle and define a master sync mark.
Before the trigger occurs, the value assigned to the Q variable will be 17. After
the trigger occurs, the value will be 16.

Defines Moving Positioning System 1
Defines new master cycle start 2
FOL WAIT on this trigger 4
FOL MOVEWT on this trigger 8
Defined as master sync mark 16
Defined as slave sync mark 32

This is useful in determining whether or not the trigger input has occurred, the
first four bits in this table will be set when the trigger is defined for a function,
then cleared when the trigger occurs. The latter two will be set if the trigger
defines the corresponding sync mark, and will remain set until that sync mark
is redefined or defined with a NO parameter. Suppose for example that the
trigger had been defined to start a new master cycle and define a master sync
mark. Before the trigger occurs, the value assigned to the Q variable will be
17. After the trigger occurs the value will be 16.
This trigger status request may also be useful by allowing one program to
determine if another is waiting on a FOL WAIT TRIGn statement when both
are running under multi-tasking. The example below shows how to check for
only this condition.
IN Q1 = FOL AXIS2 TRIG1 'check axis 2's TRIG1 status
MATH Q1 = Q1 AND 4 'check only the FOL WAIT bit
IF Q1 = 4 GOTO IT_WAITS 'if the value is 4, the other

'task is waiting

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

S_SYNC The IN Qn = FOL AXISn S_SYNC statement assigns the Q variable the
slave position most recently latched by the slave synchronization mark
defined with the FOL S_SYNC statement. Each time the mark occurs, the
slave position is captured and may be read with this statement. The position in
slave steps is inversely scaled by UNIT POS for the axis, so the resulting
value in the variable is the captured slave position expressed in the user's
units. This value may then be used for whatever purpose is required, even if no
master synchronization mark has been defined. These uses may include
functions related to Master/Slave Synchronization, or simply general purpose
data aquisition. For a complete discussion of Master/Slave Synchronization,
refer to Master/Slave Synchronization.

M_SYNC The IN Qn = FOL AXISn M_SYNC statement assigns the Q variable the
slave position most recently latched by the master synchronization mark
defined with the FOL M_SYNC statement. Each time the mark occurs, the
slave position is captured and may be read with this statement. The position in
slave steps is inversely scaled by UNIT POS for the axis, so the resulting
value in the variable is the captured slave position expressed in the user's
units. This value may then be used for whatever purpose is required, even if no
slave synchronization mark has been defined. These uses may include
functions related to Master/Slave Synchronization, or simply general purpose
data aquisition. For a complete discussion of Master/Slave Synchronization,
refer to Master/Slave Synchronization.

MAS_V The IN Qn = FOL AXISn MAS_V statement assigns the Q variable the
current master velocity. The velocity in master steps per second is inversely
scaled by UNIT MASTER for the axis, so the resulting value in the variable is
the master velocity expressed in the user's units. This value may then be used
for whatever purpose is required, such as estimating a process cycle rate. The
value returned is only approximate, and its accuracy it dependent on the value
chosen for FOL SMOOTH. For a complete discussion of the effect of velocity
smoothing on velocity measurement accuracy , refer to Velocity Smoothing.

ON FOL_ERR
Name ON FOL_ERR
Descriptor Interrupt on Excess Slave Following Error
Type Programming
Initial value N/A
Range N/A
Default ON FOL_ERR ANY_AXIS GOTO LABELØ
Syntax ON FOL_ERR AXIS2 GOTO F_ERR2

Options TAB
TAB

DISABLE
BEG

ALPHA
END

GOSUB
GOTO

FND_LBL ETC
ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description

The ON FOL_ERR statement enables the 4000 to continuously check for
excess following error on the specified axis or all axes. For a complete
discussion of the conditions which may result in following error, please
refer to the section titled Following Performance earlier in this chapter.
Whenever the slave's setpoint position is not equal to the actual slave
position, a following error exists. The user may specify a following error
tolerance using the FOL PTOL statement. If the magnitude of the actual
following error ever exceeds the specified tolerance, the 4000 latches the
condition of following error tolerance exceeded, and the 4000 will branch to
the location specified in the ON FOL_ERR statement. If the user's program
requires that the 4000 respond to a new occurrence of excess following error,
the FOL PTOL statement should first be executed to clear the old error, and
then the ON FOL_ERR statement executed to allow detection of the
condition. For a complete discussion of related topics, please refer to the
section titled Monitoring Following Error earlier in this chapter.

See Also: FOL PTOL, FOL WIN_P, FOL WIN_W, IN Qn = FOL AXISn FOL_ERR

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ON WT_ERR
Name ON WT_ERR
Descriptor Interrupt on FOL MOVEWT Position Missed
Type Programming
Initial value N/A
Range N/A
Default ON WT_ERR ANY_AXIS GOTO LABELØ
Syntax ON WT_ERR AXIS2 GOTO WT_QUIT

Options TAB
TAB

DISABLE
BEG

ALPHA
END

GOSUB
GOTO

FND_LBL ETC
ETC

F 1 F 2 F 3 F 4 F 5 F 6
Description

The ON WT_ERR statement enables the 4000 to continuously check for a
WT_ERR condition (wait error) on the specified axis or all axes. If a FOL
MOVEWT has specified a master cycle position as the wait condition for a
subsequent move, and the master position has already exceeded that
specified cycle position by the time the subsequent move is commanded, the
WT_ERR condition is flagged and latched. For a complete understanding of
wait errors, it is important to understand master cycles and waiting for cycle
positions. Please refer to the sections titled The Master Cycle Concept and
Following Wait Statements earlier in this chapter. When the WT_ERR
condition is detected, the 4000 will branch to the location specified in the ON
WT_ERR statement. If the user's program requires that the 4000 respond to a
new occurrence of wait error, the FOL MOVEWT statement should first be
executed to clear the old error, and then the ON FOL_ERR statement
executed to allow detection of the condition. Although it is valid, it is not
necessary to specify another wait condition in this case. A FOL MOVEWT NO
statement may be used to clear the error.

See Also: FOL PTOL, FOL WIN_P, ON FOL_ERR, IN Qn = FOL AXISn FOL_ERR
DEFINE
TRIGDB

Name DEFINE TRIGDB
Descriptor Define trigger debounce time
Type Set-Up
Initial value 80 milliseconds
Range 4 - 1000 milliseconds
Default DEFINE TRIGDB * * * *
Syntax DEFINE TRIGDB 80 * Q1

Options TAB Q NULL

F 1 F 2 F 3 F 4 F 5 F 6
Description

The DEFINE TRIGDB statement defines the total debounce time for the four
trigger inputs. The debounce prevents noise or the mechanical switch bounce
from causing a false interrupt on the trigger input. A trigger is initially
recognized on the rising edge of the input. That trigger will not be recognized
again until it has gone low and the debounce time, measured from the rising
edge, has been exceeded. This debounce time affects registration and all of
the FOL and FOLM statements that include triggers as a parameter. The
initial value of 80 ms. will usually be long enough to debounce most
mechanical and electronic switches, but this time may be lengthened if
needed. In some applications, registration marks or master/slave
synchronization marks may occur more frequently than 80 ms. In these
cases, the debounce time may be shortened, provided the signal bounce is
short enough. The debounce times are only accurate to ± 2 ms of the specified
value, and the actual values used will always be between 4 and 1000 ms. The
debounce times are specified for triggers 1, 2, 3, and 4 (left to right on the
statement line).

See Also: FOL MOVEWT, FOL NEWCYC, FOL WAIT, FOL M_SYNC, FOL S_SYNC,
FOLM DEF

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Codes
The following is a list of error codes unique to the Model 4000.

Error Messages Description
Big RAM not installed in U14, U15 This occurs if any FOL or FOLM statement or any IN Qn request for a following

parameter is executed without the RAM required for the following option installed.
Invalid FOL MASTER specified This indicates that an illegal master was specified in FOL MASTER. A slave may

never use its own motor step count as its master. A slave in encoder step mode or
with stall detect enabled may not use its own encoder step count as master.

FOL MASTER invalid if moving
or
FOL ENABLE invalid if moving

This indicates the statement is not allowed while the slave is moving. Moving means
moving with respect to the current positioning system. A slave may be stationary
with respect to a stationary reference, yet be moving in the moving positioning
system.

FOL MASTER or FOL ENABLE respectively
FOL MASTER not executed This indicates that no FOL MASTER for the axis is currently specified. It will occur

if any FOL or FOLM statement defining or enabling parameters or any IN Qn
request for a following parameter is executed and no FOL MASTER statement was
executed, or FOL MASTER NO was executed.

FOLM DEF not completed This indicates that the statement is not allowed if no moving positioning system is
defined. It could occur if FOLM DEF was never executed, or if the trigger which
defines the moving positioning system has not occurred.

FOLM ENABLE YES

FOL parameter too large This indicates that the numeric parameter supplied with the statement is too large.
FOL MAS_CYC—Error if: master steps>99999999
FOL WIN_P—Error if: master steps>99999999
FOL WIN_W—Error if: master steps>99999999
FOL CYC_OFF—Error if: master steps>99999999 or <-99999999
FOL PDEF—Error if: slave steps>99999999 or <-99999999
FOL SYNC_OFF—Error if: slave steps>99999999 or <-99999999
FOL PTOL—Error if: slave steps>99999999
FOL MOVEWT—Error if: master steps >99999999 or <-99999999
FOL WAIT—Error if: master steps >99999999 or <-99999999
FOL WAIT—Error if: master steps >99999999 or <-99999999
FOL M_SYNC—Error if: master steps>99999999
FOL S_SYNC—Error if: master steps>99999999

FOL parameter not valid This indicates that the parameter supplied with the statement is not valid.
FOL MAS_CYC —Error if: master steps are negative
FOL RATIO —Error if: ratio denominator is negative
FOLM RATIO—Error if: ratio denominator is negative
FOL MAXACC—Error if: Error if value is Ø
FOL SMOOTH —Error if: smooth number is not 1-4
FOL WIN_P—Error if: master steps are negative
FOL WIN_W —Error if: master steps are negative
FOL PTOL —Error if: slave steps are negative
FOL M_SYNC —Error if: slave steps are negative
FOL S_SYNC —Error if: slave steps are negative

Master cycle definition pending This indicates a master cycle definition is pending a trigger, the master cycle
position is unknown.

IN Qn AXISn MAS_P
IN Qn AXISn MAS_C

FOL SHIFT cannot start move This indicates that a command phase shift cannot be performed.
FOL SHIFT # - Error is already shifting or performing other time based move

or VEL or ACCEL is zero or distance is >99999999 or <-99999999
FOL SHIFT CW,CCW - Error if ACCEL is zero

Master sync mark undefined This indicates that no master sync mark definition exists. This may be because the
FOL M_SYNC statement was never executed, or was executed with NO as the
parameter.

IN Qn AXISn SYN_ERR

Slave sync mark undefined Indicates that no slave sync mark definition exists. This may be because the FOL
S_SYNC statement was never executed, or was executed with NO as the parameter.

IN Qn AXISn SYN_ERR

FOL RATIO value invalid This indicates that the ratio given after scaling by UNIT POS and UNIT MASTER
was outside the range ±127, or that the ratio denominator was zero

FOL RATIO
FOLM RATIO

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index 143

I N D E X

A
ABSOLUTE COORDINATE SYSTEM 40
ABSOLUTE ENDPOINT PROGRAMMING 40

C
CIRCLES 21
COORDINATE SYSTEMS 16, 40
CURRENT ERROR 75
CUSTOM PRODUCTS GROUP 11

D
DEVICE CLEAR, INTERFACE CLEAR 6
DISTANCE CALCULATIONS 108
DYNAMIC POSITION MAINTENANCE 103

E
ELECTRONIC GEARBOX 67
ERROR

POSITION 104
SYNC 78, 82
TOLERANCE 129

F
FILTERING 103
FOL SMOOTH 62
FOLLOWING ERROR 75, 128, 129, 130, 138, 139
FOLLOWING MODE 65, 66, 111, 117

H
HOST COMPUTER PROGRAMS 5

I
IEEE-488

COMMUNICATION 5
INSTALLATION 1

INCREMENTAL PROGRAMMING 16
INSTALLATION 62

L
LOCAL COORDINATE SYSTEM 16, 40

M
MASTER

CYCLE 128
DISTANCE 65, 66
SYNC MARK 77, 78, 80, 82, 126, 138
VELOCITY 62, 102, 103

MASTER CYCLE
CONCEPT 69
LENGTH 69, 70, 120, 122, 129
NUMBER 69, 137
POSITION 69, 70, 75, 78, 96, 119, 122, 126, 137, 140

MONITORING FOLLOWING ERROR 74
MOTION

ROUGH 103
MOTION PATHS 11
MOVING POSITIONING SYSTEM 61, 94, 110, 132, 133, 134
MULTI-TASKING EXAMPLE 54

N
NON-PATH ACTIONS 27
NON-PATH STATEMENTS 26

O
OFFSET

ACTUAL 77, 128, 138
EXPECTED 77, 78, 128, 138
SYNCHRONIZATION 77, 79, 80, 82, 128, 138

P
PATH

ACCELERATION 16
COMPILING 26
DECELERATION 16
DEFINITION 14
EXECUTING 26
EXECUTION 14
LENGTH 18
ORIENTATION 18
PLACEMENT 18
VELOCITY 16

POB OUTPUT 23, 28, 31
POSITION

ERROR 74
INITIAL 95, 132
MASTER CYCLE 75, 78
RELATIONSHIP 66
SETPOINT 74, 102, 139

PROGRAMMING
ABSOLUTE 17, 40
ERRORS 26
EXAMPLES 28
INCREMENTAL 17, 40

R
RAMP 66
RANDOM TIMING INFEED 77, 79
RATIO 65
RATIO FOLLOWING 61, 64, 68, 94
REGISTRATION 81, 111
ROLLOVER 69, 78
ROUGH

MOTION 103
MOTION IS
MOTION 111

S
SEGMENT BOUNDARY 21
SERIAL POLL REGISTER 4, 5
SETPOINT

POSITION 74, 102, 139
SHIFT 65, 81, 82
SLAVE 65

POSITION 66
SHIFT 66
SYNC MARK 77, 78, 80, 82, 127, 138

STATEMENT
ACCEL 66, 108, 112
ACCEL PATH 32
DECEL PATH 32
DEFINE GPIB ADDR 8
DEFINE GPIB ERR_MSG 8
DEFINE GPIB PROMPTS 8
DEFINE GPIB SRQ 5
DEFINE GPIB SRQ IF SPAS 7
DEFINE ON RET 58
DEFINE TRIGDB 59, 140
DISPLAY ON PORTN TRACE 57
ENABLE REGSRV 59
ENABLE TRIG REV 58
FOL CAM 131
FOL CYC_OFF 70, 126

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

144 Model 4000 Options User Guide

FOL DIRSET 130
FOL ENABLE 65, 117
FOL ENCCHK 131
FOL LEAD 130
FOL MASTER 115
FOL MAS_CYC 121
FOL MAXACC 74, 112, 124
FOL MAXVEL 74, 112, 125
FOL MDIST 65, 66, 108, 112, 118
FOL MOVEWT 71, 119, 140
FOL M_SYNC 77, 126
FOL NEWCYC 69, 121
FOL PTOL 75, 112, 129
FOL RATIO 65, 66, 117
FOL SHIFT 65, 78, 83, 116
FOL SMOOTH 73, 124
FOL SYNC_OFF 77, 79, 128
FOL S_SYNC 77, 127
FOL VELFF 73, 102, 125
FOL WAIT 122
FOL WIN_P 75, 128
FOL WIN_W 75, 129
FOLLOWING STATEMENT GROUP

FOL MAS_CYC 69
FOL WAIT 70
FOLLOWING PERFORMANCE 73
MASTER CYCLE 71
MOVING POSITIONING SYSTEM 94, 96
RATIO FOLLOWING 64
SUMMARY OF FOLLOWING PERFORMANCE AND
MEASUREMENT STATEMENTS 76
SUMMARY OF PERIODIC MASTER/SLAVE
SYNCHRONIZATION STATEMENTS 79
SUMMARY OF RATIO FOLLOWING STATEMENTS 67

FOLM DEF 94, 133
FOLM ENABLE 95, 134
FOLM PDEF 94, 132
FOLM RATIO 94, 132
IN FOL 137

FOL MAS_CYC 70
FOL_ERR 138
MAS_C 137
MAS_P 70, 137
SHIFT 138
SLV_P 66, 95, 137
STATEMENTS. 78
SYNC_ERR 77, 138

MAS_V 139
M_SYNC 139
ON FOL_ERR 75, 130, 139
ON WT_ERR 140
OUT SPOL 9
PATH 27, 33
PATH COMPILE 24, 36
PATH C_RES 44
PATH DEF 34
PATH END 35
PATH EXECUTE 24, 34
PATH LINE 39
PATH OCCW 39
PATH OCW 38
PATH ONLY 42
PATH POB 43
PATH P_RATIO 44
PATH RAD_TOL 46
PATH RCCW 37
PATH RCW 37
PATH UNCOMP 14, 45
PATH XY 40
S_SYNC 139
TASK 56
TRIGN 138
UNIT MASTER 64, 65, 136
UNIT PATH ACCEL 49
UNIT PATH POS 47
UNIT PATH VEL 48
UNIT POS 64, 65
VEL PATH 50
WAIT 71
WT_ERR 140

SUBROUTINES 29
SYNC ERROR 128, 138
SYNC MARK 78
SYNCHRONIZATION 27, 69, 71, 75, 77, 126, 127

ERROR 78, 138
SYNCHRONIZING 71
SYNC_ERR 78, 79, 138

T
TRACKBALL 68
TRIGGER 70, 71, 78, 94, 119, 122, 126, 127, 133

V
VELOCITY

CORRECTION 104
SMOOTHING 62

VELOCITY AVERAGING 74, 103, 124
VELOCITY FEED FORWARD 62, 74, 102, 103
VELOCITY SMOOTHING 103

W
WAITS 69
WEB PROCESSING 77, 81
WINDOW

ERROR DETECTION 75, 128, 129
START POSITION 128
STARTING POSITION 75, 76
WIDTH 75, 129

WORK COORDINATE SYSTEM 16, 29, 40

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions
Extend the life of your critical industrial,

commercial, and military systems with our

superior service and support.

We buy equipment
Planning to upgrade your current

equipment? Have surplus equipment taking

up shelf space? We'll give it a new home.

Learn more!
Visit us at artisantg.com for more info

on price quotes, drivers, technical

specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?
(217) 352-9330 I sales@artisantg.com I artisantg.com

