HP EPC-7 486

Embedded Computer, 100 MHz Processor

2l ARTISAN

‘ TECHNOLOGY GROUP

In Stock Your definitive source
for quality pre-owned
equipment.

Used and in Excellent Condition

Open Web Page

https://www.artisantg.com/52812-50 Artisan Technology Group
(217) 352-9330 | salesaartisantgLom | artisantg.com

Alltrademarks, brandnames, and brands appearing herein are the property of their respective owners.

» Critical and expedited services « We buy your excess, underutilized, and idle equipment
«» In stock / Ready-to-ship « Full-service, independent repair center
Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

https://www.artisantg.com/TestMeasurement/52812-50/RadiSys-HP-EPC-7-486-Embedded-Computer-100-MHz-Processor?pdf=52812-50
https://www.artisantg.com/52812-50?pdf=52812-50

EPConnect/VXI for DOS
Manual Set

VOL 3 of 3

A 4
®
RadiSys Corporation
15025 S.W. Koll Parkway
Beaverton, OR 97006
Phone: (503) 646-1800
FAX: (503) 646-1850
-

http://www.radisys.com

07-0230-02 CORPORATION December 1994

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EPConnect/VXI for DOS Manual Set

EPC and RadiSys are registered trademarks of RadiSys Corporation.

This manual part number is 07-0230-02.
It contains manuals 07-0157-02 and 07-0139-02.

July 1994
Copyright © 1994 by RadiSys Corporation

All rights reserved.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS

Programmer's Reference

Guide

RadiSys® Corporation
15025 S.W. Koll Parkway
Beaverton, OR 97006
Phone: (503) 646-1800

FAX: (503) 646-1850

07-0157-02 December 1994

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Guide

EPC and RadiSys are registered trademarks and EPConnect is a trademark of RadiSys
Corporation,

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and
Windows is a trademark of Microsoft Corporation.

National Instruments is a registered trademark of National Instruments Corporation
and NI-488 and NI-488.2 are trademarks of National Instruments Corporation.

IBM and PC/AT are trademarks of International Business Machines Corporation.
August 1990
Copyright © 1990, 1994 by RadiSys Corporation

All rights reserved.

Page ii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Software License and Warranty

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND
CONDITIONS BEFORE OPENING THE DISKETTE OR DISK UNIT PACKAGE.
BY OPENING THE PACKAGE, YOU INDICATE THAT YOU ACCEPT THESE
TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS
AND CONDITIONS, YOU SHOULD PROMPTLY RETURN THE UNOPENED
PACKAGE, AND YOU WILL BE REFUNDED.

LICENSE

You may:
1. Use the product on a single computer;

2. Copy the product into any machine-readable or printed form for backup or
modification purposes in support of your use of the product on a single
computer;

3. Modify the product or merge it into another program for your use on the single
computer—any portion of this product merged into another program will
continue to be subject to the terms and conditions of this agreement;

4. Transfer the product and license to another party if the other party agrees to
accept the terms and conditions of this agreement—if you transfer the product,
you must at the same time either transfer all copies whether in printed or
machine-readable form to the same party or destroy any copy not transferred,
including all modified versions and portions of the product contained in or
merged into other programs.

You must reproduce and include the copyright notice on any copy, modification, or
portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRODUCT OR
ANY COPY, MODIFICATION, OR MERGED PORTION, IN WHOLE OR IN
PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION, OR
MERGED PORTION OF THE PRODUCT TO ANOTHER PARTY, YOUR
LICENSE IS AUTOMATICALLY TERMINATED.

Page i1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Guide

TERM

The license is effective until terminated. You may terminate it at any time by
destroying the product and all copies, modifications, and merged portions in any
form. The license will also terminate upon conditions set forth elsewhere in this
agreement or if you fail to comply with any of the terms or conditions of this
agreement. You agree upon such termination to destroy the product and all copies,
modifications, and merged portions in any form.

LIMITED WARRANTY

RadiSys Corporation ("RadiSys") warrants that the product will perform in
substantial compliance with the documentation provided. However, RadiSys does
not warrant that the functions contained in the product will meet your requirements or
that the operation of the product will be uninterrupted or error-free.

RadiSys warrants the diskette(s) on which the product is furnished to be free of
defects in materials and workmanship under normal use for a period of ninety (90)
days from the date of shipment to you.

LIMITATIONS OF REMEDIES

RadiSys' entire liability shall be the replacement of any diskette that does not meet
RadiSys' limited warranty (above) and that is returned to RadiSys.

IN NO EVENT WILL RADISYS BE LIABLE FOR ANY DAMAGES,
INCLUDING LOST PROFITS OR SAVINGS OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY
TO USE THE PRODUCT EVEN IF RADISYS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

GENERAL

You may not sublicense the product or assign or transfer the license, except as
expressly provided for in this agreement. Any attempt to otherwise sublicense,
assign, or transfer any of the rights, duties, or obligations hereunder is void.

This agreement will be governed by the laws of the state of Oregon.

Page iv

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

If you have any questions regarding this agreement, please contact RadiSys by
writing to RadiSys Corporation, 15025 SW Koll Parkway, Beaverton, Oregon 97006.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US WHICH
SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN US RELATING
TO THE SUBJECT MATTER OF THIS AGREEMENT.

Page v

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Guide

NOTES

Page vi

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Table of Contents

1. Introducing Bus Management for DOS....... . 1-1
1.1 How This Manual is Organized ... 1-2
1.2 What is Bus Management for DOS7.........ccooiniiiiiciinnieencen, 1-2

1.2.1 Bus Management Library and BusManager
DEVICE DIIVEL...c.coveueeiieiciineiniect v necenas 1-3
L22SURM ettt 1-4
1.3 Programming, Compiling and Linkingccccoeooveivvinieniniriceaeeens 1-4
1.3.1 Header Filesc.ccooeiiiiiiiiiiencicrcec 1-4
1.3.2 Programming Interfacecoccoovvviinreieinicnninenennee I-5
Calling Bus Management for DOS From MS "C"
and QUICKCoooiicieccee s 1-6
Calling EPConnect From Borland Turbo C 1-6
Calling EPConnect from MS BASIC........ocovininenne 1-6
Calling Bus Management for DOS From Assembly
Language....c.cccoviieriii i 1-7
1.3.3 Compiling and Linking Applications........c.ccccccoeee.e. 1-7
Compiling and Linking MS BASIC Applications......... 1-8
1.4 What t0 do NEeXt.oooooiirieiieiiniieieccece et 1-8

2. Function DescCriPtionsS...icciieniienenncciennnsinnsenisennesnssiaresssssssssssess 2-1
2.1 INtrodUCHION.....eiiiiiiiiicre ettt e 2-1
2.2 FUnctions by CategOrY ...cccoceiovrieereeeiiniiesieerieereeeresaeseesreesreseeeneeans 2-1

2.2.1 Bus Access Functionsc.ccoocevccenconienininncccnenn. 2-2
2.2.2 Byte-Swapping Functions........coccoocconnininiccnenns, 2-2
2.2.3 Block Copy Functionscccoevecinieivncnninincnieencns 2-3
2.2.4 Interrupt and Error Handling Functions.................... 2-4
2.2.5 Bus Control FUnctionscocceeimviiiiciinnincineee 2-5
2.2.6 Commander Functionalityc.cccoccoeiiiinniieninan. 2-6
2.2.7 Event/Response FUnNctions.........c.evvveevieeciecnicenieenns 2-7
2.2.8 Servant Functionality ..., 2-8
2.2.9 Other FUNCHONS. .c..cviieciiriieene e, 2-9
2.3 Functions By Nameoccoooviiiiiiiiccicecce et 2-10
EPCBIOSVET.cuuiimtiiiieiie et 2-11
EPCBMVET ..ot e 2-12
EPCCKBM....ciiiiiieiieee e 2-13
EPCCKINI.c..iiiiiecciit ettt ettt et 2-14
EPCDISEIT ..ot 2-15
EpPCDISINtI ..o 2-17
Page vii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EPCENEIT ... 2-18
EPCENINI ..ot 2-20
EPCEFGEL..... oot 2-22
EPCErQUE......oiiiiiiieee e 2-23
EPCErREdIr ..o 2-24
EpcErServIntr ..o, 2-26
EPCEISErvSig....coviimiiiieieeeeeeeceeseeeeeseee e eeee e 2-28
EpcErUnredir.....oooovooiviieecieieeeeeeeeeee e, 2-29
EPCEITSII ..o 2-30
EpcEIWSCIMA ..ot 2-31
EpCFromVmMe.c.ooveimiiiiiiieteecceeeee e 2-33
EpcFromVmeAMcoovvvieiiiieiceiciieeee e s e 2-37
EpcGetAccMOde. ..ot 2-41
EpcGetAmMapcccooiiimmniieeeeceeeeeeeeeeee e, 2-43
EPCGELEITOT ..., 2-45
EPCGEtINtr. ... 2-46
EpcGetSIaveAddrcocoovnieiueiiiecesieeeeeeeeeeeee 2-48
EpcGetSIaveBaseovououevevivieeeieeeeeeeeeee e 2-50
EPCGetUla......cocovoiiiieieereeece e 2-52
EPCHWVET ..o, 2-53
EpcLwsCmd........cocooioiiiiiieeceeeeeeeeeeeeeeeeeeee, 2-54
EpeMapBus.........cocooiirieee e 2-56
EpcMemSwapLccoooovvmeiiiceeeeeeeeeeee 2-57
EpcMemSwapWccooiiiieereeitieeeeeeeee e 2-58
EPCRESISIALE ...ttt 2-59
EpcSaveState ..o 2-60
EpcSetAccMode ..., 2-61
EpcSetAmMap.........cocenmmmeeceeeeeeeeeeeeeeo 2-63
EPCSELEITO........ooiiiiiiie et 2-65
EPCSEtINMr ... 2-67
EpcSetSlaveAddr ...t 2-70
EpcSetSIaveBase..........cveiveeiiieevineieiieeeeee oo 2-72
EpcSetUla ... 2-74
EPCSIgIntr. . i 2-75
EpeSwapLi ..o, 2-77
EpeSwapW ... 2-78
EPCTOVINE ...ttt 2-79
EpCTOVMEAM ..ot 2-82
EpcVmeCt] ..ot 2-86
EpCVXICHrl ..o 2-88
EpcWaitIntr.....cooiiiieciccntceee et 2-90

Page viii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EPCWSCIMA ..vieiiieieiceie e 2-93
EPCWSRCVSII it 2-95
EPCWSSEIVAIII c..cveeienccniiirie e 2-97
EpcWsServPeek. ... 2-99
EpeWsServRev ..o, 2-101
— EpcWsServSend........ccoooiiiiii 2-103
EpcWSsSndStIr..couviiiiiiiiic e 2-105
EpcWsSndStrNe ... 2-107
EpcWSsStat.....ooiiieriie 2-109
3. OLRM FUNCHONS...uueirirniirinncsnsrisnsaeienssnsnnnessissesssssessessessnerssssssssssssasenes 341
3.1 Calling the OLRM From MS C and QuickC ... 3-2
32 Calling the OLRM From MS BASIC and QuickBASIC 3-3
34 Functions by Nameccooccvvviiiiiniini e 3-4
OLRMALIOCALEeoeeeeiiiieiiiiiiccic e 3-5
OLRMDeallocate......cocueeeeerenieecneiieeceeeee et 3-7
OLRMGEetBOOIATHI ..o e 3-8
OLRMGEtLISt c.ceeeeieiiiieiries et 3-11
OLRMGEtNUIMAT ..cceverrieiie et ececsicsisenc s 3-13
OLRMGEtSIINGAT ccvveeiivieeireeniieeeee et sees 3-16
OLRMRENAME ..ol e 3-18
- 4, Advanced TOPICS..uucnemeriseinrississnisiinsisinisseissessisssissisnmisismesssssssess 4-1
4.1 Byte Ordering and Data Representationc.cccooeeveviinvieniieincnnns 4-1
5.1.1 Byte Swapping FUNCHONS.....ccccvviieeriirciieciee et 4-2
4.1.2 Correcting Data Structure Byte Ordering.........ccoccocoviicinin, 4-2
4.2 EPConnect Handler Execution Under DOS..........cccoiiiiiiinn, 4-3
4.3 Writing Device DIIVErS......cciiiiiiiiiiiciie e 4-4
4.3.1 General Informationccceeceiiineeneencinn e 4-4
4.3.2 Using the VMEbus Windowcocccoveiiniiniieiiccniniineen 4-5
4.3.3 Interrupts 4-6
Waiting for INterruptsc.coooeevimiiniiieiecieecccienee e 4-6
Interrupt Handlers ..o 4-7
4.3.4 Building Resident DIiversc.ccoceveviinecninieniceiecenen. 4-7
4.3.5 Writing Device Drivers In MS C and QuickCcccoeieeens 4-7
Using the MS C EPConnect Interface.........ccccoeveneiieneecnnne 4-7
Using the MS QuickC EPConnect Interface.......c..cccceevecens 4-8
Example 1: Using the VMEbus Windowcccccevvienciininnnce 4-8
— Example 2: Waiting for Interrupts.........coeoiviioiicniiiiiiii 4-10
Example 3: Implementing Interrupt Handlers.............................. 4-11
Page ix

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Guide

4.3.6 Writing Device Drivers In Turbo C .eo.vvvroooooo 4-14

Using the Turbo "C" EPConnect Interface ..., 4-14

4.3.7 C OpHMUZAtION ... 4-17
5. Error Messages............. 5-1
6. Support and Servivce 6-1
Index -1

Page x

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

1. Introducing Bus
Management for DOS

This manual is intended for programmers using the Bus Management for DOS
programming interface to develop programs that control VXI I/O modules via the
VXI expansion interface on an EPC.

The Bus Management library is one of the application programming interfaces (APIs)
that are part of EPConnect. You are expected to have read the EPConnect/VXI for
DOS & Windows User's Guide for an understanding of what is in EPConnect, to learn
the terms and conventions used in this manual set, and how to install and configure the
Bus Management for DOS API for use on your system. You are not expected to have
in-depth knowledge of DOS.

The Bus Management for DOS API provides a powerful interface for interacting with
the VXIbus. RadiSys offers considerable flexibility by supplying interfaces for several
high-level languages. By observing the MS Pascal binding conventions, you can use
EPConnect with these languages. See Chapter 4, Advanced Topics, for more
information on programming.

Chapter 1 introduces you to the RadiSys Bus Management for DOS environment. In
it you will find the following:

. What is in this manual and how to use it
. What is Bus Management for DOS?
° Programming, Compiling and Linking

. What to do next

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

1.1 How This Manual is Organized

This manual has five chapters:
Chapter 1, Introduction, introduces Bus Management for DOS and this manual.

Chapter 2, Function Descriptions, describes the major categories of functions and
gives complete descriptions of each function. Function descriptions are alphabetic by
function name.

Chapter 3, Advanced Topics, provides information for developing advanced
applications.

Chapter 4, Error Messages, contains an alphabetic listing of error messages generated
by EPConnect device drivers.

Chapter 5, Support and Service, describes how to contact RadiSys Technical Support
for support and service.

1.2 What is Bus Management for DOS?

Bus Management for DOS consists of those portions of the EPConnect software
package that are required by "C/C++" and Basic programmers developing VXI
applications that run under DOS on a RadiSys Embedded Personal Computer (EPC).
Figure 1-1 is a diagram of the Bus Management for DOS software architecture that
shows how the architecture relates to the VXIbus.

1-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

Start-Up Resource Application
Manager (SURM.EXE) Programs

Bus Management Library
{EPCMSC.LIB)

l

BusManager (BIMGR.SYS)

-

4

| VXibus Hardware

Figure 1-1. Bus Management for DOS Architecture

1.2.1 Bus Management Library and BusManager Device
Driver

Bus Management for DOS consists of an application interface library
(EPCMSC.LIB) and a device driver (BIMGR.SYS). User-written DOS applications
access the VXIbus hardware by calling the functions supported by the interface
library, which in turn call the BusManager device driver. These functions allow DOS
applications to do the following:

. Handle VME interrupts and system errors.

. Transfer blocks of data to and from VXlbus devices, with BERR
detection.

. Control VXIbus word serial registers.

. Control EPC slave memory

. Query EPC driver, firmware, and hardware version or type.

The Bus Management library supports MS Basic compilers and ANSI-standard "C"
compilers, such as Microsoft C/C++ and Borland C/C++.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The Bus Management Library is fully reentrant.

1.2.2 SURM

The Start-Up Resource Manager (SURM) is a DOS application that determines the
physical content of the system and configures the devices. It is typically the first
program to run after DOS boots. The SURM is the EPConnect implementation of
resource manager defined in the VXIbus specification. However, SURM extends the
specification definition to include non-VXIbus devices, such as VME devices and
GPIB instruments. The SURM uses the DEVICES file to obtain device information
not directly available from the devices. SURM accesses VXIbus devices in the
system directly.

1.3 Programming, Compiling and Linking

This section contains information about programming with Bus Management for
DOS. Included is a list of the header files provided, the programming interfaces, and
compiling and linking hints.

1.3.1 Header Files

Bus Management for DOS provides the following header files:

BMBLIB.BI An MS BASIC header file containing constant and function
declarations required for using EPConnect with MS BASIC.

BUSMGR.H A "C" header file containing the constant definitions, macro
definitions, and function prototypes required to compile applications
using any Microsoft or Borland "C" or C++ compiler.

BUSMGR.INC A copy of BUSMGR.H that's been converted so that it is suitable
for inclusion into an assembly language source file.

1-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

EPC_OBM.H A "C" header file containing the constant definitions, macro
definitions, structure definitions, and function prototypes required to
compile EPConnect applications for DOS.

EPC_OBM.H should never be included in a source file directly.
BUSMGR.H includes EPC_OBM.H.

EPCSTD.H A "C" header file containing macro definitions to standardize non-
ANSI, compiler-dependent keywords. By using the macros defined
here, an application can compile successfully using any revision of
Microsoft or Borland "C" or C++ compiler without modifying the
source file.

EPCSTD.H should never be included in a source file directly.
BUSMGR.H includes EPC_OBM.H.

VMEREGS.H A "C" header file containing constant and macro definitions for
accessing the EPC VMEDbus control registers.

VMEREGS.INCA copy of VMEREGS.H that has been converted so that it is
suitable for inclusion into an assembly language source file.

All Bus Management for DOS header files contain an #if/#endif pair surrounding the
contents of the header file so that the file can be included multiple times without
causing compiler errors.

All "C" header files also contain extern "C'"{} bracketing for C++ compilers.
Because extern ""C" is strictly a C++ keyword, it is also bracketed and only visible
when compiling under C++ and not standard "C."

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

1.3.2 Programming Interface

Bus Management for DOS functions are accessible through interfaces for assembly
language, "C", and BASIC languages. The following table shows the interface
libraries and definition files for each of the language interfaces.

Language Library files Definition files
MS "C" EPCMSC.LIB BUSMGR.H
Borland "C" EPCMSC.LIB BUSMGR.H

MS BASIC EPCMSC.LIB BMBLIB.BI
Assembly EPCMSC.LIB BUSMGR.INC

The use of these files is discussed in the following sections.
Calling Bus Management for DOS From MS "C" and QuickC

The "C" language interface is designed to work with Version 5.1 and later versions of
the Microsoft "C" compiler and libraries. The libraries are created for the large
memory model (far code and far data). This is sufficient for linking programs of any
model size, due to the prototyping of all library functions in the include files. The
include files provide strong type checking and convert near code and data to far code
and data for programs using the small (near code and near data), compact (near code
and far data), or medium (far code and near data) memory models.

Calling EPConnect From Borland Turbo C

Bus Management for DOS was designed to work with the Microsoft "C" compilers
and can be used with the Borland "C" compilers as well.

Calling EPConnect from MS BASIC

The BASIC language interface is designed to work with Version 7.0 and later versions
of the Microsoft BASIC compiler and libraries. The libraries are created for the large
memory model (far code and far data). This is sufficient for linking programs of any
model size, due to the prototyping of all library functions in the include files. The
include files provide strong type checking and convert near code and data to far code
and data for programs using the small (near code and near data), compact (near code
and far data), or medium (far code and near data) memory models.

1-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

Calling Bus Management for DOS From Assembly Language

Assembly language programs can use Bus Management for DOS functions through
the BMINT interrupt (interrupt 66h). Include the file BUSMGR.INC, which
contains a set of data definitions needed to cail Bus Management for DOS functions,
in your assembly language program.

1.3.3 Compiling and Linking Applications

NOTE: For specific compiler and/or linker options, refer to your compiler's
documentation.

The following examples assume that EPConnect software has been installed in the
CAEPCONNEC directory.

Compiling and Linking C/C++ Applications
When compiling Bus Management for DOS applications, ensure that the Bus

"Management for DOS header files are in the compiler search path by doing one of the
following:

1. Specify the entire header file pathname when including the header file in the
source file.

2. Specify CAEPCONNECMNCLUDE as part of the header file search path at
compiler invocation time.

3. Specify C:\EPCONNECAINCLUDE as part of the header file search path
environment variable.

Also, ensure that Bus Management for DOS libraries are in the linker search path by
doing one of the following:

L. Specify the entire library pathname when linking object files.

2. Specify CAEPCONNEC\LIB as part of the linker library search path.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Compiling and Linking MS BASIC Applications

When compiling Bus Management for DOS BASIC applications, ensure that the
BMBLIB.BI header file is in the compiler search path by doing one of the following:

1. Specify the entire header file pathname when including the header file in the
source file.

2. Specify C:AEPCONNECMNCLUDE as part of the header file search path at
compiler invocation time.

3. Specify C:\EPCONNEC\ANCLUDE as part of the header file search path
environment variable INCLUDE.

Also, ensure that Bus Management for DOS libraries are in the linker search path by
doing one of the following:

1. Specify the entire library pathname when linking object files.

2. Specify CAEPCONNEC\LIB as part of the linker library search path.

1.4 What to do Next

I. If Bus Management for DOS software is not pre-installed on your system,

install and configure your system using the procedures in Chapter 2 of the
EPConnect/VXI for DOS & Windows User's Guide.

2. Refer to the error messages in Chapter 5 of this manual for corrective
action information about device driver installation errors.

3. Refer to the function descriptions in Chapter 2 of this manual for details
about a function and/or its parameters to develop applications.

4. Refer to the sample programs included with EPConnect software under
the C:\AEPCONNEC\SAMPLES\BUSMGR.DOS directory.

1-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2. Function Descriptions

2

2.1 Introduction

This chapter lists the Bus Management for DOS functions by category and by name.
It is for the programmer who needs a particular fact, such as what function performs a
specific task or what a function's arguments are.

The first section lists the functions categorically by the task each performs. It also
gives you a brief description of what each function does. The second section lists the
functions alphabetically and describes each function in detail.

2.2 Functions by Category

The categorical listing provides an overview of the operations performed by the
EPConnect functions. Included with each category is a description of the operations
performed, a listing of the functions in the category, and a brief description of each
function.

The categories of the Bus Management for DOS library functions include:

Bus Access

Byte-Swapping

Block Copy

Interrupt and Error Handling
Bus Control

Commander Functionality
Servant Functionality
Event/Response Functions
Other Functions

2-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

2.2.1 Bus Access Functions

Bus Access functions allow Bus Management applications to access VXIbus registers
2 and VMEbus memory. Bus Access functions include the following:

EpcGetAccMode Queries the current bus access mode.

EpcGetAmMap Queries the current access mode and bus window
base address.

EpcMapBus Maps the bus window onto the VMEbus.

EpcRestState Restores an access mode and a bus window base
that were previously saved by a call to
EpcSaveState.

EpcSaveState Preserves the current access mode and bus

window in a caller-supplied area.

EpcSetAccMode Defines the current bus access mode.
EpcSetAmMap Defines the bus access mode and bus window
base.

2.2.2 Byte-Swapping Functions

Byte-swapping functions convert data from Intel (80x86) format to Motorola (68xxx)
format and vice versa. Byte-swapping functions include the following;:

EpcMemSwapL Byte-swaps an array of 32-bit values.
EpcMemSwapW Byte-swaps an array of 16-bit values.
EpcSwapL Byte-swaps a single 32-bit value.

EpcSwapW Byte-swaps a single 16-bit value.

2-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcBiosVer

2.2.3 Block Copy Functions

The block copy functions efficiently copy blocks of memory between EPC memory
and VMEbus memory.

Block Copy functions include the following:

EpcFromVme Copies consecutive VMEbus locations to
consecutive EPC locations using the current
access mode.

EpcFromVmeAm Copies consecutive VMEbus locations to
consecutive EPC locations using the specified
access mode.

EpcToVme Copies consecutive EPC locations to consecutive
VMEDbus locations using the current access mode.

EpcToVmeAm Copies consecutive EPC locations to consecutive
VMEbus locations using the specified access
mode.

2-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

2.2.4 Interrupt and Error Handling Functions

A handler is a subroutine that is called when an interrupt or error occurs. This
comparatively low-level passing of control requires that the handler obey some rather
strict rules, but it allows quick response to other devices. Refer to Chapter 4,
Advanced Topics, for more information about interrupt and error handling.

Interrupt and error handling functions include the following:

EpcCkIntr

EpcDisErr

EpcDisIntr

EpcEnErr

EpcEnIntr

EpcGetError

EpcGetIntr

EpcSetError

EpcSetintr

EpcSiglntr

EpcWaitIntr

Queries the VMEbus interrupt being asserted by
this EPC.

Disables a specified error without affecting
handler assignment.

Disables a specified interrupt without affecting
handler assignment.

Enables a specified error without affecting
handler assignment.

Enables a specified interrupt without affecting
handler assignment.

Queries a specified error's current handler
function and stack.

Queries an interrupt's current handler function and
stack.

Defines a specified error's handler function and
stack.

Defines a specified interrupt's handler function
and stack.

Signals (asserts or deasserts) a VMEbus interrupt.

Waits for an interrupt to occur.

2-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcBiosVer

2.2.5 Bus Control Functions

Bus control functions give applications access to EPC and VXIbus control and
- configuration parameters. Bus Control functions include the following:

EpcGetSlaveAddr Queries the current address space and base
address of the EPC's slave memory.

EpcGetSlaveBase Queries the current base address of the EPC's
slave memory.

EpcGetUla Queries the unique logical address (ULA) of the
EPC.

EpcSetSlaveAddr Defines the current address space and base
address of the EPC's slave memory.

EpcSetSlaveBase Defines the current base address of the EPC's
slave memory. ’

- EpcSetUla Defines the unique logical address (ULA) of the
EPC.
EpcVmeCitrl Querties or defines VMEDbus interface control bits.
EpcVxiCtrl Queries or defines VXIbus interface control bits.
2-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

2.2.6 Commander Functionality

Commander functions control the EPC's message registers. When two devices on the
system communicate directly, one device is the commander and the other device is the
servant. A device may be the commander to any number of servants, but each device
may be a servant to only one commander. At the root of this tree there is one device
that has no commander, only zero or more servants. This device is called the top-level
commander.

Commander functions include the following:

EpcElwsCmd Sends an extended longword serial command.

EpcLwsCmd Sends a longword serial command.

EpcWsCmd Sends a word serial command.

EpcWsRcvStr Receives a series of bytes.

EchsSn'dStr Sends a series of bytes, setting the END bit on the
last byte.

EpcWsSndStrNe Sends a series of bytes without setting the END
bit on the last byte.

EpcWsStat Returns the word-serial status of a device.

2-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcBiosVer

2.2.7 Event/Response Functions

VXIbus events and responses (collectively called E/Rs) get special handling. They
arrive either in the signal register or as the Status/ID returned in response to an
interrupt acknowledge for a VMEDbus interrupt. All E/Rs are queued, to preserve the
sequence of responses and events.

When a value is placed in the signal register, the signal FIFO is emptied into the
BusManager-maintained E/R queue. The BusManager uses the hardware signal
interrupt internally to maintain this queue. VMEDbus interrupts may be designated as
sources of events and responses so that the Status/IDs returned in response to interrupt
acknowledges are recognized as E/Rs and placed in the E/R queue as well.

Event and Response functions include the following:
EpcErGet Dequeues and returns the oldest event/response.

EpcErQue Queues the supplied value as the newest element
in the event/response queue.

EpcErRedir Assigns a VMEDbus interrupt as a VXlbus
event/response interrupt.

EpcErUnredir De-assigns a VMEbus interrupt as a VXlbus
event/response interrupt.

2-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

2.2.8 Servant Functionality

EPConnect provides support for using an EPC as a message-based servant device in a
VXIbus system. This functionality is specific to the VMEbus extension for
instrumentation (VXI) and is not supported by most VMEbus modules.

Servant functions include the following:

EpcWsServArm Arms the EPC so that it can receive a command.

EpcWsServPeek Waits for a command to arrive without removing
the incoming command.

EpcWsServRcev Waits for a command to arrive and receives the
incoming command.

EpcWsServSend Sends a response to the EPC's commander.

EpcErServintr Sends an event/response to a commander using a
VMEDbus interrupt.

EpcErServSig Sends an event/response to a commander using a
VXIbus signal.

2-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcBiosVer

2.2.9 Other Functions

This section describes functions that allow you to get information about the version of

the BusManager software, the EPC hardware, and the BIOS. A function that indicates 2
whether the BusManager device driver is currently loaded in the system and a function
to obtain descriptive error strings are also provided.

"Other" functions include the following:

EpcBiosVer Queries the BIOS version number.

EpcBmVer Queries the BusManager software version
number.

EpcCkBm Determines whether the BusManager software is

currently loaded.

EpcErrStr Returns a string describing the specified
BusManager error:

EpcHwVer Queries the EPC's hardware version number.

2-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

2.3 Functions By Name

This section contains an alphabetical listing of the BusManager library functions.
Each listing describes the function, gives its invocation sequence and arguments,
discusses its operation, and lists its returned values.

Each Bus Management program should call EpcCkBm once, and test for
EPC_SUCCESS to verify that the BusManager is operational.

2-10

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcBiosVer

EpcBiosVer
Description Queries the BIOS version number.

C Synopsis

short FAR PASCAL
EpcBiosVer(void);

MS BASIC Synopsis

DECLARE FUNCTION EpcBiosVer%
biosversion% = EpcBiosVer%

Remarks This function returns the version number of the EPC BIOS. The
BIOS version number consists of the major and minor version
numbers of the BIOS that is installed in the EPC. The BIOS version
number is returned with the major version number in the high-order
byte and the minor version number in the low-order byte.

See Also EpcBmVer, EpcCkBm, Epc'HwVer.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcBmVer
Description Queries the Bus Manager for DOS software version number.
C Synopsis
short FAR PASCAL
EpcBmVer(void);
MS BASIC Synopsis

DECLARE FUNCTION EpcBmVer%
bmversion% = EpcBmVer%

Remarks The function returns the version number of the Bus Manager for
DOS software. The Bus Manager for DOS version number consists
of a major version and minor version number assigned to the Bus
Manager software running on the EPC. The Bus Manager version
number is returned with the major version number in the high-order
byte and the minor version number in the low-order byte.

See Also EpcBiosVer, EpcCkBm, EpcHwVer .

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcCkBm

EpcCkBm
Description Determines whether the Bus Manager for DOS software is currently
loaded.
C Synopsis
short FAR PASCAL
EpcCkBm(void);
MS BASIC Synopsis
DECLARE FUNCTION EpcCkBm%
ok% = EpcCkBm%
Remarks The function determines whether the BusManager driver is installed

in the system, is in operation, and is able to communicate with the
calling application.

Return Value The following return values are supported:

Constant Description
ERR_FAIL The library was unable to access the
BusManager driver.
EPC_SUCCESS Successful function completion.
See Also EpcBiosVer, EpcBmVer, EpcHwVer.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcCkintr

Description Queries the VMEbus interrupt being asserted by this EPC.

C Synopsis
short FAR PASCAL
EpcCkIntr(void);
MS BASIC Synopsis
DECLARE FUNCTION EpcCkIntr%
interrupt% = EpcCkIntr%
Remarks This function returns the number of the VMEbus interrupt being

asserted by this EPC. If no interrupt is being asserted (that is, if the
last interrupt has been acknowledged) then zero is returned.
Interrupt acknowledgment is simply a hardware handshake and not
an indication that the remote interrupt handling code has been
executed.

Return Value The following return values are supported:

Constant Description
0 No VMEbus interrupts are asserted.
BM_VME_INTRI1 The EPC is currently asserting VMEbus
interrupt 1.
BM_VME_INTR7 The EPC is currently asserting VMEbus
interrupt 7.
See Also EpcSiglntr.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcDisErr

EpcDisErr
Description Disables a specified error without affecting handler assignment. 2
C Synopsis
short FAR PASCAL
EpcDisErr(short error);
error Error number
MS BASIC Synopsis
DECLARE FUNCTION EpcDisErr%(BYVAL error%)
0k% = EpcDisErr%(error%)
Remarks The function disables the specified error without affecting the

handler assignment. If the specified error condition occurs, the
associated handler is not called. Use EpcEnErr to enable a disabled
error. ’

The parameter error specifies the error condition to disable. The
following constants define valid values for error:

Constant Description
BM_SYSFAIL_ERR SYSFAIL assertion.
BM_BERR_ERR VMEbus BERR.
BM_ACFAIL_ERR ACFAIL assertion.

BM_WATCHDOG_ERR Watchdog timer expiration.

2-15

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

Constant Description
ERR_FAIL The library was unable to access the
BusManager driver.
EPC_SUCCESS Successful function completion.
See Also EpcEnErr, EpcGetError, EpcSetError.

2-16

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcDisintr

EpcDisintr
Description Disables a specified interrupt without affecting handler assignment. 2
C Synopsis
short FAR PASCAL
EpcDisIntr(short interrupt);
interrupt Interrupt number.
MS BASIC Synopsis

Remarks

Return Value

See Also

DECLARE FUNCTION EpcDisIntr%(BY VAL interrupt%)
ok% = EpcDisIntr%(interrupt%)

The parameter interrupt specifies the interrupt condition to disable.
The following constants define valid values for interrupt:

Constant Description
BM_MSG_INTR Message interrupt.
BM_VME_INTR1 VMEbDbus interrupt 1.
BM_VME_INTR7 VMEbus interrupt 7.
BM_ER_INTR Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt O (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

The function is used to temporarily mask off an interrupt. Use
EpcEnlntr to enable a disabled interrupt.

The following return values are supported:

Constant Description

ERR_FAIL The library was unable to access the
BusManager driver.

EPC_SUCCESS Successful function completion.

EpcEnlntr, EpcGetIntr, EpcSetIntr, EpcWaitIntr.

2-17

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcEnErr

Description Enables a specified error without affecting handler assignment.

C Synopsis
short FAR PASCAL
EpcEnErr(short error);
error Error number.

MS BASIC Synopsis
DECLARE FUNCTION EpcEnErr%(BYVAL error%)
0k% = EpcEnErr%(error%)

Remarks The parameter error specifies the error condition to enable. The
following constants define valid values for error:
Constant Description
BM_SYSFAIL_ERR SYSFAIL assertion.
BM_BERR_ERR Bus error (BERR).
BM_ACFAIL_ERR ACFAIL assertion.
BM_WATCHDOG_ERR Watchdog timer expiration.
The function enables reception of an error condition. EpcEnErr
should only be used to reverse the effect of a previous EpcDisErr,
because no check is made to make sure a handler is assigned to the
specified error. If no handler is assigned for the specified error, the
error is associated with a default handler. This default handler
disables the error when it occurs.
EpcEnErr enables the specified error unconditionally -- there is no
nesting of EpcDisErr/EpcEnErr pairs.
Calling EpcSetError to assign a handler to an error immediately
enables the specified error, and a call to EpcEnErr is unnecessary.

2-18

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcEnErr

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcDisErr, EpcGetError, EpcSetError.

2-19

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcEnintr
Description Enables a specified interrupt without affecting handler assignment.

C Synopsis

short FAR PASCAL
EpcEnlIntr(short interrupt);

interrupt Interrupt number.

MS BASIC Synopsis
DECLARE FUNCTION EpcEnlIntr%(BYVAL interrupt%)
0k% = EpcEnIntr%(interrupt%)
Remarks The parameter interrupt specifies the interrupt condition to enable.
The following constants define valid values for interrupt:
Constant . Description
BM_MSG_INTR Message interrupt.
BM_VME_INTR1 VMEDbus interrupt 1.

BM_VME_INTR7 VMEDbus interrupt 7.
BM_ER_INTR Event/Response interrupt.
BM_TTLTRGO_INTR TTL trigger interrupt 0 (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

The function enables reception of an interrupt condition.
EpcEnintr function should only be used in conjunction with
EpcDislntr, because no check is made to make sure a handler is
assigned to the specified interrupt.

EpcEnlntr enables the specified interrupt unconditionally - there is -
no "nesting" of EpcDisIntr/EpcEnlIntr pairs.

2-20

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcEnintr

Calling EpcSetIntr to assign a handler to a bus interrupt
immediately enables the specified interrupt; a call to EpcEnlntr is
unnecessary.

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcDisIntr, EpcGetIntr, EpcSetIntr, EpcWaitIntr.

2-21

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcErGet

Description Dequeues and returns the oldest event/response.

C Synopsis
short FAR PASCAL
EpcErGet(unsigned short FAR * er_pointer);
er_pointer Location where the dequeued

event/response will be placed..

MS BASIC Synopsis
NONE

Remarks This function dequeues and returns the oldest event/response. If the
returned value is the last entry in the queue, the E/R interrupt is
deasserted.

Return Value This function returns TRUE if the queue is non-empty.

See Also EpcErRedir, EpcErQue, EpcErUnredir.

2-22

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcErQue

EpcErQue

Description Queues the supplied value as the newest element in the
event/response queue.

C Synopsis
short FAR PASCAL
EpcErQue(unsigned short er);
er Event/response value to be queued.
MS BASIC Synopsis
NONE
Remarks This function queues er as the newest element in the event/response

queue. The E/R interrupt is asserted (since the queue is now non-
empty). If the handler is installed for the E/R interrupt and the E/R
interrupt is enabled, the installed handler will be called before this
function returns.

Return Value This function returns FALSE if the queue is full.

See Also EpcGetError.

2-23

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcErRedir

Description Assigns a VMEbus interrupt as a VXIbus interrupt.

C Synopsis
short FAR PASCAL
EpcErRedir(short interrupt);
interrupt VMEDbus interrupt from which to redirect E/Rs

MS BASIC Synopsis
DECLARE FUNCTION EpcErRedir%(BYVAL interrupt%)
0k% = EpcErRedir%(interrupt%)

Remarks This function allows a commander to redirect the designated
interrupt as a source for receipt of events and responses from
servants,

The following constants define valid values for interrupt:

Constant Description

BM_VME_INTRI1 VMEDbus interrupt 1.

BM_VME_INTR7 VMEDbus interrupt 7.

When an interrupt is redirected, the interrupt is enabled.

At system restart no interrupts are redirected. Any number of
VMEDbus interrupts may be redirected.

There must be a redirected interrupt any time there is a slave-only
VXlbus interrupter device, because slave-only devices cannot write
to the signal register and must then communicate using interrupts.
An interrupt may not both be redirected and have a handler assigned
to it; if it does, ERR_FAIL is returned.

2-24

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcErRedir

After a redirected interrupt is asserted and acknowledged, the low
16 bits of the returned Status/ID are placed in the E/R queue. An
E/R interrupt is then asserted (because the queue is no longer

empty).

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcErGet, EpcErUnredir.

2-25

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer’s Reference Guide

EpcErServintr
Description Sends an event/response to a commander using a VMEbus interrupt.

C Synopsis

short FAR PASCAL
EpcErServIntr(short interrupt, unsigned short er);

interrupt VMEDbus interrupt to assert to send the
event/response.

er Event/response value to send.

MS BASIC Synopsis

DECLARE FUNCTION EpcErServIntr%(BY VAL interrupt%,
BYVAL er%)

ok% = EpcErServIntr%(interrupt%, er%)

Remarks Sends an event/response to a commander device using a VMEbus
interrupt. This function is used to implement a VXIbus servant
interface on the EPC.

The following constants define valid values for interrupt:

Constant Description
BM_VME_INTR1 VMEDbus interrupt 1(EPC-2 and EPC-7
only).

BM_VME_INTR7 VMEDbus interrupt 7 (EPC-2 and EPC-7
only).

If a word serial command from the commander is present in the
EPC's message register, that command is saved before the register is
used. If the register contains outgoing data, this function waits until
the commander has read the data before signaling the interrupt.

2-26

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcErServintr

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was 2
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcErServSig.

2-27

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcErServSig

Description Sends an event/response to a commander using a VXIbus signal.

C Synopsis
short FAR PASCAL
EpcErServSig(unsigned short ula, unsigned short er);
ula ULA of the commander to which the signal is sent.
er Event/response value to send.
MS BASIC Synopsis
DECLARE FUNCTION EpcErServSig%(BYVAL ula%, BYVAL
er%)
0k% = EpcErServSig%(ula%, er%)
Remarks 'Signals the EPC's commander by placing a value in l}'me

commander’s signal register. This function is used in implementing
a VXIbus servant interface on the EPC.

Return Value The following return values are supported:

Constant Description

ERR_BERR Commander has no signal register, or its
signal queue is full.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

EPC_SUCCESS Successful function completion.

See Also EpcErServintr.

2-28

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcErUnredir

EpcErUnredir

Description Deassigns a VMEbus interrupt as a VXlbus Event/Response
interrupt.

C Synopsis
short FAR PASCAL

EpcErUnredir(short interrupt);

interrupt VMEDbus interrupt from which to stop
redirecting ERs

MS BASIC Synopsis
DECLARE FUNCTION EpcErUnredir%(BYVAL interrupt%)
ok% = EpcErUnredir%(interrupt%})

Remarks This function deassigns interrupt as a VXIbus Event/Response
interrupt and makes it available as a regular VMEbus interrupt.

The following constants define valid values for interrupt:

Constant Description
BM_VME_INTR1 VMEbus interrupt 1.
BM_VME_INTR?7 VMEbus interrupt 7.

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while attempting to
unredirect an interrupt that is not
redirected.
EPC_SUCCESS Successful function completion.
See Also EpcErGet, EpcErRedir.

2-29

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcErrStr
Description Queries a string describing a specified BusManager error.
C Synopsis
char FAR * FAR PASCAL
EpcErrStr(int retcode);
retcode BusManager return value,
MS BASIC Synopsis
NONE
Remarks The function returns a pointer to a string describing the BusManager

return value retcode:

short retcode;

if ((retcode = EpcCkBm() ! =EPC_SUCCESS) {
printf("Error: %\n", EpcErrStr(retcode)):
exit(1);

}

Return Value NONE

See Also EpcCkBm.

2-30

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcElwsCmd

EpcElwsCmd
Description Sends an extended longword serial command.
C Synopsis

short FAR PASCAL

EpcElwsCmd(unsigned short ula, unsigned short FAR*
command, unsigned short wait);

ula Servant's unique logical address.
command Command to send.
wait Timeout, in milliseconds.

MS BASIC Synopsis

DECLARE FUNCTION EpcElwsCmd%(BYVAL ula%, SEG
cmd%, BY VAL wait%) :

DIM cmd%]3)
ok% = EpcElwsCmd%(ula%, cmd%, wait%)

Remarks Send one extended longword serial command. A command will be
sent only when the servant device's WRDY bit is set.

Note: Extended longword serial commands do not generate a reply.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-31

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion.

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_RBERR A bus error occurred receiving a word
serial command response.

ERR_RTIMEOUT A timeout occurred receiving a word
serial command response.

ERR_TIMEOUT A timeout occurred sending a word serial
command.

ERR_WS A word serial protocol error occurred.

See Also EpcLwsCmd, EpcWsCmd.

2-32

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcFromVme

EpcFromVme

Description Copies data from consecutive VMEbus locations to consecutive
EPC locations using the current access mode.

C Synopsis

unsigned short FAR PASCAL
EpcFromVme(short width, unsigned long source, char FAR
*dest, unsigned short count);

width Number of data bits to copy per bus
access.

source Source address on the VMEDbus.

dest Destination address in EPC memory.

count Number of bytes to transfer.

MS BASIC Synopsis

DECLARE FUNCTION EpcFromVme%(BY VAL width%,
BYVAL source&, SEG dest%, BYVAL count%)

DIM source%]| ...]
0k% = EpcFromVme%(width%, source&, dest%, count%)

Remarks This function copies data from consecutive VMEDbus locations to
consecutive EPC locations using the current access mode. The
current access mode is the address modifier and byte order set by
the most recent EpcRestState or EpcSetAmMap call. The bus
window is saved, altered as necessary during the copy, and restored
upon completion of the copy. This function is intended for use in
transferring large amounts of data to consecutive locations.

The count parameter should always express the number of bytes to
be transferred regardless of the copy width specified. Setting count
to zero specifies a transfer of zero bytes and nothing is transferred.

2-33

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. Transfers are always aligned on natural
boundary; 16-bit quantities are written to the VMEbus only at even
addresses, and 32-bit quantities are written to the VMEbus only at
addresses evenly divisible by 4.

Valid values for the width parameter are as follows:

Constant Description

BM_WS8§ 8-bit copy width

BM_W80O 8-bit copy width, odd-only copy
BM_W16 16-bit copy width

BM_W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors. This
constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion — a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

2-34

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcFromVme

Notes:

 This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

« If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_W80), the
VMEbus address "spins” twice as fast as the EPC address. That is,
for i = 0 to (count - 1), dest + 1 receives
src + (1 x 2) + 1.

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width parameter with BM_FASTCOPY before
calling the copy function, BERR is checked only after transfers to
nonaligned locations. Fast copying uses "Move String" instructions
to quickly copy blocks of data. By taking advantage of pipelining in
the processor and the VMEbus interface hardware, fast copy
transfers are five times faster than transfers without
BM_FASTCOPY. There are risks, however: a BERR may go
undetected, or the BERR error handler may be called erroneously (if
a transfer — still in the pipeline when the function returns — causes a
BERR). Generally you should select the fast copy option.

BM_FASTCOPY is ignored when you specify 8-bit, odd-only
transfers (BM_WS80).

2-35

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

: ! Constant Description
ERR_BERR The function returns the number of bytes
not transferred.

EPC_SUCCESS Successful function completion.
See Also EpcFromVmeAm, EpcRestState, EpcSetAmMap, EpcToVme,
EpcToVmeAm.

2-36

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcFromVmeAm

EpcFromVmeAm

Description Copies consecutive VMEbus locations to consecutive EPC locations
using the specified access mode.

C Synopsis
unsigned short FAR PASCAL
EpcFromVmeAm(short mode, short width, unsigned long source,
char FAR *dest, unsigned short count);
mode Access mode.
width Number of data bits to copy per bus
access.
source Source address on the VMEbus.
dest Destination address in EPC memory.
count Number of bytes to transfer.
MS BASIC Synopsis
DECLARE FUNCTION EpcFromVmeAm%(BY VAL mode%,
BYVAL width%, BYVAL source&, SEG dest%,
BYVAL count%)
DIM sre%[...]
0k% = EpcFromVmeAm%(mode%, width%, source&, dest%,
count%)
Remarks This function copies data from consecutive VMEbus locations to

consecutive EPC locations using the specified access mode. The
current access mode and bus window are saved, altered as specified
during the copy, and restored upon completion of the copy.

The parameter mode is an OR'd combination of a byte order
constant and an address modifier constant.

2-37

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant;

Ci1o0|0([O0l0|0jO|byef| 010 addrmod

order

The following constants are valid byte order constants:

Constant Description
BM_IBO Little-endian (Intel 386-style) byte order

BM_MBO Big-endian (Motorola 68000-style) byte order

The following constants define valid address modifier constants:

Constant Description

A16N A16 non privileged addre'ss modifier

Ale6S A16 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A328D A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. VMEDbus transfers are always aligned on
natural boundary; 16-bit quantities are written to the VMEbus only

at even addresses, and 32-bit quantities are written to the VMEbus
only at addresses evenly divisible by 4.

2-38

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcFromVmeAm

Valid values for the width parameter are defined as follows:

Constant Description
N BM_WS 8-bit copy width
BM_W80 8-bit copy width, odd-only copy
BM_W1le6 16-bit copy width
BM_W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors. This
constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion — a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,

- and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

* This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

+ If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_W8O0), the
VMEDbus address "spins” twice as fast as the EPC address. That is,
for i = 0 to (count - 1), dest + i receives
src + (i x 2) + 1.

2-39

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width with BM_FASTCOPY before calling the copy
function, BERR is checked only after transfers to nonaligned
locations. Fast copying uses "Move String” instructions to move
"blocks” of data. By taking advantage of pipelining in the processor
and the VMEbus interface hardware, fast copy transfers are five
times faster than transfers without BM_FASTCOPY. There are
risks, however: a BERR may go undetected, or the BERR error
handler may be called erroneously (if a transfer — still in the pipeline
when the function returns — causes a BERR). Generally, however,
you should select the fast copy option.

The Fast Copy flag (BM_FASTCOPY) is ignored when you
specify 8-bit, odd-only transfers (BM_W80).

Return Value The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred.

This indicates there was a VMEbus error (BERR).

See Also EpcFromVme, EpcToVme, EpcToVmeAm.

2-40

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetAccMode

EpcGetAccMode

Description Queries the current bus access mode.

C Synopsis

short FAR PASCAL
EpcGetAccMode(void);

MS BASIC Synopsis

DECLARE FUNCTION EpcGetAccMode%
oldmode% = EpcGetAccMode%

Remarks The function returns the EPC's current access mode.

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant:

010|001 OLIO| O]| bytef| 010 addrmod

order

The following constants are valid byte order constants:

Constant Description
BM_IBO Little-endian (Intel 386-style) byte order
BM_MBO Big-endian (Motorola 68000-style) byte order

2-41

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The following constants define valid address modifier constants:

Constant Description

Al6N A16 non privileged address modifier
Al6S A16 supervisor address modifier
A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier
A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier
A32ND A32 non privileged data address modifier
A32NP A32 non privileged program address modifier
A32SD A32 supervisor data address modifier

A32Sp A32 supervisor program address modifier

Although still supported, EpcGetAccMode functionality has been
superseded by EpcGetAmMap.

Return Value If successful, the function returns the bus' current access mode.
Otherwise, the function returns ERR_FAIL.

See Also EpcGetAmMap, EpcRestState, EpcSaveState, EpcSetAccMode,
EpcSetAmMap.

2-42

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetAmMap

EpcGetAmMap
Description Queries the current access mode and bus window base address. 2
C Synopsis

short FAR PASCAL

EpcGetAmMap(unsigned short FAR *accessmode, unsigned
long FAR *busaddress);

accessmode Location where the current access mode
will be placed.

busaddress Location where the current bus window
address will be placed.

MS BASIC Synopsis

DECLARE FUNCTION EpcGetAmMap%(SEG accessmode%,
SEG busaddress&)

returncode% = EpcGetAmMap%(accessmode%, busaddressé&)

Remarks The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant, as follows:

olololojo|O}lO!lbyel] OfO addrmod

order

The following constants are valid byte order constants:

Constant Description
BM_IBO Little-endian (Intel 386-style) byte order
BM_MBO Big-endian (Motorola 68000-style) byte order

2-43

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The following constants define valid address modifier constants:

Constant Description

A16N A16 non privileged address modifier
Al6S A16 supervisor address modifier
A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier
A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier
A32ND A32 non privileged data address modifier
A32NP A32 non privileged program address modifier
A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

Return Value The following return values are supported:

Constant Description
EPC_SUCCESS Successful function completion.
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
See Also EpcGetAccMode, EpcMapBus, EpcRestState, EpcSaveState,

EpcSetAccMode, EpcSetAmMap.

2-44

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetError

EpcGetError

Description Queries a specified error's current handler function and stack. 2

C Synopsis

void (FAR CDECL * FAR PASCAL
EpcGetError(short error, char FAR * FAR * stack)(unsigned
long error);

error Error number.
stack Location where a pointer to the current
stack will be placed.
MS BASIC Synopsis
NONE
Remarks The function returns the addresses of the specified error's current

handler function and stack. .

The following constants define valid values for error:

Constant Description
BM_SYSFAIL_ERR SYSFAIL assertion.
BM_BERR_ERR VMEbus BERR.
BM_ACFAIL_ERR ACFAIL assertion.

BM_WATCHDOG_ERR Watchdog timer expiration.
An error handler function has the following calling semantics:

void FAR CDECL
error_handler (unsigned long error);

If stack is NULL, the current stack pointer is not returned.

Return Value If successful, the function returns the address of the current error
handler. Otherwise, the function returns ERR_FAIL.

See Also EpcDisErr, EpcEnErr, EpcSetError.

2-45

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcGetintr
Description Queries a specified interrupt's current handler function and stack.
C Synopsis
void (FAR CDECL * FAR PASCAL
EpcGetIntr(short interrupt, char FAR * FAR stack))(unsigned
long data);
interrupt Interrupt number.
stack Location where a pointer to the current
stack will be placed.
MS BASIC Synopsis
NONE
Remarks The function returns the addresses of the specified interrupt's

current handler function and stack.

The following constants define valid values for interrupt:

Constant Description
BM_MSG_INTR Message interrupt.
BM_VME_INTR1 VMEvbus interrupt 1.
BM_VME_INTR7 VMEbus interrupt 7.
BM_ER_INTR Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt O (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

2-46

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetintr

An interrupt handler function has the following calling semantics:

void FAR CDECL
N interrupt_handler (unsigned long data);

If stack is NULL, the current stack pointer is not returned.

Return Value If successful, the function returns the address of the current interrupt
handler. Otherwise, the function returns ERR_FAIL.

See Also EpcDisIntr, EpcEnlntr, EpcSetintr, EpcWaitlIntr.

2-47

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcGetSlaveAddr

Description Queries the current address space and base address of the EPC's
slave memory.

2

C Synopsis

short FAR PASCAL
EpcGetSlaveAddr(unsigned short FAR*addrspace, unsigned
long FAR *slavebase);

addrspace Pointer to a location where the current
address space will be placed.

slavebase Pointer to a location where the current
base address will be placed.
MS BASIC Synopsis

DECLARE FUNCTION EpcGetSlaveAddr%(SEG
addrspaceptr%, SEG slavebaseptr&)

returncode% = EpcGetSlaveAddr%(addrspace%, slavebase&)
Remarks The slave memory base address defines where the EPC's slave

memory appears on the VMEDbus (if it is enabled). Return values
for the variables *slavebase and *addrspace are as follows:

EPC type *slavebase *addr space

EPC-2 0x 18000000, 0x19000000, ..., 0x1FO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A

EPC-7 0x000000, 0x400000, ..., 0xC0O0000 BM_A24
0x00000000, 0x01000000, ..., 0xFFO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A

EPC-8 EPC_SLAVE_MEMORY_DISABLED N/A

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

If the EPC's slave memory is disabled, a slave memory base address
of EPC_SLAVE_MEMORY_DISABLED is returned.

2-438

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetSlaveAddr

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcGetSlaveBase, EpcSetSlaveAddr, EpcSetSlaveBase.

2-49

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcGetSlaveBase
Description Queries the current base address of the EPC's slave memory.
C Synopsis

unsigned long FAR PASCAL
EpcGetSlaveBase(void);

MS BASIC Synopsis
DECLARE FUNCTION EpcGetSlaveBase&
slavebase& = EpcGetSlaveBase&

Remarks The slave base address for each EPC type and address space
supported is one of the following:

EPC tvpe Slave Base Address Space
. EPC-2 0x 18000000, 0x19000000, ..., 0x1FO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A
EPC-7 0x000000, 0x400000, ..., 0xC00000 BM_A24
0x00000000, 0x01000000, ..., 0xXFFO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A
EPC-8 EPC_SLAVE_MEMORY_DISABLED N/A

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

If the EPC's slave memory is disabled, a slave memory base address
of EPC_SLAVE_MEMORY_DISABLED is returned.

2-50

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcGetSlaveBase

Return Value This function returns the current base address where the EPC
memory appear on the VMEbus. The address space is not returned
by this function. If not successful, the function returns
ERR_FAIL.

See Also EpcGetSlaveAddr, EpcSetSlaveAddr, EpcSetSlaveBase.

2-51

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcGetUla

Description Queries the unique logical address (ULA) of the EPC.

C Synopsis
short FAR PASCAL
EpcGetUla(void)
MS BASIC Synopsis
DECLARE FUNCTION EpcGetUla%
ula% = EpcGetUla%
Remarks The ULA is used to determine the base address of the VMEbus

registers in A16 space, as follows:

A16_Address = (ULA<<6)+0xC000;

Return Value If successful, the function returns the EPC's current ULA.
Otherwise, the function returns ERR_FAIL.

See Also EpcSetUla.

2-52

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcHwVer

EpcHwVer
Description Queries the EPC hardware version number.
C Synopsis

short FAR PASCAL

EpcHwVer(void);

MS BASIC Synopsis

DECLARE FUNCTION EpcHwVer%
hwversion% = EpcHwVer%

Remarks The function returns the version number of the EPC hardware.

Return Value If successful, the function returns the version number of the EPC
hardware. Otherwise, the function returns ERR_FAIL.

See Also EpcBiosVer, EpcBmVer, EpcCkBm.

2-53

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcLwsCmd

Description Sends a longword serial command.

2 C Synopsis

short FAR PASCAL EpcLwsCmd(unsigned short u/a, unsigned
long command, unsigned long FAR * result_ptr, unsigned short

wait);
ula Servant's unique logical address.
command Command to send.
result_ptr Address of result.
wait Timeout, in milliseconds.
MS BASIC Synopsis

DECLARE FUNCTION EpcLwsCmd%(BYVAL ula% BYVAL
cmd&, SEG result&, BYVAL wait%)

ok% = EpcLwsCmd%(ula%, cmd&, result&, wait%)

DECLARE FUNCTION EpcLwsCmdNr%(BYVAL ula%,
BYVAL cmdé&, BYVAL wait%)

0k% = EpcLwsCmdNr%(ula%, cmd&, wait%)

Remarks Sends one longword serial command. A command will be sent only
when the servant device's WRDY bit is set.

In the C interface, if result_ptr is non-NULL, the function waits for
aresult and returns it in the location pointed to by resulr_ptr.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-54

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcLwsCmd

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion. 2

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_RBERR A bus error occurred recetving a word
serial command response.

ERR_RTIMEOUT A timeout occurred receiving a word
serial command response.

ERR_TIMEOUT A timeout occurred sending a word serial
command.

ERR_WS * A word serial protocol error occurred.

See Also EpcElwsCmd, EpcWsCmd.
2-55

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcMapBus
Description Maps the bus window onto the VMEbus.

C Synopsis

char FAR * FAR PASCAL
EpcMapBus(unsigned long busaddr);

busaddr Desired bus address.

MS BASIC Synopsis

DECLARE FUNCTION EpcMapBus&(BY VAL busaddr&)
Vmeptr& = EpcMapBusé&(busaddr&)

DECLARE SUB EpcMapBusB(BYVAL busaddr&, SEG
busseg%, SEG busoff%)
CALL EpcMapBusB(busaddr&, busseg%, busoff%)

Remarks This function is provided for compatibility with existing
applications. EpcSetAmMap is the preferred method of mapping
the bus.

Given a bus address, EpcMapBus sets the VMEbus mapping
registers and returns a pointer to the bus window. Within the context
of the current access mode, you can use this pointer to get to the
bus. You must remap the bus, however, when an address range
extends beyond the 64 KB-aligned bus window.

Because the bus window is 64 KB in size and aligned on a 64 KB
boundary, the BusManager uses only the high-order 16 bits of the
address to set the mapping. The low-order 16 bits are passed back to
the caller unchanged. The segment portion of the return value is set
to the physical location of the VMEbus window. It is not guaranteed
that this implementation will be retained in future versions of the
bus mapping hardware.

Return Value If successful, the function returns a pointer to the specified bus
address. Otherwise, it returns a null pointer.

See Also EpcGetAmMap, EpcRestState, EpcSaveState, EpcSetAmMap.

2-56

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcMemSwapL

EpcMemSwapL
Description Byte-swaps an array of 32-bit values.
C Synopsis
void FAR PASCAL
EpcMemSwapL (unsigned long FAR *buffer, unsigned short
entrycount);
buffer Array of 32-bit elements to be swapped.
entrycount Number of 32-bit elements in buffer.
MS BASIC Synopsis
DECLARE SUB EpcMemSwapL(SEG buffer&, BYVAL

entrycount%)

CALL EpcMemSwapL(buffer&, entrycount%)

Remarks This function sv'vaps the bytes in each 32-bit element in the buffer
such that 32-bit values stored in Intel byte order are transformed to
the Motorola byte order and vice versa.

For example, given:

unsigned long valuel] =
{0x11223344L, 0x55667788L};

the following call:

EpcMemSwapL (buffer, 2);

results in this output:

value[0] = 0x44332211L
value[l] = 0x88776655L
See Also EpcMemSwapW, EpcSwapL, EpcSwapW.

2-57

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcMemSwapW

Description

C Synopsis

Byte-swaps an array of 16-bit values.

void FAR PASCAL

EpcMemSwapW (unsigned short FAR *buffer, unsigned short
entrycount);

buffer Array of 16-bit elements to be swapped.

entrycount Number of 16-bit elements in buffer.

MS BASIC Synopsis

Remarks

See Also

DECLARE SUB EpcMemSwapW(SEG buffer%, BY VAL
entrycount%)

CALL EpcMemSwapW (buffer%, entrycount%)
This function swaps the bytes in each 16-bit element in the buffer.

For example, given the following:

unsigned short buffer[] =
{ 0x1122, 0x3344, 0x5566, 0x7788 };

this call:
EpcMemSwapW (buffer, 4);

returns the following:

buffer[0]
buffer(1]
buffer[2]
buffer[3]

wononon

EpcMemSwapL, EpcSwapL, EpcSwapW.

2-58

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcRestState

EpcRestState

Description Restores an access mode and a bus window base that were
previously saved by a call to EpcSaveState.

C Synopsis

short FAR PASCAL
EpcRestState(unsigned long FAR* state_stash);

state_stash Pointer to a 4-byte area in which the
mapping state will be saved.

MS BASIC Synopsis
DECLARE FUNCTION EpcRestState(SEG state_stash&)
Ok% = EpcRestState(state_stash&)

Remarks This function does not check the validity of the internal format.

Return Value If successful, the function restores the specified access mode and
bus window. Otherwise, the function returns ERR_FAIL.

See Also EpcGetAccMode, EpcGetAmMap, EpcMapBus, EpcSaveState,
EpcSetAccMode, EpcSetAmMap.

2-59

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcSaveState

Description Preserves the current access mode and bus window base in a caller-
supplied area.)
C Synopsis

void FAR PASCAL
EpcSaveState(unsigned long FAR* state_stash);

state_stash Pointer to a 4-byte area in which the
mapping state has been saved.
MS BASIC Synopsis
DECLARE SUB EpcSaveState(SEG state_stash&)
CALL EpcSaveState(state_stash&)
Remarks This function preserves the current access mode and bus window

base in a caller-supplied area: This function does not check the
validity of the internal format.

Return Value NONE

See Also EpcGetAccMode, EpcGetAmMap, EpcMapBus, EpcRestState,
EpcSetAccMode, EpcSetAmMap.

2-60

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetAccMode

EpcSetAccMode
Description Defines the current bus access mode.
C Synopsis
short FAR PASCAL
EpcSetAccMode(short mode);
mode Desired access mode.
MS BASIC Synopsis

DECLARE FUNCTION EpcSetAccMode%(BYVAL mode%)
0k% = EpcSetAccMode%(mode%)

Remarks The function defines the EPC's current access mode.

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant.

0/]0|0|0|]O0|O|Q|Dbyef|| O}0 addrmod

order

Valid byte order constants are the following:

Constant Description

BM_IBO Intel (80x86-style) byte ordering
BM_MBO Motorola (68000-style) byte ordering

2-61

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Valid address modifier constants are the following:

Constant Description

A16N A16 non-privileged address modifier

Al16S A16 supervisor

A24ND A24 non-privileged data address modifier
A24NP A24 non-privileged program address modifier
A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier
A32ND A32 non-privileged data address modifier
A32NP A32 non-privileged program address modifier
A328D A32 supervisor data address modifier

A32SpP A32 supervisor program address modifier

Note that EpcSetAmMap is the preferred method of setting the bus
access parameters.

Return Value The following return values are supported:

Constant " Description

EPC_SUCCESS The function completed successfully.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_UNSUPPORTED_FNCT

The function requires unsupported
functionality (most likely, Motorola
68000 [big-endian] byte swapping).

See Also EpcGetAccMode, EpcGetAmMap, EpcRestState, EpcSaveState,
EpcSetAmMap.

2-62

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetAmMap

EpcSetAmMap
Description Defines the current bus access mode and bus window base. 2
C Synopsis

short FAR PASCAL

EpcSetAmMap(unsigned short accessmode, unsigned long
busaddress, void FAR * FAR * mapped_ptr);

accessmode Desired access mode.
busaddress Desired bus address.
mapped_ptr Returned pointer to desired address
space.
MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcSetAmMap%(BY VAL accessmode%,
BYVAL busaddress&, SEG mapped_ptr&) .

returncode% = EpcSetAmMap%(accessmode%, busaddress&,
mapped_ptr&)

DECLARE FUNCTION EpcSetAmMapB%(BYVAL
accessmode%, BYVAL busaddress&, SEG
busseg%, SEG busoff%)

returncode% = EpcSetAmMapB%(accessmode%, busaddress&,
busseg%, busoff%)

The function defines the EPC's current bus access mode and bus
window base address.

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant.

O|0|O0|O|O|O|O|byel 0l0 addrmod

order

2-63

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Valid byte order constants are the following:

Constant Description
BM_IBO Intel (80x86-style) byte ordering

BM_MBO Motorola (68000-style) byte ordering

Valid address modifier constants are the following:

Constant Description

A16N A16 non-privileged address modifier

Al16S A16 supervisor

A24ND A24 non-privileged data address modifier
A24NP A24 non-privileged program address modifier
A24SD A24 supervisor data address modifier

A24SPpP A24 supervisor program address modifier
A32ND A32 non-privileged data address modifier
A32NP A32 non-privileged program address modifier
A328D A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS The function completed successfully.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_UNSUPPORTED_FNCT

The function requires unsupported
functionality, most likely Motorola
68000 (big-endian) byte swapping.

See Also EpcMapBus, EpcSetAccMode, EpcSaveState.

2-64

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetError

EpcSetError

Description Defines a specified error's handler function and stack.

C Synopsis

void (FAR CDECL * FAR PASCAL

EpcSetError(short error,
void (FAR CDECL * new_handler)(unsigned long error)
char FAR * new_stack, char FAR * FAR *
prev_stack))(unsigned long error);

error Error number.

new_handler Address of new error handler.

new_stack Base address of new stack.

prev_stack Location where the base address of the

current stack will be placed.

MS BASIC Synopsis
NONE
Remarks The function defines the handler and stack addresses for an error

and returns the current handler and stack addresses.

The following constants define valid values for error:

Constant Description
BM_SYSFAIL_ERR SYSFAIL assertion.
BM_BERR_ERR VMEbus BERR.
BM_ACFAIL_ERR ACFAIL assertion.

BM_WATCHDOG_ERR Watchdog timer expiration.
An error handler function has the following calling semantics:

void FAR CDECL
new_handler (unsigned long error);

2-65

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Error handling works similarly to interrupt handling, with two
exceptions:

1) Where an interrupt handler is passed the Status/ID of the
VMEvbus interrupter, an error handler is passed the error
number.

2) The BusManager clears all error conditions before
calling the handler.

If prev_stack is null, the previous stack pointer is not returned.

To remove an assigned handler, call this function with new_handler
set to null. The BusManager will assign the "do-nothing” function
and disable the interrupt.

This function returns the address of the handler previously assigned
to the specified interrupt. If no handler has been assigned (or if the
interrupt ,was last connected to the "do-nothing” function), this
function returns the address of the "do-nothing" function.

Calling EpcSetError to assign a handler to a VMEbus error
immediately enables the specified interrupt.

Return Value If successful, the function returns the address of the current error
handler. Otherwise, the function returns ERR_FAIL.

See Also EpcDisErr, EpcEnErr, EpcGetError.

2-66

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetintr

EpcSetintr
Description Defines a specified interrupt's handler function and stack.
C Synopsis
void (FAR CDECL * FAR PASCAL
EpcSetlntr(short interrupt,
void (FAR CDECL * new_handler)(unsigned long data),
char FAR * new_stack,
char FAR * FAR * prev_stack))(unsigned long data),
MS BASIC Synopsis
NONE
Remarks The function defines the handler and stack addresses for an

interrupt and returns the current handler and stack addresses.

The parameter interrupt specifies the interrupt condition to disable.
The following constants define valid values for interrupt:

Constant Description
BM_MSG_INTR Message interrupt.
BM_VME_INTR1 VME-bus interrupt 1.
BM_VME_INTR7 VME-bus interrupt 7.
BM_ER_INTR Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt O (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

2-67

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

An interrupt handler function has the following calling semantics:

void FAR CDECL
new_handler (unsigned long data)

The following actions are taken when the specified interrupt occurs:
1) Disable processor interrupt.
2) Acknowledge the programmable interrupt controllers (PICs).

3) If this is a VMEbus interrupt, acknowledge it. If it is a message
interrupt, disabled it. (Message interrupts are enabled by the
message-passing functions, described elsewhere in this chapter.)

4) Push the bus state (access mode and bus window) onto the stack.
5) Switch to the handler's stack.

6) If this is a VMEbus interrupt, zero-extend the 16-bit Status/ID
value from the interrupt acknowledgment to a long (32-bit) -
value. Note that a 16-bit Status/ID is always requested — it is
up to the handler to know the actual size (8 or 16 bits) of the
Status/ID that the device returns.

7) The interrupt handler is invoked by means of a FAR call, and is
passed a 32-bit parameter. It returns with a RET instruction to
the BusManager.

8) The BusManager switches to its own stack, restores the saved
bus state, and enables processor interrupts.

If the BusManager detects an interrupt that has no handler assigned,
the BusManager invokes a "do-nothing" function.

To remove an assigned handler, call this function with new_handler
set to null. The BusManager will assign the "do-nothing" function
and disable the interrupt.

2-68

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetintr

This function returns the address of the handler previously assigned
to the specified interrupt. If no handler has been assigned (or if the
interrupt was last connected to the "do-nothing” function), this
function returns the address of the "do-nothing" function.

If prev_stack is null, then it is not set to the previous stack pointer
by this function. If prev_stack is not null, then the value at the
location to which it points is set to null by this function.

Calling EpcSetIntr to assign a handler to a bus interrupt
immediately enables the specified interrupt. A call to EpcEnlntr is
unnecessary.

Return Value If successful, the function returns the address of the current interrupt
handler. Otherwise, the function returns ERR_FAIL.

See Also EpcDislIntr, EpcEnlntr, EpcGetlntr.

2-69

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcSetSlaveAddr
Description Defines the address space and base address of the EPC's slave
memory.
C Synopsis
short FAR PASCAL
EpcSetSlaveAddr(unsigned short addrspace, unsigned long
slavebase);
addrspace New address space.
slavebase New slave base address.
MS BASIC Synopsis

DECLARE FUNCTION EpcSetSlaveAddr%(BYVAL
addrspace%, BYVAL slavebase&)

returncode% = EpcSetSlaveAddr%(addrspace%, slavebase&)
Remarks The function defines the address space and base address of the

EPC's slave memory. Valid values for addrspace and slavebase are
the following:

EPC type *slavebase *addr space

EPC-2 0x 18000000, 0x 19000000, ... , 0x 1FO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A

EPC.7 0x000000, 0x400000, ..., 0xC00000 BM_A24

0x00000000, 0x01000000, ..., 0XFFOO0000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A
EPC-8 EPC_SLAVE_MEMORY_DISABLED N/A

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

To disable slave memory, call this function with a slave base
address of EPC_SLAVE_MEMORY_DISABLED.

2-70

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetSlaveAddr

Return Value The following return values are supported:

Constant Description
ERR_FAIL The slave base address is not supported 2
on this EPC.
EPC_SUCCESS Successful function completion.
See Also EpcGetSlaveAddr, EpcGetSlaveBase, EpcSetSlaveBase.

2-71

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcSetSlaveBase
Description Defines the current base address of the EPC's slave memory.
C Synopsis

short FAR PASCAL

EpcSetSlaveBase(unsigned long slavebase);

slavebase New slave base address.

MS BASIC Synopsis

DECLARE FUNCTION EpcSetSlaveBase%(BY VAL slavebase&)
returncode% = EpcSetSlaveBase%(slavebase&)

Remarks The function defines the base address of the EPC's slave memory.
Valid values for slavebase and the implied address space are the
following:

EPC type Slave Base Address Implied Slave
Address Space
EPC-2 0x 18000000, 0x19000000, ..., 0x 1IFO00000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A
EPC-7 0x000000, 0x400000, ..., 0xC00000 BM_A24

0x00000000, 0x01000000, ..., 0xFF000000 BM_A32
EPC_SLAVE_MEMORY_DISABLED N/A
EPC-8 EPC_SLAVE_MEMORY_DISABLED N/A

A24 base addresses are aligned on a 4 Mbyte boundary, and only
the first 4 Mbytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

To disable slave memory, call this function with a slave base
address of BM_SLAVE_MEMORY_DISABLED.

2-72

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSetSlaveBase

Return Value The following return values are supported:

Constant Description
EPC_SUCCESS Successful function completion. 2
ERR_FAIL The slave base address is not supported
on this EPC.
See Also EpcGetSlaveAddr, EpcGetSlaveBase, EpcSetSlaveAddr.

2-73

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcSetUla

Description Defines the EPC's unique logical address (ULA).

C Synopsis

short FAR PASCAL
EpcSetUla(unsigned short ula);

ula New unique logical address.

MS BASIC Synopsis

DECLARE FUNCTION EpcSetUla%(BYVAL ula%)
returncode% = EpcSetUla%(ula%)

Remarks The ULA is used to determine the base address of the EPC
configuration registers in A16 space, as follows:

Al6_Address =(ULA<<6)+0xC000;

Return Value The following return values are supported:

Constant Description
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
EPC_SUCCESS Successful function completion.
See Also EpcGetUla.

2-74

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSigintr

EpcSigintr
Description Signals (asserts or deasserts) a VMEbus interrupt. 2
C Synopsis
short FAR PASCAL
EpcSiglntr(short interrupt);
interrupt Interrupt number.
MS BASIC Synopsis
DECLARE FUNCTION EpcSigIntr%(BYVAL interrupt%)
ok% = EpcSigIntr%(interrupt%)
Remarks The function asserts or deasserts a VMEbus interrupt.

The parameter interrupt specifies the VMEbus to assert or deassert.
The following values are valid:

Value Description
0 Deassert the currently asserted VMEbus
interrupt.

BM_VME_INTR1 Assert VMEbus interrupt 1.
BM_VME_INTR7 Assert VMEbus interrupt 7.

If interrupt is non-zero and the EPC is not asserting an interrupt,
then the appropriate VMEbus interrupt (1 through 7) is asserted. If
the interrupt is non-zero and the EPC is asserting an interrupt, then
the function fails. If interrupt is zero and the EPC is already
asserting an interrupt, then the bus interrupt is deasserted and the
function succeeds. It is not an error to deassert an interrupt when no
interrupt is asserted - this function always succeeds if interrupt is set
to zero.

2-75

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The following return value is supported:

Constant Description
EPC_SUCCESS Successful function completion.
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
See Also EpcDisIntr, EpcEnlntr, EpcGetintr, EpcSetlIntr.

2-76

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcSwapL

EpcSwapL
Description Byte-swaps a single 32-bit value.

C Synopsis

unsigned long FAR PASCAL
EpcSwapL(unsigned long value);

value 32-bit value to be swapped.

MS BASIC Synopsis

DECLARE FUNCTION EpcSwapL&(BYVAL value&)
newvalue& = EpcSwapL&(value&)

Remarks This function swaps the bytes in the supplied 32-bit value and
returns the result.

For example, the following call:
EpcSwapL (0x11223344) ;
returns the value 0x44332211.

See Also EpcMemSwapL, EpcMemSwapW, EpcSwapW.

2-77

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcSwapW
Description Byte-swaps a single 16-bit value.

C Synopsis

unsigned short FAR PASCAL
EpcSwapW (unsigned short value);

value 16-bit value to be swapped.

MS BASIC Synopsis
DECLARE FUNCTION EpcSwapW%(BY VAL value%)
newvalue% = EpcSwapW%(value%)

Remarks This function swaps the bytes in the supplied 16-bit value and
returns the result.

For example, the following call: -
EpcSwapW(0x1122) ;
returns the value 0x2211.

See Also EpcMemSwapL, EpcMemSwapW, EpcSwapL.

2-78

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcToVme

EpcToVme

Description Copy consecutive EPC locations to consecutive VMEbus locations
using the current access mode.

C Synopsis

unsigned short FAR PASCAL
EpcToVme(short width, char FAR *source, unsigned long dest,
unsigned short count);

width Number of data bits to copy per bus
access.

source Source address in EPC memory.
dest Destination VMEbus address.

count Number of bytes to transfer.

MS BASIC Synopsis

DECLARE FUNCTION EpcToVme%(BY VAL width%, SEG
source%o, BYVAL dest&, BYVAL count%)

DIM src%(...]
0k% = EpcToVme% (width%, source%, dest&, count%)

Remarks This function copies data from consecutive EPC locations to
consecutive VMEDbus locations using the current access mode. The
current access mode set by the most recent EpcRestState or
EpcSetAmMap is saved, the bus window is altered as necessary
during the copy, and the access mode is restored.

This function is intended for transferring large amounts of data to
consecutive locations.

The count parameter always specifies the number of bytes to
transfer, regardless of the specified width. Setting count to zero
specifies a transfer of zero bytes.

2-79

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. Transfers are always aligned on natural
boundary; 16-bit quantities are written to the VMEbus only at even
addresses, and 32-bit quantities are written to the VMEbus only at
addresses evenly divisible by 4.

Valid values for the width parameter are the following:

Constant Description

BM_WS8§ 8-bit copy width

BM_WS80O 8-bit copy width, odd-only copy
BM_W16 16-bit copy width

BM_W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors.
This constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion — a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

» This "read-modify-write" sequence is done in software,
and is not an RMW bus cycle.

+ If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

2-80

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcToVme

Return Value

See Also

When you specify 8-bit, odd-only transfers (BM_W80), the
VMEbus address "spins” twice as fast as the EPC address. That is,
for i =0to (count - 1), dest + (i x 2) + 1 receives
src + 1.

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width parameter with BM_FASTCOPY before
calling the copy function, BERR is checked only after transfers to
nonaligned locations. Fast copying uses "Move String” instructions
to copy "blocks" of data. By taking advantage of pipelining in the
processor and the VMEbus interface hardware, fast copy transfers
are five times faster than transfers without BM_FASTCOPY.
There are risks, however: a BERR may g0 undetected, or the BERR

- error handler may be called erroneously (if a transfer — still in .the

pipeline when the function returns — causes a BERR). In general,
you should select the fast copy option.

The fast copy flag (BM_FASTCOPY) is ignored when you specify
8-bit, odd-only transfers (BM_WS8O).

The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred.
This indicates there was a VMEbus error (BERR).

EpcFromVme, EpcFromVmeAm, EpcRestState,
EpcSetAmMap, EpcToVmeAm.

2-81

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcToVmeAm

Description Copies consecutive EPC locations to consecutive VMEbus locations
using a specified access mode.

2

C Synopsis

unsigned short FAR PASCAL
EpcToVmeAm(short mode, short width, char *source, unsigned
long dest, unsigned short count);

mode Access mode.

width Number of data bits to copy per bus
access.

source Source address in EPC memory.
dest Destination VMEDbus address.

count Number of bytes to transfer.

MS BASIC Synopsis

DECLARE FUNCTION EpcToVmeAm%(BYVAL mode%,
BYVAL width%, SEG source%, BYVAL dest&,
BYVAL count%)

DIM source%| ... |

0ok% = EpcToVmeAm%(mode%, width%, source%, dest&,
count%)

Remarks This function copies data from consecutive EPC locations to
consecutive bus locations using the specified access mode. The
current access mode and bus window are saved, altered as specified
during the copy, and restored upon completion of the copy.

The parameter mode is an OR'd combination of a byte order
constant and an address modifier constant:

2-82

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcToVmeAm

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant:

2

01010]010j0|O|byelfl 0f0 addrmod

order

The following constants define valid byte order constants:

Constant Description
BM_IBO Little-endian (Intel 386-style) byte order

BM_MBO Big-endian (Motorola 68000-style) byte order

The following constants define valid address modifier constants:

Constant Description

Al16N A16 non privileged address modifier

A16S A16 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. VMEbus transfers are always aligned on
natural boundary; 16-bit quantities are written to the VMEbus only

at even addresses, and 32-bit quantities are written to the VMEbus
only at addresses evenly divisible by 4.

2-83

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Valid values for the width parameter are the following:

Constant Description

BM_WS8 8-bit copy width

BM_WS80 8-bit copy width, odd-only copy
BM_W16 16-bit copy width

BM_W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors.
This constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion — a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred.” Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

* This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

* If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_W8O0), the
VMEDbus address "spins” twice as fast as the EPC address. That is,
fori = 0to (count - 1), dest + (i x 2) + 1 receives
src + 1.

2-84

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcToVmeAm

Return Value

See Also

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width with BM_FASTCOPY before calling the copy
function, BERR is checked only after transfers to nonaligned
locations. Fast copying uses "Move String” instructions to copy
"blocks" of data. By taking advantage of pipelining in the processor
and the VMEbus interface hardware, fast copy transfers are five
times faster than transfers without BM_FASTCOPY. There are
risks, however: a BERR may go undetected, or the BERR error
handler may be called erroneously (if a transfer — still in the pipeline
when the function returns — causes a BERR). In general, you should
select the fast copy option.

The Fast Copy flag (BM_FASTCOPY) is ignored when you
specify 8-bit, odd-only transfers (BM_W80).

The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred,

indicating a bus error (BERR).

EpcFromVme, EpcFromVmeAm, EpcToVme.

2-85

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcVmeCtri
Description Queries or defines VMEbus interface control bits,
C Synopsis

short FAR PASCAL

EpcVmeCtrl(unsigned short opcode, unsigned short flag);

opcode Read, assert or deassert flag.
flag Possible flags are described below.
MS BASIC Synopsis

DECLARE FUNCTION EpcVmeCtrl%(BY VAL code%, BY VAL
Sflag%)

value% = EpcVmeCtrl%(code%, flag%)
Remarks The function reads, asserts or deasserts VMEbus interface control
bits. The parameter flag defines the desired control bit and opcode

defines whether to read, assert, or deassert the bit.

Valid values for opcode are the following:

Code Description
CTRL_READ read flag
CTRL_ASSERT assert flag
CTRL_DEASSERT deassert flag

Valid values for flag are the following:

Flag Description

VME_SYSFAIL_EN SYSFAIL out enable
VME_SYSRESET_EN SYSRESET in enable

VME_SYSRESET SYSRESET out

VME_PASSTEST self test pass

VME_EXTTEST in extended self test

VME_WATCHDOG watchdog timer expired (read
only)

VME_ACFAIL_IN ACFAIL asserted (read only)

2-86

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcVmeCtrl

Code Description

VME_BERR_IN BERR asserted (destructive read)
VME_SYSFAIL_IN SYSFAIL asserted (read only)
VME_A24_SLAVE A24 slave (always zero on EPC-8)
VME_ACCESS VME access

VME_WRITE VME write

VME_PIPELINE_BUSY VME pipeline busy
VME_STICKY_BERR sticky BERR

VME_SIGNAL SIGNAL register available
VME_SLAVE_EN VME slave enable (always zero on
EPC-8)

Return Value When opcode is CTRL_READ, the function returns zero if the
control bit specified by flag is deasserted and if it is asserted. Note
that the function hides whether the logic of the control bit is
negative-TRUE or positive-TRUE.

For opcode values of CTRL_ASSERT and CTRL_DEASSERT,
the following values are returned: .

ERR_FAIL The specified opcode or flag value is
invalid.
EPC_SUCCESS Successful function completion.
2-87

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcVxiCtrl
Description Quertes or defines VXIbus interface control bits.
C Synopsis

short FAR PASCAL

EpcVxiCtrl(unsigned short code, unsigned short flag);

code Read, assert, or deassert flag
flag Possible flags are described below.
MS BASIC Synopsis
DECLARE FUNCTION EpcVxiCtrl%(BY VAL code%, BYVAL
flag%)

value% = EpcVxiCtrl%(code%, flag%)
Remarks T};e function reads, asserts or deasserts VXIbus interface control .,
bits. The parameter flag defines the desired control bit and opcode

defines whether to read, assert, or deassert the bit.

Valid values for opcode are the following:

Code Description

CTRL_READ read flag

CTRL_READ STATE read trigger

CTRL_ASSERT assert flag

CTRL_DEASSERT deassert flag

Valid values for flag are the following:

Flag Description

0 Data Input Ready (DIR)

1 Data Output Ready (DOR)

2 ERR Flag

OLRM_TTLTRGO TTL Trigger Line 0 (EPC-2 and EPC-7
only)

OLRM_TTLTRG1 TTL Trigger Line 1 (EPC-2 and EPC-7
only)

2-88

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcVxiCtrl

OLRM_TTLTRG2 TTL Trigger Line 2 (EPC-2 and EPC-7
OLRM_TTLTRG3 '(;?I{I{)Trigger Line 3 (EPC-2 and EPC-7
OLRM_TTLTRG4 ?I{I):)Trigger Line 4 (EPC-2 and EPC-7
OLRM_TTLTRGS %)Trigger Line 5 (EPC-2 and EPC-7
OLRM_TTLTRG6 ;?I}I{)Trigger Line 6 (EPC-2 and EPC-7
OLRM_TTLTRG?7 'OI?I}I):)Trigger Line 7 (EPC-2 and EPC-7
OLRM_ECLTRGI1 %nCli)Trigger Line 1 (EPC-2 and EPC-7
OLRM_ECLTRG2 I(;nCli)Trigger Line 2 (EPC-2 and EPC-7
only)

Return Value When opcode is CTRL_READ or CTRL_READ_STATE, the
function returns zero if the control bit specified by flag is deasserted
and if it is asserted. Note that the function hides whether the logic of
the control bit is negative-TRUE or positive-TRUE.

For opcode values of CTRL_ASSERT and CTRL_DEASSERT,
the following values are returned:

ERR_FAIL The specified opcode or flag value is
invalid.
EPC_SUCCESS Successful function completion.
2-89

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcWaitintr

Description Waits for an interrupt to occur.

2 C Synopsis

short FAR PASCAL
EpcWaitIntr(unsigned short mask, unsigned long FAR * starus,
unsigned long waittime);

short FAR PASCAL
EpcWaitIntr2(unsigned short mask, unsigned long FAR * status,
unsigned long FAR* memwaittime);

mask Mask of interrupts to await,

memwaittime Address location containing the number
of milliseconds to wait before returning.

waittime Number of milliseconds to wait _before
returning.
status Returned Status/ID.
MS BASIC Synopsis

DECLARE FUNCTION EpcWaitIntr%(BYVAL mask%, SEG
status&, BYVAL waittime&)

ok% = EpcWaitIntr%(mask%, status&, waittime&)

DECLARE FUNCTION EpcWaitIntr2%(BYVAL mask%, SEG
status&, SEG memwaittime&)

ok% = EpcWaitIntr2%(mask%, status&, memwaittime&)

Remarks These functions wait up to waittime (or *memwaittime) milliseconds
for one of the interrupts specified by mask to occur.

2-90

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWaitintr

The parameter mask specifies the interrupt(s) to await. It is an OR'd
combination of the following:

Value Description 2
1<<BM_MSG_INTR Message interrupt.

1<<BM_VME_INTR1 VMEDbus interrupt 1.

1<<BM_VME_INTR?7 VMEDbus interrupt 7.
1<<BM_ER_INTR Event/Response interrupt.

Both EpcWaitIntr and EpcWaitIntr2 return the mask of the
highest priority interrupt that occurs, zero if the timer expires before
any of the awaited interrupts occur, and ERR_FAIL if some other
error occurs. Functions EpcWaitIntr and EpcWaitIntr2 differ in
that EpcWaitlntr takes milliseconds as a parameter, while
EpcWaitIntr2 takes a pointer to milliseconds as a parameter and
modifies the contents of that location to reflect the number of
milliseconds remaining when an interrupt occurs.

The timer value is expressed in milliseconds. If waittime (or the
value stored at the location specified by memwaittime) is zero, only
one check will be made before returning. If no interrupt handler
exists for this interrupt, EpcWaitlntr sends the appropriate
interrupt acknowledgment before returning to the caller. The bus
state is not saved or restored.

Upon function completion, status contains the status/ID of the
interrupt. A 16-bit interrupt acknowledge (IACK) cycle is
performed when a VMEbus interrupt arrives. It is up to the calling
program to know whether the device generating the interrupt returns
an 8-bit or 16-bit Status/ID. For compatibility with future products,
this value is zero-extended to 32 bits.

If an interrupt also has a handler assigned to it, then that handler is
executed before this call returns (see EpcSetIntr).

2-91

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Whenever an interrupt occurs, that fact is remembered and will be
returned by EpcWaitIntr. This behavior eliminates the race
condition that would otherwise exist between the device generating
the interrupt and the program waiting for the interrupt. However, it
can cause the BusManager to remember "stale” interrupts. To avoid
this problem, repeatedly call EpcWaitIntr with a timeout of zero
milliseconds before using a device, until no interrupts are returned.
This clears out any stale interrupts for that device.

Notes:

* To use the DOS clock for tracking elapsed time, this
function enables processor interrupts for the duration of
its execution.

* Only the highest-priority interrupt is handled within a
given call, where VMEDbus interrupt 7 is highest and the
message interrupt is lowest. Other interrupts are left
pending.

Return Value If successful, the function returns a non-negative value. Otherwise, -
the function returns ERR_FAIL.

See Also EpcSetintr, EpcEnlntr.

2-92

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsCmd

EpcWsCmd

Description Sends a word serial command.

C Synopsis

short FAR PASCAL
EpcWsCmd(unsigned short ula, unsigned short command,
unsigned short FAR * result_ptr, unsigned short wait);

ula Servant's unique logical address.
command Command to send
result_ptr Address of result

wait Timeout, in milliseconds.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsCmd%(BYVAL ula%, BYVAL
cmd%, SEG result%, BY VAL wait%)

0k% = EpcWsCmd%(ula%, cmd%, result%, wait%)

DECLARE FUNCTION EpcWsCmd % (BYVAL ula%, BYVAL
cmd%, BY VAL wait%)

ok% = EpeWsCmd % (ula%, cmd%, wait%)

Remarks Sends a word serial command. A command will be sent only when
the servant device's WRDY bit is set.

In the C interface, if result_ptr is non-NULL, waits for a result and
returns it in the location pointed to by result_ptr.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-93

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion.

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_RBERR A bus error occurred receiving a word
serial command response.

ERR_RTIMEOUT A timeout occurred receiving a word
serial command response.

ERR_TIMEOUT A timeout occurred sending a word serial
command.

ERR_WS A word serial protocol error occurred.

See Also EpcLwsCmd.

2-94

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsRcvStr

EpcWsRcvStr
Description Receives a series of bytes.
C Synopsis

short FAR PASCAL

EpcWsRcvStr(unsigned short ula, char FAR * msg_ptr, short
len, short FAR * bytecnt_ptr, unsigned short

wait);
ula Servant's unique logical address
msg_ptr Message buffer
len Message buffer length
bytecnt_ptr Number of bytes received
wait Timeout, in milliseconds
MS BASIC Synopsis
DECLARE FUNCTION EpcWsRcvStr % (ula%, msg$, bytecnt%,
wait%)

0k% = EpcWsRevStr % (ula%, msg$, bytecnt%, wait%)

Remarks Receives a series of bytes via the word serial BYTE REQUEST
command. BYTE REQUEST commands are sent only when the
device’'s DOR (Data Output Ready) and WRDY (Write Ready) bits
are set.

If bytecnt_ptr is non-NULL, the C interface returns the number of
bytes received in the location pointed to by bytecnt_ptr.

The MS BASIC interface uses a fixed internal buffer of 512 bytes to
construct strings, and received messages are limited to that size.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-95

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

The MS BASIC interface doesn't require a length parameter—it
passes the length of the message as part of the string descriptor.

This function terminates successfully when a byte with the END bit
set is received. It will also terminate when the buffer is full, when a
timeout occurs, when a VXIbus error occurs, or when a Word Serial
Protocol error is detected.

If the buffer fills before the set END bit is detected, this function
returns ERR_BUFFER_FULL. Subsequent calls retrieve more
data; so you can use a series of calls to EpcWsRevStr to receive
long strings.

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion.

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_BUFFER_FULL The specified buffer is full.

ERR_RBERR A bus error occurred receiving a word

serial command response.

ERR_RTIMEOUT A timeout occurred receiving a word
serial command response.

ERR_TIMEOUT A timeout occurred sending a word serial
command.
ERR_WS A word serial protocol error occurred.
See Also EpcWsSndStr, EpcWsSndStrNe.

2-96

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsServArm

EpcWsServArm
Description Arms the EPC so that it can receive a command.
C Synopsis
short FAR PASCAL
EpcWsServArm(short code);
code Arming code.
MS BASIC Synopsis

DECLARE FUNCTION EpcWsServArm%(BY VAL code%)
0ok% = EpcWsServArm%(code%)

Remarks Valid code values are the following:
Constant Description
BM_WSRCV_DISARM Disarm commander reception.
BM_WSRCV_ARM Arm command reception.

BM_WSRCV_ARMandENABLE Arm command reception and
enable the message interrupt.

BM_WSRCV_FDISARM Forcefully disarm command
reception.

BM_WSRCV_FARM Forcefully arm command
reception.

BM_WSRCV_FARMandENABLE
Forcefully arm command
reception and enable the
message interrupt.

2-97

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value

Arming for command receipt sets the VMEbus-readable bit WRDY
(write ready), indicating that a command can be accepted. In
addition, the message interrupt may be enabled to inform the
program when the command arrives. You must call this function
before trying to receive a command.

Arming codes BM_WSRCV_DISARM, BM_WSRCV_ARM,
and BM_WSRCV_ARMandENABLE obey the EPC locking
protocol, allowing multiple controllers to communicate with the
same device. This protocol requires that the VMEbus response
register not be touched by a controller unless they are going to send
a command. In environments where this rule may not be obeyed,
use the “"force" versions of these sub functions
(BM_WSRCV_FDISARM, BM_WSRCV_FARM, and
BM_WSRCV_FARMandENABLE).

The function returns the following return values:

Constant Description
EPC_SUCCESS Successful function completion.
ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.
See Also EpcWsServPeek, EpcWsServRcv, EpcWsServSend.
2-98

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsServPeek

EpcWsServPeek

Description Waits for a command to arrive without removing the incoming
command.

C Synopsis

short FAR PASCAL
EpcWsServPeek(unsigned long FAR * command, unsigned long
waittime);

short FAR PASCAL
EpcWsServPeek2(unsigned long FAR * command, unsigned
long FAR * memwaittime);

command Word serial command received.

waittime Number of milliseconds to wait before
returning.

memwaittime Address of the number of milliseconds to -

wait before returning.

MS BASIC Synopsis
DECLARE FUNCTION EpcWsServPeek%(SEG command&,
BYVAL waittime&)
ok% = EpcWsServPeek%(command&, waittime&)

DECLARE FUNCTION EpcWsServPeek2%(SEG command&,
SEG memwaittime&)
ok% = EpcWsServPeek2%(command&, memwaittime&)

2-99

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Remarks Both EpcWsServPeek and EpcWsServPeek2 wait for a command
to arrive and return it to the caller. The command stays available for
subsequent EpcWsServPeek and EpcWsServRev calls.
EpcWsServPeek and EpcWsServPeek2 differ in that
EpcWsServPeek takes a timeout parameter while
EpcWsServPeek2 takes a pointer to a timeout parameter and
modifies the value to reflect the number of milliseconds remaining
when a command arrives.

You must call EpcWsServArm before calling this function.
Otherwise, EpcWsServPeek returns invalid data.

The command size may be 2 or 4 bytes on an EPC-2 or EPC-7 or 2
bytes on an EPC-6. When a 2-byte command is received, the two
unused high-order bytes are undefined.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

Return Value The function returns the size of the command (in bytes) if a
command arrives. If no command arrives with the specified time,

the function returns zero. Otherwise, the function returns
ERR_FAIL.

See Also EpcWsServArm, EpcWsServRcv.

2-100

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsServRcv

EpcWsServRcv
Description Waits for a command to arrive and receive the incoming command. 2
C Synopsis

short FAR PASCAL

EpcWsServRev(short code, unsigned long FAR * command,
unsigned long wairtime);

short FAR PASCAL
EpcWsServRev2(short code, unsigned long FAR * command,
unsigned long FAR * memwaittime);

code Arming code.

command Word serial command received.

waittime Number of milliseconds to wait before
returning.

memwaittime Address of the number of milliseconds to

wait before returning.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsServRcev%(BYVAL code%, SEG
command&, BYVAL waittime&)
ok% = EpcWsServRev%(code%, command&, waittime&)

DECLARE FUNCTION EpcWsServRcev2%(BYVAL code%, SEG
command&, SEG memwaittime&)
ok% = EpcWsServRev2%(code%, command&, memwaittime&)

2-101

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Remarks EpcWsServRev and EpcWsServRev2 wait for a command to
arrive and returns the command to the caller. EpcWsServRev and
EpcWsServRcv2 differ in that EpcWsServRev takes a timeout as a
parameter, while EpcWsServRev2 takes a pointer to a timeout
parameter and modifies the timeout to reflect the number of
milliseconds remaining when a command is received.

The parameter code specifies the arming option to perform after
receiving the command. Valid values for code are the following:

Constant Description
BM_WSRCV_DISARM Disarm command reception.
BM_WSRCV_ARM Arm command reception.

BM_WSRCV_ARMandENABLE

Arm command reception and
enable the message.

If a command is received, the action specified in code is performed
after the receipt dnd before EpcWsServRev returns. That action is
an integral part of the receipt, so race conditions are avoided.

You must call EpcWsServArm before calling this function.
Otherwise, EpcWsServRcyv returns invalid data.

The command size may be 2 or 4 bytes on an EPC-2 or EPC-7, or
2 bytes on an EPC-6. When a 2-byte command is received, the two
unused high-order bytes are undefined.

To use the DOS clock for tracking elapsed time, this function
enables processor interrupts while it operates.

Return Value The function returns the size of the command (in bytes) if a
command is received. If no command is received within the
specified time, the function returns zero. Otherwise, the function
returns ERR_FAIL.

See Also EpcWsServArm, EpcWsServSend, EpcWsServPeek.

2-102

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsServSend

EpcWsServSend
Description Sends a response to the EPC's commander.
C Synopsis

short FAR PASCAL

EpcWsServSend(short code, void FAR * command, unsigned
long waittime);

short FAR PASCAL
EpcWsServSend2(short code, void FAR * command, unsigned
long FAR * memwaittime);

code Send operation code.

command Word serial response to send.

waittime Number of milliseconds to wait before
returning.

memwaittime Address of the number of mil,liseconds to

wait before returning.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsServSend%(BYVAL code%, SEG
command&, BYVAL waittime&)
ok% = EpcWsServSend%(code%, command&, waittime&)

DECLARE FUNCTION EpcWsServSend2%(BY VAL code%,
SEG command&, SEG memwaittime&)
ok% = EpcWsServSend2%(code%, command&, memwaittime&)

2-103

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Remarks EpcWsServSend and EpcWsServSend2 send a word serial
command response to this EPC's commander. EpcWsServSend and
EpcWsServSend2 differ in that EpcWsServSend takes a timeout
parameter, while EpcWsServSend2 takes a pointer to a time-out
parameter and modifies the timeout to reflect the number of
milliseconds remaining when the response was received by the
EPC's commander. Before the command is sent, however, the
VMEbus data register must be cleared (that is, RRDY and WRDY
must both be false). The register is cleared only when it is read by
the commander, and the waittime (or memwaittime) parameter lets
you prevent the function from waiting indefinitely.

The parameter code specifies the send operation. Valid values are

the following:
Yalue Description
0 Send no command response -- wait for the previous
command response to be received.
1 . Send no command response -- wait for the previous

command response to be received and enable the
message interrupt.

2 Send a 16-bit command response.

3 Send a 16-bit command response and enable the
message interrupt.

4 Send a 32-bit command response. (EPC-2 and EPC-7
only)

5 Send a 32-bit command response and enable the

message interrupt. (EPC-2 and EPC-7 only)

To use the DOS clock for tracking elapsed time, this function
enables processor interrupts while it operates.

Return Value The function supports the following return values:

Constant Description

EPC_SUCCESS Successful function completion.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver,

2-104

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsServSend

See Also EpcWsServArm, EpcWsServPeek, EpcWsServRev.

2-105

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcWsSndStr

Description Sends a series of bytes setting the END bit on the last byte.

2 C Synopsis

short FAR PASCAL
EpcWsSndStr(unsigned short ula, char FAR * msg_ptr, short
len, short FAR * bytecnt_ptr, unsigned short wait);

ula Servant's unique logical address.
msg_ptr Address of string to send.
len Message length.
bytecnt_ptr Number of bytes sent.
wait Timeout, in milliseconds.
MS BASIC Synopsis

DECLARE FUNCTION EpcWsSndStr%(BYVAL ula%, msg$,
SEG bytecnt%, BYVAL wait%)

ok% = EpcWsSndStr % (ula%, msg$, bytecnt%, wait%)

Remarks Sends a series of bytes via the word serial BYTE AVAILABLE
command. BYTE AVAILABLE commands are sent only when the
device's DIR (Data Input Ready) and WRDY bits are set. This
function sets the END bit in the last command of the series.

Using the C interface, if bytecnt_ptr is non-NULL, this function
returns the number of bytes sent in the location pointed to by
bytecnt_ptr.

The BASIC interface doesn't require a length parameter—it passes
the length of the message as part of the string descriptor.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-106

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsSndStr

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion. 2

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_TIMEOUT A timeout occurred sending a word serial
command.

ERR_WS A word serial protocol error occurred.

See Also EpcWsStat, EpcWsSndStrNe.
2-107

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcWsSndStrNe

Description Sends a series of bytes without setting the END bit on the last byte.

2 C Synopsis

short FAR PASCAL
EpcWsSndStr(unsigned short ula, char FAR * msg_ptr, short
len, short FAR * bytecnt_ptr, unsigned short wait);

ula Servant's unique logical address.
msg_ptr Address of string to send.
len Message length.
bytecnt_ptr Number of bytes sent.
wait Timeout, in milliseconds.
MS BASIC Synopsis

DECLARE FUNCTION EpcWsSndStrNe%(BY VAL ula%, msg$,
SEG bytecnt%, BYVAL wait%)

ok% = EpcWsSndStrNe % (ula%, msg$, bytecnt%, wait%)

Remarks This function works the same as EpcWsSndStr, except that it does
not set the END bit in the last command of the series.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-108

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsSndStrNe

Return Value The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion. 2

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_TIMEOUT A timeout occurred sending a word serial
command.

ERR_WS A word serial protocol error occurred.

See Also EpcWsStat, EpcWsSndStrNe.

2-109

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

EpcWsStat
Description Returns the word serial status of the designated device.
C Synopsis
short FAR PASCAL
EchsStat(unsigned short ula);
ula Servant's unique logical address.
MS BASIC Synopsis
DECLARE FUNCTION EpcWsStat%(BYVAL ula%)
status% = EpcWsStat%(ula%)
Remarks Returns the status of the designated device or a negative number

(indicating failure). Bits 14-8 of the returned status are set to bits

14-8 of the servant's Response Register. These bits are: a reserved

bit (14), DOR, DIR, ERR*, Read Ready, Write Ready, and FHS*.
Return Value NONE

See Also EpcWsCmd.

2-110

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

EpcWsStat

NOTES

2-111

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

3. OLRM Functions

The On-Line Resource Manager (OLRM) gives application programs a high-level
language interface to the devices on the VXIbus, and manages serially reusable
resources such as interrupt and trigger lines. The OLRM allows non-VXIbus devices
to be viewed in the same way as VXIbus devices.

The OLRM is attribute oriented, and allows devices to be addressed by either
symbolic device name or logical address. It consists of the following functions:

OLRMAllocate Allocates trigger and interrupt line resources.

OLRMDeallocate Places the specified resources in the deallocated
state.

OLRMGetBoolAttr Returns boolean information about a specified
device.

OLRMGetList Returns a list of information and the number of
elements in the list.

OLRMGetNumAttr Returns numeric information about the specified
device.

OLRMGetStringAttr Returns ASCII information about a specified
device.

OLRMRename Changes the symbolic name of a device.

For all but OLRMAIllocate and OLRMDeallocate, the first two parameters are an
ASCII device name and a numeric logical address. One or the other is used to refer to
the device. In the C interface, the ASCII device name is used if the parameter is non-
null—the second parameter is ignored. If the ASCII device name is null, the second
parameter is used. In the Basic interface, an empty string indicates that the second
parameter is to be used.

3-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer'’s Reference Guide

Unless otherwise noted, these functions return meaningless results when called with

inappropriate parameters (such as asking for the memory speed of a register-based
VXIbus device).

3.1 Calling the OLRM From MS C and QuickC

The C language interface is designed to work with Microsoft C compilers (versions
5.1 and later).

Your C application can be compiled in any of the memory models. To make OLRM
independent of the memory models, all calls to OLRM are of type far Pascal.

The following examples show how the MS C functions are used:

Example 1
if (OLRMGetBoolAttr ("scannerl",O, OLRM_SIGREG)) ..

Tests device scannerl for a signal register.
Example 2
i = OLRMGetNumAttr ("Wavegen", 0, OLRM_SLOT);

Gets the slot number of device Wavegen.

Example 3
i = OLRMGetNumAttr("globalmem",0,OLRM_ADDRESS_BASE) ;

Gets the memory base address of device globalmem.
Example 4

manufname = OLRMGetStringAttr ("Wavegen" ,0, OLRM_MANUFACTURER,
manufname) ;

Gets the symbolic manufacturer's name of device Wavegen.
Example 5
OLRMGetList (NULL, 0, OLRM_DEVICES, 256, lalist);

Gets a list of logical addresses of all devices.

Example 6
OLRMRename (NULL, 25, "Mi11553");

Renames the device with logical address 25 as Mi11553.

3-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

Example 7
i = OLRMAllocate (OLRM_TTLTRGANY?2) ;

Allocates any two adjacent TTL trigger lines.

3.2 Calling the OLRM From MS BASIC and
QuickBASIC

The BASIC interface is designed to work with Microsoft QuickBASIC and Compiled
BASIC. The following examples show how the MS BASIC functions are used:

Example 1
IF OLRMGetBoolAttr%("scannerl",Q,OLRM_SIGREG) <> 0 ..

Tests device scannerl for a signal register.

Example 2
i% = OLRMGetNumAttxr%("Wavegen", 0, OLRM_SLOT)

Gets the slot number of device Wavegen.

Example 3
i% = OLRMGetNumAttr%("globalmem”, 0, OLRM_ADDRESS_BASE)

Gets the memory base address of device globalmem.
Example 4

CALL OLRMGetStringAttr("Wavegen" ,0, OLRM_MANUFACTURER, manufname$)
Gets the symbolic manufacturer's name of device Wavegen.

Example 5
retval% = OLRMGetList%("",0,OLRM_DEVICES,256,lalist$)

Gets a list of logical addresses of all devices.

Example 6
triggers% = OLRMAllocate% (OLRM_TTLTRGANY2)

Allocates any two adjacent TTL trigger lines.

3-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

3.4 Functions by Name

This section contains an alphabetical listing of the SICL library functions. Each
listing describes the function, gives its invocation sequence and arguments, discusses
its operation, and lists its returned values. Where usage of the function may not be
clear, an example with comments is given. Each function description begins on a new

page.

34

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

OLRMAllocate
Description Allocates trigger and interrupt line resources.
C Synopsis
unsigned short FAR PASCAL
OLRMAllocate(unsigned short resource);
resource Trigger and interrupt line to be allocated.
MS BASIC Synopsis
DECLARE FUNCTION OLRMAllocate%(BYVAL resource%)
0k% = OLRMAllocate%(resource%)
Remarks Allocates trigger and interrupt line resources. Resources can be

allocated specifically ("give me TTL trigger line 4") and generically
("give me two TTL trigger lines"). ’

The resource parameter may be one of the following:

OLRM_TTLTRGO
OLRM_TTLTRG1
OLRM_TTLTRG2
OLRM_TTLTRG3

OLRM_TTLTRGO0123
OLRM_TTLTRG4567
OLRM_TTLTRGANY
OLRM_TTLTRGANY2

OLRM_ECLTRG23
OLRM_ECLTRG450L
OLRM_ECLTRGANY
OLRM_ECLTRGANY2

OLRM_TTLTRG4 OLRM_TTLTRGANY4 OLRM_IRQ1
OLRM_TTLTRGS OLRM_ECLTRGO OLRM_IRQ2
OLRM_TTLTRG6 OLRM_ECLTRGI1 OLRM_IRQ3
OLRM_TTLTRG7 OLRM_ECLTRG2 OLRM_IRQ4
OLRM_TTLTRGO01 OLRM_ECLTRG3 OLRM_IRQ5
OLRM_TTLTRG23 OLRM_ECLTRG4 OLRM_IRQ6
OLRM_TTLTRG45 OLRM_ECLTRGS OLRM_IRQ7

OLRM_TTLTRG67

OLRM_ECLTRG01

OLRM_IRQANY

You can request the allocation of specific resources, groups of
resources (such as TTL triggers O and 1), and "any" resources. To
accommodate D-size systems, the available resources include the
extra four ECL triggers (lines 2-5) on the P3 connector.

3-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

3

Bus Management for DOS Programmer's Reference Guide

To permit computation with these resource values, the encodings
are numerically equivalent to the lowest-numbered resource of a
class. For example, OLRM_TTLTRG1 is equal to
OLRM_TTLTRGO + 1, and OLRM_IRQ3 is equal to
OLRM_IRQ1 + 2.

Notes:

« Since the OLRM_ECLTRGANY and
OLRM_ECLTRGANY2 parameters could allocate ECL
triggers 2-5 (nonexistent in a C-size system), one should avoid
using these in a C-size system.

« All resources are not necessarily available for allocation when
the system is initialized. ~Specifically, the SURM allocates
interrupt lines as described through the Configurator.

Return Value If the resource was allocated, the resource number is returned. In
the case of multiple allocations
(OLRMAllocate(OLRM_TTLTRGANYZ), for example), the
value returned is’ that of the lowest-numbered of the resources
allocated. The returned value is O if the function fails (that is, if the
resource is already allocated, insufficient resources are available, or
the resource is unknown).

See Also OLRMDeallocate.

3-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

OLRMDeallocate
Description Places the specified resources in the deallocated state.
C Synopsis
void FAR PASCAL
OLRMDeallocate(unsigned short resource);
resource Trigger or interrupt to be deallocated. 3
MS BASIC Synopsis

DECLARE SUB OLRMDeallocate(BY VAL resource%)
CALL OLRMDeallocate(resource%)

Remarks Places the specified resource(s) in the deallocated state, making
them available for allocation. The resource parameters can be any

of those specified under OLRMAllocate (except for the *ANY
values).)

Return Value None.

See Also OLRMAllocate.

3-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer’s Reference Guide

OLRMGetBoolAttr
Description Returns boolean information about the specified device.
C Synopsis

unsigned short FAR PASCAL
OLRMGetBoolAttr(char FAR *devname, unsigned short ula,
unsigned short attr);

devname Device name.
ula Unique logical address
attr Attribute

MS BASIC Synopsis

DECLARE FUNCTION OLRMGetBoolAttr % (devname$,
BYVAL ula%, BYVAL attr%)

value% = OLRMGetBoolAttr % (devname$, ula%, attr%)

Remarks Returns requested information about specified device. The device
can be addressed by its symbolic name or logical address.

Attr may be one of the following. The VXIbus source "devtab” is
the internal device table maintained by the SURM and OLRM.

3-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

Attr Source

OLRM_REGISTER_DEVICE 1D register

OLRM_MEMORY_DEVICE 1D register
OLRM_EXTENDED_DEVICE ID register
OLRM_MESSAGE_DEVICE devtab

OLRM_A16_ONLY
OLRM_A16_A24
OLRM_A16_A32
OLRM_A24A32_ENABLED
OLRM_MODID
OLRM_EXTENDED_TEST
OLRM_PASSED
OLRM_SUPVSR_ONLY
OLRM_BT

ID register

ID register

ID register

status register

status register

status register

status register

memory attribute register
memory attribute register

OLRM_N_P memory attribute register
OLRM_D32 memory attribute register
OLRM_CMDR message protocol register

OLRM_SIGREG
OLRM_MASTER
OLRM_INTERRUPTER

message protocol register
message protocol register
message protocol register

OLRM_FHS message protocol register
OLRM_SHMEM message protocol register
OLRM_DOR message response register
OLRM_DIR message response register
OLRM_ERR message response register
OLRM_RRDY message response register
OLRM_WRDY message response register

OLRM_FHS_ACTIVE
OLRM_LOCKED
OLRM_FAILED

message response register
message response register
devtab

OLRM_NOTVXI devtab
OLRM_MEM_ALLOCATED devtab
OLRM_EXISTS devtab
OLRM_HAS_SERVANTS devtab

If the device is a VXIbus device, most of these attributes cause a

VXIbus access.

3-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Return Value The boolean value returned is always of positive logic, regardless
of the polarity of the actual VXIbus-defined bit. For instance, the
attribute OLRM_MODID returns TRUE if the device's MODID
bit is 0; OLRM_N_P returns TRUE if a RAM device is nonvolatile
or a ROM device electrically programmable.

Most of the attributes are named the same way as in the VXIbus
specification. The OLRM_FAILED attribute denotes whether the
SURM reported the device as failed and placed the device in the
safe state. The OLRM_NOTVXI attribute denotes whether the
device is not a VXIbus device. The
OLRM_MEM_ALLOCATED attribute denotes whether address
space for the device was reserved or allocated in the A24 or A32
address space. The OLRM_EXISTS attribute denotes whether the
device (specified by symbolic name or logical address) is a known
device. The OLRM_HAS_SERVANTS attribute denotes whether
the device has been assigned any servants by the SURM.

In the event of an error, such as specifying a nonexistent device or -
calling this function with a VXIbus attribute for a VMEbus device,
this function returns 0.

See Also OLRMG etNumA ttr, OLRMGetList, OLRMGetStringAttr.

3-10

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

OLRMGetList
Description Returns a list of information and the number of elements in the list.
C Synopsis

unsigned short FAR PASCAL
OLRMGetList(char FAR *devname, unsigned short ula,

unsigned short attr, unsigned short size, char FAR * list);

devname Device name. 3
ula Unique logical address.

attr Attribute.

size Maximum list size, in bytes.

list Pointer to a buffer where the attribute

list will be placed.

MS BASIC Synopsis

DECLARE FUNCTION OLRMGetList % (devname$, BY VAL
ula%, BYVAL attr%, value$)

retval% = OLRMGetList % (devname$, ula%, attr%, value$)

Returns a list of information (as bytes in a character array) and the
number of elements in list. The size parameter specifies the
maximum number of bytes returned in /list (the return value is not
influenced by size and thus may be greater than size).

Artr may be either of the following. The source devtab is the
internal device table maintained by the SURM and OLRM.

Attr Source
OLRM_DEVICES devtab
OLRM_SERVANTS devtab

If the attribute is OLRM_DEVICES, the deviame and ula
arguments are ignored. The logical addresses of all VXIbus and
pseudo-VXIbus devices in the system are returned in the list.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

If the attribute is OLRM_SERVANTS, the logical addresses of the
specified device's servants are returned in the list. The device can
be addressed by symbolic name (devname) or logical address.

Return Value The function returns the number of byte elements in the attribute
list. If an error occurs, this function returns 0.

See Also OLRMGetBoolAttr, OLRMGetNumAttr,
3 OLRMGetStringAttr.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

OLRMGetNumAttr
Description Returns requested numeric information about the specified device.
C Synopsis

unsigned short FAR PASCAL
OLRMGetNumA_ttr(char FAR *devname, unsigned short ula;
unsigned short artr);

devname Device name. 3

ula Unique logical address
attr Attribute
MS BASIC Synopsis

DECLARE FUNCTION OLRMGetNumAttr % (devname$,
BYVAL ula%, BYVAL atir%)

value% = OLRMGetNumAttr % (devname$, ula%, attr%)
Remarks Returns requested numeric information about the specified device.

The device can be addressed by its symbolic name or logical
address.

Attr may be one of the following. The source "devtab" is the
internal device table maintained by the SURM and OLRM.

3-13

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Attr

OLRM_CLASS
OLRM_ADDRESS_MODE
OLRM_MANUFACTURER
OLRM_REQ_MEMORY
OLRM_MODEL
OLRM_ADDRESS_BASE
OLRM_MEMORY_TYPE

OLRM_SPEED

OLRM_LOG_ADDR
OLRM_SLOT
OLRM_CMDR
OLRM_BID
OLRM_BDT
OLRM_BSC
OLRM_BSO
OLRM_BAT

OLRM_BPR
OLRM_BRE
OLRM_BMH

OLRM_BML

Source

VXIbus ID register

VXIbus ID register

VXIbus ID register

VXIbus device-type register
VXIbus device-type register
VXIbus offset register
VXIbus memory attribute
register

VXIbus memory attribute
register

devtab

devtab

devtab

VXIbus ID register

VXIbus device-type register
VXIbus status register
VXIbus offset register
VXIbus memory attribute
register

VXIbus message protocol
register

VXIbus message response
register

VXIbus message data-high
register

VXIbus message data-low
register

If the device is a VXIbus device, most of these attributes cause a

VXIbus access.

The available attributes cover both fields as well as entire registers.
The encoding is the same as defined in the VXIbus specification
(for example, OLRM_CLASS returns a value in the range 0-3).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

The OLRM_LOG_ADDR attribute denotes the logical address of
the device. The OLRM_SLOT attribute denotes the slot in which
the device resides. The OLRM_CMDR attribute denotes the
logical address of the device's commander. Every device has a
commander. The commander of the top level commander is itself.
The OLRM_BID, OLRM_BDT, OLRM_BSC, OLRM_BSO,
OLRM_BAT, OLRM_BPR, OLRM_BRE, OLRM_BMH, and
OLRM_BML attributes denote the value of the entire VXIbus
register.

Return Value In the event of an error, such as calling this function with a VXIbus
attribute for a VMEDbus device, this function returns OxFFFF.

See Also OLRMGetBoolAttr, OLRMGetList, OLRMGetStringA ttr.

3-15

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

OLRMGetStringAttr
Description Returns ASCII information about the specified device.
C Synopsis

char FAR * FAR PASCAL

OLRMGetStringAttr(char FAR *devname, unsigned short ula,
unsigned short artr, char FAR string);

devname Device name.
ula Unique logical address
attr Attribute
string String
MS BASIC Synopsis

DECLARE SUB OLRMGetStringAttr % (devname$, BYVAL
ula%, BYVAL attr%, value$) .

CALL OLRMGetStringAttr %(devname$, ula%, attr%, value$)

Remarks Returns requested ASCII information about a specific device. The
device can be addressed by symbolic name or logical address.

Attr may be one of the following. The source “devtab" is the
internal device table maintained by the SURM and OLRM.

Attr Source
OLRM_DEVICE_NAME devtab
OLRM_MANUFACTURER devtab
OLRM_MODEL devtab

These attributes are the symbolic values as reported by the SURM.
The caller is responsible for allocating at least 13 bytes for the
fourth parameter (the output string). The value of the attribute is
placed in this string and the address of this string is returned.

Return Value If an error occurs, this function returns a null pointer.

3-16

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

OLRM Functions

See Also OLRMGetBoolAttr, OLRMGetList, OLRMGetNumaA ttr.

3-17

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

OLRMRename
Description Changes the symbolic name of a device.
C Synopsis
char FAR * FAR PASCAL
OLRMRename(char FAR * devname, unsigned short ula, char *
FAR newname);
MS BASIC Synopsis
NONE
Remarks Changes the symbolic name of a device. The device can be

addressed by its symbolic name or logical address. If the device is
found, its name is changed to that of newname (or the first 12
characters of newname) and the returned value is identical to the
newname parameter. If the device cannot be found, or if any other
error occurs, the function returns NULL.

The name change is lost when the machine is shut down or
rebooted.

Return Value If the device cannot be found, or if any other error occurs, the
function returns NULL.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4. Advanced Topics

This chapter discusses topics of interest to advanced application programmers.
Topics include:

. Byte Ordering and Data Representation

. Handler Operations

. Programming Interface
. Writing Device Drivers
. "C" Optimization

4.1 Byte Ordering and Data Representation

Byte ordering adds complexity to the VMEbus interface. Many VMEbus devices use
the data formats of Motorola microprocessors. Others, including RadiSys EPC
controllers, use the data format of Intel microprocessors. Although the Motorola and
Intel microprocessors use the same data types, the hardware representations of these
data types differ.

Figure 4-1 shows how the same sequence of bytes in memory is interpreted by Intel
and Motorola microprocessors. Memory value 11 is at the lowest address and
memory value 88 is at the highest address. The data widths shown correspond to the
data operand sizes found on both microprocessors.

4-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

Memory Intel Data Motorola
Value Order Width Order
11 11 8 bits 11
22 2211 16 bits 1122
33
44 44332211 32 bits 11223344
55
66
77
88 8877665544332211 64 bits 1122334455667788

Figure 4-1. Byte Order Example

5.1.1 Byte Swapping Functions

The EpcMemSwapW and EpcSwapW functions convert 16-bit data between Intel
and Motorola byte orders. The EpcSwapL and EpcMemSwapL functions convert
32-bit data between Intel and Motorola byte orders. Note that 8-bit data does not
require conversion.

The block transfer functions (EpcFromVme, EpcFromVmeAm, EpcToVme, and
EpcToVmeAm) conditionally perform byte-swapping.

4.1.2 Correcting Data Structure Byte Ordering

Even if byte-swapping occurs during a block transfer function, byte ordering problems
occur when data is copied between Motorola and Intel memory using a different data
width than the width of the operand itself. This situation occurs when a data structure
containing mixed-type fields is copied in a single operation.

42

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

The following code fragment illustrates how to use the EpcMemSwapL or the
EpcMemSwapW functions to correct the byte order in the local copy of the data
structure:

struct DataStructure

{

char fields;
short fieldl6;
long field32;

} data;
/* Copy the data structure to local memory from the VMEbus. */

EpcFromVme (BM_W8, address, (char FAR*) &data, sizeof(struct
DataStructure));

/* Byte-swap the individual structure fields (data.field8 is an
8-bit field, so it is already correct).
*/

EpcMemSwapW (&data.fieldl6,1);
EpcMemSwapL(&data.field32,1);

In the above example, the data structure was copied from VMEbus memory one byte
at a time. To copy data from EPC memory to Motorola-ordered memory, byte-swap
the fields of the structure in local memory (using the above byte swapping functions)
and copy the data using the EpcToVme or EpcToVmeAm function.

It is sometimes more efficient to copy blocks of data using a data transfer width
greater than the expected data width. If you use a greater data transfer width to copy
data structures containing mixed-type fields to/from Motorola-order memory, do not
use the byte-swapping feature. Swap the data structure fields individually.

4.2 EPConnect Handler Execution Under
DOS

Installed interrupt and error handler functions execute as part of a separate thread
under DOS. This feature implies that an EPConnect handler function can only call
fully reentrant "C" library and EPConnect library functions. Also, an EPConnect
handler can only invoke fully reentrant DOS functionality.

4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

These conditions must be true before an application’s handlers can execute:

. The application must use EpcSetError or EpcSetlntr to install a handler
function.

o An error or interrupt must occur.

EPConnect discards all interrupts and errors that occur before the application installs a
handler and enables interrupt or error reception.

When an application installs a handler and enables interrupt or error reception, the
handler processes the interrupt or error as soon as they are received. Under DOS, the
installed handler executes as part of an interrupt thread, with processor interrupts
disabled, and using the installed handler's stack.

4.3 Writing Device Drivers

This chapter describes how you use the EPConnect programming interface in drivers
for VXIbus devices connected to EPCs. You are assumed to have some experience
writing DOS device drivers and to have read the BusManager documentation.

4.3.1 General Information

VMEbus device drivers fall into one of two categories:

« Program-specific drivers. These are drivers that are a part of a program.
Typically, a program-specific driver consists of a set of functions. Most device
drivers fall into this category.

« Resident drivers. These are drivers that are loaded at boot time. A resident driver
is usually built as a DOS driver and loaded in the CONFIG.SYS file. A resident
driver can also be built as a terminate-and-stay-resident program (TSR) and loaded

in the AUTOEXEC.BAT file.

Program-specific drivers have a totally flexible applications interface — calls may be
added easily. Such a driver is relatively easy to implement, but controls the device
only while the program is running.

4-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

Resident drivers can make a device accessible to all programs by designating it as a
DOS device or by defining a service accessible through a DOS interrupt. Resident
drivers are much more difficult to write: they are typically written in assembly
language and often require the creation of an interface library to give higher-level
languages access to device services. The BusManager is an example of a resident
driver. It must be loaded before any other resident driver that uses BusManager
functions.

4.3.2 Using the VMEbus Window

Access to a device is gained primarily through its control and status registers. These
registers are addressable locations, usually in the VMEbus A16 address space,
accessible through the EPC VMEbus window. The VMEbus window is a 64KB
region of memory which can be mapped to any section of the A16, A24, or A32
address spaces that starts on a 64KB boundary. The bus window is only a VMEbus
master — it has no slave address and cannot be the destination of an access by other
boards. This means, for instance, that a VMEbus device cannot do a direct memory
access into the bus window.

The mapping of the bus window onto the VMEbus address space is controlled by the
BusManager device driver (BUSMGR.SYS). The BusManager provides all the
services necessary to use the bus window. BusManager functions that pertain to the
bus window include:

* EpcSetAmMap. Sets the mapping of the bus window into VMEbus space and sets
the address modifier (A16, A24, or A32) and the byte order (either Intel-style or
Motorola-style).

* EpcSaveState. Stores the bus window mapping, address modifier, and byte order
(collectively know as the state) in a caller-specified location.

» EpcRestState Restores a previously saved state, using the internal representation
created by a EpcSaveState call.

Several drivers may simultaneously use the bus window, each mapping it to a different
location, so take care to save and restore the state used by each driver.

4-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

4.3.3 Interrupts

It is often desirable to use the seven VMEbus interrupts generated by a device to
control its operation. Several devices may trigger the same interrupt, but all the
drivers responding to a given interrupt must run on the same processor and coordinate
among themselves. Put another way, each VMEbus interrupt must be handled by
exactly one processor.

When the BusManager detects an interrupt for which it is enabled, it issues a 16-bit
interrupt acknowledge (IACK) cycle on the VMEbus and gets back an 8-bit or 16-bit
Status/ID response from the interrupting device. This Status/ID information is made
available to the driver, but the BusManager cannot detect the actual size of the
response — it is up to the driver to know whether the response contains 8 or 16
significant bits.

BusManager functions for dealing with interrupts include:

« EpcWaitInt. Causes the caller to wait until one of a specified set of interrupts
occurs or until a timer expires.

« EpcSetIntr. Declares the routine that is called when the specified interrupt occurs.
« EpcDislntr. Tells the BusManager to ignore the specified interrupt.
« EpcEnlntr. Tells the BusManager to react to the specified interrupt.

Waiting for Interrupts

The easiest way to deal with device interrupts is to use the EpcWaitIntr function. No
interrupt handler needs to be set up and no stack needs to be established. This
function waits for one of a set of interrupts to occur (or for a specified amount of time
to elapse). You poll an interrupt by calling the EpcWaitlntr function with a timer
duration of 0.

If the "awaited" interrupt is enabled and has an assigned handler, that handler is
invoked before control returns from the EpcWaitlntr call.

By keeping track of interrupts that have occurred before the call to EpcWaitlntr, the
BusManager assures that no race condition arises. A side effect of "remembering” an
interrupt is that old interrupts may still be recorded long after they are significant. As
a consequence, drivers that use this function should include in their initialization
phase a call to EpcWaitIntr with a timer duration of zero (0) to remove any
remembered interrupts.

4-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

Interrupt Handlers

Polling interrupts is easy for single devices and gives reasonable response time. In a
multi-tasking environment, however, it may be more appropriate to install interrupt
handlers.

Interrupt handlers are described in more detail in the language-specific sections of this
chapter.

4.3.4 Building Resident Drivers

There is much more to know about writing resident device drivers than can be covered
in this guide. The Microsoft MS-DOS Operating System Programmer's Guide has an
excellent section on building resident drivers. 4

4.3.5 Writing Device Drivers In MS C and QuickC

The Microsoft "C" and QuickC EPConnect interfaces provides access to all
BusManager functions. This section'is designed for use by readers experienced in
writing drivers and interrupt code and familiar with the Microsoft C (version 5.1 or
later) compiler, linker, and (where necessary) assembler, and with Microsoft QuickC.

Note: If you are using version 6.0 of the Microsoft "C" compiler, please read the
section C Optimization.

Using the MS C EPConnect Interface

To use EPConnect functions in a driver, include the appropriate header files in the
modules in which the functions are used, and link your driver object files with the
library files. The header files contain function prototypes, structure definitions, and
constants associated with the EPConnect BusManager functions. (See the section
Programming Interface for a description of the EPConnect definition files.)

Note: By default, the Microsoft linker allows a program to have 128 segments. The
MS "C" library has over 100 segments. If the linker reports "too many segments" you
should instruct the linker to allocate more space for segment information. To do so,
include the option /SE:nn on the linker command line, where nn is some value
greater than 128. (The greater the value you specify, the more space the linker
allocates and the slower the linking phase becomes.) Start by specifying 150 for nn,
then adjust the value to suit your time and space requirements.

4-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

If you request more space than the linker can allocate, it will report "requested
segment limit too high." Specify a smaller value for nn in the /SE command line
option.

Using the MS QuickC EPConnect Interface
The Microsoft QuickC EPConnect interface 1s the same as that for Microsoft "C".

You may link your applications in the QuickC programming environment with the "C"
libraries by specifying them in the Program List for the applications through the
QuickC Program List facility.

Example 1: Using the VMEbus Window

Access to a device is gained primarily through its control and status registers. These
registers are addressable locations, usually in the VMEbus A16 address space,
accessible through the EPC VMEbus window. The VMEbus window is a 64KB
region of memory which can be mapped to any section of the A16, A24, or A32
address spaces that starts on a 64KB boundary. The bus window- is only a VMEbus
master — it has no slave address and cannot be the destination of an access by other
boards. This means, for instance, that a VMEbus device cannot do a direct memory
access into the bus window.

The mapping of the bus window onto the VMEbus address space is controlled by the
BusManager device driver (BUSMGR.SYS). The BusManager provides all the
services necessary to use the bus window. BusManager functions that pertain to the
bus window include:

+ EpcSetAmMap. Sets the mapping of the bus window into VMEDbus space and sets
the address modifier (A16, A24, or A32) and the byte order (either Intel-style or
Motorola-style).

» EpcSaveState. Stores the bus window mapping, address modifier, and byte order
(collectively know as the state) in a caller-specified location.

 EpcRestState. Restores a previously saved state, using the internal representation
created by a EpcSaveState call.

Several drivers may simultaneously use the bus window, each mapping it to a different
location, so take care to save and restore the state used by each driver. The following
code fragment demonstrates how this is done.

include "\epconnec\include\busmgr.h"

4-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

long MyState; /* my bus window state */

/*
* Device Registers
*/

struct my_device {
unsigned short status; /* status register */
unsigned short datal4]; /* data I/0 */

}i

/* point to device registers */

struct my_device FAR *MyDev;

/t
* InitMyDriver -- Initialization entry point for my driver

*/
InitMyDriver () 4

{
long old_state;

/* save state on entry */
EpcSaveState(&old_state);

/* set to big endian and A24 space, and map the bus */
EpcSetAmMap (BM_MBO | A24N, 0x400340L, &MyDev);

/* speed later access */
EpcSaveState (&MyState) ;

/* restore entry state */
EpcRestState (&0ld_state);
}
/*
* MyDoOp -- Do an operation on My device
*/

short MyDoOp(op, arg)
short op;
short arg;
{
long old_state;

/* save entry state */
EpcSaveState (&0ld_state);

/*restore device state */
EpcRestState (&MyState) ;

[manipulate device registers pointed to by MyDev]

/* restore entry state */

4-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

EpcRestState(&old_state);
}

Note how the EpcSaveState and EpcRestState operations are used to speed the setup
of the bus window.

Example 2: Waiting for Interrupts

The easiest way to deal with device interrupts is to use the EpcWaitIntr function. No
interrupt handler needs to be set up and no stack needs to be established. This
function waits for one of a set of interrupts to occur (or for a specified amount of time
to elapse). You poll an interrupt by calling the EpcWaitIntr function.

The following code fragment shows an example of waiting for an interrupt.

long status; /* returned Status/ID */

EpcEnIntr (MY_INTR)
EpcSaveState (&old_state);
EpcRestState (&MyState) ;

MyDev->data({0] = DATAl; /¥ load up data ports */
MyDev->data{l] = DATA2;
MyDev->status |= DEV_GO; /* turn on go bit */
if (EpcWaitIntr((l<<MY_INTR), &status, 0) != (1<<MY_INTR)) {
/*
* No interrupt!
*/

EpcRestState (&0ld_state);
return (FAILURE) ;

}

/*

* pProcess interrupt

*/

EpcRestState (&old_state);
return (SUCCESS):

Hint: To increase parallelism, consider designing your application so that,
instead of issuing a command to the VMEbus device and waiting for
it to finish, you wait for the previous device command to complete
and then issue the new command.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

If the "awaited" interrupt is enabled and has an assigned handler, that handler is
invoked before control returns from the EpcWaitIntr call.

By keeping track of interrupts that have occurred before the call to EpcWaitlntr, the
BusManager assures that no race condition arises. A side effect of "remembering” an
interrupt is that old interrupts may be recorded long after they are significant. As a
consequence, drivers that use this function should include in their initialization phase
a call to EpcWaitIntr with a timer duration of zero (0) to remove any remembered
interrupts.

Example 3: Implementing Interrupt Handlers

Polling interrupts is easy for single devices and gives reasonable response time. In a
multi-tasking environment, however, it may be more appropriate to install interrupt
handlers.

The BusManager handles only those VMEbus interrupts to which handlers are
assigned. Interrupts that have no assigned handlers are ignored by the BusManager
when they occur, on the assumption that some other-processor on the VMEbus system
will handle those interrupts.

When an interrupt that has a handler assigned to it is detected, the BusManager
performs the following operations:

1) Disables processor interrupts

2) Acknowledges the processor interrupt (to eliminate race conditions)
3) Determines which VMEbus interrupt was detected

4) Performs the IACK cycle to get the Status/ID and clear the interrupt
5) Saves the current bus state on the BusManager's stack

6) Switches to the handler's stack

7) Performs an ordinary FAR call to the handler, passing it the Status/ID
8) Switches back to the BusManager's stack

9) Restores the saved bus state

10) Scans for another interrupt; (if found, continues at step 3)

11) Returns to the interrupted DOS routine and enables processor interrupts.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

Each interrupt handler has its own stack, which should have been allocated previously.
This stack must have sufficient capacity to store the actual parameters and local
variables within the interrupt handler as well as those of subsequent functions which it
may call. A stack size of 256 bytes is suitable in most applications. This stack is not
where the C compiler expects it to be, so the interrupt handler must be compiled using
the following flags:

/Gs Turn off stack checking. Without this option, the handler will immediately
report a stack overflow.

/Buxx Tell the compiler that SS 1= DS, and to reload DS upon entry. The xx
signifies the desired memory model, as described in the following table.
Model Flag Address size
Small [Ausn Near data, near code
Medium /Auln Near data, far code
Compact /Ausf Far data, near code
Large /Aulf Far data, far code

Using the /Auxx flag means that only a far pointer can take the address of a
location or variable on the stack.

If the array for the stack is a near array (compiled with the small or medium model, or
explicitly declared as such), the /Auxx flag is unnecessary, because the BusManager
sets DS equal to SS. In other words, if the array used for the stack has the same
segment value as your near data, then the BusManager will correctly set the data
segment register when entering the handler.

In any case, the handler function itself must be declared far, so that the function
entry/exit properly matches the way it is called.

Because Microsoft does not supply libraries that match custom memory models,
Microsoft "C" library functions cannot be called from the handler. Moreover, DOS is
not reentrant so no DOS operations can be used within the handler.

The handler must return to the BusManager — that is, setjmp() and longjmp()
constructs are not allowed. However, any BusManager function may be called by the
handler. At the very least, most handlers will use EpcRestState to reset their device
registers.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

The following example shows how to set up an interrupt handler:

include “\epconnec\include\busmgr.h"

ifndef NULL
define NULL ((char far *)0)

endif

define STKSIZE 256 /* size of intr handler stack */
char MyStack[STKSIZE]; /* interrupt stack */

extern void far MyIntr(); /* interrupt handler */

/*

* Set Up Interrupt Handler
* Don't worry about previous handler for now
*/
{(void)EpcSetIntr (MY_INTR, MyIntr, &MyStack[STKSIZE], NULL):;

4

The handler for interrupt number MY_INTR has been set to the function MylIntr()
and will be called using MyStack. Note that MyStack is statically allocated (not put
on the stack), and that the value passed for the initial stack pointer is the location just
beyond the end of the array. The first push will fill the last element of the array, and
so on,

For this example, information about the previous handler is not saved — the return
value of EpcSetlIntr() is discarded. The null pointer is specified as the address in
which to return the previous stack so it, too, is discarded.

The interrupt handler is compiled separately with the following command:

cl /¢ /Gs /G2 /Ausn myintr.c

The interrupt handler code follows:
include "\epconnec\include\busmgr.h"

extern long MyState; /* window setting for driver */
extern struct my_device far *MyDev; /* point to dev regs */

void far MyIntr(sid)
long sid;
{

short stat;

EpcRestState (&MyState); /* restore window */
stat = MyDev->status;

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

Note that since the BusManager saves and restores the state in the process of calling
and returning from the interrupt handler, there is no need for the handler to save and
restore the state.

Resident drivers remain installed for as long as DOS is running; however, program-
specific drivers leave memory when the program terminates, so they must deassign
their interrupt handlers. Your device driver applications must deassign their interrupt
handlers before they terminate. Otherwise, the memory pointed to by those interrupt
handlers will be unassigned or overwritten after the program terminates and the
corresponding interrupt will cause the computer to crash.

The following code segment shows how to deassign the handler for a program-specific
driver:

(void) EpcSetIntr (MY_INTR, (void (CDECL FAR *) ())NULL,
(char FAR *)NULL, NULL};

Setting a null interrupt handler causes an internal do-nothing handler to be set and the
interrupt to be disabled. This is preferable to a simple EpcDisIntr because it sets the
handler address to a "safe" value.

4.3.6 Writing Device Drivers In Turbo C

The Borland Turbo "C" EPConnect interface provides access to all BusManager
functions. This section is designed for use by readers experienced in writing drivers
and interrupt code and familiar with the Turbo "C" (version 1.5 or 2.0) compiler,
linker, and (where necessary) assembler.

Using the Turbo "C" EPConnect Interface

To use EPConnect functions in a driver, include the appropriate header files in the
modules in which the functions are used, and link your driver object files with the
library files. The header files contain function prototypes, structure definitions, and
constants associated with the EPConnect BusManager functions. (See the section
Programming Interface for a description of the EPConnect definition files.)

Turbo "C" programs must not be compiled with the "~A" option, which forces strict
ANSI compatibility — the EPConnect interface library uses Pascal calling conventions,
which are disabled by this flag.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

Each interrupt handler has its own stack, which should have been allocated previously.
This stack must have sufficient capacity to store the actual parameters and local
variables within the interrupt handler as well as those of subsequent functions which it
may call. A stack size of 256 bytes is suitable in most applications. This stack is not
where the "C" compiler expects it to be, so you must take the following steps:

» Compile your program with the -m1 flag, specifying the large memory model. This
tells the compiler that SS != DS and specifies a far entry point. (For speed,
individual arrays may be typed near.)

» Let the following two lines be the first executable statements in your interrupt
handler:

asm mov ax, DGROUP
asm mov ds,ax

These lines reload the data segment register with the environment in which the
program was linked, allowing access to string constants and global variables.

Note: Initialization of automatic variables (as in int a = j+1;) constitutes
executable statements, and cannot precede the asm statements.

Most Turbo “C" library routines are not reentrant, and reentrancy bugs are difficult to
track down, so you are advised not to call library functions from your handler.
Moreover, DOS is not reentrant, so no DOS operations can be used within the
handler.

The handler must return to the BusManager — that is, setjmp() and longjmp()
constructs are not allowed. However, any BusManager function may be called by the
handler. At the very least, most handlers will use EpcRestState to reset their device
registers.

The following example shows how to set up an interrupt handler:
include "\epconnec\include\busmgr.h"

ifndef NULL
define NULL (({char far *)0)
endif

define STKSIZE 256 /* size of intr handler stack */
char MyStack[STKSIZE]; /* interrupt stack */
extern void far MyIntr(); /* interrupt handler */

/*
* Set Up Interrupt Handler
* Don't worry about previous handler for now
*/
(void) EpcSetIntr (MY_INTR, MyIntr, &MyStack[STKSIZE], NULL);

4-15

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

The handler for interrupt number MY _INTR has been set to the function MylIntr()
and will be called using MyStack. Note that MyStack is statically allocated (not put
on the stack), and that the value passed for the initial stack pointer is the location just
beyond the end of the array. The first push will fill the last element of the array, and
SO on.

For this example, information about the previous handler is not saved — the return
value of EpcSetIntr() is discarded. The null pointer is specified as the address in
which to return the previous stack so it, too, is discarded.

The interrupt handler code follows:
include “\epconnec\include\busmgr.h"

extern long MyState; /* window setting for driver */
extern struct my_device far *MyDev; /* point to dev regs */

void far MyIntr(sid)
long sid;
{

short stat;

asm mov ax, DGROUP
asm mov ds,ax

EpcRestState (&MyState); /* restore window */
stat = MyDev->status;

}

Note that since the BusManager saves and restores the state in the process of calling
and returning from the interrupt handler, there is no need for the handler to save and
restore the state.

Resident drivers remain installed for as long as DOS is running; however, program-
specific drivers leave memory when the program terminates, so they must deassign
their interrupt handlers. Your device driver applications must deassign their interrupt
handlers before they terminate. Otherwise, the memory pointed to by those interrupt
handlers will be unassigned or overwritten after the program terminates and the
corresponding interrupt will cause the computer to crash.

The following code segment shows how to deassign the handler for a program-specific
driver:
(void) EpcSetIntr (MY_INTR, (void (far *) ())NULL,
(char far *)NULL, NULL);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

Setting a null interrupt handler causes an internal do-nothing handler to be set and the
interrupt to be disabled. This is preferable to a simple EpcDisIntr because it sets the
handler address to a "safe" value.

4.3.7 C Optimization

Under certain circumstances, your "C" compiler may introduce an error into your
application. In the following example, variable vmeptr points to a 16-bit value that is
ANDed with 8000h:

int far * vmeptr:;

EpcSetAmMap(A32SD | BM_MBO, vmeaddress, &vmeptr);
if (*vmeptr & 0x8000)

Some compilers eliminate the and of 00 with the low-order byte of the value pointed
to by vmeptr (because 0 and any value returns 0). Such compilers generate the
following assembly language for the second statement:

les bx,dword ptr [vmeptr] ; load es:bx with address of vmeptr
test byte ptr es:[bx+1],80 ; look only at high byte of vmeptr

This seemingly reasonable optimization has serious implications for hardware that
requires full-word accesses to invoke needed side effects.

The EPC hardware allows word and double-word references to VMEbus memory to
specify byte order as "big-endian” (Motorola style) or "little-endian" (Intel style). For
big-endian references, the hardware swaps the bytes so the application receives them
in the right order. In the example just shown, however, the compiler eliminates the
comparison of the low-order byte. As a result, no full-word access is made, the byte
swapping does not occur, and the wrong byte of *vmeptr is compared to 0x80. (This
optimization also causes an obvious problem for hardware that responds only to full-
word access.)

According to the ANSI specification of the "C" language, declaring a variable as
volatile should prevent the compiler from optimizing memory references; that is,
references to memory for volatile variables must be made exactly as they are written
in the source code. This solution does not always have the desired effect, however.
The MS "C" compiler 6.0, for example, generates the assembly language shown for
the second statement, even when executed with the /Od flag to disable optimization.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Manager for DOS Programmer's Reference Guide

You can avoid these problems altogether by making a temporary version of the value
pointed to by vmeptr and using the temporary version for the AND and the
comparison. Modified in this way, the example code becomes

int wordcache;

int far * vmeptr;

EpcSetAmMap (A32SD | BM_MBO, vmeaddress, &vmeptr);
if { (wordcache = *vmeptr) & 0x8000)

This solution has been tested successfully for versions 5.1 and 6.0 of the
Microsoft "C" compiler.

4-18

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

5. Error Messages

This chapter contains an alphabetic listing of error messages that may be generated by
the Bus Manager Device Driver (BIMGR.SYS).

The error messages listed in this chapter are system-level errors, not application errors
returned by EPConnect function calls. Errors that may be returned by a function call
are listed in the description of that function in Chapter 2, Function Descriptions.

All error messages appear only on the console.

Accompanying each error message is the probable cause of the error, a suggested
action to take to correct the error, and the source of the error.

5-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Bad parameter /parameter -- Missing "="or":"

Cause Parameter specified on the BIMGR.SYS installation line of
the CONFIG.SYS file is incorrectly formatted.
BIMGR.SYS was not installed.

Corrective Correct parameter format (refer to EPConnect/VXI for DOS

Action and Windows User's Guide for a list of valid options) and
reboot.
Source BIMGR.SYS

Bad value for parameter /parameter -- should be valid_value

Cause The value of parameter on the BIMGR.SYS installation line
in the CONFIG.SYS file is not valid. BIMGR.SYS was not
installed.

Corrective Change value of parameter to valid_value and reboot.
Action ’

Source BIMGR.SYS

» EPConnect BusManager NOT INSTALLED due to configuration errors ***

Cause One or more parameters on the BIMGR.SYS installation
line of the CONFIG.SYS file is not valid.

Corrective Correct invalid parameter (refer to EPConnect/VXI for DOS

Action and Windows User's Guide for a list of valid options) and
reboot.
Source BIMGR.SYS

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

ERROR: Unknown EPC Hardware!

Cause BIMGR.SYS does not recognize the EPC hardware.
BIMGR.SYS was not installed.

Corrective Verify that BIMGR.SYS version supports EPC model

Action number. Install correct BIMGR.SYS version, update
CONFIG.SYS installation line, and reboot.
Source BIMGR.SYS

ERROR: VXI hardware not responding!

Cause CONFIG.SYS tried to load BIMGR.SYS on a non-EPC
computer, or there is a problem with the VXIbus interface
registers on the EPC. BIMGR.SYS was not installed.

Corrective Verify the state of the hardware by rebooting the system and
Action checking the EPC power-on self-test (POST) results. 5
Source BIMGR.SYS

Interrupt Stack Overflow Detected in BusManager ***
--Hit CTRL-ALT-DEL to reboot

Cause BIMGR.SYS detected an overflow in the BIMGR.SYS
stack.

Corrective Correct nesting error in BIMGR.SYS calls by user-installed
Action VXIbus interrupt handlers.

Source BIMGR.SYS

5-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

Unrecognized flag: /flag_value

Cause Flag_value specifies an unrecognized BIMGR.SYS
installation parameter in the CONFIG.SYS file.
BIMGR.SYS was not installed.

Corrective Correct or delete flag_value (refer to EPConnect/VXI for

Action DOS Programmer's Reference for a list of valid options) and
reboot.
Source BIMGR.SYS

5-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

6. Support and Service

6.1 In North America

6.1.1 Technical Support

RadiSys maintains a technical support phone line at (503) 646-1800 that is staffed
weekdays (except holidays) between 8 AM and 5 PM Pacific time. If you have a
problem outside these hours, you can leave a message on voice-mail using the same
phone number. You can also request help via electronic mail or by FAX addressed to
RadiSys Technical Support. The RadiSys FAX number is (503) 646-1850. The
RadiSys E-mail address on the Internet is support@radisys.com. If you are sending
E-mail or a FAX, please include information on both the hardware and software
being used and a detailed description of the problem, specifically how the problem
can be reproduced. We will respond by E-mail, phone or FAX by the next business
day.

Technical Support Services are designed for customers who have purchased their
products from RadiSys or a sales representative. If your RadiSys product is part of a
piece of OEM equipment, or was integrated by someone else as part of a system,
support will be better provided by the OEM or system vendor that did the integration
and understands the final product and environment.

6.1.2 Bulletin Board

RadiSys operates an electronic bulletin board (BBS) 24 hours per day to provide
access to the latest drivers, software updates and other information. The bulletin board
is not monitored regularly, so if you need a fast response please use the telephone or
FAX numbers listed above.

The BBS operates at up to 14400 baud. Connect using standard settings of eight data
bits, no parity, and one stop bit (8, N, 1). The telephone number is (503) 646-8290.

6-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference Guide

6.2 Other Countries

Contact the sales organization from which you purchased your RadiSys product for

service and support.

6-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

"C" optimization, 4-1

8-bit data
no swapping needed, 4-2

A

AlG, 4-5,4-8
A24,4-5,4-8
A32,4-5,4-8
address modifiers, 2-62
advanced application programming
topics, 4-1
ANSI C specification, 4-17
ANSI compatibility, Turbo C, 4-14
application development

compiling, paths, 1-6, 1-7
Arm Command Receive, 2-102
Assembly Language, 1-6
Assembly language, 1-5
Autoexec.bat, 4-4
Automatic variables, 4-15
Auxx flag, 4-12

B
BERR, 2-35, 2-40, 2-81, 2-85
Big-endian, 4-17
BIOS version, 2-9
Block Copy Functions, 2-3
block transfer function, 4-2
bmclib.lib, 1-3
BMINT, 1-6
Borland Turbo C, 1-6
Building Resident Drivers, 4-7
Building your own drivers, 4-1

Bus Access Functions, 2-2
Bus Control Functions, 2-5
Bus interface hardware, 2-35, 2-40, 2-
81,2-85
Bus state, 2-68
Bus window, 4-5
BusManager
Other Functions, 2-9
BusManager stack, 4-11
busmgr.h, 1-4
busmgr.inc, 1-4, 1-6
busmgr.sys, 1-3
byte ordering, 2-6, 4-1
byte ordering problems, 4-2
Byte swapping, 4-2, 4-17
byte-swapping, 4-2
with greater data transfer widths,
4-3
Byte-swapping Functions, 2-2
byte swapping functions, 4-2

C
C Optimization, 4-17
Command size, 2-102
Compact memory model, 1-6, 4-12
compiling under C++, 1-5
compiling, applications, 1-6, 1-7
Constants, 4-7, 4-14
Control and status registers, 4-5, 4-8
Custom memory model, 4-12

D
data representation, 4-1
Data segment register, 4-15
data structure
byte ordering, 4-3
data widths, 4-1
Definition files, 1-5
Device driver, 4-4
Direct memory access, 4-5, 4-8
Disable Interrupt, 4-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

I-1

DOS
not reentrant, 4-12
DOS applications
capabilities, 1-3
DOS clock, 2-102, 2-104
DOS device, 4-5
DOS interrupt, 4-5

Double-word references, 4-17

E

Enable Interrupt, 4-6
epc_obm.h, 1-4
EpcBiosVer, 2-9

function, 2-11
EpcBmVer, 2-9

function, 2-12
EpcCkBm, 2-9, 2-10

function, 2-13
EpcCklntr, 2-4

function, 2-14
EpcDisErr, 2-4

function, 2-15
EpcDislntr, 2-4

function, 2-17, 3-13
EpcEnErr, 2-4

function, 2-18
EpcEnlntr, 2-4

function, 2-20
EpcErrStr, 2-9

function, 2-30
EpcFromVme, 2-3, 4-2

function, 2-33
EpcFromVmeAm, 2-3, 4-2

function, 2-37
EpcGetAccMode, 2-2,3-1

function, 2-41
EpcGetAmMap, 2-2, 3-1

function, 2-43
EpcGetErr

function, 2-45
EpcGetError, 2-4

EpcGetlntr, 2-4
function, 2-46
EpcGetSlaveAddr, 2-5
function, 2-48
EpcGetSlaveBase, 2-5
function, 2-50
EpcGetUla, 2-5
function, 2-52
EpcHwVer, 2-9
function, 2-53
EpcMapBus, 2-2, 3-1
function, 2-56
EpcMemSwapL, 2-2, 4-2
function, 2-57
EpcMemSwapW, 2-2, 4-2
function, 2-58
EPConnect functions, 1-5
EPConnect/VME for DOS
what is 1t?, 1-2
EpcRestState, 2-2, 3-1
function, 2-59
EpcSaveState, 2-2, 3-1
function, 2-60
EpcSetAccMode, 2-2, 3-1
function, 2-61
EpcSetAmMap, 2-2, 2-63
EpcSetError, 2-4, 4-4
function, 2-65
EpcSetlntr, 2-4, 2-67, 4-4
EpcSetSlaveAddr, 2-5
function, 2-70
EpcSetSlaveBase, 2-5
function, 2-72
EpcSetUla, 2-5
function, 2-74
EpcSiglntr, 2-4
function, 2-75
epcstd.h, 1-4
EpcSwapL, 2-2, 4-2.4-3
function, 2-77
EpcSwapW, 2-2, 4-2.4-3

I-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Bus Management for DOS Programmer's Reference

function, 2-78
EpcToVme, 2-3, 4-2, 4-3
function, 2-79
EpcToVmeAm, 2-3, 4-2, 4-3
function, 2-82
EpcVmeCtrl, 2-5
function, 2-86
EpcWaitlntr, 2-4, 4-6
function, 2-90
EpcWsServArm, 2-8
function, 2-97
EpcWsServPeek, 2-8
function, 2-99
EpcWsServRcv, 2-8
function, 2-101
EpcWsServSend, 2-8
function, 2-103
Error Handling Functions, 2-4
error messages, 1-8, 5-1
system-level errors, 5-1
Error string, 2-9

F
Fast Copy, 2-35, 2-40, 2-81, 2-85
fully reentrant functions, 4-3
function descriptions, 1-8
Functions By Name, 2-10

H

Handler, 2-4
handler functions, 4-3
handler operations, 4-1
handlers

interrupt execution, 4-4
Hardware version, 2-9
header files, 1-4
High-level programming languages, 1-
5

|
IACK, 2-91, 4-6, 4-11

Implementing Interrupt Handlers, 4-11
installation and configuration, 1-8
Intel, byte ordering, 4-1
Interface library, 1-5, 4-5
interrupt

handler execution, 4-4
Interrupt acknowledge cycle, 2-91, 4-
6
Interrupt acknowledgement, 2-91
Interrupt and Error Handling
Functions, 2-4
Interrupt handler, 4-13, 4-15
interrupt handler

installation, 4-4
Interrupt Handlers, 4-7
interrupt thread, 4-4
Interrupts, 4-6
Interrupts, Waiting for, 4-10
Interrupts, waiting for, 4-6

L
Large memory model, 1-6, 4-12, 4-15
library files, 1-5
Little-endian, 4-17
Locking protocol, 2-98

M
manual organization, 1-2
Master, 4-5, 4-8
Medium memory model, 1-6, 4-12
Memory model, 4-12
Memory reference optimization, 4-17
Message interrupt, 2-92
Ml flag, 4-15
Motorola, byte ordering, 4-1
MS C and QuickC, 1-6
MS C and QuickC, Writing Device
Drivers In, 4-7
MS C EPConnect Interface, 4-7
MS QuickC EPConnect Interface, 4-8
Multi-tasking, 4-7, 4-11

I-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

o)
Odd-only, 2-35, 2-39, 2-40, 2-81, 2-
84,2-85
Optimizing memory references, 4-17
Other Functions, BusManager, 2-9

P

Pipelining, 2-35, 2-40, 2-81, 2-85
Poll, 4-6, 4-10

Program-specific drivers, 4-4, 4- 16
programming interface, 4-1
Prototype, 4-7, 4-14

Prototyping, 1-6

R
Race condition, 2-92, 2-102, 4-11
RadiSys EPC controllers, 4-1
Read-modify-write, 2-34, 2-39, 2-80,
2-84
Reentrancy, 4-15
Resident device drivers, 4-7
Resident drivers, 4-4, 4-16
Response register, 2-98
Restore State, 4-8

S
Save State, 4-5, 4-8
SE option, 4-7
Segment, 4-7, 4-15
Set Access Mode and Map Bus, 4-5,
4-8
Set Interrupt Handler, 4-6
Slave address, 4-5, 4-8
Small memory model, 1-6, 4-12
Software version, 2-9
Stack checking, 4-12
State, 4-8, 4-11
Status registers, 4-5, 4-8
Strong type checking, 1-6
Structure definitions, 4-7, 4-14

T
Technical Support, 6-1

E-mail, 6-1

E-mail address, 6-1

electronic bulletin board (BBS),

6-1

FAX, 6-1
Terminate-and-stay-resident program,
4-4
Too many segments, 4-7
TSR, 4-4
Turbo C, 1-6

ANSI compatibility, 4-14
Turbo C EPConnect Interface, 4-14
Turbo C, Writing Device Drivers In,
4-14

U
Using the VMEbus Window, 4-5

\Y
VMEDbus interrupts, 4-6
VMEbus Window, 4-8
vmeregs.h, 1-5
Volatile, 4-17
VXIbus devices, 4-1

w

Waiting for Interrupts, 4-6, 4-10
Word and double-word references, 4-
17
Word serial command, 2-104
WRDY, 2-104
Writing Device Drivers, 4-4

General Information, 4-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS
Programmer's

Reference Guide

RadiSys® Corporation
15025 S.W. Koll Parkway
Beaverton, OR 97006
Phone: (503) 646-1800

FAX: (503) 646-1850

07-0139-02 December 1994

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

EPC and RadiSys are registered trademarks and EPConnect is a trademark of RadiSys
Corporation.

Borland is a registered trademark of Borland International, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and
Windows is a trademark of Microsoft Corporation.

National Instruments is a registered traademark of National Instruments Corporation
and NI-488 and NI488.2 are trademarks of National Instruments Corporation.

IBM and PC/AT are trademarks of International Business Machines Corporation.
October 1992
Copyright © 1992, 1994 by RadiSys Corporation

All rights reserved.

Page ii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Software License and Warranty

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND
CONDITIONS BEFORE OPENING THE DISKETTE OR DISK UNIT PACKAGE.
BY OPENING THE PACKAGE, YOU INDICATE THAT YOU ACCEPT THESE
TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS
AND CONDITIONS, YOU SHOULD PROMPTLY RETURN THE UNOPENED
PACKAGE, AND YOU WILL BE REFUNDED.

LICENSE

You may:
1. Use the product on a single computer;

2. Copy the product into any machine-readable or printed form for backup or
modification purposes in support of your use of the product on a single
computer;

3. Modify the product or merge it into another program for your use on the single
computer—any portion of this product merged into another program will
continue to be subject to the terms and conditions of this agreement;

4. Transfer the product and license to another party if the other party agrees to
accept the terms and conditions of this agreement—if you transfer the product,
you must at the same time either transfer all copies whether in printed or
machine-readable form to the same party or destroy any copy not transferred,
including all modified versions and portions of the product contained in or
merged into other programs.

You must reproduce and include the copyright notice on any copy, modification, or
portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRODUCT OR
ANY COPY, MODIFICATION, OR MERGED PORTION, IN WHOLE OR IN
PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION, OR
MERGED PORTION OF THE PRODUCT TO ANOTHER PARTY, YOUR
LICENSE IS AUTOMATICALLY TERMINATED.

Page iii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

TERM

The license is effective until terminated. You may terminate it at any time by
destroying the product and all copies, modifications, and merged portions in any
form. The license will also terminate upon conditions set forth elsewhere in this
agreement or if you fail to comply with any of the terms or conditions of this
agreement. You agree upon such termination to destroy the product and all copies,
modifications, and merged portions in any form.

LIMITED WARRANTY

RadiSys Corporation ("RadiSys") warrants that the product will perform in
substantial compliance with the documentation provided. However, RadiSys does
not warrant that the functions contained in the product will meet your requirements or
that the operation of the product will be uninterrupted or error-free.

RadiSys warrants the diskette(s) on which the product is furnished to be free of
defects in materials and workmanship under normal use for a period of ninety (90)
days from the date of shipment to you.

LIMITATIONS OF REMEDIES

RadiSys' entire liability shall be the replacement of any diskette that does not meet
RadiSys' limited warranty (above) and that is returned to RadiSys.

IN NO EVENT WILL RADISYS BE LIABLE FOR ANY DAMAGES,
INCLUDING LOST PROFITS OR SAVINGS OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY
TO USE THE PRODUCT EVEN IF RADISYS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

GENERAL

You may not sublicense the product or assign or transfer the license, except as
expressly provided for in this agreement. Any attempt to otherwise sublicense,
assign, or transfer any of the rights, duties, or obligations hereunder is void.

This agreement will be governed by the laws of the state of Oregon.

Page iv

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

If you have any questions regarding this agreement, please contact RadiSys by
writing to RadiSys Corporation, 15025 SW Koll Parkway, Beaverton, Oregon 97006.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US WHICH
SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN US RELATING
TO THE SUBJECT MATTER OF THIS AGREEMENT.

Page v

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

NOTES

Page vi

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Table of Contents

1. Introducing SICL for DOS ... ivrenerrrrrcreneeressessestenssesmssesssesesrssesse 1-1
1.2 How This Manual is Organizedccooceviveineeiiiioececeeieeeee i 1-2
1.2 What is SICL FOr DOS7?oviiiiitreeiireeeieir et 1-2

1.2.1 Conformance to the SICL Standardcoovvevieciiennn, 1-3
1.2.2 POTtabilityc.coeveririerricrireiiiesesee st 1-3
1.2.3 TransparenCycooeveeoeroeeieeeeeee ettt 1-3
1.2.4 SICL VXI Interface Driver and BusManager Device Driver 1-5
1.2.5 SIC1 GPIB Interface Driver and GPIB Device Driver........... 1-5
L.2.6 SICL .ottt 1-5
127 SURM Lot 1-5
1.3 Programming, Compiling and LinKing..........occccoeveeviiieieriircin. 1-6
L.3.1 Header Fileccccovviiiiiiiiciiiieeieeceeeeee e, 1-6
1.3.2 Compiling and Linking SICL for DOS Applications............ 1-7
1.4 What to do NEeXt...oooiviiieiiii et 1-8

2. Function Descriptions.......c.cuverererececcicreocsencresssnssnisessssssssssenssessnssesesseses 2-1

2.1 Functions by Categoryccoeeiiiiiitieieeeeee et 2-1
2.1.1 Session Handling.....cccocvcveivriiiineeiiiceececieteeceeeeee e 2-2
2.1.2 Formatted I/Occccooviiiiiiieieiee et 2-3
2.1.3 Unformatted IOcocoeviiiiiiriicccece e 2-4
2.1.4 Asynchronous Event Controlc.ccoooovviiieiiiieieeean 2-4
2.1.5 Memory Mapping.....cooceocoeieieenee e s 2-5
2.1.6 Memory Mapped I/O......c.ccecoveeveiininirnreec e 2-5
2.1.7 Error Handlingcccoviiiiiriiciiin e 2-6
2. LB LOCKING c.oiiiie ettt sttt 2-7
2.1.9 Device and Interface Controlcovevveevecincinieeiiiiiiiesieenia, 2-7
2.1.10 VXTI INterface ...oo.oooveieiieciieiieie et 2-8
2.1.11 GPIB INErface.....coceveriemiieiieirieeie et sre st e 2-8

2.2 Functions by NAMEcccoivriiinieiieiee ettt eveeve e 2-9

1BBIOCKCOPY ...ttt 2-10
IDPEEK ..ottt 2-13
IDPOKE et 2-15
IDPOPFIfO i 2-17
IBPUShFIfO. ..o, 2-20
FCAUSERIT ...t reeetetie ettt s e e eee s e e e 2-23
ICLEAT L.ttt e, 2-24
TCLOSE ... 2-26
HIUSH e e 2-28
1ZEtaddr oo 2-31
Page vii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

FEELAALA . v 2-33
1EtdEVAAAT ... 2-36
TGELEITIIO oo eoerasertsas e s s 2-38
FZELEITSIT 1o .vseececeaeaaessrees bbb 2-39
T T 1113144+ TOTRIUOURSPOP PSRN ISR NS 2-40
TZEtIOCK WAL .ecevieircniistic e 2-42
TEEHIU 1ot e 2-44
IGELOMETTO ..o cvaareaesses i 2-45
T (o) 1111 SO S S PO RS IS PSR OS SRPIAS 2-48
TGELOMSTQ revverecrirarserserses et 2-54
IELSESSLYPE covvvncrrerirrrrsensesses it 2-57
FGEHETMICAT .ottt 2-60
TGEHIMEOUL .vvevercetiiieieens et 2-62
IZPIDAINCH ..o 2-64
G PIDBUSSLALUS. c..cveiveveienc s 2-66
TEPIBILO e 2-70
HZPIDPASSCH .ottt 2-72
EPIDPPOIL e 2-75
igpibpPOlICONTIZ..vv et 2-78
TZPIBIENCH] oottt 2-80
1gPIbSENdemmd. .. ceeeiiiiei 2-82
1 Y01 L ST U PP PP RS PPPSUR PO VU PPPROI 2-85
TETE 1] FUTTTRT OO VORI VOUPEUPPOPSOTRPRPPIOS 2-86
1510) TORURUTO OO PPN POUUURP PP PPPPPSPPPSRTS 2-87
FIDIOCKCOPY cevrveverriceeiiieiiteresnene bbb 2-88
TEOCAL 1ot eeee et cte e sttt e b s 2-90
F1OCK «veeeeeieee ettt erecveeere et eaessbesnae s bb e sn e s a s s ens 2-92
TIPEEK 1ttt 2-95
TIPOKE <ottt s 2-98
HIPOPEIFO o 2-101
HIPUSHEIFO oot 2-104
TITIAD ©.eveeeceeeemereien e s b bttt 2-107
IMAPINTO .ot 2-111
INDIEA .ottt 2-114
RS2 5L (=R TP U U OV ORI PU PO PPPPPRIS ISR 2-118
TOMEITOT .eeveeeiieeeenseeeeseeeeserrreeesasraeassansesaeeeseesrusnssanrn e s sianees 2-122
a3 (11 (11 SUTTTTU TN O OO O PO PRSP P R TTPRD 2-124
LOTIST] +.vrveeeerereseremesssennssers s et ra s bbb 2-130
HOPEN ceerceceinee s 2-132
EPTINEE oottt 2-137
IPTOMPL wvoivemerseei i 2-152

Page viii

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

IPEAG L.oiiiii s 2-155
ITEAASED ...t 2-159
ITEIMIOLE L.ttt ettt s e 2-162
1SCANS L. 2-164
1SEtBUS L. 2-177
ISELAALA ...ttt 2-181
ISEENT (.ot ettt 2-182
ISELIOCKWAIL ...ttt 2-186
ISEESED ..ot e 2-187
HEITICRT ..ottt 2-188
THITIEOUL ...cvevuiateiiiec ettt ettt en s s e e eenae 2-190
IO oottt sttt et e e ee e 2-192
TUNIOCK L 2-195
TUNMAD ©ooieiierc ettt 2-196
IVXIDUSSLALUS..c.coveicieeeiceete e 2-199
TVXIGEUIIZIOULE c..oveeieieierieriiee ettt 2-203
IVXITMINSO e 2-207
IVXISEIVANIS L.eiu ettt sent ettt e et e 2-211
TVRIFIGOST .o 2-214
TVXIIFIZOM. ..ottt ettt ettt 2-216
TVXIIFIZTOULE .evieceeeniei e ecteicn ettt 2-220
TVXIWAINOTIMIOP vttt s 2-225
IVXIWS ottt ettt ettt 2-227
iwaithdlr...oooi e 2-230
IWDLOCKCOPY cevuviitririienicees e 2-231
TWPEEK ..ttt 2-235
TWPOKE. ..t 2-238
IWPOPFIfO...coiiicienc s 2-241
IWPUSHEIfO ..o 2-244
TWIIEE ottt st e re sttt er e ee e 2-247
IXETEZ ottt e ettt 2-250
3. Advanced Topics . 3-1
3.1 Byte Ordering and Data Representationcceceeveerevvinveec v, 3-2
3.2 SRQ Handler EXeCUtion........ccucoviiviiiiioie e eeveennn 3-6
3.3 Interrupt Handler EXECULION c..vovevvevevieiiricceecccveie e 3-7
3.4 Error Handler EXECUtIONccvoviveriiiotieitiieececv et eeae e, 3-8
3.5 Handler Operations Under DOSc.ocovoviviveeieeiieeeeeeeeeeoee o, 3-9
3.6 VXITTL Trigger Interrupts on an EPC-7ccccooovieoner 3-10
3.7 Microsoft QUICK € uvvveeeieiiie e 3-12
3.8 Borland C or C oo 3-13
3.9 Interfacing to Other Language Environments.............ooo.oooooovooov. 3-13
Page ix

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

310 DEVICES FIIE ottt e st s 3-14
311 STCLIF FIlE oot eeecreettciecimns b 3-21
3.12 Terminating GPIB COMMUMCAION ...covviiuiimmniinsirnicnsimmessnenene 3-22
B, ETTOT MESSAZES oueerrersrsernsssssssanssssssssssasssssessnssscsttsssssssosssnsasnsnasssstosananss 4-1
5. Support and Service w..isciiiinn ereressersensrssssesanssrenass 5-1
INIA@X covveerrsrecersnressnessssscessssssssssssassasarsrsassaassesssesssnssntsassnnssasessnssess WI-1
Page x

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

1. Introducing SICL for
DOS

This manual is intended for programmers using the SICL for DOS programming
interface to develop applications that control /O modules via the VXI expansion
interface on an EPC. You are expected to have read the EPConnect/VXI for DOS &
Windows User's Guide for an understanding of what is in EPConnect/VXI, how to
configure it with DOS, and how to use the Start-Up Resource Manager (SURM). You
are not expected to have in-depth knowledge of DOS.

This chapter introduces you to the RadiSys® Standard Instrument Control Library
(SICL) for DOS. In it you will find the following:

. What 1s in this manual and how to use it
. What is SICL for DOS?
. Programming, Compiling and Linking

. What to do next

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

1.2 How This Manual is Organized

This manual has five chapters:
Chapter 1, Introduction, introduces SICL for DOS and this manual.

Chapter 2, Function Descriptions, describes the major categories of SICL function
calls and gives complete descriptions of each SICL library function call. The function
call descriptions also contain a supporting example or a reference to an example that
demonstrates use of the function call. Function call descriptions are alphabetic by
function names.

Chapter 3, Advanced Topics, provides information for the advanced application
developer.

Chapter 4, Error Messages, contains an alphabetic listing of error messages generated
by SICL.

Chapter 5, Support and Service, describes how to contact RadiSys Technical Support.

1.2 What is SICL For DOS?

SICL for DOS is the RadiSys implementation of the SICL standard as defined by
Hewlett Packard. It is a runtime library for use by C programmers that are developing
portable instrument control applications that run on a RadiSys VXIbus Embedded
Personal Computer (EPC®). SICL for DOS (referred to as SICL in this manual) is

written for use with and supports only ANSI standard C/C++ compilers (for example,
Microsoft C/C++ and Borland C/C++).

The library contains functions that allow DOS-based applications running on a
VXIbus embedded controller to control VXIbus instruments or General Purpose
Interface Bus (GPIB) instruments. An instrument control connection is called a
session. Sessions can be to a single instrument (device) or to all instruments
(interface) and must be on one bus, VXIbus or GPIB. The maximum number of open
sessions is 512, 256 for VXIbus and 256 for GPIB.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

SICL functions allow C/C++ programmers to take full advantage of the connected 1
instrument capabilities, including:

. Sending and receiving messages.

Requesting a status byte from a device.

Receiving asynchronous service requests (SRQ) from devices.
Clearing a device or interface.

Locking and unlocking devices and interfaces.

Controlling time-outs.

Controlling interrupt, service request (SRQ), and error handling.
Using symbolic names for devices and interfaces.

Formatted and unformatted I/O.

Bus mapping and copy functions

Register based command messages

1.2.1 Conformance to the SICL Standard

The RadiSys implementation of SICL for DOS conforms to revision 3.5 of the
Hewlett Packard SICL standard. This implementation supports level 2F: device and
interface sessions for both non-formatted and formatted I/O. This implementation of
SICL does not support communications with commanders.

1.2.2 Portability

Applications written using SICL easily port to other environments with little or no
change, as long as the new environment supports an equivalent level of the SICL
standard.

1.2.3 Transparency

SICL defines one consistent interface for communicating with both VXIbus and GPIB
devices. In addition, SICL supports symbolic naming of devices and interfaces.
These features allow applications that communicate with one instrument on one
interface (VXI or GPIB) to communicate with an equivalent instrument on the other
interface without program modification or recompilation.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

1.2.4 SICL for DOS Architecture

Figure 1-1 is a diagram of the SICL for DOS software architecture that shows how the
architecture relates to the VXI hardware and where SICL fits in the architecture.
User-written DOS and Windows™ applications can access the VXI hardware using
the Bus Management Library or by using a user-written driver.

Start-Up
Resource sicL
Manager Applications
(SURM.EXE)
A I
SICL Library
(BSICL.LIB or
MSSICL.LIB)
SICIVXI SICI GPIB
interface Interface
Driver Driver
(SICLVXLSYS) (SICLGPIB.SYS)
v I 1
GPIB Device
BusManager Device Driver Driver
(BIMGR.SYS) (GPIB.COM)
VXibus EXM-4
Hardware Hardware

Figure 1-1. SICL for DOS Software Architecture

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

1.2.5 SICL VXI Interface Driver and BusManager Device
Driver

The SICL VXI interface driver and the BusManager device driver provide VXI-
interface specific and hardware-specific support to SICL.

1.2.6 SICL GPIB Interface Driver and GPIB Device Driver

The SICL GPIB interface driver and the GPIB device driver provide GPIB-interface
specific and hardware-specific support to SICL.

1.2.7 SICL

The SICL interface is independent of the operating system, the hardware platform, and
the communication interface. Programs that use SICL port easily to another controller
platform as long as the new platform also uses a compatible SICL library. Portability
is both at the source code level and at the interface level. Programs written to
communicate with an instrument on a given interface can be used to communicate
with an equivalent instrument on another interface without modification.

1.2.8 SURM

The Start-Up Resource Manager (SURM) determines the physical content of the
system and configures the devices. It is typically the first program to run after DOS
boots. The SURM is the EPConnect implementation of the resource manager defined
in the VXIbus specification. However, SURM extends the specification definition to
include non-VXIbus devices, such as GPIB instruments. The SURM uses the
DEVICES file to obtain device information not directly available from the devices.
SURM accesses VXIbus devices in the system directly.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

1.3 Programming, Compiling and Linking

This section contains information about programming with SICL for DOS. Included is
a list of the header files provided, the programming interfaces, and compiling and
linking hints.

1.3.1 Header File

The SICL.H header file contains constants, type definitions, macros, and function
prototypes for all SICL functions. It also contains an include directive for the
EPConnect header file EPCSTD.H.

Figure 1-2 shows the structure of SICL.H. It contains two sections: one defining
standard constants, structures, and functions and another defining non-standard
constants, structures, and functions.

#ifndef SICL_H
#define SICL_H
...body of the standard header file...

#ifndef STD_SICL

...body of non-standard header file...
#endif /* STD_SICL */

#endif /* SICL_H */

Figure 1-2. Default SICL.H File

An #if/#tendif pair surrounds the contents of the SICL.H header file so that you can
include the file multiple times without causing compiler errors.

The include file also contains extern "C"{} bracketing for the C++ compiler.
Because extern "C' is strictly a C++ keyword, it is also bracketed and only visible
when compiling under C++ and not standard C. If your compiler does not define the
__CPLUSPLUS manifest constant or Borland's __TCPLUSPLUS or BCPLUSPLUS
manifest constants, you are required to bracket the SICL.H and EPCSTD.H files with
extern "C" when compiling C++ SICL programs.

1-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Introduction

1.3.2 Compiling and Linking SICL for DOS Applications

NOTE: For specific compiler and/or linker options, refer to your vendor's
documentation,

The following examples assume that EPConnect software has been installed in the
C:\EPCONNEC directory.

When compiling SICL applications, ensure that SICL.H and EPCSTD.H are in the
compiler search path by doing one of the following:

I. Specify the entire file pathname when including the header file in the
source file.

2. Specify C\EPCONNECMNCLUDE as part of the header file search
path at compiler invocation time.

3. Specify CAEPCONNECMNCLUDE as part of the header file search
path environment variable. '

When linking a SICL for DOS application, the link must include the appropriate SICL
library files. For Microsoft C/C++ compilers, the SICL library is MSSICL.LIB and
for Borland C/C++ compilers, the SICL library is BSICL.LIB. In addition, you must
also specify the low-level EPConnect library (i.e., EPCMSC.LIB).

Ensure that either MSSICL.LIB or BSICL.LIB and EPCMSC.LIB are in the linker
search path by doing one of the following:

I. Specify the entire file pathname on the linker command line.

2. Specify CAEPCONNEC\LIB as part of the linker library search path.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

1.4 What to do Next

Follow these instructions to begin creating SICL for DOS applications:

1. If SICL is not pre-installed on your system, install and configure the
SICL library using the procedures in Chapter 2 of the EPConnect/VXI for
DOS & Windows User's Guide.

2. If necessary, refer to the error messages in Chapter 4 of this manual for
corrective action information about device driver installation errors.

3. Use the function descriptions in Chapter 2 of this manual for details about
a function and/or its parameters to develop applications. Most functions
have accompanying examples that demonstrate the function’s use.

1-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2. Function Descriptions

This chapter lists the SICL functions by category and by name. It is for the
programmer who needs a particular fact, such as what function performs a specific
task or what a function's arguments are.

The first section lists the functions categorically by the task each performs. It also
gives you a brief description of what each function does. The second section lists the
functions alphabetically and describes each function in detail.

2.1 Functions by Category

The categorical listing provides an overview of the operations performed by the SICL
functions. Included with each category is a description of the operations performed, a
listing of the functions in the category, and a brief description of each function.

The categories of the library routines include:

. Session Handling

Formatted I/O

Unformatted /O
Asynchronous Event Control
Memory Mapping

Memory Mapped /O

Error Handling

Locking

Device and Interface Control
VXI Interface Control

GPIB Interface Control

2-1

2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

2.1.1 Session Handling

Session handling category functions open sessions, get information about sessions,

and close sessions. The category includes these functions:
2 iclose Closes a session.
igetaddr Gets a pointer to the session’s address string.
igetdata Gets a pointer to a session's application data
structure.
igetdevaddr Gets a device address.
igetintftype Gets a session’s interface type.
igetlu Gets a session’s logical unit.
igetsesstype Gets a session’s type
igettimeout Gets a session's current timeout value.
iopen Opens a session.
isetdata Stores a pointer to the session data structure.
itimeout Set a session's timeout value.

2-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2.1 Functions by Category

2.1.2 Formatted I/O

Formatted I/O eliminates the need to convert internal C types to types understood by
the device or interface. Format strings in the iprintf, ipromptf, and iscanf functions

direct formatting and conversion. These format strings are similar to format strings 2
found in standard C printf and scanf functions. All formatting and conversion
operations are compatible with IEEE 488.2 style character and number formats.
Formatted I/O operations also use buffers to queue characters into large blocks to
improve performance.

Do not mix the formatted I/O functions with unformatted /O calls within a session.
The iprintf function and the write portion of the ipromptf function use the write
buffer. When the write buffer is full or when it receives an END-bit character it is
flushed (its contents is sent to the device). It also flushes immediately after the write
portion of an ipromptf call.

The iscanf function and the read portion of the ipromptf function use the read buffer.
The read buffer flushes (discards its contents) automatically before the write portion
of an ipromptf call.

The functions iflush and isetbuf control read/write buffer operations.

The formatted I/O category functions include:

iflush Flushes the read and/or write formatted /0
buffers.

iprintf Formats and writes data to a device or interface.

ipromptf Sends formatted data to and reads formatted data
from a device or interface.

iscanf Reads and formats data from a device or interface.

isetbuf Sets the size of the formatted I/O read and/or

write buffers.

2-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

2.1.3 Unformatted I/O

Unformatted /O provides a method to send and receive arbitrary blocks of data to and
from a device. No formatting or conversion is performed. Using unformatted /O
provides the greatest control when accessing a system device. Do not mix the
unformatted I/O functions with formatted /O calls within a session. The unformatted
/0O category functions include:

igettermchr Gets a session's current termination character.

inbread Reads data from a device or interface without
blocking.

inbwrite Writes data to a device or interface without
blocking.

iread Reads data from a device or interface.

itermchr Specifies a session's termination character.

iwrite Writes data to a device or interface.

2.1.4 Asynchronous Event Control

An asynchronous event is an event that can occur anytime during the execution of a
program. In SICL, an asynchronous event occurs when a SRQ occurs or an enabled
interrupt occurs. The executing handler identifies the event's source. The
asynchronous event control category functions include:

igetonintr Queries the session’s current interrupt handler.

igetonsrq Queries the session’s current service request
(SRQ) handler.

iintroff Disables SRQ and interrupt event processing.

iintron Enables processing of SRQ and interrupt events.

ionintr Installs a session’s interrupt handler.

ionsrq Installs a service request (SRQ) handler.

isetintr Enables and disables interrupt reception.

iwaithdlr Waits for a SRQ or interrupt handler function to
execute.

2.4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2.1 Functions by Category

2.1.5 Memory Mapping

The memory mapping functions map a subset of memory space into the user's address
space, free user memory when the space is no longer needed, and get memory space
mapping information. Memory mapping category functions include:

imap Maps a portion of a VXIbus address space into
User memory space.

imapinfo Queries address space mapping capabilities for
the specified interface.

iunmap Deletes an address space mapping,.

2.1.6 Memory Mapped I/0

The memory mapped /O functions copy bytes, words, and longwords from one
location to another. The locations can be either a sequence of memory locations or a
FIFO register. The memory mapped I/O functions include:

ibblockcopy Copies bytes from one set of sequential memory
locations to another.

ibpeek Reads a byte stored at a mapped address.

ibpoke Writes a byte to a mapped address.

ibpopfifo Copies bytes from a single memory location
(FIFO register) to sequential memory locations.

ibpushfifo Copies bytes from sequential memory locations to
a single memory location (FIFO register).

ilblockcopy Copies a block of 32-bit words from one set of
sequential memory locations to another.

ilpeek Reads a 32-bit word stored at a mapped address.

ilpoke Writes a 32-bit word to a mapped address.

ilpopfifo Copies 32-bit words from a single memory
location (FIFO register) to sequential memory
locations.

ilpushfifo Copies 32-bits words from sequential memory
locations to a single memory location (FIFQO
register).

2-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iwblockcopy Copies blocks of 16-bit words from one set of
sequential memory locations to another.

iwpeek Reads a 16-bit word stored at an address.

iwpoke Writes a 16-bit word to an address.

iwpopfifo Copies 16-bit words from a single memory
Jocation (FIFO register) to sequential memory
locations.

iwpushfifo Copies 16-bits words from sequential memory
locations to a single memory location (FIFO
register).

2.1.7 Error Handling

Many of the SICL functions can generate errors. Errors usually return a special value
(a null pointer or a non-zero error code) to indicate the error. In addition, the
application program can designate a procedure to execute when an error occurs. The
error handling category functions include these functions:

icauseerr Set a process' most recent error number.
igeterrno Gets an error number.

igeterrstr Gets an error string.

igetonerror Queries the current error handler.
ionerror Installs an error handler.

2-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2.1 Functions by Category

2.1.8 Locking

A device or interface can be locked by a process to prevent access by another process.
Locking is useful when multiple processes attempt simultaneous device or interface

access. A locked device or interface can cause the accessing process to suspend or 2
generate an error. The locking category functions include:

igetlockwait Gets a session’s current lock-wait flag.

ilock Locks a device or interface.

isetlockwait Determines whether accessing a locked device or
interface suspends the calling process or generates
an error.

iunlock Unlocks a device or interface.

2.1.9 Device and Interface Control

The device and interface control category contains functions that direct operations
common to devices and interfaces. It also contains functions that set local and remote
operation of devices. The device and interface control category functions include:

iclear Clears a device or an interface.

ihint Defines the type of communication a device
driver should use.

ilocal Puts a device in local mode.

ireadstb Reads the status byte from a device.

iremote Puts a device in remote mode.

isetstb Sets this controller's status byte.

itrigger Sends a trigger to a device or interface.

ixtrig Asserts and deasserts one or more triggers to an
interface,

2-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

2.1.10 VXI Interface

The VXI functions control a VXI interface and includes these functions:

2 ivxibusstatus Gets the VXI bus status.

ivxigettrigroute Gets the current trigger routing.
ivxirminfo Gets VXI device information.
ivxiservants Gets a list of VXI servants.
ivxitrigoff Deasserts VXIbus trigger lines.
ivxitrigon Asserts VXIbus trigger lines.
ivxitrigroute Routes VXIbus trigger lines.
ivxiwaitnormop Waits for a normal operation of a VXI interface.
ivxiws Sends a word-serial command to a VXI device.

2.1.11 GPIB Interface

The GPIB interface functions control a GPIB interface and includes these functions:

igpibatnctl Controls the state of the ATN line during GPIB
writes.

igpibbusstatus Gets GPIB status.

igpibllo Puts all GPIB devices into local-lockout mode.

igpibpassctl Passes active controller status to another GPIB
interface.

igpibppoll Executes a parallel poll.

igpibppollconfig Configures a GPIB device’s response to a parallel
poll.

igpibrenctl Controls the state of the GPIB REN line.

igpibsendemd Writes command bytes to a GPIB interface.

2-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2.2 Functions by Name

2.2 Functions by Name

This section contains an alphabetical listing of the SICL library functions. Each
listing describes the function, gives its invocation sequence and arguments, discusses 2
its operation, and lists its returned values. Where usage of the function may not be
clear, an example with comments is given. Each function description begins on a new

page.

2-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ibblockcopy
Description Copies bytes from one set of sequential memory locations to
2 another.
int PASCAL
ibblockcopy(INST id, unsigned char *src, unsigned char *dest,
unsigned long count);

id Pointer to a session structure.
src Source address.
dest Destination address.
count Number of bytes to copy.
Remarks This function copies bytes from successive memory locations

beginning at src into successive memory locations beginning at dest.
Count specifies the number of data bytes to transfer and has a
maximum value of 0x10000. Id identifies the interface to use for
the transfer.

The function is valid only for VXI interfaces. It does not detect
segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,
GPIB).

I ERR_PARAM Src and/or dest is null.

2-10

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibblockcopy

See Also ibpeek, ibpoke, ibpopfifo, ibpushfifo, ilblockcopy, imap,
iwblockcopy

Example

/* 2
/1

This example uses ibblockcopy function to read a VXI

// register of the device configured as ULA 0. The bit
// encodings of this register are defined by the VXI

// specification. For this particular example, the

// program is using the Device class bits.

*/

#include <stdio.h>
#include <stdlib.h>
#include “sicl.h"

#define VXIREGISTEROFFSET 0xc000

void main{void)
{ INST instance;
char *vxiregisters;
int returncode, errornumber;
char deviceclass:;
char *dclass(] = { "Memory",
"Extended",
"Message Based",
"Register Based" };
char *sessionname = “vxit;

/*
// Open an interface session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (%Ad) \n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1);

/* Map in Al6 space */
vxiregisters = imap(instance,I_MAP_A16,0,0,NULL);
if (vxiregisters == NULL) {
errornumber = igeterrno();
fprintf (stderr,
“\tUnable to map in Al6 space, error = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = ibblockcopy{instance,
(unsigned char *)
((unsigned long) vxiregisters +
(unsigned long) VXIREGISTEROFFSET),
(unsigned char *) &deviceclass,
1L) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to copy ID register, error = %$s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(3);

}
fprintf (stdout,
"Class of device at ULA 0 is %s.",
dclass|[(deviceclass >> 6) & 0x3]);
exit(0});

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibpeek

ibpeek
Description Reads a byte stored at a mapped address.
volatile unsigned char PASCAL ibpeek(volatile unsigned char 2
*addr);
addr Address of byte.
Remarks The addr pointer should be a mapped pointer returned by a previous
imap call.

Return Value The function returns the 8-bit value stored at addr.

See Also ibpoke, ilpeek, imap, iwpeek
Example
/ *
// This example uses ibpeek to read a VXI
// register of the device configured as ULA 0. The bit
/7 encodings of this register are defined by the VXI
// specification. For this particular example, the
// program is using the Address space bits.
*
/

#include <stdlib.h»>
#include <stdio.h>
#include "sicl.h"

void main(void)

{ INST instance;
int errornumber;
char *vxiregisters;
unsigned char addressspace;

char *deviceclass[] = { "Al6/A24",
"Al6/A32",
"RESERVED",
"Al6 Only" };
char *sessionname = "yxi®:

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
// Open an interface session
*/
instance = iopen{sessionname);
if {instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d) \n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit{(l);
}

/* Map in Al6 space */
vxiregisters = imap(instance,I_MAP_AlG,0,0,NULL);
if (vxiregisters == NULL) {
errornumber = igeterrnof{);
fprintf (stderr,
*\tUnable to map in Al6 space, error = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);
}
addressspace = (unsigned char) ({ibpeek((unsigned char *)
((unsigned long) vxiregisters + 0xCO00L))
& 0x30) >> 4);
fprintf (stdout,
*Address space of device at ULA 0 is %s.",
deviceclass [addressspace & 0x03});
exit (0);

2-14

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibpoke

ibpoke
Description Writes a byte to a mapped address.
void PASCAL 2
ibpoke(volatile unsigned char *dest, unsigned char value);
dest Destination address.
value Byte to write.
Remarks The addr pointer should be a mapped pointer returned by a previous
imap call.

Return Value The function returns no value.

See Also ibpeek, ilpoke, imap, iwpoke
Example
/ *
// This example uses ibpoke to write to the VXI
7/ register of the device configured as ULA 0. For this
// particular example, the brogram assumes the device
// is an EPC.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
char *vxiregisters;
int errornumber;
char *sessionname = "vxi;
/*
// Open an interface session
*/
instance = iopen(sessionname);
if (instance == NULL} {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d) \n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit (1);
}
/* Map in Al6 space */
vxiregisters = imap(instance,I_MAP_A16,0,0,NULL);
if (vxiregisters == NULL} ¢
errornumber = igeterrno() ;

2-15

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

fprintf (stderr,
“\tUnable to map in Al6 space, error = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);
}
vxiregisters += 0xc005;
/*
// Clearing the high bit of the VXI Status/control register
// causes the EPC-7 to ignore A32 accesses.
*/
ibpoke (vxiregisters, {unsigned char) (ibpeek{vxiregisters) &
~0x80));
exit{0);

2-16

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibpopfifo

ibpopfifo

Description

Remarks

Return Value

Copies bytes from a single memory location (FIFO register) to
sequential memory locations. 2

int PASCAL
ibpopfifo(INST id, unsigned char *fifo, unsigned char *dest,
unsigned long count);

id Pointer to a session structure.
fifo FIFO pointer.

dest Destination address.

count Number of bytes to copy.

This function copies count bytes from fifo into successive memory
locations beginning at dest. Count specifies the number of data
bytes to transfer and has a maximum value of 0x10000. Id
identifies the interface to use for the transfer.

The function is valid only for VXI interfaces. It does not detect
Segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXTI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

The function returns an integer to indicate its success or failure,
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,
GPIB).

I_ERR_PARAM Fifo and/or dest is null.

2-17

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

See Also ibpushfifo, ilpopfifo, imap, iwpopfifo
Example
/*
/7 This example uses ibpopfifo to read from a
/7 hypothetical VXI fifo at offset 0.
*/

#include <stdlib.h>
#include <stdio.h>
#include "sicl.h"

void main{void)

{ INST instance;
unsigned char *vxi;
int returncode, errornumber;
unsigned char datafifo(5];

char *sessionname = "vxi";

/*

// Open an interface session

*/

instance = iopen(sessionname) ;

if (instance == NULL) {
errornumber = igeterrno();

fprintf (stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(l);
}
vxi = (unsigned char *) imap(instance,I_MAP_Alé,0,0,NULL);
if (vxi == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to map in Alé space, error = ");
fprintf(stderr,
“%s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);
}
/*
// Read the Fifo 5 times, storing the values into datafifol(]
*/

returncode = ibpopfifo(instance,vxi,datafifoi
(long) sizeof (datafifo));

2-18

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibpopfifo

if (returncode != I_ERR_NOERROR) ({
fprintf (stderr,

"\tUnable to read the fifo at address ");
fprintf (stderr,

“$p\n\r\tError = %s (%d) \n\r-",
vxi,

igeterrstr (returncode), 2
returncode) ;
exit(3);

exit(0);

2-19

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ibpushfifo
Description Copies bytes from sequential memory locations to a single memory
2 location (FIFO register).
int PASCAL
ibpushfifo(INST id, unsigned char *src, unsigned char *fifo,
unsigned long count);
id Pointer to a session structure.
src Source address.
fifo FIFO pointer.
count Number of bytes to copy.
Remarks This function copies count bytes from the sequential memory

locations beginning at src into the FIFO at fifo. Count specifies the
number of data bytes to transfer and has a maximum value of
0x10000. Id specifies the interface to use for the transfer.

The function is valid only for VXI interfaces. It does not detect

segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,
GPIB).

I_ERR_PARAM Src and/or fifo 1s null.

2-20

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ibpushfifo

See Also ibpopfifo, ilpushfifo, imap, iwpushfifo
Example
/*
// This example uses ibpushfifo to write values
// to a hypothetical VXI fifo at offset 0.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

#define VXIREGISTERQOFFSET 0xc000

void main(void)
{ INST instance;
char *vxi;
int returncode, errornumber;

unsigned char datafifo{) = { Oxf1, 0xf2, Oxf3, Oxf4, Oxf5 Y
char *sessionname = "vxit;

/*
// Open a device session
*/
instance = lopen (sessionname) ;
if (instance == NULL) {

errornumber = igeterrno();

fprintf (stderr,

"\tUnable to open <%s>, error = %s ($d) \n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(1);
vxi = imap(instance,I_MAP_AlS,0,0,NULL); /* Map in Al6 space */
if (vxi == NULL) {
errornumber = igeterrno();

fprintf (stderr,

“\tUnable to map in Al6 space, error = ");
fprintf (stderr,

"%s (%d) \n\r",

igeterrstr(errornumber),errornumber);
exit(2);

2-21

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/] Write to the fifo 5 times, storing Oxfl, O0xf2, 0xf3,
// Oxf4 and Oxf5.
*/
returncode = ibpushfifo(instance,
{(unsigned char *) vxi,
datafifo,
(unsigned long) sizeof (datafifo));
if (returncode != I_ERR_NOERROR)} {
fprintf (stderr,
"\tUnable to write to the fifo at address ");
fprintf (stderr,
"$p\n\r\tError = %s (%d) \n\r",
vxi,
igeterrstr (returncode),
returncode) ;
exit(3);

}
exit (0);

2-22

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

icauseerr

icauseerr
Description Set a process’ most recent error number.
void PASCAL 2
icauseerr(INST instance, int error, int callhandler);
instance A pointer to a session structure.
error An error number.
callhandler A flag indicating whether or not to call
the process’ currently installed error
handler.
Remarks The function sets the process’ most recent error number to error for

creating user defined errors. If error is not I_ERR_NOERROR
and callhandler is non-zero and the process has an error handler
installed, the function also calls the installed error handler. A
process’ most recent error number can be queried using igeterrno.
A process’ error handler can be set using ionerror and queried using
igetonerror.

Return Value The function does not return a value.
See Also igeterrno, igeterrstr, igetonerror, ionerror

Example See igetonerr.

2-23

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iclear
Description Clears a device or an interface.
2 int PASCAL
iclear(INST id);
id Pointer to a session structure.
Remarks For VXI device sessions, the function issues a DEVICE CLEAR

word-serial command to the device. Only message based VXI
devices are supported. Other VXI devices cause an error.

For VXI interface sessions, the function issues a SYSRESET signal
(SYSRESET is pulsed).

For GPIB device sessions, the function issues a device clear
command to the device.

For GPIB interface sessions, the function issues an interface clear
signal (IFC 1s pulsed).

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ ERR_DATA A VXlbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word
serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.
I_ERR_NOERROR Successful function completion.

I ERR_PARAM Id specifies an interface or commander
session or a VXI device that is not
message-based.

I_ERR_TIMEOUT A timeout occurred.

2-24

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iclear

See Also

Example
/*
/7
*/

#inc
#inc
#inc

void
{

iclose, iopen, itimeout

Call iclear() to assert IFC (GPIB).

lude <stdio.h»>
lude <stdlib.h>
lude "sicl.h*

main(void)

INST instance:;

int returncode, errornumber ;
char *sessionname = "gpib";

/*
// Open a GPIB interface session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(3);

/* pulse IFC for GPIB interface sessions */
returncode = iclear (instance);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
“\tIclear call failed\n\r");
fprintf (stderr,
“\tError = %s (%4) \n\r",
igeterrstr(returncode),returncode);
exit(4);
}
exit(0);

2-25

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iclose
Description Closes a session.

int PASCAL

iclose(INST id);

id Pointer to a session structure.
Remarks This function invalidates the INST handle pointed to by id.

An implicit iclose occurs for all currently open sessions when an
application terminates.

Closing a session releases all resources associated with the session,
including locks (if the closing function set the locks), /O buffers,
and address space mappings.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

See Also iopen

2-26

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iclose

Example
/i
// This example uses explicit calls to iclose to
/7 release the session's resources.
*/
#include <stdio.h> 2
#include <stdlib.h>

#include "sicl.h"

void main(void)

{ INST instance;
int *vxiregisters;
int errornumber;

char *sessionname = "vdevl";
/‘k

// Open a device session

*/

instance = iopen(sessionname) ;
if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(1l);
}
vxiregisters = (int *) imap(instance,I_MAP_VXIDEV,0,0,NULL);
if (vxiregisters == NULL) {

errornumber = igeterrno();
fprintf(stderr, "\tUnable to map in VXI registers\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);
}
(void) iclose(instance);
/*
7/
/7
/7 Instance handle no longer valid. Memory references
// via vxiregisters may be undefined.
*/
exit(0);

2-27

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iflush

Description Flushes the read and/or write formatted /O buffers.
int PASCAL
iflush(INST id, int buffermask);

id Pointer to a session structure.
buffermask Selects the buffer(s) to clear.

Remarks This function clears the read buffer or writes the contents of the
iprintf and ipromptf write buffer. Buffermask must be an OR’d
combination of the these constants:

Constant Description

I BUF_READ Clears the session read buffer then reads
from the device or interface session
pointed to by id until an END indicator
is read. Clearing the read buffer ensures
that the next call to iscanf reads data
directly from the device rather than
reading data that was previously
buffered.

I_BUF_WRITE Writes all data in the write buffer to the
device or interface session pointed to by
id.

If a specified buffer is empty or has already been flushed, this call

has no effect.

2-28

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iflush

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer. 2
I_ERR_DATA A VXIbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word

serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VXI
device that is not message-based.

I_ERR_TIMEOQUT A timeout occurred.

See Also iprintf, ipromptf, iscanf, isetbuf, itimeout

Example
/ *
7/ Use iflush() to explicitly flush the write buffer.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

vold main(void)

{ INST instance:
int returncode, errornumber;
char *sessionname = "vdevl®";

#if !defined(I_SICL_FMTIO)
fprintf (stderr,
"\tFormatted I/0 is not supported on this
implementation”);
exit(0);
#endif

2-29

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/'
// Open a device session
*/
instance = iopen{sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);

}
returncode = isetbuf (instance,I_BUF_WRITE, 100);
if (returncode '= I_ERR_NOERROR) ({
fprintf (stderr,
"\tUnable to create a 100 byte buffer\n\r");
fprintf(stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;

exit (2);
}
/*
/7 Write bcc\n to the buffer. Use -t to prevent an
// implicit buffer flush.
*/

(void) iprintf(instance, "bcc¥-t\n");
returncode = iflush(instance,I_BUF_WRITE) ;
if (returncode != I_ERR_NOERROR) ({
fprintf (stderr,
"\tUnable to flush buffer\n\r"):
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode),returncode) ;
exit(3);
}
exit(0);

2-30

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetaddr

igetaddr
Description Gets a pointer to the session’s address string.
int PASCAL 2
igetaddr(INST id, char **address);
id Pointer to a session structure.
address Pointer to a location where the function
stores the session's address string.
Remarks This function returns a pointer to the session address string of the

session pointed to by id. The returned address is the address of the
session address string passed to iopen when it opened the session.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Address is null.

See Also fopen

2-31

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/*
// Use igetaddr{) to get the session name.
*/

#include <stdio.h>
#include <stdlib.h>
#include “"sicl.n"”

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionaddress;
char *sessionname = "vdevl";

/*
// Open a device session
*/
instance = iopen{sessionnane):
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(l);
}
returncode = igetaddr (instance, &sessionaddress);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
“\tUnable to get session's string address\n\r");
fprintf(stderr,
"\tError = %s (%d) \n\r",
jgeterrstr{returncode) ,returncode);

exit(2);
}
fprintf (stdout, "Session address = <%s>",sessionaddress});
exit(0);

2-32

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetdata

igetdata
Description Gets a pointer to a session’s application data structure.
int PASCAL 2
igetdata(INST id, void **data);
id Pointer to a session structure.
data Pointer to a location where the function
stores the data structure.
Remarks This function places an application specific data structure to the

data structure of the session pointed to by id in the address pointed
to by data. The isetdata function establishes the session data
structure.

The session data structure is a 4-byte memory block. Its contents
are application specific. Typically, it contains a pointer to an
application’s data structure.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Data is null.
See Also isetdata
Example
/ *
/7 Use isetdata()/igetdata() to cache a user pointer
*x/

#include <stdio.h»>
#include <stdlib.h>
#include "sicl.h"

2-33

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

void main(void)

{ INST instance = 0, previousinstance = 0, nextinstance = 0;
int primary, secondary, returncode, 1lu, session = 0;
register int devtype, devnumber ;
char *devtypes[] = { "vdevx", "gdevx" };

*

// Open all device session with names gdev(0-9] and vdev[0-9]
*/
for (devtype = 0; devtype < 2; devtype++) {
for (devnumber = 0; devnumber < 10; devnumber++) {
* (devtypes [devtype] + 4} = {char)
({{char) devnumber) + (char) '0');
instance = iopen(devtypes[devtype]);

/*
7/ Link the sessions together by placing
/7 the instance address into the data
/7 structure address
*/
if {(instance !'= NULL) {
if (nextinstance == 0}
nextinstance = instance;
if (previousinstance != 0) {
returncode =
isetdata (previousinstance, instance};
if (returncode != I_ERR_NOERROR) ({
fprintf (stderr, i
"\tUnable to set structure address\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode),
returncode} ;
exit(1l);
}
}
returncode = isetdata{instance,0);
if (returncode != I_ERR_NOERROR)} ({

fprintf (stderr,
"\tUnable to set structure address\n\r");
fprintf (stderr,
*\tError = %s+ (%d) \n\r",
igeterrstr(returncode),
returncode) ;
exit(2);
}
previousinstance = instance;
}

2-34

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetdata

/i

/7 traverse the session chain

>/

instance = nextinstance;

while (instance) {
returncode = igetdata(instance,&nextinstance);
if (returncode != I_ERR_NOERROR) {

fprintf(stderr,

"\tUnable to get structure address\n\r");

fprintf(stderr,
“\tError = %s (%d) \n\r",
igeterrstr(returncode),
returncode) ;

exit(3);

returncode = igetlu(instance,&lu);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tUnable to get logical unit id\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(returncode),
returncode) ;
exit(4);

(void) igetdevaddr(instance,&primary,&secondary);

instance = nextinstance;
fprintf (stdout,

"Session %d \tlogical unit = %d ", session++, lu);

fprintf (stdout,
"\tprimary address = gd\n\r",
primary);
}
exit (0);

2-35

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igetdevaddr
Description Gets a device address.
int PASCAL
igetdevaddr(INST id, int *primary, int *secondary);
id Pointer to a device session structure.
primary Pointer to a location where the function

stores the session’s primary address.

secondary Pointer to a location where the function
stores the session’s secondary address.

Remarks The function returns the primary address and the secondary address
of the session pointed to by id in the locations pointed to by primary
and secondary, respectively.

The function is valid only for device sessions.

For VXI devices, primary is the device's ULA.

If a secondary address does not exist or the session is for a VXI
device, secondary is set to ~1.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Id is an interface or commander session

or primary and/or secondary is null.

See Also iopen

2-36

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetdevaddr

Example
/*
// Call igetdevaddr() to obtain the primary and
// secondary addresses.
*/
#include <stdio.h> 2
#include <stdlib.h>

#include "sicl.h*

void main(void)
{ INST instance;
int returncode, primary, secondary, errornumber;

char *sessionname = "vdevl";
/*

// Open a device session

*/

instance = iopen(sessionname);
if (instance == NULL) |

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1);
}
returncode = igetdevaddr(instance,&primary,&secondary);
if (returncode '= I_ERR_NOERROR) {
fprintf (stderr,
“\tIgetdevaddr failed\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit(2);

fprintf (stdout,
"Session <%s> primary address = %4,
sessionname,
primary) ;

fprintf (stdout,
", secondary address = $d\n\r",
secondary) ;

exit(0);

2-37

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igeterrno

Description Gets an error number.
int PASCAL
igeterrno(void);

Return Value This function returns the error number of the most recently executed

SICL function.
See Also igeterrstr
Example See ibblockcopy.

2-38

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igeterrstr

igeterrstr

Description Gets an error string.
char *PASCAL 2
igeterrstr(int error);
error Error number.

Remarks This function returns a pointer to an ASCII string corresponding to
the error number specified by error.
If passed an invalid error code, the function returns a null string
pointer.

See Also igeterrno

Example See ibblockcopy.

2-39

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igetintftype
Description Gets a session’s interface type.
int PASCAL
igetintftype(INST id, int *intftype);
id Pointer to a interface session structure.
intftype Pointer to a location where the function

stores the interface type.

Remarks This function places the interface type of the session pointed to by
id in the location pointed to by intfrype. The following are valid
interface type constants:

Constant Description
I_INTF_GPIB GPIB interface
I_INTF_VXI VXI interface

The function is valid only for interface sessions.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Intftype is null.

See Also iopen

2-40

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetintftype

Example
/*
// Call igetintftype() to obtain the device session's

/7 interface type
*/

#include <stdio.h> E
#include <stdlib.h>

#include *sicl.h"

#define DIM(x) (sizeof (x) /sizeof (char *))

char *names(] = { "1, =2, "vdevl", "gdevl"} ;
char *interfacetypes (1 = {» I_INTF_GPIB", = I_INTF_VXI" };

void main(void)

{ INST instance;
int returncode, facetype;
register short dinductor;

for (dinductor = 0; dinductor < DIM(names) ; dinductor++) {
instance = iopen(names[dinductor]);

if (instance == NULL) continue;
returncode = igetintftype(instance,&facetype);
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,

“"\tIgetdevaddr call failed\n\zr");
fprintf (stderr,

"\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit(1);

fprintf (stdout,
“Session <%s> interface type = \t%s\n\r",
names {dinductor],
interfacetypes[facetype]);
}
exit(0);

2-41

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igetlockwait

Description Gets a session’s current lock-wait flag.

2 int PASCAL

igetlockwait(INST id, int *waitflag);

id Pointer to a session structure,

waitflag Pointer to the location where the function
stores the lock-wait flag.

Remarks This function places the current state of the lock-wait flag of the
session pointed to by id in the location pointed to by waitflag. The
isetlockwait function sets the session’s lock-wait flag state.

Under DOS, a session’s lock-wait flag has no effect. Locking
conflicts always generate an I_ERR_LOCKED error because DOS
does not support process preemption.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Waitflag pointer is null.

See Also ilock, isetlockwait, iunlock

2-42

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetlockwait

Example
/ *
/7 Call igetlockwait() to obtain the session's
/7 wait flag.
*/
#include <stdio.h> E
#include <stdlib.h>

#include *sicl.h®

void main(void)
{ INST instance;
int returncode, errornumber, waitflag;

char *sessionname = "vdevl®";
/*

// Open a device session

*/

instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <%s>, error = %s {(%d) \n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1);
}
returncode = igetlockwait(instance,&waitflag);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tIgetlockwait call failed\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit(2);
}
fprintf (stdout, "Lockwait flag = %d",waitflagqg);
exit(0);

2-43

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igetlu
Description Gets a session’s logical unit.
int PASCAL
igetlu(INST id, int *lu);
id Pointer to a session structure.
lu Pointer to the location where the function
stores the logical unit.
Remarks This function places the logical unit of the session pointed to by id

in the location pointed to by lu.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Lu is null.

See Also iopen

Example See igetdata.

2-44

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonerror

igetonerror
Description Queries the current error handler.
int PASCAL 2
igetonerror(void (CDECL * *errorhandler)(INST id, int error));
errorhandler Pointer to a location where the function
stores the current error handler.
Remarks This function queries the current error handler. The ionerror

function defines the error handler.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM ErrorHandler is null.
See Also ionerror
Example
/*
// This example uses igetonerror and ionerror
// to manipulate the error handler.
*/

#include <stdio.h>

#include <stdlib.h>

#include “sicl.h"

volatile short errordetected = 0;

#define MYERROR 255

2-45

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

void
console(char *astring}
{ char achar;

while (*astring) ({
achar = *astring++;

ASM
mov ah, Oeh
mov al,achar
mov bx,3
int 010h
ENDASM

void CDECL
myhandler (INST instance,int error)
{ char *sessionaddress;

char errorstring(9] = {0};

(void) igetaddr (instance, &sessionaddress);
/*

// we can't use DOS to write in interrupt handlers
*/

console("Error ");
itoa(error,errorstring,10);
console(errorstring};

console(" detected for ");
console(sessionaddress);

console{"\n\x");

errordetected = 1;

)

void main(void)
{ INST instance;
int returncode, errornumber;
char *sessionname = “vxi";
void (CDECL *previoushandle) (INST instance, int error);

/*
// Open an interface session
*/

instance = iopen(sessionname):
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(l);

2-46

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonerror

/*

1/ Get the previously installed error handler. (Should be
// NULL until set by ionerror).

*/

returncode = igetonerror(&previoushandle);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
“\tIgetonerror call failed\n\r");
fprintf (stderr,
"\terror = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(2);

returncode = ionerror(myhandler);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
“\tIonerror call failed\n\r");
fprintf (stderr,
“\terror = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);

exit(3);
}
/*
// The following function should fail. oOnly device
/7 sessions can use I_MAP_VXIDEV, this session is an
/7 interface session
*/
(void) imap(instance,I_MAP_VXIDEV,0,0,NULL);
if (errordetected != 0)

fprintf (stdout,

"Error handler execution successfull\n\r*);

else

fprintf (stdout,

"Error handler execution unsuccessful\n\r*);

/*
/7 Force a user defined error
*/
icauseerr(instance,MYERROR,l);
/t
// Deinstall our error handler by restoring the original
/7 handler. The handler can also be disabled by installing
/7 a NULL handler.
*/
(void) ionerror(previoushandle);
exit(0);

2-47

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igetonintr
Description Queries the session’s current interrupt handler.

int PASCAL

igetonintr(INST id, void (CDECL**intrhandler)(INST id, long

datal Jong data2);
id Pointer to a session structure.
intrhandler Pointer to a location where the function
stores the current interrupt handler.

Remarks This function queries the current interrupt handler in use by the

device or interface session pointed to by id. The ionintr function
defines a device's interrupt handler.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Intrhandler is null.
See Also ionintr
Example
/ *
// This example sets, generates and processes interrupts
// using igetonintr, ionintr, isetintr and iintron/introff.
*/

#include <stdio.h>
#include <stdlib.h>
#include "busmgr.h"
#include "sicl.h"

/* removes compiler warning message (compiler specific) */
#define REMOVEWARNING(x) X = X

#define INTERRUPTENABLE 1

#define INTERRUPTDISABLE O

#define INTERRUPTS 7 /* interrupts 1-7 */
#define WAITTIME {1000L*30L*1}

#define TIMERINT 8

2-48

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonintr

volatile unsigned long Vmeinterruptcount = 0;
void (INTERRUPT *timerfunction) ();
volatile unsigned long Tick = 0;

void
console(char *astring)
{ char achar;

while (*astring) {
achar = *astring++;

ASM
mov ah, Oeh
mov al,achar
mov ° bx,3
int 010h
ENDASM
}
}
static void
reverse(char s(]) /* K & R -- page 59 */
{ register int i, j;
int slen;
char c;
slen = 0Q;
while(s[slen++]);
for (i = 0, j = slen-2; i < Jioi++, 5--) ¢
¢ = sli);
s{i] = s(j);
s(i] = ¢;
}

}

static void
myitoa(long n,char s[]) /* K § R -- page 60 */
{ long i, sign;

if ((sign = n) < 0) n = -n;
i=0;
do {
sl(int) (i++)] = (char) ({char) (n % 10) + '0');
} while ((n /= 10) > 0);
if (sign < 0) s((int) (i++)] = (char) '-;
s{{int) 1] = (char) '\O"’;
reverse(s) ;

}

void CDECL
vmehandler (INST instance, long interruptsource, long junk)
{ char abuffer(10];

char *sessionaddress;

Vmeinterruptcount++;
/*
// Can't use stdio from interrupt handlers.

2-49

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

*/
console("handler : vmehandler, Interrupt source <");
myitoa(interruptsource,abuffer);
console (abuffer);
console(">\n\r"};
console("Interrupt <"};
myitoa{Vmeinterruptcount,abuffer);
console{abuffer);
console(">\n\r");
if (igetaddr (instance, &sessionaddress) == I_ERR_NOERROR) {
console("Session address = <");
console (sessionaddress) ;
console (">\n\r");

}
REMOVEWARNING (junk) ;

}
#if 'defined{(__TURBOC_)

void INTERRUPT
mytimer ()
{ Tick--;
if (Tick == 0) {
EpcSigIntr(3);
}
Vmeinterruptcount = 1;
_chain_intr (timerfunction};

}

void

installtimer (void (INTERRUPT *newfunction) (),unsigned short timeout)

{ _disable();

Tick = 18 * timeout;

timerfunction = _dos_getvect (TIMERINT) ;
_dos_setvect (TIMERINT, newfunction) ;
_enable();

}

void

deinstalltimer ()

{ _disable(};
_dos_setvect (TIMERINT, timerfunction);
_enable () ;

}

#endif

void main(void)
{ INST instance;
int returncode, errornumber;
char *sessionname = "vxi”;
register short iinductor;
void (CDECL *oldhandler) (INST instance,
long interruptsource,
long junk);

/*

2-50

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonintr

// Open a device session

*/
instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%$s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1l);
}
returncode = ionintr(instance,vmehandler);
if (returncode = I_ERR_NOERROR) {
fprintf(stderr,
“\tUnable to set interrupt handler\n\r");
fprintf(stderr,
"\terror = %s ($d) \n\r",
igeterrstr(returncode),returncode);

exit(2);
}
returncode = isetintr(instance,I_INTR_VXI_VME,INTERRUPTENABLE);
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
"\tUnable to enable interrupt reception\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr(returncode),returdcode);
exit(3);

2-51

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
// Cycle through the VME interrupts
>/
for (iinductor = 0; iinductor <= INTERRUPTS; iinductor++) {
if (EpcSigIntr(iinductor) != EPC_SUCCESS) {
fprintf (stderr,
"\tUnable to generate a VME interrupt\n\r”);
exit{4);
}
}
if (Vmeinterruptcount != INTERRUPTS) {

fprintf (stderr,
"\tExpected interrupt processing not detected\n\r");
exit(5);
}
#1if 'defined(__TURBOC___)

/*
// Create a new thread to assert a VME interrupt.
*/
Vmeinterruptcount = 0;
installtimer (mytimer,15);
/*
// Wait for the completion of one more interrupt handler
// invocation
*/
returncode = iwaithdlr (WAITTIME);
deinstalltimer () ;
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tIwaithdlr failed\n\r");
fprintf(stderr,
"\terror = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit (6);
}
if (Vmeinterruptcount == 0} {
fprintf (stderr,
"\tExpected interrupt processing not detected\n\r"});
exit(7);
}
#endif
/*
/7 Keep interrupt processing off while the interrupt
// handler is being written
*/
returncode = iintroff();
if (returncode != I_ERR_NOERROR} {

fprintf (stderr,
"\tIintroff failed\n\r"):;
fprintf (stderr,
“\terror = %s (%d)\n\r",
igeterrstr(returncode},returncode);
exit(8);

2-52

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonintr

/*
// Restore the previous interrupt
*
/
returncode = igetonintr(instance,&oldhandler);
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
"\tUnable execute igetonintr successfully\n\r");

fprintf (stderr,
"\terror = %g {(%d) \n\r",
igeterrstr(returncode),returncode);
exit(9);
}
fprintf(stdout,"Interrupt testing successful\n\r");
exit (0);

2-53

i i .com
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg

SICL for DOS Programmer’s Reference

igetonsrq

Description Queries the session’s current service request (SRQ) handler.
2 int PASCAL
igetonsrq(INST id, void (CDECL**srqhandler)(INST id)):
id Pointer to a device session structure.
srghandler Pointer to a location where the function

stores the current SRQ handler.

Remarks This function queries the current SRQ handler of the session pointed
to by id. The function ionsrq defines the session's SRQ handler.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer,
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Id specifies an interface or commander
session or srqghandler is null.
See Also ionsrq
Example
/*
// This example sets, generates and processes SRQs.
*/
#define EPC2 1

#include <conio.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include "busmgr.h"
#include "olrm.h"
#include "sicl.h"
#include "vmeregs.h"

2-54

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetonsrq

/* remove's compller warning message (compiler specific) */
#define REMOVEWARNING(x) x = x

void
console{char *astring)
{ char achar;

while (*astring) {
achar = *astring++;

ASM
mov ah, Oeh
mov al,achar
mov bx, 3
int 010h
ENDASM

}

void CDECL
srghandler (INST instance)

{ char *sessionaddress;
/*
// Can't use stdio from srq handlers.
*/
console("handler : srghandler\n\r");
if (igetaddr (instance, &sessionaddress) == I_ERR_NOERROR) {

console("Session address = <");
console(sessionaddress);
console(">\n\r");

}

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vdevl";

void (CDECL *oldhandler) (INST instance):
unsigned short ula;

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) ({
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,

igeterrstr(errornumber),errornumber);
exit(1l);

2-55

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = ionsrq(instance, srghandler);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to set srg handler\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;

exit(2):
}
/*
// Queue a REQUEST TRUE event from a servant device.
*
/
ula = OLRMGetNumAttr (sessionname, 0, OLRM_LOG_ADDR) ;
if (ula == OXFFFF ||
EpcErQue((short) (ula | OxFD0O)) == (short) FALSE) {

fprintf (stderr,
"Unable to generate an SRQ_EVENT interrupt\n\r");

exit(3);
}
/*
// Keep srg processing off while the handler
// is being written
*/
returncode = iintroff();
if (returncode !'= I_ERR_NOERROR) {

fprintf (stderr,
“\tIintroff failed\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r-",
igeterrstr{returncode),returncode) ;
exit(4);
}
/*
// Restore the previous srq handler
*/
returncode = igetonsrqg(instance,&oldhandler) ;
if (returncode '= I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable execute igetonsrq successfully\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(7);
}
fprintf (stdout, "SRQ testing successfull\n\r");
exit(0);

2-56

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetsesstype

igetsesstype
Description Gets a session’s type.
int PASCAL
igetsesstype(INST id, int *sessiontype);
id Pointer to a session structure.
sessiontype Pointer to the location where the

functions stores the session’s type.

Remarks This function places the session type of the session pointed to by id
in the location pointed to by sessiontype. The following are valid
sessiontype constants:

Constant Description
1_SESS_DEV Device session
I1_SESS_INTR Interface session

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Sessiontype is null.

See Also iopen

2-57

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example

/7 Call igetsesstype() to retrieve the session type

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
int returncode, sessiontype, errornumber;

char *sessionnamel = "gdevl";
char *sessionname2 = “vdevl":
/r

// Open a device session

*/

instance = iopen{sessionnamel});
if (instance == NULL) {

errornumber = igeterrnol();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d) \n\r",
sessionnamel,
igeterrstr{errornumber),errornumber) ;
exit(1);
}
returncode = igetsesstype(instance,&sessiontype);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tIgetsesstype call failed\n\r"):
fprintf(stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}
fprintf (stdout, “Session <%s> type is ",sessionnamel);
if (sessiontype == I_SESS_DEV)
fprintf (stdout, "<Device session>\n\r"):
else
fprintf(stdout, "<Interface session>\n\r");
(void) iclose(instance);
instance = iopen(sessionname2);
if (instance == NULL) {
errornumber = igeterrno(};
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname2,
igeterrstr(errornumber), errornumber) ;
exit(3);

2-58

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igetsesstype

returncode = igetsesstype(instance,&sessiontype);
if (returncode '= I_ERR_NOERROR) {

fprintf (stderr,
"\tIgetsesstype call failed\n\xr");

fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit(4);
}
fprintf{stdout, "Session <%s> type is ",sessionname2);
if (sessiontype == I_SESS_DEV)
fprintf (stdout, "<Device session>\n\r");
else
fprintf (stdout, "<Interface session>\n\r"});
exit(0);

2-59

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igettermchr
Description Gets a session's current termination character.
int PASCAL
igettermchr(INST id, int *termchr);
id Pointer to a session structure.
termchr Pointer to a location where the functions

stores the current termination character.

Remarks This function places the current termination character of the session
pointed to by id in the location pointed to by termchr.

The default termination character for a session is —1 (no termination
character set). Use itermchr to set a termination character.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are: :

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Termchr is null.

See Also inbread, iread, itermchr

2-60

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igettermchr

Example
/*
// Call igettermchr() to retrieve the session's
/7 termination character.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main({void)

{ INST instance;
int returncode, termchar, errornumber;
char *sessionname = "vdevl";

/*
// Open a device session
*/
instance = ilopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();

fprintf (stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,)
igeterrstr({errornumber), errornumber) ;
exit(1);
}
returncode = igettermchr(instance, &termchar);
_ if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
“\tIgettermchr call failed\n\r");
fprintf (stderr,
"\tError = %s (%d} \n\r",
igeterrstr (returncode) , returncode) ;

exit(2);
}
/*
/7 Default is -1
*/
if (termchar == -1) {
returncode = itermchr (instance, (int) '\n');
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tItermchr call failed\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit{3);
}
}
exit (0);

2-61

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igettimeout

Description Gets a session's current timeout value.

2 int PASCAL

igettimeout(INST id, long *timeout);
id Pointer to a session structure.

timeout Pointer to a location where the function
stores the timeout value.

Remarks This function places the current timeout value of the session pointed
to by id in the location pointed to by timeout. Timeout values are
specified in milliseconds.

The default timeout value for a session is 0 (no timeout set). A
timeout value less than zero also indicates that no timeout is set.
Use itimeout to set a session timeout value,

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Timeout is null.
See Also itimeout
Example
/*
// Call igettimeout() to retrieve the session's
!/ timeout character value.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

2-62

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igettimeout

void main(void)

{ INST instance;
int returncode, errornumber;
long timeout;
char *sessionname = "vdevl";

/!’
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrnof);

fprintf(stderr,

“\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr (errornumber) ,errornumber) ;
exit(1l);
}
/*
//
/7
*/
returncode = igettimeout{(instance, &timeout) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tIgettimeout call failed\n\r");
" fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(returncode), returncode) ;
exit(2);
}
/*k
// Default value is 0
*/
if (timeout == 0) {
/*
// Set the timeout to 1/2 second
*/
returncode = itimeout (instance,500L);
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tItimeout call failed\n\r"};
fprintf (stderr,
“\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit(3);
}
}
exit(0);

2-63

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igpibatnctl

Description Controls the state of the ATN line during GPIB writes.

2 int PASCAL

igpibatnctl(INST id, int amstate);

id Pointer to a GPIB interface session
structure.
atnstate ATN line state.
Remarks This function defines the state of the ATN line during future write

operations using the GPIB interface session pointed to by id. A
write operation can occur either directly or indirectly from calls to
iflush, inbwrite, iprintf, ipromptf, isetbuf, and iwrite.

This function is valid only for GPIB interface sessions.

Setting atnstate equal to zero deasserts the ATN line during
subsequent writes. Setting atnstate to a non-zero value asserts the
ATN line during subsequent writes.

Bytes sent over the GPIB interface when ATN is asserted cause the
interface to interpret the bytes as commands. Bytes sent when ATN
is deasserted are interpreted as data.

The state of the ATN line is undefined following all other SICL
calls.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-GPIB interface type.

2-64

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibatncti

I_ERR_PARAM Id specifies a device or commander
session.
See Also iflush, inbwrite, iprintf, ipromptf, isetbuf, iwrite
Example
/*
// This example uses igpibatnctl to configure the ATL
/7 line for commands or data.
*/

#define ATNDATA 0
f#define ATNCOMMAND -1

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main{void)
{ INST instance;
int returncode, errornumber;

char *sessionnames = “gpib";

/i

// Open an interface session
*/

instance = iopen(sessionnames);
if (instance == NULL) {

errornumber = igeterrno(};
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames,
igeterrstr (errornumber), errornumber) ;
exit(1);
}
returncode = igpibatnctl (instance, ATNDATA) ;
1f (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute igpibatnctl\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr (returncode) , returncode) ;
exit(2);
}
(void) iprintf (instance, "DATA TEST\n");
exit(0);

2-65

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

igpibbusstatus

Description Gets GPIB status.

int PASCAL

igpibbusstatus(INST id, int request, int *result);

id Pointer to a GPIB interface session
structure.

request Status request.

result Pointer to the location where the stores

the GPIB interface status.

Remarks This function places the GPIB interface status requested by request
in the location pointed to by resulr. The following are valid

constants for request:
Constant

I_GPIB_BUS_REM

I_GPIB_BUS_SRQ

I_GPIB_BUS_SYSCTLR

I_GPIB_BUS_ACTCTLR

Description

Get the interface remote state
(1 =remote, 0 = not remote).

Get the SRQ state (1 = SRQ
asserted, 0 = SRQ not asserted).
On an EPC-2 or on an EPC-7
with EXM-4 modules installed,
the SRQ line state can be
accurately monitored only when
the interface is in the active
controller state,

Get the interface system

controller state (1 = system
controller, 0 = not system
controller).

Get the interface active
controller state (1 = active
controller, O = not active
controller).

2-66

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibbusstatus

1 GPIB_BUS_TALKER Get interface addressed-to-talk
state (1 = addressed-to-talk, 0 =
not addressed-to-talk).

I_GPIB_BUS_LISTENER Get interface addressed-to-listen
state (1 = addressed-to-listen, O
= not addressed-to-listen).

1_GPIB_BUS_ADDR Get the interface primary bus
address.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_IO The function cannot determine GPIB
status.

I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF 1d specifies a non-GPIB interface type.

I_ERR_NOTSUPP The hardware/software platform does not
support the specified request.

I_ERR_PARAM Id specifies a device or commander
session, Request is invalid, or result is
null.

See Also iopen
Example
/t
/7 This example calls igpibbusstatus to display
/7 the GPIB bus status information.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

2-67

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

#define DIM(x) (sizeof (x) /sizeof (int))

int requests(] = ¢ I_GPIB_BUS_REM,
I_GPIB_BUS_SRQ,
I_GPIB_BUS_SYSCTLR,
I_GPIB_BUS_ACTCTLR,
I_GPIB_BUS_TALKER,
I_GPIB_BUS_LISTENER,
I_GPIB_BUS_ADDR };

char *requeststrings{] = {

"I_GPIB_BUS_REM",
"I_GPIB_BUS_SRQ",
"I_GPIB_BUS_SYSCTLR",
"I_GPIB_BUS_ACTCTLR",
"I1_GPIB_BUS_TALKER",
"I_GPIB_BUS_LISTENER",
"I_GPIB_BUS_ADDR" };

void main(void)

{ INST instance;
int returncode, errornumber, result;
char *sessionname = "GPIB";
register short vinductor;

/*
// Open an interface session
*/
instance = iopen{sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1);

2-68

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibbusstatus

for (vinductor = 0; vinductor < DIM(requests); vinductor++) {
returncode = igpibbusstatus(instance,
requests{vinductor],
&result);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute igpibbusstatus\n\r"};
fprintf (stderr,
"\tRequest = %s",
requeststrings([vinductor]);
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(2);
}
fprintf (stdout, "$s = \t¥%d\n\r",
requeststrings({vinductorl],
result);
}
exit(0);

2-69

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igpiblio
Description Puts all GPIB devices into local-lockout mode.
int PASCAL
igpibllo(INST id);
id Pointer to a GPIB interface session
structure.
Remarks This function sends the GPIB LLO (local lockout) command to all

devices on the GPIB interface of the session pointed to by id.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_IO The function cannot execute LLO on the
interface.

I_ERR_LOCKED Id specifies an interface that is locked by

another process.

I_ERR_NOERROR Successful function completion.

I_ERR_NOINTF 1d specifies a non-GPIB interface type.
I_ERR_PARAM Id specifies a device or commander
session.

I_ERR_TIMEOUT A timeout occurred.

See Also iopen, itimeout

2-70

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibllo

Example
/*
1/ This example uses igpibllo to put all GPIB devices
/7 into local-lockout mode.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
int returncode, errornumber;

char *sessionnames = "gpib";

/*

// Open an interface session
*/

instance = iopen(sessionnames);
if {(instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionnames,
igeterrstr (errornumber) , errornumber) ;
exit(1l);
}
/*
/7 None there is no way to automatically verify that the LLO
command
// was received.
*/
returncode = igpibllo({instance};
if (returncode != JI_ERR_NOERROR) {

fprintf (stderr,
"\tUnable to execute igpibllo\n\r");
fprintf (stderr,
"\tError = %s (%$d)\n\r",
igeterrstr (returncode}, returncode) ;
exit(2);
}
exit(0);

2-71

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Passes active controller status to another GPIB interface.

igpibpassctl(INST id, int busaddress);

igpibpassctl

Description
int PASCAL
id
busaddress

Remarks

Pointer to a GPIB interface session
structure.

GPIB address of new active controller
interface.

This function passes active controller state from the GPIB interface

of the session pointed to by id to the GPIB interface whose address

is busaddress.

Busaddress must be between zero and 30, inclusive.

Return Value
Possible errors are:

Constant
I_ERR_BADID
I_ERR_IO

I_ERR_LOCKED

I_ERR_NOERROR
I_ERR_NOINTF
I_ERR_PARAM

I_ERR_TIMEOUT

See Also iopen, itimeout

The function returns an integer to indicate its success or failure.

Description
Invalid id session pointer.

The function cannot pass active
controller states to the specified device.

Id specifies an interface that is locked by
another process.

Successful function completion.
/d specifies a non-GPIB interface type.

Id specifies a device or commander
session, or busaddress is invalid.

A timeout occurred.

2-72

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibpasscti

Example
/*
/7 This example uses igpibpassctl to pass active control
7/ to another GPIB interface.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance, itfinstance;
int returncode, errornumber, primary, secondary;

char *sessionnames(] = { "gpib", "gdevl" };
/*

// Open an interface session

*/

itfinstance = iopen{sessionnames{0]);

if (itfinstance == NULL) (

errornumber = igeterrnof();

fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames (0],
igeterrstr{errornumber) , errornumber) ;

exit(l);

}

/*

// Open a device session

*/

instance = iopen(sessionnames(1});

if (instance == NULL) {
errornumber = igeterrno():;

fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames([1],
igeterrstr{errornumber), errornumber) ;
exit(1);
}
returncode = igetdevaddr (instance, &primary, &secondary);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tUnable to execute igetdevaddr\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr {returncode), returncode) ;
exit (2);

2-73

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = igpibpassctl(itfinstance,primary);
1f (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tUnable to execute igpibpassctl\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(3);
}
exit(0);

2-74

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibppoll

igpibppoll
Description Executes a parallel poll.
int PASCAL
igpibppoll(INST id, int *polldata);
id Pointer to a GPIB interface session
structure.
polldata Pointer to the location where the function
stores the parallel poll result.
Remarks This function executes a parallel poll of the GPIB interface of the

session pointed to by id. The parallel poll results are placed in the
lower 8-bits of the location pointed to by polldata.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant ' Description

I_ERR_BADID Invalid id sesston pointer.

I_ERR_IO The function cannot execute a parallel
poll.

I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-GPIB interface type.

I_ERR_PARAM Id specifies a device or commander
session, or polldata is null.

I_ERR_TIMEOUT A timeout occurred.

See Also iopen, igpibppollconfig, itimeout

2-75

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/*
// This example calls igpibpollconfig configure a device's
// response to a parallel poll. Additionally, igpibppoll
// is called to verify correct execution of the poll
// configuration call.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

/* GPIB response line 7, no service reqg */
#define POLLCONFIG 0x47

void main(void)
{ INST instance;
int returncode, errornumber, polldata;

char *sessionnames[] = { "gdevl", "gpib" };
/*

// Open an interface session

*/

instance = lopen(sessionnames([0]);

if (instance == NULL) {

errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s ($d) \n\r",
sessionnames|[0],
igeterrstr(errornumber),errornumber);
exit(1);
}
returncode = igpibppollconfig(instance,POLLCONFIG);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute igpibppoll\n\r"};
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(2);
}
{(void) iclose(instance);
instance = iopen(sessionnames[l]);
if (instance == NULL) {
errornumber = igeterrno():
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames[1],
igeterrstr(errornumber), errornumber) ;
exit (3);

2-76

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibppoll

returncode = igpibppoll (instance, &polldata);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute igpibppoll\n\r");
fprintf{stderr,

"\tError = %s (%d)\n\r”,
igeterrstr (returncode), returncode) ;
exit(4);
}
if (polldata != 0x80) {
fprintf (stderr,
"\tIgpibpoll received %x, expected %x\n\r",

polldata,
1 << (POLLCONFIG & 0x0f));
exit (5);
}
fprintf (stdout, "Poll data = <%d>",polldataj);
exit (0);

2-717

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igpibppoliconfig

Description Configures a GPIB device’s response to a parallel poll.

2 int PASCAL

igpibppollconfig(INST id, int configparam);

id Pointer to a GPIB device session
structure.
configparam Device configuration.
Remarks This function configures the parallel poll response of the GPIB

device session pointed to by id. Configparam specifies the GPIB
device’s response to future parallel polls.

Specifying configparam equal to —1 disables the device from
responding to parallel polling. Specifying configparam greater that
or equal to zero enables the device’s response to a parallel poll.
The lower four bits of configparam configure the parallel poll
response. Bits 0, 1, and 2 specify the GPIB response lines. Bit 3
specifies the meaning of a parallel poll response (I = service
request, 0 = no service request).

2-78

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibppollconfig

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_IO The function cannot define the specified

device's PPOLL configuration.

I_ ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_NOINTF Id specifies a non-GPIB interface type.
I_ERR_PARAM Id specifies an interface or commander
session.

I_ERR_TIMEOUT A timeout occurred.
See Also iopen; itimeout

Example See igpibppoll.

2-79

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

igpibrenctl

Description Controls the state of the GPIB REN line.

int PASCAL
igpibrenctl(INST id, int renstate);
id Pointer to a GPIB interface session
structure.
renstate REN line state.
Remarks This function defines the REN line state of the GPIB interface of the

session pointed to by id.

Specifying a renstate equal to zero deasserts the REN line.
Specifying renstate as non-zero asserts the REN line.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are: .

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_IO The function cannot set REN line state
on the interface.

I_ERR_LOCKED Id specifies an interface that is locked by

another process.

I_ERR_NOERROR Successful function completion.

I_ERR_NOINTF 1d specifies a non-GPIB interface type.
I_ERR_PARAM Id specifies a device or commander
session.

I_ERR_TIMEOUT A timeout occurred.

See Also iopen, itimeout

2-80

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibrenctl

Example
/*
/7 This example uses igpibrenctl to configure the GPIB
7/ REN line.
*/

#define RENASSERT -1
#define RENDEASSERT 0

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h”

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionnames = "gpib";

/*
// Open an interface session
*/
instance = iopen(sessionnames);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames,
igeterrstr(errornumber) , errornumber) ;
exit(1l);
}
returncode = igpibrenctl{instance, RENASSERT) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute igpibrenctl\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}
exit (0);

2-81

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Writes command bytes to a GPIB interface.

igpibsendcmd(INST id, char *buffer, int buffersize);

igpibsendemd
Description
int PASCAL
id
buffer
buffersize

Remarks

Pointer to a GPIB interface session
structure.

Pointer to a data source buffer.

Data buffer size, in bytes.

This function writes data from the buffer pointed to by buffer to the

GPIB interface of the session pointed to by id with the ATN line
asserted. Buffersize specifies the number of data bytes in the buffer.

Return Value
Possible errors are:

Constant
I_ERR_BADID
I_ERR_IO

I_ERR_LOCKED

I_ ERR_NOERROR
I_ERR_NOINTF
I_ERR_PARAM

I_ERR_TIMEOUT

See Also iopen, itimeout

The function returns an integer to indicate its success or failure.

Description

Invalid id session pointer.

The function cannot send the command
data.

1d specifies an interface that is locked by
another process.

Successful function completion.
1d specifies a non-GPIB interface type.

Id specifies a device or commander
session, or buffer is null.

A timeout occurred.

2-82

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

igpibsendcmd

Example
/*
// This example uses igpibsendemd to send commands
// to the GPIB interface.
*/
#define RENASSERT -1 E
#define RENDEASSERT 0

#include <stdio.h>
tinclude <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance, itfinstance;
int returncode, errornumber, commandlength, itfprimary,
primary, secondary;

char *sessionnames[] = { "gpib", "gdevl" };
char commandlist([5] = { 0 };

/*

// Open an interface session

*/

itfinstance = iopen(sessionnames[0]);
if (itfinstance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames|[0],
igeterrstr (errornumber) , errornumber) ;

exit(1l);
}
returncode = igpibbusstatus(itfinstance,
I_GPIB_BUS_ADDR,
&itfprimary);
if (returncode !'= I_ERR_NOERROR) {

fprintf(stderr,
"\tUnable to execute igpibbusstatus\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(2);
}
instance = iopen(sessionnames[1]);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames (1],
igeterrstr(errornumber),errornumber);
exit(3);

2-83

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = igetdevaddr (instance, &primary, &secondary):
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
“\tUnable to execute igetdevaddr\n\r");
fprintf (stderr,
“\tError = %s (%d)\n\r",
igeterrstr(returncode),returncode);

exit{4);
}
commandlist (0] = 0x3F; /* UNL */
commandlist (1] = (char) (itfprimary + 0x40): /* MTA */
commandlist (2] = (char) (primary + 0x20); /* LAG */
if (secondary == -1) commandlength = 3;
else {

commandlist([3) = (char) (secondary + 0x60); /* SCG */

commandlength = 4;
}
returncode = igpibsendecmd(itfinstance,
commandlist, commandlength) ;
if (returncode != I_ERR_NOERROR)} {
fprintf(stderr,
"\tUnable to execute igpibsendemd\n\r") ;
fprintf (stderr,
“\tError = %s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(5);

exit(0);

2-84

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ihint

ihint

Description

Remarks

Return Value

Defines the type of communication a device driver should use.

int PASCAL 2
ihint(INST id, int hint);

id Pointer to a session structure.

hint Communications type.

For SICL, this function checks for errors and returns. Hint is
ignored. Valid hint constants are:

Constant Description
I_HINT_DONTCARE No communications preference.
I_HINT_USEDMA Use DMA, if possible.
I_HINT_USEINTR Use interrupts, if possible.
I_HINT_USEPOLL Use polling, if possible. .

The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Hint is invalid.

2-85

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iintroff
Description Disables SRQ and interrupt event processing.
2 int PASCAL
iintroff(void);
Remarks This function disables processing of SRQ and interrupt events for

the calling process.

When event processing is disabled, SRQ and interrupt events are
queued. The eventqueuesize variable in the SICLIF file sets the
number of SRQ and interrupt events that can be queued while event
processing is disabled. If an attempt to queue an event causes the
queue to overflow, the event is discarded and the error message
"SICL event queue overflow -- event lost!" is sent to the console.

By default, SRQ and interrupt event processing are enabled.
Use iintron to re-enable SRQ and interrupt event processing.

SRQ and interrupt event disabling can be nested. Each call to
iintroff should be paired with one, and only one, call to iintron.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_NOERROR Successful function completion.

See Also iintron
Example See igetonintr,
2-86

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iintron

iintron

Description Enables processing of SRQ and interrupt events.
int PASCAL 2
iintron(void);

Remarks This function enables processing of SRQ and interrupt events by the

calling process.
By default, SRQ and interrupt event processing is enabled.
Use iintroff to disable SRQ and interrupt event processing,

Attempting to enable SRQ and interrupt event processing when it is
already enabled results in an I_ERR_OS error.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are: .

Constant Description
I_ERR_NOERROR Successful function completion.
I_ERR_OS Asynchronous event handling is already
enabled.
See Also iintroff, ionintr, ionsrq, isetintr
Example See igetonintr.
2-87

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ilblockcopy
Description Copies a block of 32-bit words from one set of sequential memory
2 locations to another.
int PASCAL

ilblockcopy(INST id, unsigned long *src, unsigned long *dest,
unsigned long count, int swap);

id Pointer to a session structure.
src Source pointer.
dest Destination pointer.
count Number of 32-bit words to copy.
swap Byte swap flag.
Remarks Copies 32-bit words from successive memory locations beginning at

src into successive memory locations beginning at desr. Count
specifies the number of 32-bit words to transfer and has a maximum
value of 0x4000. Id specifies the interface to use for the transfer. -

The function is valid only for VXI interfaces. It does not detect
segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 32-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following lists the possible scenarios when accessing EPC and
VXIbus memory:

2-88

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilblockcopy

src dest swap Result

EPC EPC 0 No byte-swapping

EPC EPC Non-zero No byte-swapping 2

EPC VXI 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC 0 No byte-swapping

VXI EPC Non-zero One byte-swap

VXI VXI 0 No byte-swapping

VXTI VX1 Non-zero Two byte-swaps (equivalent to no
byte-swap)

For byte-swapping to work properly, all VXIbus access must be
aligned on a 32-bit boundary.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,

GPIB).
I_ERR_PARAM Src and/or dest is null.
See Also ibblockcopy, ilpeek, ilpoke, ilpopfifo, ilpushfifo, imap,
iwblockcopy
Example See iwblockcopy.

2-89

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ilocal

Description Puts a device in local mode.

2 int PASCAL

ilocal(INST id);

id Pointer to a device session structure.

Remarks With VXI device sessions, this function supports only message-
based VXI devices.

For VXI device sessions, the function issues a CLEAR LOCK
word-serial command to the device. Only message-based VXI
devices are supported. Use with other VXI devices cause an error.

For GPIB device sessions, the function addresses the device to
listen, then sends the GTL (go to local) command.

This function supports only device sessions. Specifying an interface
session is an error,

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXIlbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word-
serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.

2-90

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilocal

See Also

Example
/*
/7
/7
*/

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies an interface or commander
session or a VXI device that is not
message-based.

I_ERR_TIMEQUT A timeout occurred.

iremote, itimeout

This example uses ilocal to put the specified
GPIB device into local mode.

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)

{

INST instance;
int returncode, errornumber;
char *sessionname = "gdevl";

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno{();
fprintf{stderr,
"\tUnable to open <%s>, error = %s (%d) \n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit (1) ;

returncode = ilocal(instance);
if (returncode != I_ERR_NOERROR} {
fprintf (stderr,
"\tIlocal call failed\n\r"):
fprintf(stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit (2);
}
exit(0});

2-91

2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ilock
Description Locks a device or interface.
2 int PASCAL

ilock(INST id);
id Pointer to a session structure.

Remarks This function locks the device or interface session pointed to by id
to prevent access by other processes.
Locking an interface session locks the entire interface. Only the
calling process can access devices on the interface.
Locking a device session prevents all other processes from locking
or accessing the device. It also prevents other processes from
locking the interface. It does not prevent other processes from
locking or accessing other devices on the interface. w
Locking conflict resolution is set by isetlockwait. However, under -
DOS, a locking conflict always results in an I_ERR_LOCKED
error because DOS does not support process preemption.
Locks can be nested. Each ilock call must be paired with a
corresponding iunlock call.

2-92

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilock

Locking affects these SICL functions:

imap inbread isetstb

iclear inbwrite itrigger

iflush iopen ivxigettrigroute 2
igpibatnctl igpibllo ivxitrigoff
igpibpassctl iprintf ivxitrigon
igpibppoll ipromptf ivxitrigroute
igpibppollconfig iread ivxiwaitnormop
igpibrenctl ireadstb ivxiws
igpibsendemd iremote iwrite

ilocal iscanf ixtrig

ilock isetbuf

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID . Invalid id session pointer.
I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.

I_ERR_NOERROR Successful function completion.

See Also igetlockwait, isetlockwait, itimeout, iunlock
Example
/*
// This example uses ilock/iunlock to lock the device access
/7 from other processes.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h*"

2-93

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

void main{void)

{ INST instance;
int returncode, errornumber:;
char *sessionname = "vdevl";

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();

fprintf(stderr,

"\tUnable to open <%s>, error = %s {%d)\n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(1);
}
returncode = ilock{instance);
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
“\tUnable to lock <%s>\n\r",

sessionname,
igeterrstr(returncode),returncode);
exit(2);
}
/*
// Processing of the critical section goes here
7/ ..
*/
returncode = iunlock(instance);
if (returncode != I_ERR_NOERROR) ({
fprintf(stderr,
“\tUnable to unlock <$%s>\n\r",
sessionname,
igeterrstr (returncode), returncode) ;
exit (3);
exit(0);
}
2-94

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpeek

ilpeek

Description Reads a 32-bit word stored at a mapped address.
volatile unsigned long PASCAL 2
ilpeek(volatile unsigned long *addr);
addr Address of a 32-bit word.

Remarks The addr pointer should be a mapped pointer returned by a previous

imap call. Byte swapping is always performed.

Return Value The function returns the 32-bit word contained at addr.

See Also ibpoke, ibpeek, imap, iwpeek
Example
/ *
/7 This example uses ilpeek to read our own slave
/7 memory thru the VXIbus.
*/

#include <stdlib.h>
#include <stdio.h>
#include “busmgr.h"
#include "sicl.h"

void main{(void)

{ INST instance;
int errornumber, returncode, result;
char *lowpage;
unsigned long lowmemory;

char *sessionnames([] = { "vxi", "vdevl" }s

unsigned long *baseoffset = (unsigned long *) 0x400L;
/*

// Open an interface session

*/

instance = iopen(sessionnames[0]) ;

if (instance == NULL) ({

errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (¥d)\n\r",
sessionnames (0],
igeterrstr (errornumber),errornumber) :
exit(1l);

2-95

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
1/ Find where our memory begins
*/
returncode = ivxibusstatus(instance,
I_VXI_BUS_SHM_PAGE,
&result) ;
if (returncode i= I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute ivxibusstatus\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit(2);
}
(void) iclose(instance);
/*
// Open a device session
*/
instance = iopen{sessionnames[1]);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames[1],
igeterrstr(errornumber),errornumber);
exit (3);
}
/* Map in A24 space */
lowpage = imap(instance, I_MAP_A24,result >»> 8,1,NULL});
if (lowpage == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to map in A24 space, error = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);
exit(4);

2-96

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpeek

/*
7/ Reading the 400th long word of VME memory at our base
// address should return the same value as reading 0:400
7/ through PC memory
*/
lowmemory = ilpeek((unsigned long *)

({unsigned long) lowpage+

(unsigned long) baseoffset));

EpcMemSwapL(&lowmemory,l);
if (lowmemory != *baseoffset) {
fprintf (stderr,
"\tVME memory at page %x longword offset %1x ",
result >> 8,baseoffset);

fprintf (stderr, "= %08.81x\n\r", lowmemory) ;
fprintf (stderr, "\tExpected %$08.81x\n\r", *baseoffset);
exit(5);

}

fprintf (stdout, "VME memory at page %x longword offset $lx = ",
result >> 8,baseoffset);

fprintf(stdout,"%OS.le\n\r“,lowmemory);

exit(0);

2-97

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

ilpoke

Description

Remarks

Return Value

See Also

Example
/*

Writes a 32-bit word to a mapped address.

void PASCAL

ibpoke(volatile unsigned long *dest, unsigned long value);
dest Destination address.

value 32-bit word to write.

The addr pointer should be a mapped pointer returned by a previous
imap call. Byte swapping is always performed.

The function returns no value.

ibpeek, ibpoke, imap, iwpoke

/7 This example uses ilpoke to write into
/7 DOS's communication area via VME memory.

*/

#include

<stdlib.h>

#include <stdio.h>

#include
#include

"sicl.h"
"busmgr.h"

#define FOOTPRINT 0x12345678L

2-98

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpoke

void main(void)

{ INST instance;
int errornumber, returncode, result;
char *lowpage;
long *doscom = (long *) 0x4£f0L;

char *sessionnames(] = { "vxi", "vdevl" Y
/*

// Open an interface session

*/

instance = iopen(sessionnames{0]);
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames (0],
igeterrstr(errornumber),errornumber);

exit(1);

}

/*

/7 Find where our memory begins

*/

returncode = ivxibusstatus(instance,
I_VXI_BUS_SHM_PAGE,
&result);

if (returncode != I_ERR_NOERROR) {

fprintf(stderr,
"\tUnable to execute ivxibusstatus\n\r");
fprintf (stderr,
“\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit (2);
}
(void) iclose(instance);
/t
// Open a device session
*/
instance = iopen(sessionnames([1]);
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d) \n\r",
sessionnames (1],
igeterrstr(errornumber),errornumber);
exit (3);
}
/* Map in A24 space */
lowpage = imap(instance, I_MAP_A24, result >> 8,1,NULL) ;
if (lowpage == NULL) {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to map in A24 space, error = %s ($d) \n\r*“,
igeterrstr(errornumber),errornumber);
exit(4);

2-99

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*

/7 Write into DOS's communication area at PC address
// 4f0:0

*/

ilpoke ((unsigned long *)
((unsigned long) lowpage+ (unsigned long) doscom),

FOOTPRINT) ;
EpcMemSwapL ((unsigned long *) doscom, 1) ;
if (*doscom I= FOOTPRINT) {

fprintf(stderr,
"\tVME memory at page %x longword offset %1x ",
result >> 8,doscom) ;

fprintf(stderr, "= %08.81x\n\r", *doscom) ;
fprintf (stderr, "\tExpected %08.81x\n\r", FOOTPRINT) ;
exit(5);

}

fprintf (stdout, "VME memory at page %x longword offset %lx = ",
result >> 8,doscom);

fprintf(stdout,"%OS.le\n\r",*doscom);

exit (0);

2-100

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpopfifo

ilpopfifo

Description Copies 32-bit words from a single memory location (FIFO register)
to sequential memory locations. 2

int PASCAL
ibpopfifo(INST id, unsigned long *fifo, unsigned long *dest,
unsigned long count, int swap);

id Pointer to a session structure.
Jifo FIFO pointer.

dest Destination address.

count Number of 32-bit words to copy.

swap Byte swap flag.

Remarks This function copies count 32-bit words from fifo into sequential
memory locations beginning at dest. Count specifies the number of
32-bit words to transfer and has a maximum value of 0x4000. /d
specifies the interface to use for the transfer,

The function is valid only for VXI interfaces. It does not detect
segment wrap-around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 32-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following table lists the possible scenarios when accessing EPC and
VXIbus memory:

2-101

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Src dest swap Result

EPC EPC 0 No byte-swapping

EPC EPC Non-zero No byte-swapping

EPC VXI 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC 0 No byte-swapping

VXI EPC Non-zero One byte-swap

VXTI VXI 0 No byte-swapping

VXI VXI Non-zero Two byte-swaps (equivalent to no
byte-swap)

For byte-swapping to work properly, all VXIbus access must be
aligned on a 32-bit boundary.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant . Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,

GPIB).
I_ERR_PARAM Fifo and/or dest is null.

See Also ibpopfifo, ilpushfifo, imap, iwpopfifo
Example

/*

// This example uses ilpopfifo to read from a

/7 hypothetical VXI fifo at offset 0.

*/

#include <stdlib.h>

#include <stdio.h>

#include "sicl.h®

#define NOSWAP 0 /* 0 indicates no byte swapping */

2-102

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpopfifo

void main{void)
{ INST instance;
unsigned long *vxi;
int returncode, errornumber;
unsigned long datafifo[5];
— char *sessionname = "vxi’;

/t
// Open an interface session
*/
instance = iopen(sessionname);
if (instance == NULL) ({

errornumber = igeterrno();

fprintf (stderr,

"\tUnable to open <%s>, error = %s (%d) \n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(1l);
}
vxi = (unsigned long *) imap(instance,I_MAP_AlG,0,0,NULL);

if (vxi == NULL) (
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to map in Al6é space, error = ")
fprintf(stderr,
"$s (%d) \n\r",
igeterrstr(errornumber),errornumber);

exit(2);
}
— Jx
// Read the Fifo 5 times, storing the values into datafifol]
*/
returncode = ilpopfifo(instance,
vxi,
datafifo,
{long) (sizeof(datafifo)/sizeof(long)),
NOSWAP) ;
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
“\tUnable to read the fifo at address ");
fprintf(stderr,
"$p\n\r\tError = %s (%d) \n\r",
vxi,
igeterrstr(returncode),
returncode) ;
exit(3);
}
exit(0);

2-103

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ilpushfifo
Description Copies 32-bits words from sequential memory locations to a single
2 memory location (FIFO register).
int PASCAL
ilpushfifo(INST id, unsigned long *src, unsigned long *fifo,
unsigned long count, int swap);

id Pointer to a session structure.
src Source address.
fifo FIFO pointer.
count Number of 32-bit words to copy.
swap Byte swap flag.

Remarks Copies count 32-bit words from the sequential memory locations
beginning at src into the FIFO at fifo. Count specifies the number
of 32-bit words to transfer and has a maximum value of 0x4000. Id
specifies the interface to use for the transfer.
The function is valid only for VXI interfaces. It does not detect
segment wrap-around conditions or detect bus errors caused by its
use.
This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.
When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 32-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following lists the possible scenarios when accessing EPC and
VXIbus memory:

2-104

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ilpushfifo

src dest swap Result

EPC EPC 0 No byte-swapping

EPC EPC Non-zero No byte-swapping 2
EPC VXI 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC 0 No byte-swapping

VXI EPC Non-zero One byte-swap

VXI VXI 0 No byte-swapping

VXTI VXI Non-zero Two byte-swaps (equivalent

to no byte-swap)

For byte-swapping to work properly, all VXIbus access must be
aligned on a 32-bit boundary.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP 1d specifies an interface type that does
not support address mapping (e.g.,

GPIB).
I_ERR_PARAM Src and/or fifo is null.

See Also ibpopfifo, ibpushfifo, imap, iwpushfifo
Example

/*

/! This example uses ilpushfifo to write values

// to a hypothetical VXI fifo at offset 0.

*/

#include <stdio.h>

#include <stdlib.h>

#include "sicl.h®

#define NOSWAP 0 /* 0 indicates no byte swapping */

2-105

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

void main(void)
{ INST instance;
char *vxi;
int returncode, errornumber;
unsigned long datafifo[] = { 0xlL, O0x2L, 0x3L, Ox4L, Ox5L };
char *sessionname = "vxi";

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber) , errornumber) ;
exit (1);
}
vxi = imap(instance,I_MAP_Al6,0,0,NULL); /* Map in Alé space */
if {(vxi == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to map in Al6 space, error = ");
fprintf(stderr,
“$s (%d) \n\r",
igeterrstr (errornumber) , errornumber) ;
exit(2);
}
/*
// Write to the fifo 5 times, storing 0x00000001L, 0x00000002L,
// 0x00000003L, 0x00000004L, 0x00000005L
*/
returncode = ilpushfifo(instance,
{unsigned long *) vxi,
datafifo,
(unsigned long) sizeof (datafifo)/sizeof(long),
NOSWAP) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to write to the fifo at address ");
fprintf (stderr,
"$p\n\r\tError = %s (%d) \n\r",

vxi,
igeterrstr(returncode),
returncode);
exit(3);
}
exit(0);

2-106

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

imap

imap

Description Maps a portion of a VXIbus address space into user memory space.
char * PASCAL 2
imap(INST id, int mapspace, unsigned int pagestart, unsigned int

pagecnt, char *suggestedaddress);
id Pointer to a session structure.
mapspace Address space to map.
pagestart Starting page number.
pagecnt Number of pages to map.
suggestedaddress User suggested pointer to the mapped
memory location.
Remarks Although imap returns a pointer to the designated portion of

VXIbus, the pointer cannot be used directly because the byte order
1s not defined. Byte order is defined when the returned pointer is
used in a mapped memory /O function.

The address space to be mapped depends on id and mapspace. The
following are valid constants for mapspace:

Constant Description

I_MAP_A16 Map the A16 address space. Valid for
VXI device and interface sessions.

I_MAP_A24 Map the A24 address space (page size

64K bytes). Valid for VXI device and
interface sessions.

I_MAP_A32 Map the A32 address space (page size
64K bytes). Valid for VXI device and
interface sessions.

I_MAP_VXIDEV Map a VXI device's configuration
registers. Valid only for VXI device
sessions.

2-107

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

I_MAP_EXTEND Map the A24/A32 address space that
corresponds to this EPC. Valid only for
VXI device sessions (EPC-2 and EPC-7
only).

When mapspace is I_MAP_EXTEND, the A16 registers for the
device determine the location of the address space. Pagestart is the
offset, in 64K pages, into the extended memory of the device.
Pagecnt is the amount of memory, in 64K pages, to map.

The suggestedaddress variable is NULL.

Use imapinfo to obtain a valid page size parameter for a given
address space.

The DOS real mode implementation limits mapping to A16 space or
one A24 or A32 space page at a time.

When mapspace is either _ MAP_A16 or _ MAP_VXIDEV, the
pagestart and pagecnt variables are ignored.

Unmap the current space before attempting to map another address
space. Unmap the address space when it is no longer needed to free
hardware resources for other processes.

For DOS applications, the imap function cannot suspend execution
of the calling process; therefore, when sufficient resources are not

available to satisfy the request, the imap function returns an
I_ERR_NORSRC error.

Return Value If successful, the function returns a pointer to the mapped address.
Otherwise, a null pointer is returned. Possible errors include:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_IO The system cannot execute the specified
mapping.

I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.

2-108

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

imap

I_ERR_NOERROR Successful function completion.

I_ERR_NORSRC The system contains insufficient
resources to satisfy the specified map

request. 2
I_ERR_NOTSUPP Id specifies an interface type that does

not support memory mapping (e.g.,

GPIB).
I_ERR_PARAM Id specifies a session whose type is

inconsistent with the given mapspace,
pagestart/pagecnt are inconsistent with
the capabilities of the hardware/software
platform and/or the given mapspace, or
mapspace is invalid.

See Also imapinfo, iopen, iunmap
Example
/*
/7 This example uses imap to map the VXI registers
7/ into the application's memory space.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
int *vxiregisters;
int returncode, errornumber;
int vxiid;
char *sessionname = "vdevl®;

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();

fprintf(stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr(errornumber),errornumber);
exit(1l);
}
vxiregisters = (int *) imap(instance,I_MAP_VXIDEV,0,0,NULL);
if (vxiregisters == NULL) ({

errornumber = igeterrno();

2-109

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

fprintf(stderr,
“\tUnable to map in VXI registers"):

fprintf(stderr,
"\tError = %s (%d)\n\r",
igeterrstr (errornumber) , errornumber) ;

2 exit (2);
}
returncode = iwblockcopy(instance,
(unsigned short *) vxiregisters,
(unsigned short *) &vxiid,
1L,
-1):

if (returncode != I_ERR_NOERROR) {

fprintf(stderr,
"\tUnable to copy ID register, "};

fprintf(stderr,

"error = %s (%d)\n\r",
igeterrstr (returncode),
returncode) ;

exit (3);

}
fprintf (stdout, “Manufacturer ID of device <%s> is %d",

sessionname,
vxiid & Oxfff);

exit (0);

2-110

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

imapinfo

imapinfo
Description Queries address space mapping capabilities for the specified
interface. 2
int PASCAL
imapinfo(INST id, int mapspace, int *numwindows, int
*windowsize);
id Pointer to a session structure.
mapspace Address space.
numwindows Pointer to a location where the function
stores the total number of windows.
windowsize Pointer to a location where the function
stores the window size, in pages.
Remarks This function queries mapspace on the interface of the session

pointed to by id and obtains the number of mapping windows
available and the size of each window. It does not identify which
window is in use by another process.

When there is more than one window size available, windowsize
points to a location containing the smallest window size.

The following constants define valid values for mapspace:

Constant Description

I_MAP_A1l6 Map the A16 address space

I_MAP_A24 Map the A24 address space (page size
64K bytes)

I_MAP_A32 Map the A32 address space (page size
64K bytes)

2-111

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Mapspace is invalid or numwindows
and/or windowsize is null.
See Also imap, iopen
Example
/ *
/7 This example calls imapinfo to determine the window(s)
// count and size.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h”

void main(void)

{ INST instance;
int returncode, windowcount, windowsize, errornumber;
char *sessionname = "vdevl";

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber) , errornumber) ;
exit(1l);

2-112

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

returncode = imapinfo(instance,

I_MAP_A32,
&windowcount,
&windowsize) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr, 2
“\tImapinfo call failed, error = %s (%d)\n\r*,
igeterrstr(returncode),returncode);

exit(2);
}
fprintf (stdout,
"The VXI interface contains %d window(s) of %d page(s)",
windowcount,
windowsize) ;
exit (0);

2-113

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

inbread

Description Reads data from a device or interface without blocking.

2 int PASCAL

inbread(INST id, char *buf, unsigned long bufsize, int *reason,
unsigned long *actualcnt);

id Pointer to a session structure.

buf Pointer to the data buffer.

bufsize Number of data bytes to read.

reason Pointer to a location where the function

stores the read termination bit mask.

actualcnt Pointer to a location where the function
stores the actual number of bytes read
from the device.

Remarks This function reads bufsize bytes from the device or interface of the
session pointed to by id and stores them in the buffer specified by
buf. Bufsize has a maximum value of 0x10000. It performs no
formatting or data conversion.

Reading ends when bufsize bytes are read, an END indicator is
received, a termination character is received, or the device or
interface does not send data. Unlike the iread function, this
function does not block if the device or interface does not send data.

When id specifies a device session, data is read using interface
independent communications methods. When id specifies an
interface session, data is read in raw mode using interface specific
methods.

For VXI device sessions, the function issues BYTE REQUEST
word-serial commands. Only message based VXI devices are
supported, other VXI devices cause an error.

For VXI interface sessions, the function generates an
I_ERR_PARAM error.

2-114

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

inbread

For GPIB device sessions, the function first causes all devices to
unlisten. Then, the function issues the interface's listen address,
followed by the device’s talk address. Finally, the function reads
the data bytes.

For GPIB interface sessions, the function reads data from the GPIB 2
interface without performing any addressing.

If reason is not null, the function stores a bit mask describing why
the read terminated in the referenced memory location. The
following constants define valid bits in the mask pointed to by

reason:

Constant Description

I_TERM_CHR Termination character received
(see itermchr)

I_TERM_END END indicator received

I_TERM_MAXCNT . Bufsize bytes read

I_TERM_NON_BLOCKED The device or interface was not
ready to send more data

When reason is I_TERM_NON_BLOCKED, no other termination
reasons are possible. Conversely, I_ TERM_NON_BLOCKED is
not possible when any of the other three termination conditions
exist.

If actualcnt is not null, the function stores the number of bytes read
in the referenced memory location.

2-115

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXIbus error occurred during the read
operation.

I_ERR_IO A GPIB protocol error or VXI word-

serial protocol error occurred during the
read operation.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface session or a
VXI device that is not message-based, or
bufis null.
See Also igettermchr, inbwrite, iread, itermchr, iwrite
Example
/ kL
/7 This example calls inbread to read
// an instrument's response without waiting
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
int returncode, reason = 0, errornumber, position = 0;
unsigned long readcount;
char buffer(50] = {0};
char *sessionname = "vdevl";

2-116

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

inbread

/*
// Open a device session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1);

}
(void) iprintf(instance, "rmx\n");
do {
returncode = inbread(instance,
&buffer([position],
sizeof (buffer),

&reason,
&readcount) ;
position += (int) readcount;
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
"\tinbread failed, error = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;

exit(2);
}
} while (reason != I_TERM_END);
buffer[(short) position] = (char) '\0';
fprintf(stdout, "The data read from %s is $s\n\r",
sessionname,
buffer);

fprintf(stdout, “Read termination reason(s):\n\n\r");
if (reason & I_TERM_CHR) fprintf (stdout, "\tI_TERM_CHR\n\r");
if (reason & I_TERM_END) fprintf (stdout, "\tI_TERM_END\n\r");
if (reason & I_TERM_MAXCNT)

fprintf (stdout, "\tI_TERM_MAXCNT\n\r");
exit(0);

2-117

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

inbwrite

Description Writes data to a device or interface without blocking.

2 int PASCAL

inbwrite(INST id, char *buf, unsigned long bufsize, int end,
unsigned long *actualcnt, int *done);

id Pointer to a session structure.

buf Pointer to the data buffer.

bufsize Length, in bytes, of data buffer.

end END indicator flag.

actualcnt Pointer to a location where the functions

stores the actual number of bytes written.

done Pointer to a location where the functions
store a flag indicating write completion
status.
Remarks This function writes the bufsize bytes at buf to the device or

interface of the session pointed to by id. Bufsize has a maximum
value of 0x10000. It performs no formatting or data conversion.

Writing ends when bufsize bytes are written or the device or
interface is not ready to receive data. Unlike the iwrite function,
this function does not block if the device is not ready to receive
data.

When id specifies a device session, the function writes data using
interface dependent communication methods. When id specifies an
interface session, the function writes data in raw mode using
interface specific methods.

2-118

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

inbwrite

If end is non-zero, the function writes an END indicator with the
last data byte. If end is zero, the function does not write an END
indicator with the last data byte.

If actualcnt is not null, the function stores the number of data bytes 2
written in the referenced memory location.

The function writes a one into the location referenced by done after
it writes all the specified data bytes. Until all data bytes are written,
the function writes a zero into the location referenced by done.
Done cannot be null.

For VXI device sessions, the function issues BYTE AVAILABLE
word-serial commands and supports only message based VXI
devices. Other VXI devices cause an error.

For VXI interface sessions, the function generates an
I_ERR_PARAM error.

For GPIB device sessions, the function first causes all devices to
unlisten. Then, it issues the interface’s talk address, followed by the
device’s listen address. Finally, the function writes the data.

For GPIB interface sessions, the function writes bytes directly to the
interface without performing any addressing. The ATN line state
determines if the bytes are interpreted as command bytes.

2-119

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXibus error occurred during the
write operation.

I_ERR_IO A GPIB protocol error or VXI word-

serial protocol error occurred during the
write operation.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VXI
device that is not message-based, or buf
and/or done is null.

See Also inbread, inbwrite, iread, iwrite

Example
/t
// This example calls inbwrite to write to an instrument
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

#define EOI -1 /* set the end indicator */

void main(void)
{ INST instance;
int returncode, errornumber, done = 0, count = 4, position = 0;

char *sessionname = "vdevl";
unsigned long actualcount;
char *writestring = "rmx\n";

2-120

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

inbwrite

/*
// Open a device session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrnol{);
fprintf(stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber), errornumber) ;
exit (1) ;
}
do {
returncode = inbwrite(instance,
&writestring(position],
count,
EOI,
&actualcount,
&done) ;
count -= (int) actualcount;
position += (int) actualcount;
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
"\tInbwrite failed, error = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}

} while (!done);
fprintf(stdout, “%d bytes written to <%s>",position, sessionname);
exit(0);

2-121

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

ionerror
Description Installs an error handler.
int PASCAL
ionerror(void (CDECL *errorhandler)(INST id, int error));
errorhandler Pointer to an error handler function.
Remarks This function installs the function pointed to by errorhandler as the
function to call when an error occurs.
The SICL library assumes error handler functions have the
following interface:
void CDECL
errorhandler(INST id, int error);
where id identifies the device or interface session generating the
error and error is an error constant defining the error.
SICL defines two default error handlers:
Constant Description
I_ERROR_EXIT Writes an error message to STDERR and
terminates the process.
I_ERROR_NO_EXIT Writes an error message to STDERR and
allows process to continue.
2-122

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ionerror

For DOS, the default error handlers send descriptive information to
the console without terminating the process. The functionality
required to write to STDERR and terminate a process is non-

reentrant, and cannot be used in an error handler. (See Chapter 4,
Advanced Topics). 2

Installing a null error handler removes the current error handler.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_NOERROR Successful function completion.

See Also igetonerror

Example See igetonerror.

2-123

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ionintr

Description Installs a session’s interrupt handler.

2 int PASCAL

ionintr(INST id, void (CDECL *intrhandler)(INST id, long
datal, long data2));

id Pointer to a session structure.
intrhandler Pointer to an interrupt handler function.
Remarks This function installs the function pointed to by intrhandler as the

function to call when the device or interface session pointed to by id
processes an interrupt event.

The SICL library assumes that interrupt handler functions have the
following interface:

void CDECL -
intrhandler(INST id, long datal, long data2);

where id identifies the device or interface session receiving the
interrupt, datal identifies the interrupt (I_INTR_TRIG, etc.).

Data2 has meaning on an EPC-7 only for I_INTR_TRIG interrupts
to a VXI interface session when it identifies the trigger(s) causing
the interrupt. Dara2 has these constants:

Constant Description
I_TRIG_STD Standard trigger.
I_TRIG_EXTO0 EXT trigger 0, if it is mapped as an
input trigger (see ivxitrigroute).

I_TRIG_TTLO TTL trigger O.

I_TRIG_TTL1 TTL trigger 1.

I_TRIG_TTL2 TTL trigger 2.

I_TRIG_TTL3 TTL trigger 3.

I_TRIG_TTL4 TTL trigger 4.

2-124

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ionintr

Return Value

I_TRIG_TTLS TTL trigger 5.
I_TRIG_TTL6 TTL trigger 6.
I_TRIG_TTL7 TTL trigger 7.

The trigger(s) corresponding to the I_TRIG_STD constant can be
modified using ivxirigroute. By default, I_TRIG_STD
corresponds to [_TRIG_TTLO.

Proper VXI trigger interrupt operation on an EPC-7 requires direct
program manipulation of EPC-7 hardware, refer to Chapter 4,
Advanced Topics, for additional information,

This function does not enable interrupt reception or processing. See
isetintr to enable interrupt reception and iintroff and iintron to
disable and enable interrupt processing, respectively.

The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM 1d specifies a commander session.
See Also igetonintr, iintroff, iintron, isetintr
Example
/ *
// This example sets, generates and processes interrupts
/7 using igetonintr, ionintr, isetintr and iintron/introff.
*/
#include <stdio.h>
#include <stdlib.h>
#include "busmgr.h*
#include “"sicl.h*"

2-125

2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/* remove's compiler warning message (compiler specific) */
#define REMOVEWARNING (x) X =X

#define INTERRUPTENABLE 1

#define INTERRUPTDISABLE O

#define INTERRUPTS 7 /* interrupts 1-7 */
#define WAITTIME (1000L*30L*1)

#define TIMERINT 8

volatile unsigned long Vmeinterruptcount = 0;
void (INTERRUPT *timerfunction) ();
volatile unsigned long Tick = 0;

void
console{char *astring)
{ char achar;

while (*astring) {
achar = *astring++;

ASM
mov ah, Oeh
mov al,achar
mov bx,3
int 010h
ENDASM

}

static void
reverse(char s{]) /* K & R -- page 59 */
{ register int i, j:

int slen;

char c¢;

len++]);
0, 3 = slen-2; i < j; i++, j--) {

static void
myitoa{long n,char s(]) /* K & R -- page 60 */
long i, sign;

if ({sign = n) < 0) n = -n;
i=0;
do {
s[(int) (i++)] = (char) ((char) (n % 10) + '0'};
} while ({(n /= 10) > 0});
if (sign < 0) s{(int) (i++)] = (char) '-';
s{(int) i] = (char) '\0';
reverse(s) ;
}
2-126

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ionintr

void CDECL
vmehandler (INST instance, long interruptsource, long junk)
{ char abuffer(10];

char *sessionaddress;

Vmeinterruptcount++;
/i
// Can't use stdio from interrupt handlers.

*/

console{"handler : vmehandler, Interrupt source <"});

myitoa(interruptsource,abuffer);

console(abuffer);

console(">\n\zr");

console(“Interrupt <");

myitoa(Vmeinterruptcount,abuffer);

console(abuffer) ;

console(">\n\r");

if (igetaddr(instance, &sessionaddress) == I_ERR_NOERROR) {
console("Session address = <");
console(sessionaddress) ;
console(">\n\r");

}

REMOVEWARNING (junk) ;

}

#if !defined(__TURBOC__)

void INTERRUPT
mytimer ()
{ Tick--;
if (Tick == 0) {
EpcSigIntr (3);
}
Vmeinterruptcount = 1;
_chain_intr(timerfunction);
}

void

installtimer (void (INTERRUPT *newfunction) (),unsigned short timeout)

{ _disable()};

Tick = 18 * timeout;

timerfunction = _dos_getvect (TIMERINT) ;
_dos_setvect (TIMERINT, newfunction) ;
_enable();

}

void

deinstalltimer ()

{ _disable();
_dos_setvect (TIMERINT, timerfunction);
_enable();

}

#endif

void main(void)
{ INST instance;

2-127

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

int returncode, errornumber;

char *sessionname = "vxi";

register short iinductor;

void (CDECL *oldhandler) (INST instance,
long interruptsource,

long junk};
/t

// Open a device session

*/
instance = iopen{sessionname);
if (instance == NULL) {

errornumber = igeterrno{);
fprintf (stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1);
}
returncode = ionintr{instance, vmehandler);
if (returncode != I_ERR_NOERROR) {
fprintf(stderr,
"\tUnable to set interrupt handler\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr {returncode), returncode) ;
exit (2);
}
returncode = isetintr(instance,I_INTR_VXI_VME, INTERRUPTENABLE) ; -
if {(returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to enable interrupt reception\n\r");
fprintf(stderr,
"\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;

exit(3);
}
/*
// Cycle through the VME interrupts
*/
for (iinductor = 0; iinductor <= INTERRUPTS; iinductor++) {
if (EpcSigIntr{iinductor) != EPC_SUCCESS) {
fprintf (stderr, "\tUnable to generate a VME
interrupt\n\r");
exit(4);
}
if (Vmeinterruptcount != INTERRUPTS) {
fprintf(stderr,
"\tExpected interrupt processing not detected\n\r");
exit (5);
}

#if 'defined(___TURBOC__)

2-128

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ionintr

/*

// Create a new thread to assert a VME interrupt.
*/

Vmeinterruptcount = 0;

installtimer (mytimer, 15});

/-ﬁ

// Wait for the completion of one more interrupt handler
!/ invocation

*/

returncode = iwaithdlr (WAITTIME);

deinstalltimer();

if (returncode != I_ERR_NOERROR) {
fprintf{stderr,
"\tIwaithdlr failed\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode);
exit(6) ;

if (Vmeinterruptcount == 0) {
fprintf(stderr,
"\tExpected interrupt processing not detected\n\r");

exit(7);
}
#endif
/*
// Keep interrupt processing off while the interrupt
// handler is being written
*/
returncode = iintroff();
if (returncode !'= I_ERR_NOERROR) {

fprintf (stderr,
"\tIintroff failed\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(8);
}
/*
// Restore the previous interrupt
*/
returncode = igetonintr(instance, &oldhandler);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable execute igetonintr successfully\n\r"};
fprintf (stderr,
"\terror = %s {(%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(9);
}
fprintf (stdout, "Interrupt testing successfull\n\r");
exit(0);

2-129

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ionsrq

Description Installs a service request (SRQ) handler.

2 int PASCAL

ionsrq(INST id, void (CDECL*srghandler)(INST id));

id Pointer to a device session structure.
srghandler Pointer to a SRQ handler function.
Remarks This function installs the function pointed to by srghandler as the

function to call when the device session pointed to by id processes a
service request event.

The SICL library assumes that SRQ handler functions have the
following interface:

void CDECL
srqghandler(INST id);

where id identifies the device requesting service.
SRQ reception is always enabled.

This function does not enable or disable SRQ processing. Use
iintroff to disable SRQ processing and iintron to enable SRQ
processing. By default, SRQ processing is enabled.

If an interface device driver receives a SRQ and cannot determine
the SRQ source, it passes the SRQ to all device sessions on the
interface. Therefore, a SRQ handler cannot assume that its
corresponding device generated the SRQ. Use the ireadstb
function to determine whether the corresponding device generated
the SRQ.

If a process has two or more sessions that refer to the same device
and a SRQ request occurs, the SRQ handlers for each of the two
different device sessions are called.

2-130

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ionsrq

Return Value The function returns an integer to indicate its success or failure,
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_PARAM Id specifies an interface or commander
session.
See Also igetonsrq, ireadstb
Example See igetonsrq

2-131

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iopen

Description Opens a session.

2 int PASCAL

INST iopen(char *addr);

addr Device or interface address string

Remarks This function opens a session for communicating with the device or
interface specified by the address string addr. Addr cannot be null.

An address string for interfaces has this form :
logical unit | symbolic name

where logical unit is an integer greater than zero and less than
32767 and symbolic name is any sequence of letters, digits,
underscores, and dashes that begins with a letter. The following are
valid interface addresses:

7 An interface at logical unit 7
vXxi A symbolic name for the VXIbus interface
An address string for devices has this form :

(i/f address, primary address [, secondary address])|

symbolic name

where i/f address is logical unit | symbolic name (the same as the
address string for interfaces), primary address is interface specific
(normally a positive integer, but can be a string or sequence of
bytes), secondary address is also interface specific, and symbolic
name is the same as the address string for interfaces . The following
are valid device addresses:

2-132

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iopen

7,23 I/f address is logical unit 7 and primary address
of the device 1s 23.

vxi,128 I/f address is symbolic name vxi and primary
address is ula 128.

meter The device has symbolic name meter
Logical units, symbolic names, and the corresponding device driver
names are defined in the SICLIF file in the ..\EPCONNEC

directory. By default, the SICLIF file defines the following
interfaces:

Logical Unit Symbolic Name Device Name

2 VXi vxi$l
2 VX1 vxi$1
2 mxi vxi$l
2 MXI vxi$l
1 gpib gpib$1
1 GPIB gpib$1
1 hpib gpib31
1 HPIB gpib$1

Symbolic device names are defined in the DEVICES file in the
..\EPCONNEC directory. If no configured name matches the a
VXI device, the VXI device gets a symbolic name generated by the
SURM. The SURM assigned names may change if the system
configuration is changed. The VXI Configurator defines symbolic
devices and their attributes.

If an interface and a device have the same name, the session opens
as an interface session because interface names are searched first.

Address strings that begin with ASCII digits "0" through "9" are
considered logical unit numbers.

2-133

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value If successful, the function returns a pointer to the new session.
Otherwise, a null pointer is returned. Possible errors are:

Constant Description

I_ERR_BADADDR Addr specifies an invalid primary or
secondary address, or references an
invalid device.

I_ERR_LOCKED Addr specifies a device or interface that
is locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_NOINTF The device driver corresponding to addr
is not installed.
I_ERR_NORSRC The system contains insufficient

resources to open the session.

I_ERR_NOTSUPP The implementation does not support
commander sessions.

I_ERR_SYMNAME Addr specifies an invalid symbolic

interface or device name.

I_ERR_SYNTAX Addr specifies a syntactically incorrect
address.
See Also iclose
Example
/*
// Use iopen to establish some sessions
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

2-134

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iopen

void main(void)

{ INST instances(6]) = {0};
int errornumber, icount = 0, i;
char *interfaces([] = { "1", "2" };
char *sessions{] = { "vdevl", “gdevl" };

for (1 = 0; 1 < 2; i++) {

/*
// Open the interfaces
*/
instances[icount] = iopen(interfaces(i]);
if (instances(icount] == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
interfaces|[i],
igeterrstr (errornumber) , errornumber) ;
exit(1);
}
icount++;
}
for (i = 0; 1 < 2; i++) {
/*
// Open the device sessions
*/
instances[icount]'= iopen(sessions([i]);
if (instances{icount] == NULL) {
errornumber = igeterrno{);
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessions[i],
igeterrstr (errornumber), errornumber) ;
exit(2);
}
icount++;
}
/*
// Open some devices with a hardcoded interface
*/
instances{icount] = iopen("2,1");
if (instances[icount] == NULL) {

errornumber = igeterrno();
fprintf(stderr,
"\tUnable to open <2,1>, error = %s (%d)\n\r",
igeterrstr (errornumber) , errornumber) ;
exit(3);
}

icount++;

2-135

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
// Open some devices with a hardcoded interface
*/
instances(icount] = iopen("vxi,1l");
if (instances{icount] == NULL) {
errornumber = igeterrno():;
fprintf (stderr,
“\tUnable to open <vxi,l>, error = %s (%d)\n\r",
igeterrstr{errornumber) , errornumber) ;
exit(4);
}
/*
!/
*/
exit (0);

2-136

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

iprintf
Description Formats and writes data to a device or interface.
int CDECL
iprintf(INST id, char *format [, argument)...);
id Pointer to a session structure.
format Pointer to a format control string.
argument Optional arguments.
Remarks This function writes characters and values to the device or interface

of the session pointed to by id. Format is a string of ordinary
characters, special formatting character sequences, and format
specifications that control how to format and convert each
argument. Ordinary characters and special formatting character
sequences are written as they are encountered. The following
defines valid special formatting sequences:

Sequence Description
\n Write the ASCII line-feed character.

The END indicator is also automatically
sent, but can be disabled using the —t
type character.

\r Write the ASCII carriage return
character.

A\ Write the backslash (\) character.

\t Write the ASCII tab character.

\# Write the ASCII character specified by
the three digit octal value ###.

\" Write the ASCII double-quote (")
character.

2-137

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Format specifications always begin with the percent sign (%) and
are processed left to right. The first format specification causes the
first argument value to be converted and written. The second
format specification causes conversion and writing of the second
argument, and so forth. To eliminate unpredictable results, there
must be an argument for each format specification. If there are
more arguments than format specifications, the excess arguments
are ignored.

Floating point format types use non-reentrant C library calls;
therefore, do not use iprintf function calls with floating point types
within interrupt, SRQ, and error handlers.

To eliminate unpredictable results, do not mix inbwrite with iprintf
and iwrite calls within a session.

Format Specification Fields

There are six format specification fields. Each field is a character, a
séries of characters, or a number that specifies how to convert and’
write the associated argument. A format specification has these
fields:

%(flags] [width] [.precision] [distance] [size] type

Field Description
type Required character that determines how to

interpret the associated argument (character,
string, number, or pointer.)

flags Optional characters that control the justification of
characters and the printing of signs, blanks,
decimal points. It also controls the printing of
binary, octal and hexadecimal prefixes. More than
one flag can appear in a format specification.

width Optional character that specifies the minimum
number of characters to write.

2-138

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

precision

distance

size

Optional character that specifies the number of
characters to write after the decimal point for
numeric formats. For string formats, precision
specifies the maximum number of characters to 2
write.

Optional character prefix that refers to the near or
far object.

Optional character that specifies an argument size
modifier.

The simplest format contains only the % sign and a type field
character. The optional fields, that appear before the fype field
character control other formatting aspects. Any character that
follows the % sign that is not a valid format field is interpreted as

data.

Type Field Character

The type field character is the only required format specification
field and determines whether the associated argument is interpreted
as a character, string, number, or pointer. It also controls writing of
the END indicator when a linefeed character is written. The
following lists the valid type field characters and describes how the
associated argument is interpreted:

Character Type Description

d int Signed decimal integer.

i int Signed decimal integer.

u int Unsigned decimal integer.

0 int Unsigned octal integer.

X int Unsigned hexadecimal integer, using
lower case letters.

X int Unsigned hexadecimal integer, using

upper case letters.

2-139

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

f double Signed value having the form
[-ldddd.dddd, where dddd is one or
more decimal digits. The number of
digits before the decimal point
depends on the magnitude of the
number. The number of digits after
the decimal point depends on the
precision field value.

e double Signed value having the form
[-1d.dddde[sign]ddd, where d is a
single decimal digit, dddd is one or
more decimal digits, ddd is exactly
three decimal digits, and sign is + or

E double Same as e, but the argument uses “E”
instead of “e”,
g double Signed value in the f or e format,

whichever is more compact for the
given value and precision. The e
format is used only when the
exponent of the value is less than —4
or greater than or equal to the
precision value. Trailing zeros and
decimal point are written only if

necessary.
c int Single character.
C int Single character with the END

indicator appended.

s Pointer Pointer to a null-terminated string.
The null character or the precision
value determines the length of the
formatted string.

2-140

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

S Pointer Pointer to a null-terminates string that
is written as an IEEE 488.2 STRING
RESPONSE DATA block. The
string is enclosed in double quotes
(). Double quotes within the string
are double quoted ("").

n Pointerto Pointer to the number of characters
integer converted and written to the buffer.
This value is stored in the integer
whose address is given as the

argument.
p Far Prints the address pointed to by the
pointer to argument in the form xxxx:yyyy,
void where xxxx is the segment and yyyy is

the offset, and the digits x and y are
uppercase hexadecimal digits; %hp
indicates a near pointer and prints
only the offset of the address.

b Pointerto Pointer to a block of data that is

data block written as an IEEE 488.2 DEFINITE
LENGTH ARBITRARY BLOCK
RESPONSE DATA block. Flags
must contain a long specifying the
maximum the number of elements
(specified by the size w, i, z, or Z or
default) in the data block or an
asterisk. An asterisk specifies that
the next two arguments contain the
number of bytes to write and a
pointer to the data block,
respectively. The number of bytes to
write is an unsigned long type and
has a maximum value of OxFFFF.
Width and precision are not allowed.

2-141

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

B Pointer to Same as b, except that the data block
data block is written as an IEEE 488.2
INDEFINITE LENGTH

ARBITRARY BLOCK RESPONSE
DATA. This format writes the END
indicator.

—t N/A Turns off sending of the END
indicator when an ASCII line feed
character is written from within the
format string. The flag does not
affect transmission of the END
indicator for conversion with types s,
S,c,and C.

+t N/A Turns on sending of the END
indicator when an ASCII line feed
character is written from within the
format string. The flag does not
affect transmission of the END
indicator for conversion with rypes s,
S, c¢,and C.

Flags Field Characters

The flags field character is optional and controls the justification of
characters and the writing of signs, blanks, and decimal points. It
also controls the writing of binary, octal, and hexadecimal prefixes,
and madifies the meaning of the type field character. More than one
flags character can be used in a format specification. The following
describes the flags field characters and the defaults when that flags
is not specified:

2-142

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

Flags

blank

Definition

Left-justify the result within the
given field width.

Prefix data with a sign (+ or —) if
the data is of a signed type. Can
be used with flags @1, @2, or
@3. Not valid with flags @H,
@qQ, or @B.

Prefix with a blank if the value is
signed and positive; the blank is
ignored if both the “blank” and
“4” flags appear. Can be used
with flags @1, @2, or @3, but
not valid with flags @H, @Q, or
@B

If width is prefixed 'with 0, pad
with zeros until the minimum
width is reached. If “0” and “-"
are specified, the 0 is ignored. If
0 is specified with an integer
format (i, u, x, X, o, d), the 0 is
ignored.

When used with fypes o, X, or X,
prefixes any non-zero output
value with 0, 0x, or 0X,
respectively.

When used with types e, E, or f,
always forces the output value to
contain a decimal point.

When used with types g or G,
forces the output value to always
contain a decimal point and
prevents the truncation of trailing
Z€eros.

Default

Right justify. 2

Only negative
values are prefixed.

No blank appears.

No padding

No blank appears.

Decimal point
appears only if
digits follow it.

Decimal point
appears only if
digits follow it.
Trailing zeros are
truncated.

2-143

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

@1

@2

@3

@H

@Q

@B

Ignored when used with rypes c,
d,i,u,ors.

Converts the type to an integer
with no decimal point (NR1
compatible). Valid only with
typesd, f, e, E, g, and G.

Converts the type to a number
with at least one digit to the right
of the decimal point (NR2
compatible). Valid only with the
d,f, e E, g, and G types.

Converts the type to a floating
point number with exponential
notations (NR3 compatible).
Valid only with types d, f, e, E,
g, and G.

Create an IEEE 488.2
HEXADECIMAL NUMERIC

RESPONSE DATA number (e.g.

#H4A81). Valid only with types
d f. e E, g and G.

Create an IEEE 488.2 OCTAL
NUMERIC RESPONSE DATA
number (e.g. #Q17774). Valid
only with rypes d, f, e, E, g, and
G.

Create an IEEE 488.2 BINARY
NUMERIC RESPONSE DATA
number (e.g. #B11011000).
Valid only with types d, f, e, E,
g, and G.

Format data based
on type only.

Format data based
on type only.

Format data based
on type only.

Format data based
on type only.

Format data based
on type only.

Format data based
on type only.

2-144

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

Width Field Character

The width field character is optional and contains a non-negative
decimal integer that specifies the minimum number of characters
written. If the number of characters to write is less than the
specified width, blanks are added to the left or right of the value,
depending on whether the — flag is specified, until the minimum
width is reached. If width is prefixed with the “0” flag, zeros are
added until the minimum with is reached.

The width field character never causes the value to be truncated. If
the number of characters to write is greater than the specified width
or width is not given, all characters of the value are written (subject
to precision).

If width is an asterisk (*), the next argument from the argument list
is treated as an int and supplies the width value. The value to
format immediately follows the precision value in the argument list.
A nonexistent or small field does not cause truncation. If the result
of the conversion is wider than the field width, the field expands to
contain the conversion result.

Precision Field Character

The precision field is an option and contains a non-negative decimal
integer, preceded by a period, that specifies the number of
characters to write. Unlike the width field, precision can cause
truncation of the output value, or rounding in the case of a floating
point number.

If precision is an asterisk (*), the next argument from the argument
list is treated as an int and supplies the precision value. The value
to format immediately follows the precision value in the argument
list. The following describes how precision values affect the
various fypes (defaults are actions when precision is omitted with
the type.)

2-145

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Type

Meaning

d, i, u,
0,x, X

e, E

g G

c, C

s, S

If the argument corresponding to a floating-point specifier is
infinite, indefinite, or not a number (NAN), the iprintf function

Specifies the minimum number
of digits to write. If the number
of digits in the argument is less
than precision, the output is
padded on the left with zeros.
The value is not truncated when
the number of digits exceeds
precision.

Specifies the number of digits to
write after the decimal point.
The last written digit is rounded.

Specifies the number of digits to

write after the decimal point. If
a decimal point appears, at least
one digit appears before it. The
value is rounded to the
appropriate number of digits.

Specifies the maximum number
of significant digits to write.

No effect

Specifies the maximum number
of character to write. Characters
in excess of precision are not
written

returns the following:

Default

Defaultis 1.

Defauit is 6. If
precision is 0 or
the period appears
without a number
following it, no
decimal point is
written.

Default is 6. If
precision is Q or
the period appears
without a number
following it, no
decimal point is
written.

Six significant
digits are written
with any trailing
zeros truncated.

Character is
written.

Characters are
written until a null
character is
encountered.

2-146

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

Value Returned Value

+ infinity 1.#inf random-digits
—infinity ~1.#inf random-digits
Indefinite digit $IND random-digits
NAN digit #NAN random-digit

Distance Field Character

The optional distance prefix refers to the distance to the object
being printed (Far or Near).

F and N are not part of the ANSI or SICL definition and should not
be used if ANSI or SICL portability is required.

The following demonstrates the use of F, N, h, and 1.

Sample Code Action

iprintf("' %Ns'"); Write near string

iprintf(" % Fs'"); Write far string

iprintf("' % Nn''); Write char count in near int
iprintf("" % Fn''); Write char count in far int
iprintf(" %hp"); Write a 16-bit pointer (xxxx)
iprintf("' %lp"'); Write a 32-bit pointer (xxxx:xxxx)
iprintf(" % Nhn"); Write char count in near short int
iprintf("' % NIn""); Write char count in near long int
iprintf(" %Fhn"'); Write char count in far short int
iprintf(" % FIn'"); Write char count in far int

The specifications %hs and %ls have no meaning.

2-147

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Size Field Character

The size field character is optional and is an argument modifier.
The following defines the valid size entries:

Character Description

h Use with types d, i, 0, x, and X to specify that
the argument is a short int or with type u to
specify a short unsigned int. If used with
type p , it indicates a 16-bit pointer (offset
only).

1 Use with types d, i, o, x, and X to specify that
the argument is a long int. Use with the type u
to specify a long unsigned int. Use with
typese, E, I, g, and G to specify a double
rather than a float. If used with type p , it
indicates a 32-bit pointer.

Use with types b.and B to specify that the
argument is a pointer to an array of long
unsigned ints (32-bits). The data block is sent
as an array of 32-bit words. The longwords
are byte swapped and padded as necessary so
that they conform to IEEE 488.2.

L Use with types e, E, f, g, and G to specify a
long double.
w Use with fypes b and B to specify that the

argument is a pointer to an array of unsigned
shorts (16-bits). The data block is sent as an
array of 16-bit words. Flags must be a long
and specifies the number of words in the data
block. The words are byte swapped and
padded as necessary so that they conform to
IEEE 488.2.

2-148

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

z Use with rypes b and B to specify that the
argument is a pointer to an array of floats.
The data block is sent as an array of 32-bit
IEEE-754 floating point numbers. If the
internal floating point representation of the
computer is not IEEE-754 compliant, the
numbers are converted before being written.

YA Use with rypes b and B to specify that the
argument is a pointer to an array of doubles.
The data block is sent as an array of 64-bit
IEEE-754 floating point numbers. If the
internal floating point representation of the
computer is not IEEE-754 compliant, the
numbers are converted before being written.

Return Value The function returns an integer indicating the actual number of
format conversions performed. Conversions that require multiple
arguments are counted as one conversion for the return value.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I ERR_DATA A VXlIbus error occurred during the

write operation.

I_ERR_IO A GPIB protocol error or VXI word-
serial protocol error occurred during the
write operation.

I_ ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VXI
device that is not message-based.

I_ERR_TIMEOUT A timeout occurred.

2-149

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

See Also iflush, ipromptf, iscanf, isetbuf, iwrite
Example
/*
// This program illustrates output formatting with iprintf
2 */

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void
check (int returncode);

void main{void)
{ INST instance;
int returncode, errornumber;

char *startstring = "BEGIN";
short blockresponsedatal4] = {(1, 2, 3, 4 };
char end = ';';

int index = 1;
double seed = 3825.1e+15;
char *sessionname = "EPC2";

#1f defined(I_SICL_FMTIO)
fprintf(stderr,
"\tFormatted I/O is not supported on this implementation");

exit(0):; -
#endif

/*

// Open a device session

*/

instance = iopen(sessionname);

if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);
}
returncode = iprintf{instance, "$s\n",startstring);
check (returncode) ;
returncode = iprintf(instance, "$%$@Hd\n", index) ;
check (returncode) ;
returncode = iprintf(instance, "%$le\n",seed);
check{returncode};
returncode = iprintf(instance, "$@Bg\n", seed);
check{returncode) ;
returncode = iprintf(instance, "%4wB\n",blockresponsedata) ;
check (returncode) ;
returncode = iprintf{instance, "%C",end);
check (returncode) ;

}

void

2-150

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iprintf

check (int returncode)

{ int errornumber;
/*
/7 Iprintf returns the number of format conversion.
*/
errornumber = igeterrnol();
if (returncode != 1 || errornumber != I_ERR_NOERROR} {

fprintf (stderr,
"\tIprintf failed, error = %$s (%d)\n\r",
igeterrstr(errornumber),errornumber);
exit(2);

}
exit (0);

2-151

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ipromptf
Description Sends formatted data to and reads formatted data from a device or
2 interface.
int CDECL
ipromptf(INST id, char *writeformat, char *readformat
[,argument]...);

id Pointer to a session structure.
writeformat Pointer to write format.

readformat Pointer to read format.

argument Optional input arguments and (or

pointer(s)) to the location(s) where the
function stores the formatted data.

Remarks This function performs both an iprintf function and an iscanf
function in a single call. First data is written, then it is read.

Writeformat points to a format specification string that writes data
to the device or interface of the session pointed to by id. It uses the
number of arguments necessary to satisfy the format specification.
The write format specification is identical to the iprintf format
specification.

Readformat points to a read data format specification string that
reads data from the device or interface of the session pointed to by
id. Readformat uses the remaining arguments to satisfy the read
format specification. The read format specification is identical to
the iscanf format specification.

Interrupts that occur while a read is being executed are not
processed until the read completes.

2-152

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ipromptf

Return Value The function returns an integer indicating the total number of format
conversions performed by both format specifications. Conversions

that require multiple arguments are counted as one conversion for
- the return value. Possible errors are:

Constant
I_ERR_BADID
I_ERR_DATA
I_ERR_IO

I_ERR_LOCKED

I_ERR_NOERROR
I_ERR_PARAM

I_ERR_TIMEOUT

Description 2

Invalid id session pointer.

A VXIlbus error occurred.

A GPIB protocol error or VXI word-
serial protocol error occurred.

Id specifies a device or interface that is
locked by another process.

Successful function completion.

Id specifies a VXI interface or a VXI
device that is not message-based.

A timeout occurred.

s See Also iprintf, iscanf
Example
/ *
// This example calls iprompt to program and
7/ read an instrument.
*
/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;

int returncode, errornumber;

char buffer[50] = {0};

char *sessionname = "vdevl";

#if defined(I_SICL_FMTIO)
fprintf (stderr,

"\tFormatted I/O is not supported on this

implementation") ;
exit (0);
#endif

2-153

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber), errornumber) ;
exit(1);
}
returncode = ipromptf(instance, "rmx\n*, "%s".,buffer):
if (returncode != 1) {
fprintf(stderr,
"\tUnexpected number of Ipromptf conversions\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(2);
}
fprintf (stdout,
“The data read from <%s> is %s\n\r*,\
sessionname,
buffer);
exit(0);

2-154

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iread

iread

Description

Remarks

Reads data from a device or interface.

int PASCAL
iread(INST id, char *buf, unsigned long bufsize, int *reason,
unsigned long *actualcni);

id Pointer to a session structure.

buf Pointer to the data buffer.

bufsize Number of data bytes to read.

reason Pointer to the location where the

functions stores the cause of read
termination bit mask.

actualcnt Pointer to a location where the function
stores the actual number of bytes read
from the device or interface,

This function reads bufsize bytes from the device or interface of the
session pointed to by id and stores them into the buffer beginning at
buf. Bufsize has a maximum value of 0x10000. It performs no
formatting or data conversion.

Reading ends when bufsize bytes are read, an END indicator is
received, a termination character is received, or a timeout occurs.
Unlike the inbread function, this function blocks until one of these
three conditions is met.

When id specifies a device session, data is read using interface
independent communications methods. When id specifies an
interface session, data is read in raw mode using interface specific
methods.

If actualcnr is not null, the function stores the number of bytes read
in the referenced memory location.

2-155

2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

For VXI device sessions, the function issues BYTE REQUEST
word-serial commands. The function only supports message based
VXI devices; other VXI devices cause an error.

For VXI interface sessions, the function generates an
I_ERROR_PARAM error.

For GPIB device sessions, the function first causes all devices to
unlisten. Then, it issues the interface’s listen address, followed by
the device’s talk address. Finally, the function reads the data bytes.

For GPIB interface sessions, the function reads data from a GPIB
interface without performing any addressing.

If reason is not null, the function stores a bit mask describing why
the read terminated in the referenced memory location. These
constants define valid bits in the mask pointed to by reason:

Constant Description

I_TERM_CHR Termination character received
(see itermchr)

I_TERM_END END indicator received

I_TERM_MAXCNT Bufsize bytes read

2-156

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iread

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXIbus error occurred during the read
operation.

I_ERR_IO A GPIB protocol error or VXI word-

serial protocol error occurred during the
read operation.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VXI
device that is not message-based, or buf
is null.

I_ERR_TIMEOUT A timeout occurred.

See Also igettermchr, inbread, inbwrite, itermchr, itimeout, iwrite
Example

/ *

/7 This example calls iread to read an instrument's

/7 response

*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)
{ INST instance;
int returncode, reason, errornumber;
unsigned long readcount;
char buffer[50] = {0};
char *sessionname = “vdevl";

2-157

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*

// Open a device session

*/

instance = iopen(sessionname) ;
if (instance == NULL) {

errornumber = igeterrno():
fprintf (stderr,

"\tUnable to open <%s>, error = %s (%$d)\n\zr",
sessionname,
igeterrstr(errornumber),errornumber);
exit(1l);
}
(void) iprintf(instance, "rmx\n");
returncode = iread(instance,
buffer,
sizeof (buffer),
&reason,
&readcount) ;
if (returncode != I_ERR_NOERROR)} {
fprintf (stderr,
"\tIread failed, error = %s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(2);

buffer{ (short) readcount] = 0:
fprintf (stdout,
"The data read from <%s> is $s\n\r",
sessionname,
buffer);
fprintf(stdout, "Read termination reason(s) :\n\n\r") ;
if (reason & I_TERM CHR)
fprintf(stdout,"\tI_TERM_CHR\n\r");
if (reason & I_TERM_END)
fprintf(stdout,"\tI_TERM_END\n\r");
if (reason & I_TERM_MAXCNT)
fprintf(stdout,"\tI_TERM_MAXCNT\n\r");
exit (0} ;

2-158

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ireadstb

ireadstb
Description Reads the status byte from a device.
int PASCAL
ireadstb(INST id, unsigned char *statusbyte);
id Pointer to a device session structure.
statusbyte Pointer to a location where the function
stores the device’s status byte.
Remarks This function reads the device status byte of the device of the

session pointed to by id and is valid only for device sessions.

For VXI device sessions, the function issues a READ STB word-
serial command. The function only supports message-based VXI
devices; other VXI devices cause an error.

For GPIB device sessions, the function issues a GPIB serial poll
(SPOLL) command.

2-159

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXIbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word-
serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.
I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies an interface or commander
session or a VXI device that is not
message-based, or statusbyte is null.

I_ERR_TIMEOUT A timeout occurred.

See Also isetstb, itimeout
Example
/ *
// This example uses ireadstb to issue a VXI
// word serial READ STB command.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vdevl";
unsigned char statusbyte;

2-160

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ireadstb

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber) , errornumber) ;
exit(l);
}
returncode = ireadstb(instance, &statusbyte};
if (returncode '= I_ERR_NOERROR) {
fprintf (stderr,
"\tIreadstb failed, error = %s (%d) \n\r",
igeterrstr (errornumber) ,errornumber) ;
exit(2);
}

fprintf (stdout,
"Status byte = %x",statusbyte);
exit(0);

2-161

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

iremote
Description Puts a device in remote mode.

int PASCAL

iremote(INST id);

id Pointer to a device session structure,
Remarks This function places the session device pointed to by id into remote

mode and is valid only for device sessions.

For VXI device sessions, the function issues a SET LOCK word-
serial command. The function only supports message-based VXI
devices; other VXI devices cause an error.

For GPIB device sessions, the function asserts the REN line then
addresses the device to listen.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXIbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word-
serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is

locked by another process.
I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies an interface or commander
session or a VXI device that is not
message-based.

I_ERR_TIMEOUT A timeout occurred.

2-162

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iremote

See Also ilocal
Example
/*
// This example uses iremote to issue a SET LOCK word
/7 word command.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vdevl";
/*
// Open a device session
*/
instance = iopen{sessionname);
if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s ($d)\n\r",
sessionname,
igeterrstr{errornumber) , errornumber) ;
exit(1l);
}
returncode = iremote{instance);
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
“\tIremote failed, error = %s (%d) \n\r",
igeterrstr (errornumber), errornumber) ;
exit (2);

exit(0);

2-163

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

iscanf
Description Reads and formats data from a device or interface.

int CDECL
iscanf(INST id, char *format [, *argument)...):

id Pointer to a session structure.
‘ormat Pointer to a format control string.
g

argument Pointer(s) to locations where the function
stores the formatted data.

Remarks This function reads a series of characters and values from the device
or interface session pointed to by id. The characters and values are
read into the locations pointed to by argument. Format is a string
of ordinary characters that control how to format and convert
characters from the specified device or interface. It can contain one
or more of the following:

* The white-space characters blank (" "), tab (\t), or newline (\n). -
A white-space character causes iscanf to read, but not store, all
consecutive white-space characters in the input up to the next
non-white-space character. One white-space character in the
formatr string matches any number (including 0) and
combination of white-space characters in the input.

* Non-white-space characters, except the percent sign (%). A
non-white-space character causes iscanf to read, but not store, a
matching non-white-space character. If the read character does
not match the format character, iscanf terminates,

* Format specifications. Format specifications begin with the
percent sign (%) and cause iscanf to read and convert input
characters into values of a specified type. The value is assigned
to an argument in the argument list.

2-164

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

Format specifications always begin with the percent sign (%) and
are read left to right. Characters outside the format specification are
expected to match the sequence of characters from the device or
interface. The matching characters from the device or interface are
scanned but not stored. If a scanned character does not match the
format specification iscanf terminates.

The first format specification causes the first input field from the
device or interface to be converted and written to the location
pointed to by the first argument. The second format specification
causes conversion of the second input field from the device or
interface to be converted and written to the location pointed to by
the second argument, and so forth. There must be enough format
specifications and arguments for the input field being read for the
results to be predictable. Excess format specifications and
arguments are ignored.

Format Specification Fields

There are six format specification fields. Each field is a character, a
series of characters, or number signifying a format option. ~ The
following defines the form of a format specification:

%[*] (flags) [width) [distance] [size] type

Field Description
type Required character that determines whether

the associated input field is interpreted as a
character, string, number, or pointer.

Optional character that suppresses assignment
of the next input field. The field is scanned
but not stored.

2-165

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Sflags Optional character that specifies a maximum
size.
width Optional character that specifies the maximum

number of characters to read.

distance Optional character prefix that refers to the
near or far object.

size Optional character that specifies an argument
size modifier.

The simplest format contains only the % sign and a fype field
character. The option fields that appear before the type field
character control other formatting aspects.

Type Field Character

The type field character is the only required format field and
determines whether the read data is interpreted as a character, string,
number, or pointer. It also controls whether the read data terminates
with a END indicator. The following describes the rype field

characters:
Character Expected Input Type Argument
Type
d Decimal integer in either IEEE Pointer to int.
488.2 DECIMAL NUMERIC
PROGRAM DATA (NRf) or
NON-DECIMAL NUMERIC
PROGRAM DATA (#H, #Q,
and #B) format.
D Decimal integer in either IEEE Pointer to long
488.2 DECIMAL NUMERIC
PROGRAM DATA (NRf) or

NON-DECIMAL NUMERIC
PROGRAM DATA (#H, #Q,
and #B) format.

2-166

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

i Decimal, octal, or hexadecimal Pointer to int.
integer.

I Decimal, octal, or hexadecimal Pointer to long
integer.

u Unsigned decimal integer Pointer to

unsigned int.

U Unsigned decimal integers Pointer to long

0 Octal integer Pointer to int.

0] Octal integer Pointer to long

x,X Hexadecimal integer Pointer to int.

e, E,f,g, G Floating-point value in either Pointer to float.
IEEE 488.2 DECIMAL
NUMERIC PROGRAM
DATA (NRf) or NON-

. DECIMAL NUMERIC
PROGRAM DATA (#H, #Q,
and #B) format. The value
consists of an optional sign (+
or —), a series of one or more
decimal digits containing a
decimal point, and an optional
exponent (e or E) followed by
an optionally signed integer

value.
c Character. White-space Pointer to a
characters that are ordinarily char.

skipped are read when ¢ is
specified. To read the next
non-white-space character use
"%1c".

2-167

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

5 Null-terminated string where Pointer to a
leading white-space characters ~ string.
are ignored and all ordinary
characters are read until a
white-space character is read.
Flags can contain either an
integer or #. When flags is an
integer, it specifies the
maximum string size. The
string size must be large
enough to hold the characters
and a NULL character. When
flags contains a #, it specifies
that the next argument
contains a pointer to the
maximum size of the string. If
maximum number of
characters is read before a
white-space character, all
additional characters are read
and discarded until a white-
space character is found.

S Null-terminated string that Pointer to a
conforms to IEEE 488.2 string.
STRING RESPONSE DATA.

Leading white-space before
the required double quote is
ignored, then all characters up
to the next double quote are
read. Two double quote
characters are converted to a
single quote. The beginning
and ending double quotes are
not inserted into the argument.
Flags is the same as s.

2-168

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

n No input read. Pointer to int,
into which is
stored the
number of
characters read
so far.

p Value in the form xxxx.yyyy, Pointer to far
where xxxx is the segment and pointer to void.
yyyy is the offset and the digits
x and y are upper case
hexadecimal digits

b Data block that conforms to Pointer to data
IEEE 488.2 ARBITRARY block.
BLOCK PROGRAM DATA.

Flags must contains a long
that specifies the number of
elements in the data block or
an #. If flags contains #, two
arguments are used. The first
contains a pointer to a long
containing the size of the
second argument, which is a
pointer to the array.

t END indicator terminated Pointer to a
string. Flags is the same ass. string.
The stored string is null
terminate. If the maximum
number of characters is read
before an END indicator is
read, all additional characters
are read and discarded until an
END indicator is read.

To read characters not delimited by white-space characters, a set of
characters in brackets ([]) can be substituted for the s type
character. The corresponding input field is read up to the first
character that does not appear in the bracketed character set. Use a
caret (*) to reverse the effect.

2-169

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

To store a string without storing the terminating null character (\0),
use the specification %nc, where n is a decimal integer specifying
the number of characters to store.

The iscanf function can stop converting a field for a variety of
reasons:

o The specified width has been reached.
e The next character cannot be converted as specified.

e The next character conflicts with a character in the format
specification string that it is supposed to match.

e The next character fails to appear in a given character set.

After reading stops, the next input field is considered to begin at the
first unread character. The conflicting character, if there is one, is
considered unread and is the first character of the next input field or
the first character in subsequent operations.

An input field is defined as all characters up to the first white-space
character, or up to the first character that can not be converted as
specified, or until width is reached.

Flags Field Character

The flags character is optional.

Flag Meaning

When used with rype b, specifies that the next
argument contains a pointer to a long that contains the
size of the second argument which is a pointer to the
data array.

When used with rype s, S, or t format, specifies that the
next argument contains a pointer to an integer that is
the maximum size of the string.

Width Field Character

2-170

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

The width field is an optional field containing a positive decimal
integer that controls the maximum number of characters read. No
more than width characters are converted and stored at the
corresponding argument. Fewer than width characters may be read
if a white-space character or a character that can not be converted is
read before width is reached.

Distance Field Character
The optional distance prefix refers to the distance to the memory
location used to store the converted argument. The prefixes h and 1

refer to the size of the object begin read.

F and N are not part of the ANSI or SICL definition and should not
be used if ANSI or SICL portability is required.

The following demonstrates the use of F, N, h,and L.

Sample Code Action

'iscanf("%Ns", &x); Read a string into near memory.
iscanf("" %Fs", &x); Read a string into far memory.
iscanf(""' % Nd", &x); Read an int into near memory.
iscanf("" % Fd", &x); Read an int into far memory.

iscanf(" % NId", &x); Read a long int into near memory.
iscanf(" % FId", &x); Read a long int into far memory.
iscanf("' %Nhp", &x); Read a 16-bit pointer into near memory.
iscanf("' % Nlp", &x); Read a 32-bit pointer into near memaory.
iscanf(" % Fhp", &x); Read a 16-bit pointer into far memory.
iscanf("' %Flp", &x); Read a 32-bit pointer into far memory.
Floating point format types use non-reentrant C library calls;

therefore, do not use iscanf function calls with floating point types
within interrupt handlers.

Size Field Character

2-171

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

The size field character is optional and is an argument modifier.
The following defines the valid size entries:

Character Description

h Use with types d, i, 0, x, and X to specify that
the argument is a short int or with rype u to
specify a short unsigned int. If used with type
p , it indicates a 16-bit pointer (offset only).

1 Use with types d, i, o0, X, and X to specify that
the argument is a long int. Use with the fype u
to specify a long unsigned int. Use with rypes
e, E, f, g, and G to specify a double rather than a
float. If used with fype p, it indicates a 32-bit
pointer.

Use with fype b to specify that the argument is a
pointer to an array of long unsigned ints (32-
bits). The data block is sent as an array of 32-bit
words. Flags must contain an integer or #.

When flags contains a long, it specifies the
maximum number of longwords to read. When
flags contains #, it specifies that the next
argument contains a pointer to a long containing
the size of the following argument. For types s,
S, t, and B, flags must contain a # or a width
must be specified for types. The longwords are
byte swapped and padded as necessary so that
they conform to IEEE 488.2.

L Use with rypes e, E, f, g, and G to specify along
double.

2-172

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

w Use with type b to specify that the argument is a
pointer to an array of unsigned shorts (16-bits).
The data block is sent as an array of 16-bit
words. Flags must contain a long or #. When
flags contains a long, it specifies the maximum
number of words to read. When flags contains
#, it specifies that the next argument contains a
pointer to a long containing the size of the
following argument. The words are byte
swapped and padded as necessary so they
conform to IEEE 488.2.

z Use with type b to specify that the argument is a
pointer to an array of floats. The data block is
read as an array of 32-bit IEEE-754 floating
point numbers. Flags must contain a long or #.
When flags contains a long, it specifies the
maximum number of floats to read. When flags
contains #, it specifies that the next argument
contains a pointer to a long containing the size of
the following argument

Z Use with type b to specify that the argument is a
pointer to an array of doubles. The data block is
read as an array of 64-bit IEEE-754 floating
point numbers. Flags must contain an integer or
#. When flags contains an integer, it specifies
the maximum number of doubles to read. When
flags contains #, it specifies that the next
argument contains a pointer to a long containing
the size of the following argument.

Return Value The function returns an integer indicating the actual number of
format conversions performed. Conversions that require multiple
arguments are counted as one conversion for the return value.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXlbus error occurred during the read
operation.

2-173

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

I_ERR_IO A GPIB protocol error or VXI word-
serial protocol error occurred during the
read operation.

I_ERR_LOCKED 1d specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VX1
device that is not message-based.

I_ERR_TIMEOUT A timeout occurred.

See Also iflush, ipromptf, iread, iscanf, isetbuf

2-174

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iscanf

Example
/*
/1
1/
/7
/1
*/

#inc
#inc
#inc
#inc

This program illustrates input formatting with iscanf The
program prints to a device, EPC2, that simple echoes all
input. The printed value should be identical to the scanned
value.

2

lude <stdio.h>
lude <stdlib.h>
lude <string.h>
lude "sicl.h"

void main(void)

{

#if

impl

. #end

INST instance;
int returncode, errornumber;

char startstring(7] = {0}, startstring2(7] = {0};
double seedl = 3825.le+7, seed2 = 0;
char *sessionname = “EPC2";

tdefined (I_SICL_FMTIO)
fprintf(stderr,
“\tFormatted I/O is not supported on this

ementation”):

exit (0);

if

/*

// Open a device session

*/

instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrnof();

fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r"
sessionname,
igeterrstr(errornumber),errornumber);

exit(1l);

}

(void) itimeout (instance,500L);

returncode = iprintf(instance,"%s\n",startstring);
if (returncode != 1) {
fprintf (stderr, "\tIprintf failed\n\r");
exit(2);

}
returncode = iscanf (instance, "%s\n", &startstring2);
if (stremp(startstring2,startstring)) {
fprintf (stderr, "\tUnexpected input\n\r");
exit(3);

2-175

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

(void) iflush(instance, I_BUF_READ) ;
returncode = iprintf(instance,"%1e\n“,seed1):

if (returncode '= 1) |
fprintf (stderr, “\tIprintf failed\n\r"):
exit(2);

}

returncode = iscanf (instance, "%le", &seed2);
errornumber = igeterrnol()}:
if (returncode '= 1 || errornumber != I_ERR NOERROR) {
fprintf (stderr,
»\tIscanf failed, error = %s (%d)\n\r",
igeterrstr(errornumber),errornumber);
exit(4);

}
fprintf (stdout, “seed2 = \t$le\n\r*,seed2);

exit (0);

2-176

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetbuf

isetbuf

Description Sets the size of the formatted I/O read and/or write buffers.

int PASCAL
isetbuf(INST id, int buffermask, int buffersize);
id Pointer to a session structure.
buffermask Buffer selection mask.
buffersize Buffer size, in bytes.
Remarks This function sets the read buffer and/or write buffer size for the

device or interface session pointed to by id.

Buffermask is an OR'd combination of the following buffer selection

constants:
Constant Description
I_BUF_READ Discard the scssic')n's current read buffer

and read from the device or interface of
the session pointed to by id until and
END indicator is read. Also,
resynchronizes the next iscanf call to
read until EOI is received.

I_ BUF_WRITE Writes all data in the session's current
write buffer to the device or interface
session pointed to by id.

Specifying a buffersize equal to zero disables buffering and all reads
and writes take place directly to the device or interface.

2-177

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Specifying a buffersize greater than zero creates a new buffer of the
specified size. The write buffer is written to the device or interface
anytime the buffer fills or when the END indicator is placed in the
buffer. Read buffers retain data until explicitly flushed using iftush.

Specifying a buffersize less than zero creates a buffer of the absolute
value of the specified size. The write buffer is written to the device
or interface anytime the buffer fills, when the END indicator is
placed in the buffer, or at the end of each iprintf or ipromptf call.
Read buffers flush data at the end of every iscanf or ipromptf call.

Read and write buffers are of length zero when the session opens.
Closing and reopening a session flushes the buffers and resets their
length to zero.

If the function fails and the returned error is I_ERR_NORSRC, the
buffer size for buffermask is set to zero.

Return Value .The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NORSRC The system contains insufficient
resources to allocate the specified buffer.

See Also iflush, ipromptf, iprintf, iscanf

2-178

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetbuf

Example
/t
/7 This program illustrates the effect of the buffersize
// on iprintf
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void
check (int returncode);

void main(void)
{ INST instance;
int returncode, errornumber, bufferindex;
char *startstring = "BEGIN";
short blockresponsedata{4] = { 1, 2, 3, 4 };
int index = 1;
double seed = 3825.l1le+l5;
char *sessionname = "EPC2";
int buffersizel[] = { -100, 0, 100 }:

#if !'defined(I_SICL_FMTIO)
fprintf (stderr,
"\tFormatted I/O is not supported on this
implementation"”) ;

exit(0});
#endif
/*
// Open a device session
*/
instance = iopen(sessionname};
if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber) ,errornumber) ;
exit(l);

for (bufferindex = 0; bufferindex < 3; bufferindex++) {
returncode = isetbuf{instance,
I_BUF_WRITE,
buffersize{bufferindex]);
returncode = iprintf(instance,"%s",startstring);
check (returncode) ;
returncode = iprintf(instance, "$@Hd", index);
check(returncode) ;
returncode = iprintf(instance, "%le", seed});
check (returncode) ;
returncode = iprintf(instance, "$@Bg", seed);
check (returncode) ;
returncode = iprintf(instance,"%4wB",blockresponsedata);
check (returncode) ;

2-179

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/t
// TFor buffersize's > 0, the buffer is only flushed
// when the buffer is full or the END indicator
// is placed into the buffer. The buffer is
// being implicitly flushed by placing "\n"
// into the buffer.
*/
if (buffersize(bufferindex] > 0) {
returncode = iprintf{instance,"\n");
check (returncode) ;

}
}
exit(0);
}

void
check(int returncode)
{ int errornumber;

errornumber = igeterrnof(};
if (returncode != 1 || errornumber != I_ERR _NOERROR) {
fprintf(stderr,
"\tIprintf failed, error = $s (%d)\n\r",
igeterrstr(errornumber),errornumber);
exit(2);

2-180

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetdata

isetdata

Description

Remarks

Return Value

See Also

Example

Stores a pointer to the session data structure.

int PASCAL

isetdata(INST id, void *data);

id Pointer to a session structure.
data Pointer to a data structure.

This function places a pointer to data structure and associates it with
the session pointed to by id. The pointer can be queried with the
igetdata function.

The session data structure is a 4-byte memory block. Its contents is
application specific, but typically, it is a pointer to the application’s
data structure.

The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.
igetdata

See igetdata.

2-181

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

isetintr

Description Enables and disables interrupt reception.

int PASCAL
isetintr(INST id, int intrtype, long intrenable);
id Pointer to a session structure.
intrtype Interrupt type.
intrenable Interrupt enable flag.
Remarks This function enables or disables interrupt reception for the interrupt

type specified by intrtype for the session pointed to by id.

2-182

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetintr

The following are valid constants for intrtype:
Constant Description

I_INTR_GPIB_IFC Interrupt on GPIB interface clear (GPIB
interface sessions only).

I_INTR_INTFACT Interrupt when an interface becomes
active (GPIB interface sessions only).

I_INTR_INTFDEACT Interrupt when an interface deactivates
(GPIB interface sessions only).

I_INTR_OFF Disable all interrupts.

I_INTR_TRIG Interrupt on a trigger (EPC-7 interface
sessions only).

I_INTR_VXI_SIGNAL Interrupt on a VXI signal or a VME
interrupt from a servant VXI device
(VXI device sessions only).

I_INTR_VXI_VME - Interrupt on a VME interrupt from a non-
servant device (VXI interface sessions
only).

I_INTR_VXI_UNKSIG Interrupt on a VXI signal from a non-
servant device (VXI interface sessions
only).

When intrenable is zero, the function disables the interrupts
specified by intrtype; a value other than zero enables the selected
interrupt.

When intrtype is I_INTR_TRIG and id specifies a VXI interface
session on an EPC-7, intrenable becomes a bit mask that specifies a
trigger interrupt. Setting intrenable to zero disables the trigger
interrupt. The following are valid constants for intrenable when
intrtype is I_INTR_TRIG:

2-183

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Constant Description
I_TRIG_ALL All valid triggers.
I_TRIG_STD Standard trigger.
I_TRIG_EXTO0 EXT trigger 0, if it is mapped as an input
trigger (see ivxitrigroute).
1 TRIG_TTLO TTL trigger O.
I_TRIG_TTL1 TTL trigger 1.
I_TRIG_TTL2 TTL trigger 2.
I_TRIG_TTL3 TTL trigger 3.
I_TRIG_TTLA4 TTL trigger 4.
I_TRIG_TTLS5 TTL trigger 5.
I_TRIG_TTL6 TTL trigger 6.
I_TRIG_TTL?7 TTL trigger 7.

The trigger(s) corresponding to the I_TRIG_STD constant can be
modified using ivxirigroute. By default, I_TRIG_STD
corresponds to I_TRIG_TTLO.

Proper VXI trigger interrupt operation on an EPC-7 requires direct
program manipulation of EPC-7 hardware, refer to Chapter 4,
Advanced Topics, for additional information.

2-184

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetintr

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ ERR_NOTSUPP The hardware/software platform does not
support the specified intrtype/intrenable.

I_ERR_PARAM Id specifies a session whose type is
inconsistent with the given intrtype or
intrenable is invalid.

See Also igetonintr, iintron, iintroff, ionintr

Example See igetonintr.

2-185

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

isetlockwait

Description Determines whether accessing a locked device or interface suspends
the calling process or generates an €ITor.

2

int PASCAL
isetlockwait(INST id, int waitflag);

id Pointer to a session structure.

waitflag Lock-waitflag.

Remarks When waitflag is non-zero (default) and the device or interface
session pointed to by id is locked by another process, all interlocked
operations using the session pointer id suspend the calling process
until the lock is released. When waitflag is zero, all interlocked
operations using the pointer id return an error.

Under DOS, a session’s lock wait flag has no effect and locking
conflicts always generate an I_ERR_LOCKED error. This error is
because DOS does not support process preemption.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ ERR_NOERROR Successful function completion.

See Also igetlockwait, ilock, iunlock

2-186

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

isetstb

isetstb
Description Sets this controller's status byte.
int PASCAL
isetstb(INST id, unsigned char statusbyte);
id Pointer to a commander session
structure.
statusbyte Status byte.
Remarks The SICL library supports SICL standard level 2F (support for

device and interface sessions only); therefore, this function always
returns an error.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant . Description
I_ERR_BADID Invalid id session pointer.
I_ERR_PARAM Id specifies an device or interface
session.
See Also ireadstb

2-187

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

itermchr

Description Specifies a session’s termination character.

2 int PASCAL

itermchr(INST id, int termchar);

id Pointer to a session structure.
termchar Termination character.
Remarks This function specifies the termination character for the session

pointed to by id. The functions inbread, ipromptf, iread, and
iscanf use the termination character to signal the end of a read
operation.

Use the igettermchr function to get the current termination
character.

Valid termchr values are —1 and O through 255, inclusive. The
value —1 (default) indicates that no termination character is set. A
value of O through 255 is a termination character.

2-188

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

itermchr

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer. 2
I_ERR_IO The function was unable to set the

session's termination character.
I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Termchr is invalid. Valid values are -1
and O through 255, inclusive.

See Also igettermchr, inbread, ipromptf, iread, iscanf

Example See igettermchr.

2-189

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

itimeout

Description Set a session's timeout value.

2 int PASCAL

itimeout(INST id, long timeout);

id Pointer to a session structure.
timeout Timeout interval, in milliseconds.
Remarks This function specifies the timeout value for the session pointed to

by id. A timeout value is the time interval to wait for an operation
to complete before aborting. When an operation aborts because of a
timeout, the aborted function returns an error indicating that the call
timed out. Timeouts affect these SICL functions:

imap inbread itrigger

iclear inbwrite ivxigettrigroute
igpibatnctl iopemn ivxitrigoff
igpibllo iprintf ivxitrigon
igpibpassctl ipromptf ivxitrigroute
igpibppoll iread ivxiwaitnormop
igpibppollconfig ireadstb ivxiws
igpibrenctl iremote iwaithdlr
igpibsendcmd iscanf iwrite

ilocal isetbuf ixtrig

ilock isetstb

The timeout value is in milliseconds. A timeout value of less than
or equal to zero indicates an infinite timeout. The default timeout
value is 0.

Use igettimeout to get a session’s current timeout value.

2-190

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

itimeout

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.
See Also igettimeout

Example See igettimeout.

2-191

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

itrigger

Description Sends a trigger to a device or interface.
2 int PASCAL
itrigger(INST id);

id Pointer to a session structure.

Remarks This function sends a trigger to the device or interface of the session
pointed to by id. When id specifies a device session, the trigger is
sent to the device of the session and is dependent on the interface
(VXI or GPIB), but the trigger is an addressed trigger. When id
specifies an interface session, the trigger is interface specific.

For VXI device sessions, the function issues a TRIGGER word-
serial command. Only message based VXI devices are supported.
Other VXI devices cause an error.

For VXI interface sessions, the function generates an €rror.

For GPIB device sessions, the function issues an addressed Group
Execute Trigger (GET) command.

For GPIB interface sessions, the function issues a broadcast Group
Execute Trigger (GET) command.

2-192

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

itrigger

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_DATA A VXlbus error occurred.

I_ERR_IO A GPIB protocol error or VXI word-

serial protocol error occurred.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a commander session, a VXI
interface session, or a VXI device that is
not message-based.

I_ERR_TIMEOUT A timeout occurred.

See Also itimeout,ixtrig
Example
/ *
// This example uses itrigger to issue a TRIGGER word
7/ word command.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h”

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vdevl"“;

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL)} {
errornumber = igeterrno{):;
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber) ,errornumber) ;
exit(1l);

2-193

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = itrigger(instance);
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tItrigger failed, errxor = %s (%d) \n\r",
igeterrstr (errornumber), errornumber) ;
exit(2);
}
exit(0);

2-194

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iunlock

iunlock
Description Unlocks a device or interface.
int PASCAL
iunlock(INST id);
id Pointer to a session structure.
Remarks This function unlocks the device or interface of the session pointed
to by id.

Closing a session implicitly unlocks any locks held by the session.

Attempting to unlock a device or interface that is not locked
generates an error.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.

I ERR_NOLOCK Id specifies a device or interface that is

not locked by the calling process.
See Also ilock

Example See ilock.

2-195

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iunmap

Description Deletes an address space mapping.

2 int PASCAL

junmap(INST id, char *mapaddress, int mapspace, unsigned int
pagestart, unsigned int pagecnt);

id Pointer to a session structure.

mapaddress Mapped address pointer.

mapspace Mapping address space.

pagestart Starting page number.

pagecnt Number of mapped pages.

Remarks Mapaddress is a pointer returned by a previous imap call. Valid

constants for mapspace are:

Constant’ Description

I_MAP_Al6 Unmap the A16 address space

I_MAP_A24 Unmap the A24 address space (page size
64K bytes)

I_MAP_A32 Unmap the A32 address space (page size
64K bytes)

I_MAP_VXIDEV Unmap a VXI device's configuration
registers

I_MAP_EXTEND Unmap the A24/A32 address space that
corresponds to this EPC (EPC-2 and
EPC-7 only).

2-196

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iunmap

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I ERR_BADMAP Mapaddress does not correspond to a
valid mapping.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,

GPIB).
See Also imap, imapinfo, iopen
Example
/* !
// This example uses explicitly uses iunmap to release
// control of a memory space.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

vold main{void)

{ INST instance;
short *vxiregisters;
int returncode, errornumber, vxiid;
char *sessionname = "vdevl";

/t
// Open a device session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrnof();
fprintf (stderxr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);

2-197

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

vxiregisters = (short *)
imap(instance,I_MAP_VXIDEV,0,0,NULL);
if (vxiregisters == NULL) {

errornumber = igeterrno();

fprintf (stderr,
“\tImap call failed\n\r"};

fprintf (stderr,
“\tError = %s (%d) \n\r",
igeterrstr(errornumber),errornumber);

exit(2);
}
returncode = iwblockcopy(instance,
(unsigned short *) vxiregisters,
(unsigned short *) &vxiid,
1L,
-1);
if (returncode '= I_ERR_NOERROR) {
fprintf (stderr, “\tIwblockcopy unsuccessful\n\r"):
fprintf (stderr, "\tError = %s (%d) \n\r",
igeterrstr(returncode),returncode);
exit(3);
}
fprintf (stdout, "Manufacturer ID of device <%s> is %4",
sessionname,
vxiid & Oxfff);
/*
// Remove the address space mapping
*/
returncode = iunmap(instance, (char *) vxiregisters,0,0,0);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr, "\tIunmap unsuccessful\n\r");
fprintf (stderr, "\tError = %s ($d) \n\r",
igeterrstr(returncode),returncode);
exit(4);
}
exit(0);
}
2-198

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxibusstatus

ivxibusstatus
Description Gets the VXI bus status.

int PASCAL
ivxibusstatus(INST id, int request, int *result);

id Pointer to a VXI interface session
structure.

request Status request.

result Pointer to a location where the functions

stores the requested status information.
Remarks This function places the VXIbus interface status information
specified by request in the location pointed to by result. It is valid

only for VXI interface sessions.

The following are valid constants for request:

Constant Description
1_VXI_BUS_CMDR_LADDR Return the commander

device logical address of
this EPC (-1 =no
commander exists, either
because this EPC is a
top-level commander or
normal operation has not
be established).

I_VXI_BUS_LADDR Return the logical
address of this EPC.

1_VXI_BUS_MAN_ID Return the
manufacturer’s ID of this
EPC.

I VXI_BUS_MODEL_ID Return the model ID of
this EPC.

I_VXI_BUS_NORMOP Return normal operation

status of this EPC (1 =
normal, O = other).

2-199

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

I_VXI_BUS_PROTOCOL Return the protocol
register value of this
EPC.

I_VXI__BUS_SERVANT_AREA Return the servant area
size of this EPC.

I_VXI_BUS_SHM_ADDR_SPACE Return this EPC’s VXI
memory space. Returns
24 for A24 space or 32
for A32 space. EPC-2
and EPC-7 only.

1_VXI_BUS_SHM_PAGE Return this EPC’s VXI
memory location, in
pages. For A24 memory,
page size is 256 bytes.
For A32 memory, page
size is 64K bytes. EPC-2
and EPC-7 only.

1_VXI_BUS_SHM_SIZE Returns this EPC’s VX1
memory size in pages.
For A24 memory, page
size is 256 bytes. For
A32 memory, page size
is 64K bytes. EPC-2 and
EPC-7 only.

I_VXI_BUS_TRIGGER Return a bit mask of the
currently asserted trigger
lines (see ivxitrigroute).
EPC-2 and EPC-7 only.

1_VXI_BUS_VXIMXI Returns this EPC’s MX1
bus status. Returns 1 if
this EPC is a MXI
interface, 0 otherwise.

1_VXI_BUS_XPROT Return the Read Protocol
word-serial command

response value of this
EPC.

2-200

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxibusstatus

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.
I_ERR_PARAM Id specifies a device or commander
session, request is invalid, or result is
null.
See Also iopen
Example
/*
7/ This example calls ivxibusstatus to display
// the VXI bus status information.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h”

#define DIM(x) (sizeof (x) /sizeof (int))

int requests(] = { I_VXI_BUS_CMDR_LADDR,
I_VXI_BUS_LADDR,
I_VXI_BUS_MAN_ID,
I_VXI_BUS_MODEL_ID,
I_VXI_BUS_NORMOP,
I_VXI_BUS_PROTOCOL,
I_VXI_BUS_SERVANT_AREA,
I_VXI_BUS_SHM_ADDR_SPACE,
I_VXI_BUS_SHM_PAGE,
I_VXI_BUS_SHM_SIZE,
I_VXI_BUS_TRIGGER,
I_VXI_BUS_VXIMXI,
I_VXI_BUS_XPROT };

2-201

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

char *requeststrings([] = {
"1_VXI_BUS_CMDR_LADDR v,
"J_VXI_BUS_LADDR ",
"I_VXI_BUS_MAN_ID ",
“I_VXI_BUS_MODEL_ID ",
“I_VXI_BUS_NORMOP ",
»I_VXI_BUS_PROTOCOL ",
"I_VXI_BUS_SERVANT_AREA °,
»I_VXI_BUS_SHM ADDR_SPACE ",
*“I_VXI_BUS_SHM_PAGE ",
"I_VXI_BUS_SHM_SIZE ",

"I_VXI_BUS_TRIGGER v,
"I_VXI_BUS_VXIMXI ",
"I1_VXI_BUS_XPROT "}
void main(void)
{ INST instance;
int returncode, errornumber, result;
char *sessionname = "vxi";

register short vinductor;

/*

// Open an interface session

*/

instance = iopen(sessionname);

if (instance == NULL) {
errornumber = igeterrno():
fprintf (stderr,

“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);

exit(1l);
}
for (vinductor = 0; vinductor < DIM(requests); vinductor++) {
returncode = ivxibusstatus({instance,
requests[vinductor],
&result);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute ivxibusstatus\n\r®};
fprintf (stderr,
"\tRequest = %s",
requeststrings [vinductor]);
fprintf(stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode),returncode);
exit(2);
}
fprintf (stdout, "%s = \t¥d\n\r",
requeststrings{vinductor],
result) :

exit(0);

2-202

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxigettrigroute

ivxigettrigroute
Description Gets a current trigger routing.
int PASCAL 2
ivxigettrigroute(INST id, unsigned long intriggermask, unsigned
long *outtriggermask);
id Pointer to VXI interface session
structure.
intriggermask Input triggermask.

Pointer to a location where the functions
stores a trigger mask that describes the
routing of the input trigger.

outtriggermask

Remarks This function places a mask of current trigger routing from
intriggermask in the location pointed to by outtriggermask. It is

valid only for VXI interface sessions.

The following are valid constants for intriggermask:

Constant Description
I_TRIG_ALL All valid triggers.
I_TRIG_STD Standard trigger.
I_TRIG_CLKO0 Internal clock trigger 0.
I_TRIG_CLK1 Internal clock trigger 1.
I_TRIG_CLK2 Internal clock trigger 2.
I_TRIG_ECL0 ECL trigger 0.
I_TRIG_ECL1 ECL trigger 1.
I_TRIG_ECL2 ECL trigger 2.
I_TRIG_ECL3 ECL trigger 3.

I TRIG_EXTO External trigger 0.
I_TRIG_EXT1 External trigger 1,
I_TRIG_EXT2 External trigger 2.
I_TRIG_EXT3 External trigger 3.

2-203

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

I TRIG_TTLO TTL trigger O.
L_TRIG_TTL1 TTL trigger 1.
I_TRIG_TTL2 TTL trigger 2.
I_TRIG_TTL3 TTL trigger 3.
I_TRIG_TTL4 TTL trigger 4.
I_TRIG_TTLS TTL trigger 5.
I_TRIG_TTL6 TTL trigger 6.
I_TRIG_TTL7 TTL trigger 7.

Use ivxitrigroute to route triggers.

Specifying an intriggermask of I TRIG_ALL returns a mask of all
valid triggers for this EPC.

Specifying an intriggermask of I_TRIG_STD returns a mask of
triggers corresponding to the I_TRIG_STD constant.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_PARAM Id specifies a device or commander
session, intriggermask specifies an
invalid trigger bit, or outtriggermask is
null.

See Also ivxitrigoff, ivxitrigon, ivxitrigroute, ixtrig

2-204

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxigettrigroute

Example
/*
/7 This example uses ivxigettrigroute to get the current
// trigger routing.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

unsigned long triggermasks(] = { I_TRIG_ALL,
I_TRIG_STD,
I_TRIG_CLKO,
I_TRIG_CLK]1,
I_TRIG_CLK2,
I_TRIG_ECLO,
I_TRIG_ECL1,
I_TRIG_ECL2,
I_TRIG_ECL3,
I_TRIG_EXTO,
I_TRIG_EXT1,
I_TRIG_EXT2,
I_TRIG_EXT3,
I_TRIG_TTLO,
I_TRIG_TTL1,
I_TRIG_TTL2,
I_TRIG_TTL3,
I_TRIG_TTL4,
I_TRIG_TTLS,
I_TRIG_TTLS6,
I_TRIG_TTL7
}i

char *triggernames([] = { "I_TRIG_ALL ",
"I_TRIG_STD ",
"I_TRIG_CLKO",
"I_TRIG_CLK1",
"I_TRIG_CLK2",
"I_TRIG_ECLO",
"I_TRIG_ECL1",
"I_TRIG_ECL2",
"I_TRIG_ECL3",
"I_TRIG_EXTO",
"I_TRIG_EXT1",
"I_TRIG_EXT2",
"I_TRIG_EXT3",
"I_TRIG_TTLO",
"I_TRIG_TTL1",
"I_TRIG_TTL2",
"I_TRIG_TTL3",
"I_TRIG_TTL4",
“I_TRIG_TTL5",
“I_TRIG_TTL6",
"I_TRIG_TTL7"
};

void main(void)

2-205

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

{ INST instance;
int returncode, errornumber;
char *sessionname = "vxi";
unsigned long triggers;
register int tinductor;

/*
// Open an interface session
*/
instance = iopen(sessionname);
if (instance == NULL} {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);
exit (1) ;
}
returncode = ivxigettrigroute(instance,I_TRIG_ALL,&triggers);
if (returncode != I_ERR_NOERROR) {

fprintf (stderr,
s\tIvxigettrigroute failed, error = %$s (%d) \n\r",
igeterrstr(recurncode),returncode);
exit(2);
}
fprintf (stdout, "Default triggers:\n\r\n\r");
for (tinductor = 0; !
tinductor < sizeof (triggermasks)/sizeof (unsigned long);
tinductor++) {
if (triggers & triggermasks[tinductor])
fprintf(stdout,"%s\n\r“,triggernames[tinductor]);

exit(0);

2-206

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxirminfo

ivxirminfo
Description Gets VXI device information.
int PASCAL 2
ivxirminfo(INST id, int ula, struct vxiinfo *information);
id Pointer to a VXI session structure.
ula Device unique logical address.
information Pointer to a location where the function
stores the device’s VXI configuration
information.
Remarks This function places the VXI configuration information of the
device at unique logical address ula in the location pointed to by
information.

The function ignores id when ula specifies a valid device on a VXI
interface.

For VXI device sessions only, specifying a ula of —1 causes the
function to return the configuration of the session device pointed to
by id.

VXI configuration information is returned in the format of a
VXIINFO structure. The VXIINFO structure is defined as:

2-207

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

struct vxiinfo

{

/* Device identification.
short laddr;

char name([16];

char manuf_name[16];
char model_name[l6];
unsigned short man_id;
unsigned short model;
unsigned short devclass;

/* Self-test status.
short selftest;

*/

/* Location of device. */
short cage_num;

short slot;

/* Device information. */

unsigned short protocol;
unsigned short x_protocol;

unsigned short servant_area;

/* Memory information. */
unsigned short addrspace;

unsigned short memsize;

unsigned short memstart;

/* Miscellaneous information.

short slotO_laddr;
short cmdr_laddr:

/* Interrupt information.
short int_handler(8};
short interrupter(8};
short £i11[10];

}i

*/
/* Unique logical address. */
/* Symbolic name (primary) */
/* Manufacturer name. */
/* Model name. */
/* Manufacturer ID. */
/* Model number. */
/* Device class. */
/* Self test status: */
/* 1 == PASSED */
/* 0 == FAILED */
/* Card cage number. */
/* Slot number: */
/* -1 == UNKNOWN */
/* -2 == MXI */
/* Value of protocol register.*/

/* Value of extended protocol

register */

/* value of servant area. */
/* Memory address space: */
/* 0 == None */
/* 24 == A24 */
/* 32 == A32 */
/* Amount of memory, in pages
(pages are 256 bytes in A24, 64K
in A32).*/
/* Start of memory, 1in pages
(pages are 256 bytes in A24, 64K
in A32).*/
*/

/* ULA of slot 0 controller (-1 if

unknown) . */

/* ULA of commander (-1 if top* level). */

*

/

/* Array of interrupt handler flags.*/
/* Array of interrupter flags. */
/* Unused space. */

2-208

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxirminfo

Return Value The function returns an integer to indicate its success or failure.

See Also

Example
/*
/7
/7
*/

Possible errors are:

Constant Description

I_ERR_BADADDR Ula does not specify a valid VXI device.

I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_PARAM Ula is -1 and id specifies an interface or
commander session, or information is
null.

iopen

This example call ivxirminfo to retrieve resource
management configuration information

v

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h”

void main{void)
INST instance;
int returncode, errornumber;

{

char *sessionnames([] = (“vxi", "vdevl" };
struct vxiinfo Vxiinfo = {0};

/*

// Open an interface session

*/

instance = iopen(sessionnames([0]);

if

(instance == NULL) {

errornumber = igeterrno();

fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r-",
sessionnames([0],
igeterrstr(errornumber) , errornumber) ;

exit(1});

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2-209

SICL for DOS Programmer’s Reference

/*
// Get information for ULA 0
*/
returncode = ivxirminfo(instance,0,&Vxiinfo);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
*\tUnable to execute ivxirminfo\n\r");
fprintf (stderr,
"“\tError = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}
fprintf (stdout, "Symbolic name $s\n\r",Vxiinfo.name) ;

fprintf (stdout, "Manufacturer name $s\n\r",Vxiinfo.manuf_name}) ;
(void) iclose(instance);

/*
// Get information for device referenced by this session id
*/
instance = iopen(sessionnames(1});
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames[1],
igeterrstr (errornumber) , errornumber) ;
exit(3);
}
returncode = ivxirminfo(instance,-1,&Vxiinfo);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute ivxirminfo\n\r");
fprintf (stderr,
"\tError = %s (%$d)\n\r",
igeterrstr{returncode),returncode);
exit(4);
}
fprintf (stdout, "Symbolic name %s\n\r",Vxiinfo.name) ;
fprintf (stdout, "Manufacturer name $s\n\r",Vxiinfo.manuf_name) ;
exit (0);
}
2-210

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxiservants

ivxiservants
Description Gets a list of VXI servants.
int PASCAL
ivxiservants(INST id, int listsize, int *list);
id Pointer to a VXI interface session
structure.
listsize Size of servant list, in entries.
list Pointer to a location where the function
stores an integer list of the ULAs of this
device’s servant devices.
Remarks This function places a list of the unique logical addresses (ULA) of

the servants of the VXI interface pointed to by id in the memory
location pointed to by list. Specifying an id pointing to a GPIB
, session or VXI device session generates an error.

Listsize specifies the maximum number of entries in list.
If the VXI interface has less than /istsize servant devices, all unused
entries are set to —1. If the interface has more than listsize servant

device, only the first listsize ULA’s are placed in list.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF 1d specifies a non-VXI interface type.
I_ERR_PARAM Id specifies a device or commander

session, or list is null.

See Also iopen

2-211

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/‘k
// This example uses ivxiservants to get the list
// of VXI servants.
*
/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

#define MAXULA 256

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vxi®;
unsigned short totalulas = 0;
int ulas[MAXULA];
register short iinductor;

/*
// Open an interface session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber):
exit(l);
}
returncode = ivxiservants(instance,
sizeof (ulas)/sizeof (int),ulas};
if (returncode != I_ERR_NOERROR} {
fprintf (stderr,
"\tIvxiservants failed\n\r");
fprintf (stderr,
“\tError = %s (%d)\n\r",
igeterrstr (returncode) , returncode) ;
exit(2});

2-212

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxiservants

fprintf{stdout, "VXI servant ULA table :\n\r");
for (iinductor = 0; iinductor < MAXULA; iinductor++) {
if (ulas(iinductor] != -1) {
fprintf (stdout,
"\t%d\t (0x%x) \n\r",
ulas[iinductor],
ulas[iinductor]);
“ totalulas++;
}
}
fprintf (stdout, "Total number of servants is %d", totalulas)
exit (0} ;

’

2-213

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

ivxitrigoff

Description
int PASCAL
id
triggermask

Remarks

Deasserts VXIbus trigger lines.

ivxitrigoff(INST id, unsigned long triggermask);

Pointer to a VXI interface session
structure.

VXIbus trigger line(s) to deassert.

This function deasserts the VXIbus trigger lines specified in

triggermask for the VXI interface session pointed to by id.
Triggermask is a bit mask that is an OR’ed combination of one or

more of the following:

Constant
I_TRIG_ALL

I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_EXTO

I_TRIG_STD

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTLS
I_TRIG_TTL6
I_TRIG_TTL7?

Description
All valid triggers. (EPC-2 and EPC-7

only)

ECL trigger 0. (EPC-2 and EPC-7 only)
ECL trigger 1. (EPC-2 and EPC-7 only)
EXT trigger O (valid only on an EPC-7).
Has no effect unless I_TRIG_EXTO0 has
been routed as an output of another
trigger; see ivxitrigroute).

Standard trigger. (EPC-2 and EPC-7
only)

TTL trigger 0. (EPC-2 and EPC-7 only)
TTL trigger 1. (EPC-2 and EPC-7 only)
TTL trigger 2. (EPC-2 and EPC-7 only)
TTL trigger 3. (EPC-2 and EPC-7 only)
TTL trigger 4. (EPC-2 and EPC-7 only)
TTL trigger S. (EPC-2 and EPC-7 only)
TTL trigger 6. (EPC-2 and EPC-7 only)
TTL trigger 7. (EPC-2 and EPC-7 only)

2-214

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxitrigoff

Use ivxigettrigroute to get the trigger mask bits corresponding to
the I_TRIG_ALL and I_TRIG_STD constants.

The trigger(s) corresponding to the I_TRIG_STD constant can be

modified using ivxitrigroute. By default, I_TRIG_STD 2
corresponds to I_TRIG_TTLO.

Use ixtrig to assert a trigger line then immediately deassert it.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_LOCKED ld specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_NOTSUPP The hardware/software platform does not
support the specified triggermask bits.

I_ERR_PARAM Id specifies a device or commander
session, or triggermask specifies an
invalid trigger bit.

See Also ivxigettrigroute, ivxitrigon, ivxitrigroute, ixtrig

2-215

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

ivxitrigon

Description
int PASCAL
id

triggermask

Remarks

Asserts VXlbus trigger lines.

ivxitrigon(INST id, unsigned long triggermask);

Pointer to a VXI interface session
structure.

VXIbus trigger line(s) to assert.

This function asserts the VXIBus trigger lines specified in

triggermask for the VXI interface session pointed to by id.
Triggermask is a bit mask that is an OR’ed combination of one or

more of the following:

Constant
I_TRIG_ALL

I_TRIG_ECLO
I_TRIG_ECL1
I_TRIG_EXTO

I_TRIG_STD

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTLS
I_TRIG_TTL6
I_TRIG_TTL7

Description
All valid trigger. (EPC-2 and EPC-7

only)

ECL trigger 0. (EPC-2 and EPC-7 only)
ECL trigger 1. (EPC-2 and EPC-7 only)
EXT trigger 0 (valid only on an EPC-7).
Has no effect unless I_ TRIG_EXTO has
been routed as an output of another
trigger; see ivxitrigroute).

Standard trigger. (EPC-2 and EPC-7
only)

TTL trigger 0. (EPC-2 and EPC-7 only)
TTL trigger 1. (EPC-2 and EPC-7 only)
TTL trigger 2. (EPC-2 and EPC-7 only)
TTL trigger 3. (EPC-2 and EPC-7 only)
TTL trigger 4. (EPC-2 and EPC-7 only)
TTL trigger 5. (EPC-2 and EPC-7 only)
TTL trigger 6. (EPC-2 and EPC-7 only)
TTL trigger 7. (EPC-2 and EPC-7 only)

2-216

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxitrigon

Use ivxigettrigroute to get the triggermask bits that correspond to
the I_TRIG_ALL and I_TRIG_STD constants.

The trigger(s) corresponding to the I_TRIG_STD constant can be

modified using ivxitrigroute. By default, I_TRIG_STD 2
corresponds to I_TRIG_TTLO.

Use ixtrig to assert a trigger line then immediately deassert it.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_NOTSUPP The hardware/software platform does not
support the specified triggermask bits.

I_ERR_PARAM Id specifies a device or commander
session, or triggermask specifies an
invalid trigger bit.

See Also ivxigettrigroute, ivxitrigoff, ivxitrigroute, ixtrig

2-217

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/*
/7 This example asserts, checks and then deasserts the
// standard trigger on VXI.
*/

#include <stdio.h>
#include <stdlib.h>
#include "busmgr.h"
#include "sicl.h*"

void main(void)

{ INST instance;
int returncode, errornumber, result;
char *sessionname = "vxi";

/*
// Open an interface session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
Jigeterrstr (errornumber) ,errornumber) ;
exit(1);
}
returncode = ivxitrigon(instance, I_TRIG_TTLO);
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tIvxitrigon failed\n\r");
fprintf (stderr,
"\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}
returncode = ivxibusstatus(instance,
I_VXI_BUS_TRIGGER,
&result);
if (returncode !'= I_ERR_NOERROR) ({
fprintf (stderr,
"\tUnable to execute ivxibusstatus\n\r"):;
fprintf(stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(3);

if (result & I_TRIG_TTLO == 0}{
fprintf (stderr,
"\tI_TRIG_TTLO is not asserted\n\r"};
exit(4);

2-218

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxitrigon

returncode = ivxitrigoff(instance,I_TRIG_TTLO);
if (returncode '= I_ERR_NOERROR) {
fprintf(stderr,
"\tIlvxitrigoff failed\n\r"):;
fprintf (stderr,
“\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode);
exit(5);
}
returncode = ivxibusstatus(instance,
I_VXI_BUS_TRIGGER,
&result) ;
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute ivxibusstatus\n\r");
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr(returncode), returncode) ;
exit(6);
}
if (result & I_TRIG_TTLO != 0) {
fprintf (stderr,
"\tI_TRIG_TTLO is asserted\n\r");
exit{7);
}
exit(0);

2-219

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

ivxitrigroute

Description Routes VXIbus trigger lines.

2 int PASCAL

ivxitrigroute(INST id, unsigned long intrigger, unsigned long

outtriggermask);
id Pointer to a VXI interface session
structure
intrigger Input trigger
outtriggermask Output trigger mask
Remarks This function routes the VXIbus input trigger line intrigger to the

VXIbus output trigger lines outtriggermask for the VXI interface of
the session pointed to by id. Asserting an input trigger line causes
assertion of all the routed output trigger lines.

Intrigger is a constant specifying the input trigger to route.
Outtriggermask is an OR’ed combination of constants specifying
the routed trigger(s). Valid combinations of intrigger and
outtriggermask are:

2-220

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxitrigroute

intrigger outtriggermask Description
I_TRIG_STD I_TRIG_ALL Defines one or more
I_TRIG_ECLOto ECL1 triggers corresponding to 2
I_TRIG_EXTO0 the _TRIG_STD
I_TRIG_STD constant. An
L TRIG_TTLO to TTL7 ourtriggermask containing
the I_TRIG_EXTO bit is
valid only on an EPC-7,
and only has an effect if
I_TRIG_EXTO is routed
as an output trigger.
I_TRIG_TTLO0 I_TRIG_EXTO0 Defines I_TRIG_EXT0
through as an output of another
I_TRIG_TTL7 trigger. Valid only on an
EPC-7.
I_TRIG_EXTO0 I_TRIG_TTLO through Defines I_TRIG_EXT0

I_TRIG_TTL7 as the input to one or
more triggers. Valid only

on an EPC-7.

If intrigger is I_TRIG_STD, then outtriggermask defines which
triggers are affected when a subsequent isetintr, ivxitrigon, ixtrig,
or ivxitrigoff function call executes with the I TRIG_STD
constant specified.

Calls to ivxitrigroute override previous routings. For example,
routing I_TRIG_STD to I_TRIG_TTL7 invalidates the default
routing for I_TRIG_STD.

On an EPC-7, I_TRIG_EXTO0 must be routed as either an output
from another trigger or as an input to exactly one trigger. It cannot
be routed as an output trigger and an input trigger simultaneously.
Also, I_TRIG_EXTO routing can never be disabled. At power-up,
I_TRIG_EXTO is routed as an input to I_TRIG_TTLO.

Use ivxigettrigroute to get the trigger mask bits that correspond to
the I_TRIG_ALL and I_TRIG_STD constants.

2-221

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_NOTSUPP The hardware/software platform does not
support the specified intrigger and/or
outtriggermask bits.

I_ ERR_PARAM Id specifies a device or commander
session, or intrigger and/or
outtriggermask specifies an invalid
trigger bit.

See Also isetintr, ivxigettrigroute, ivxitrigoff, ivxitrigon, ixtrig

2-222

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxitrigroute

Example
/*
// This example uses ivxitrigroutne to set a trigger
/7 routing.
— */

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

unsigned long triggermasks([] = { I_TRIG_ALL,
I_TRIG_STD,
I_TRIG_CLKO,
I_TRIG_CLK1,
I_TRIG_CLKZ,
I_TRIG_ECLO,
I_TRIG_ECLI1,
I_TRIG_ECL2,
I_TRIG_ECL3,
I_TRIG_EXTO,
I_TRIG_EXTI1,
I_TRIG_EXT2,
I_TRIG_EXT3,
I_TRIG_TTLO,
I_TRIG_TTL1,
I_TRIG_TTL2,
I_TRIG_TTL3,
I_TRIG_TTL4,
I_TRIG_TTLS,
I_TRIG_TTL6,
I_TRIG_TTL7
Y

char *triggernames[] = { "I_TRIG_ALL *
"I_TRIG_STD “,

"I_TRIG_CLKO",

"I_TRIG_CLK1",

"I_TRIG_CLK2",

"I_TRIG_ECLO",

"I_TRIG_ECL1",

"I_TRIG_ECL2",

"I_TRIG_ECL3",

"I_TRIG_EXTO",

"I_TRIG_EXT1",

"I_TRIG_EXT2",

"I_TRIG_EXT3",

"I_TRIG_TTLO",

"I_TRIG_TTLLl",

"I_TRIG_TTL2",

"I_TRIG_TTL3",

"I_TRIG_TTL4",

-— "I_TRIG_TTLS",
"I_TRIG_TTL6",

“I_TRIG_TTL7"

};

void main{void)

2-223

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

{ INST instance;
int returncode, errornumber;
char *sessionname = "vxi";
unsigned long triggers;
register int tinductor;

/*
// Open an interface session
*/
instance = iopen(sessionname) ;
if (instance == NULL) {

errornumber = igeterrno();

fprintf (stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);
}
/*
// The following command will fire TTL1 & TTLS5 whenever EXTO is
// fired
*/

returncode = ivxitrigroute({instance,
I_TRIG_EXTO,
I_TRIG_TTL1);
if {(returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tIvxitrigroute failed, error = %s (%d) \n\r",
igeterrstr (returncode) ,returncode) ;

exit(2);
}
/*
// Get trigger routing for I_TRIG_EXTO
*/

returncode = ivxigettrigroute(instance,
I_TRIG_EXTO,
striggers);
if {returncode != I_ERR_NOERROR) {
fprintf (stderr,
“\tIvxigettrigroute failed, error = %s (%d) \n\r",
igeterrstr(returncode), returncoede) ;
exit(3);
}
fprintf (stdout, "I_TRIG_EXTO mapping:\n\r\n\r");
for (tinductor = 0;
tinductor < sizeof(triggermasks)/sizeof (unsigned long);
tinductor++) {
if (triggers & triggermasks[tinductor])
fprintf (stdout, "$s\n\r", triggernames[tinductor]};
}
exit(0);

2-224

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxiwaitnormop

ivxiwaitnormop
Description Waits for a normal operation of a VXI interface.
int PASCAL
ivxiwaitnormop(INST id);
id Pointer to a VXI interface session
structure.
Remarks If the VXIbus interface specified by id is active, the function returns
immediately.

If the interface is inactive, the function waits until normal operation
is established unless a timeout limit has been set by itimeout. Then,
it waits for the timeout limit and generates an error.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_TIMEOUT A timeout occurred.

See Also iopen, itimeout

2-225

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/*
// This example call ivxiwaitnormop to wait for an
// instrument to establish normal operation.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vxi";

/*
// Open an interface session
*/
instance = iopen{sessionname);
if (instance == NULL) {

errornumber = igeterrno():;

fprintf (stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);
}
returncode = ivxiwaitnormop{instance};
if (returncode != I_ERR_NOERROR} {

fprintf (stderr,
“\tUnable to execute ivxiwaitnormop\n\r"};
fprintf (stderr,
"\tError = %s (%d)\n\r",
igeterrstr (returncode) ,returncode) ;
exit(2);
}
exit(0);

2-226

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxiws

ivxiws
Description Sends a word-serial command to a VXI device.
int PASCAL 2
ivxiws(INST id, unsigned short command, unsigned short *reply,
unsigned short *error);
id Pointer to a session structure.
command Word-serial command to send.
reply Pointer to a location where the function
stores the word-serial response.
error Pointer to a location where the function
stores the response to a READ
PROTOCOL ERROR word-serial
command.
Remarks This function sends the word-serial command specified by

command to the VXI device session pointed to by id.

If reply is not null, a word-serial response is read and stored in the
location pointed to by reply.

If error is not null and a word-serial protocol error is detected, a
READ PROTOCOL ERROR word-serial command is sent to the
device and the response is placed in the location pointed to by error.

2-227

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXlbus error occurred.

I_ERR_IO A VXI word-serial protocol error
occurred.

I ERR_LOCKED Id specifies a device or interface that is

locked by another process.
I_ERR_NOERROR Successful function completion.
I_ERR_NOINTF Id specifies a non-VXI interface type.

I_ERR_PARAM Id specifies an interface or commander
session or a VXI device that is not
message-based.

I_ERR_TIMEOUT A timeout occurred.

See Also iclear, ilocal, inbread, inbwrite, iread, ireadstb, iremote,
itimeout, itrigger, iwrite

Example
/‘k
/7 This example uses ivxiws to send a word serial
/7 command to a device.
*/

#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

#define WSCOMMAND Oxdfff

2-228

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ivxiws

void main{void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "vdevl";
unsigned short readerror, reply;

/*
// Open a device session 2

*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber), errornumber) ;
exit (1) ;
}
returncode = ivxiws(instance, WSCOMMAND, &reply, &readerror);
if (returncode != I_ERR_NOERROR} {
fprintf (stderr,
"\tIvxiws failed, error = %s (%d) \n\r",
igeterrstr(returncode), returncode) ;
exit(2);
}
fprintf (stdout, "Reply = %d, Readerror = $d", reply, readerror) ;
exit(0);

2-229

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iwaithdlIr
Description Waits for a SRQ or interrupt handler function to execute.
int PASCAL
iwaithdlr(long timeout);
timeout Timeout time period.
Remarks This function waits for timeout milliseconds for a SRQ or interrupt

handler function to execute. If timeout is less than or equal to zero,
processing suspends indefinitely until a SRQ or interrupt event
handler completes execution. If timeout is greater than zero,
processing suspends for up to the specified time.

This function ignores the state of event processing as set by iintron
and iintroff.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:
Constant Description
I_ERR_NOERROR Successful function completion.
I_ERR_TIMEOUT A timeout occurred.

See Also iintron, iintroff, ionintr, ionsrq, isetintr
Example See ionintr.
2-230

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwblockcopy

iwblockcopy

Description Copies blocks of 16-bit words from one set of sequential memory
locations to another.

int PASCAL
iwblockcopy(INST id, unsigned short *src, unsigned short *dest,
unsigned long count, int swap);

id Pointer to a session structure.
src Source pointer.
dest Destination pointer.
count Number of 16-bit words to copy.
swap Byte swap flag.
Remarks This function copies 16-bit words from successive memory

locations beginning at src into successive memory locations
beginning at dest. Count specifies the number of 16-bit words to
transfer and has a maximum value of 0x8000. Id specifies the
interface to use for the transfer.

The function is valid only for VXI interfaces. It does not detect
segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 16-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following table lists the possible scenarios when accessing EPC and
VXIbus memory:

2-231

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

src dest swa Result

EPC EPC 0] No byte-swapping

EPC EPC Non-zero No byte-swapping

EPC VXI 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC O No byte-swapping

VXTI EPC Non-zero One byte-swap

VXTI VXI 0 No byte-swapping

VXI VXI Non-zero Two byte-swaps (equivalent to no
byte-swap)

For 16-bit byte-swapping to execute properly, all VXI bus access
must be aligned on 16-bit boundaries.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant . Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,

GPIB).
I_ERR_PARAM Src and/or dest is null.
See Also ibblockcopy, ilblockcopy, imap, iwpeek, iwpoke, iwpopfifo,

iwpushfifo,

2-232

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwblockcopy

Example
/*
// This example uses iwblockcopy to read the VXI register of
// the device configured as ULA 0. The bit encodings of this
// register id defined by the VXI specification. For this
// particular example, the program is using the manufacture ID
// bits.
*/

#include <stdio.h>
#include <stdlib.h>
#include “sicl.h"

#define VXIREGISTEROFFSET 0xc000

void main{void)
{ INST instance;
int *vxiregisters;
int returncode, errornumber;
char deviceclass;
char *dclass([] = { "Memory",
"Extended",
"Message Based",
"Register Based" };
char *sessionname = "vxi";

/*
// Open an interface session
*/
instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();

fprintf(stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",

sessionname,
igeterrstr (errornumber) , errornumber) ;
exit(1l);
}
vxiregisters = (int *) imap{(instance, I_MAP_Al6,0,0,NULL);
if (vxiregisters == NULL) {

errornumber = igeterrno();

fprintf(stderr,
"\tUnable to map in Al6 space, error = %s (%d) \n\r",
igeterrstr (errornumber) , errornumber) ;

exit{2);

2-233

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

returncode = iwblockcopy(instance,
(unsigned short *)
{ (unsigned long) vxiregisters +
(unsigned long) VXIREGISTEROFFSET),
(unsigned short *) &deviceclass,
1L,
0}):
if (returncode 1= I_ERR_NOERROR) ({
fprintf(stderr,
"\tUnable to copy ID register, error = %s (%d)\n\r",
igeterrstr{returncode), returncode) ;
exit(3);

}

fprintf (stdout,
"Class of device at ULA 0 is %s.",
dclass|[{deviceclass >> 6) & 0x3]);

exit(0);

2-234

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpeek

iwpeek

Description Reads a 16-bit word stored at an address.
volatile unsigned short PASCAL 2
iwpeek(volatile unsigned short *addr);
addr Address of a 16-bit word.

Remarks The addr pointer should be a mapped pointer returned by a previous

imap call. Byte swapping is always performed.

Return Value The function returns the 16-bit word contained at addr.

See Also ibpeek, ilpeek, imap, iwpoke
Example
/ *
/7 This example uses iwpeek to read our own slave
7/ memory thru the VXIbus.
*
/

#include <stdlib.h>
#include <stdio.h>
#incliude "busmgr.h"
#include "sicl.h"

void main(void)
{ INST instance;
int errornumber, returncode, result;
char *lowpage;
unsigned short lowmemory;
char *sessionnames([] = { "vxi", "vdevl" };
unsigned short *basecffset = 0x400;

2-235

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*
// Open an interface session
*/
instance = iopen(sessionnames[0]);
if (instance == NULL) ({
errornumber = igeterrno(};
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames(0],
igeterrstr (errornumber) , errornumber) ;

exit(l);
}
/*
// Find where our memory begins
*/
returncode = ivxibusstatus(instance,
I_VXI_BUS_SHM_PAGE,
&result);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tUnable to execute ivxibusstatus\n\r");
fprintf (stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit(2);

}
(void) iclose(instance):
/*
// Open a device session
*/
instance = iopen(sessionnames(1]);
if (instance == NULL) {
errornumber = igeterrnol);
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames(1],
igeterrstr{errornumber),errornumber});
exit (3);
}
/* Map in A24 space */
lowpage = imap(instance,I_MAP_A24,result >> 8,1,NULL);
if (lowpage == NULL) {
errornumber = igeterrno():;
fprintf (stderr,
“\tUnable to map in A24 space, error = %s (%d) \n\r*",
igeterrstr (errornumber),errornumber) ;
exit(4);

2-236

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpeek

/w
// Reading the 400th word of VME memory at our base address
/7 should return the same value as reading 0:400 through PC
/7 memory
*/
lowmemory = iwpeek((unsigned short *)

((unsigned long) lowpage+

(unsigned long) baseoffset)):;

EpcMemSwapW{&lowmemory, 1) ;
if (lowmemory != *baseoffset)
fprintf(stderr,
"\tVME memory at page %x longword offset %x ",
result >> 8,basecffset);

fprintf(stderr, "= %04.4x\n\r", lowmemory) ;
fprintf(stderr, "\tExpected %04.4x\n\r", *baseoffset);
exit(5);

}

fprintf(stdout, "VME memory at page %x longword offset %$x = ",
result >> 8,baseoffset);

fprintf (stdout, "$04.4x\n\r", lowmemory) ;

exit(0);

2-237

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iwpoke

Description Writes a 16-bit word to an address.

2 void PASCAL

ibpoke(volatile unsigned short *dest, unsigned short value);

dest Destination address.
value 16-bit word to write.
Remarks The addr pointer should be a mapped pointer returned by a previous

imap call. Byte swapping is always performed.

Return Value The function returns no value.

See Also ibpoke, ilpoke, imap, iwpeek

Example
/> .
// This example uses iwpoke to write into
// DOS's communcation area via VME memory.
*/

#include <stdlib.h>
#include <stdio.h>
#include "sicl.h"

#include "busmgr.h"

#define FOOTPRINT 0x1234

void main(void)
{ INST instance;
int errornumber, returncode, result;
char *lowpage;
short *doscom = (short *) O0x4f0L;
char *sessionnames(] = { "vxi", *vdevl" };

2-238

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpoke

/*
// Open an interface session
*/
instance = iopen(sessionnames[0]);
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames (0],
igeterrstr (errornumber) , errornumber) ;
exit(1l);
}
/*
// Find where our memory begins
*/

returncode = ivxibusstatus(instance,
I_VXI_BUS_SHM_PAGE,
&result);
if (returncode != I_ERR_NOERROR) {
fprintf{stderr,
“\tUnable to execute ivxibusstatus\n\r");
fprintf(stderr,
"\tError = %s (%d) \n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}
(void) iclose{instance);
/ *
// Open a device session
*/
instance = iopen(sessionnames{l]):;
if (instance == NULL) {
errornumber = igeterrno();
fprintf(stderr,
“\tUnable to open <%s>, error = %s (%d)\n\r",
sessionnames (1],
igeterrstr(errornumber), errornunber) ;
exit(3);
}
/* Map in A24 space */
lowpage = imap(instance,I_MAP_A24,result >> 8,1,NULL);
if (lowpage == NULL) ({
errornumber = igeterrno();
fprintf{stderr,
“\tUnable to map in A24 space, error = %s (%d) \n\r",
igeterrstr (errornumber) ,errornumber) ;
exit (4);

2-239

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

/*

// Write into DOS's communication area at PC address
// 4£0:0

*/

iwpoke({ (unsigned short *)
((unsigned long) lowpage+(unsigned long) doscom) ,
FOOTPRINT) ;
EpcMemSwapW{ (unsigned short *) doscom, 1) ;
if (*doscom != FOOTPRINT) ({
fprintf (stderr,
"\tVME memory at page %x longword offset %x ",
result >> 8,doscom);

fprintf (stderr, "= %04.4x\n\r", *doscom) ;
fprintf (stderr, "\tExpected %04.4x\n\r", FOOTPRINT) ;
exit(5);

}

fprintf (stdout, "VME memory at page %x longword offset %x = ",
result >> 8,doscom);

fprintf (stdout, "$04.4x\n\r", *doscom) ;

exit(0);

2-240

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpopfifo

iwpopfifo
Description Copies 16-bit words from a single memory location (FIFO register)
to sequential memory locations. 2
int PASCAL
ibpopfifo(INST id, unsigned short *fifo, unsigned short *dest,
unsigned long count, int swap);
id Pointer to a session structure.
fifo FIFO pointer.
dest Destination address.
count Number of 16-bit words to copy.
swap Byte swap flag.
Remarks This function copies count 16-bit words from fifo into sequential

memory locations beginning at dest. Count specifies the number of
16-bit words to transfer and has a maximum value of 0x8000. Id
identifies the interface to use for the transfer.

The function is valid only for VXI interfaces. It does not detect
segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 16-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following table lists the possible scenarios when accessing EPC and
VXIbus memory:

2-241

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

src dest swa Resuit

EPC EPC 0 No byte-swapping

EPC EPC Non-zero No byte-swapping

EPC VXI 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC 0 No byte-swapping

VXI EPC Non-zero One byte-swap

VXI VXI O No byte-swapping

VXTI VXI Non-zero Two byte-swaps (equivalent to no
byte-swap)

For 16-bit byte-swapping to execute properly, all VXI bus access
must be aligned on 16-bit boundaries.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description
I_ERR_BADID Invalid id session pointer.
I_ERR_NOERROR Successful function completion.
I ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,
GPIB).
I_ERR_PARAM Fifo and/or dest is null.
See Also ibpopfifo, ilpopfifo, imap, iwpushfifo
Example
/*
// This example uses iwpopfifo to read from a
// hypothetical VXI fifo at offset 0.
*/

#include <stdlib.h>
#include <stdio.h>
#include "sicl.h"

#define NOSWAP 0] /* 0 indicates no byte swapping */

2-242

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpopfifo

void main(void)

{ INST instance;
unsigned short *vxi;
int returncode, errornumber;
unsigned short datafifo(5]);

char *sessionname = "vxi";
/*

// Open an interface session

*/

instance = iopen(sessionname);

if (instance == NULL) {
errornumber = jigeterrno();
fprintf (stderr,

"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr(errornumber),errornumber);

exit(1l);
}
vxi = (unsigned short *) imap (instance, I_MAP_A16,0,0,NULL) ;
if (vxi == NULL) {

errornumber = igeterrno();

fprintf (stderr,

“\tUnable to map in Al6 space, error = ");

fprintf (stderr,

“%s (%d) \n\r",

igeterrstr(errordumber),errornumber);

exit(2);
}
/*
// Read the Fifo 5 times, storing the values into datafifol]
*/
returncode = iwpopfifo{instance,
vxi,
datafifo,
(long) sizeof (datafifo)/sizeof (short),
NOSWAP) ;
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,

“\tUnable to read the fifo at address ");

fprintf (stderr,

"$p\n\r\tError = %s (%d) \n\r",

vxi,

igeterrstr(returncode),

returncode) ;

exit(3);
}
exit (0} ;

2-243

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

iwpushfifo

Description Copies 16-bits words from sequential memory locations to a single
memory location (FIFO register).

2

int PASCAL
ibpushfifo(INST id, unsigned short *src, unsigned short *fifo,
unsigned long count);

id Pointer to a session structure.
src Source address.
fifo FIFO pointer.
count Number of 16-bit words to copy.
swap Byte swap flag.
Remarks This function copies count 16-bit words from the sequential

memory locations beginning at src into, the FIFO at fifo. Count
specifies the number of 16-bit words to transfer and has a maximum
value of 0x8000. Id specifies the interface to use for the transfer.

The function is valid only for VXI interfaces. It does not detect
segment wrap around conditions or detect bus errors caused by its
use.

This function allows any address (VXI via imap address or EPC) to
any address (VXI via imap address or EPC) copies.

When swap is non-zero and a VXIbus access is made, the function
byte-swaps the 16-bit words to or from Motorola byte ordering as
necessary. When swap is zero, no byte swapping occurs. The
following table lists the possible scenarios when accessing EPC and
VXIbus memory:

2244

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwpushfifo

src dest swap Result

EPC EPC 0 No byte-swapping

EPC EPC Non-zero No byte-swapping

EPC VX1 0 No byte-swapping

EPC VXI Non-zero One byte-swap

VXI EPC 0 No byte-swapping

VXI EPC Non-zero One byte-swap

VXI VXI 0 No byte-swapping

VXI VXI Non-zero Two byte-swaps (equivalent to no
byte-swap)

For 16-bit byte-swapping to execute properly, all VXI bus access
must be aligned on 16-bit boundaries.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant . Description
I_ERR_BADID Invalid id session pointer.

I_ERR_NOERROR Successful function completion.

I_ERR_NOTSUPP Id specifies an interface type that does
not support address mapping (e.g.,

GPIB).
I_ERR_PARAM Src and/or fifo is null.
See Also ibpushfifo, ilpushfifo, imap, iwpopfifo
Example
/r
// This example uses ilpushfifo to write values
// to a hypothetical VXI fifo at offset 0.
*/
#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"
#define NOSWAP 0 /* 0 indicates no byte swapping */

2-245

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

void main(void)

{ INST instance;
char FAR *vXxi;
int returncode, errornumber;
unsigned short datafifo[]l = { 0x1000,

0x2000,

0x3000,
0x4000,
0x5000 1}

char *sessionname = "vxi";

/ﬂ'

// Open a device session

*/

instance = iopen{sessionname);

if (instance == NULL) {
errornumber = igeterrno(};
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)\n\r",
sessionname,
igeterrstr (errornumber), errornumber) ;
exit(1l);
}
vxi = imap(instance,I_MAP_Al6,0,0,NULL); /* Map in Al6é space */
if (vxi == NULL) {
errornumber = igeterrno();
fprintf (stderr,
*“\tUnable to map in Al6 space, error = "};
fprintf (stderr,
"$s (%d) \n\r",
igeterrstr (errornumber), errornumber) ;
exit(2);
}
/*
// Write to the fifo 5 times, storing 0x1000, 0x2000, 0x3000,
// 0x4000, 0x5000
*/
returncode = iwpushfifo(instance,
(unsigned short *) wvxi,

datafifo,
(unsigned long) sizeof(datafifo)/sizeof(short}),
NOSWAP) ;

if (returncode != I_ERR_NOERROR) {

fprintf (stderr,

"\tUnable to write to the fifo at address "):
fprintf (stderr,

"gp\n\r\tError = %s (%d) \n\r",

vxi,
igeterrstr (returncode),
returncode) ;
exit(3);
}
exit (0);

2-246

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iwrite

iwrite
Description Writes data to a device or interface.
int PASCAL 2
iwrite(INST id, char *buf, unsigned long bufsize, int end,
unsigned long *actualcnt);
id Pointer to a session structure.
buf Pointer to the data buffer.
bufsize Length, in bytes, of data buffer.
end END indicator flag.
actualcent Pointer to a location where the function
stores the actual number of bytes written.
Remarks This function writes the bufsize bytes at buf to the device or

interface of the session pointed to by id. Bufsize has a maximum
value of 0x10000. It performs no formatting or data conversion.

Writing ends when bufsize bytes are written or a timeout occurs.
Unlike the inbwrite function, this function blocks until one of these
two conditions is met.

When id specifies a device session, the function writes data using
interface dependent communication methods. When id specifies an
interface session, the function writes data in raw mode using
interface specific methods.

If end is non-zero, the function writes an END indicator with the
last data byte. If end is zero, the function does not write an END
indicator with the last data byte.

If actualcnt is not null, the function stores the number of data bytes
written in the referenced memory location.

For VXI device sessions, the function issues BYTE AVAILABLE
word-serial commands and supports only message based VXI
devices. Other VXI devices generate an error.

2-247

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

For VXI interface sessions, the function generates an error.

For GPIB device sessions, the function first causes all devices to
unlisten. Then, it issues the interface’s talk address, followed by the
device’s listen address. Finally, the function writes the data.

For GPIB interface sessions, the function writes bytes directly to the
interface without performing any addressing. The ATN line state
determines whether the bytes are interpreted as data or command
bytes.

Return Value The function returns an integer to indicate its success or failure.
Possible errors are:

Constant Description

I_ERR_BADID Invalid id session pointer.

I_ERR_DATA A VXlbus error occurred during the
write operation.

I_ERR_IO A GPIB protocol error or VX1 word-

serial protocol error occurred during the
write operation.

I_ERR_LOCKED Id specifies a device or interface that is
locked by another process.

I_ERR_NOERROR Successful function completion.

I_ERR_PARAM Id specifies a VXI interface or a VXI
device that is not message-based, or buf
is null.

I_ERR_TIMEOUT A timeout occurred.

See Also inbread, inbwrite, iread, itimeout

2-248

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Example
/*
/7 This program illustrates serial IO using iwrite
*/
#include <stdio.h>
#include <stdlib.h>
#include "sicl.h"

#define EOI -1

void main(void)

{ INST instance;
int returncode, errornumber;
char *sessionname = "EPC2";
unsigned long actualcount;

/*
// Open a device session
*/
instance = iopen(sessionname);
if (instance == NULL) {
errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s ($d)\n\r",
., sessionname, .
igeterrstr (errornumber), errornumber) ;
exit(l);
}
returncode = iwrite(instance, "rmx\n",4L,EOI,&actualcount);
if (returncode !'= I_ERR_NOERROR) {
fprintf (stderr,
"\tIwrite failed, error = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);
}

fprintf (stdout,
"%$1d bytes written to <%s>",
actualcount,
sessionname) ;

exit (0);

2-249

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

SICL for DOS Programmer’s Reference

ixtrig

Description
int PASCAL
id
triggermask

Remarks

Asserts and deasserts one or more triggers to an interface.

ixtrig(INST id, unsigned long triggermask);

Pointer to an interface session structure,

Trigger mask to assert.

For GPIB interface session, the function issues a broadcast Group

Execute Trigger (GET) command. The triggermask argument must

be I_TRIG_STD.

For VXI interface sessions, the function asserts and immediately
deasserts the VXIbus triggers specified by the triggermask
argument. Triggermask is a bit mask that is an OR'd combination of
one or more of the following:

Constant
I_TRIG_ALL

1 TRIG_ECLO
I_TRIG_ECL1
I_TRIG_EXT0

I_TRIG_STD

I_TRIG_TTLO
I_TRIG_TTL1
I_TRIG_TTL2
I_TRIG_TTL3
I_TRIG_TTL4
I_TRIG_TTLS
I_TRIG_TTL6
I_TRIG_TTL7

Description

All valid triggers. (EPC-2 and EPC-7
only)

ECL trigger 0. (EPC-2 and EPC-7 only)
ECL trigger 1. (EPC-2 and EPC-7 only)
EXT trigger 0 (valid only on an EPC-7).
Has no effect unless I_TRIG_EXTO0 has
been routed as an output of another
trigger; see ivxitrigroute).

Standard trigger. (EPC-2 and EPC-7
only)

TTL (EPC-2 and EPC-7 only)trigger O.
TTL trigger 1. (EPC-2 and EPC-7 only)
TTL trigger 2. (EPC-2 and EPC-7 only)
TTL trigger 3. (EPC-2 and EPC-7 only)
TTL trigger 4. (EPC-2 and EPC-7 only)
TTL trigger 5. (EPC-2 and EPC-7 only)
TTL trigger 6. (EPC-2 and EPC-7 only)
TTL trigger 7. (EPC-2 and EPC-7 only)

2-250

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ixtrig

Use ivxigettrigroute to get the VXIbus trigger mask bits
corresponding to the I TRIG_ALL and I_TRIG_STD constants.

The VXIbus triggers corresponding to the I_TRIG_STD constant
can be modified using ivxitrigroute. By default, I_TRIG_STD 2
corresponds to I TRIG_TTLO.

Return Value The function returns an integer to indicate its success or failure.

Possible ertors are:

Constaht Description

I_ERR_BADID Invalid id session pointer.

I_ERR_IO The function was unable to generate the
specified interface trigger.

I_ERR_LOCKED Id specifies an interface that is locked by

another process.
I_ERR_NOERROR Successful function completioq.

I_ERR_NOTSUPP The hardware/software platform does not
support the specified triggermask bits.

I_ERR_PARAM Id specifies a device or commander
session or triggermask specifies an
invalid trigger bit.

I_ERR_TIMEOUT A timeout occurred.

See Also itimeout, itrigger, ivxigettrigroute, ivxitrigoff, ivxitrigon,
ivxitrigroute

2-251

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer’s Reference

Example
/-k
/! This example asserts and deasserts the standard
/7 trigger on GPIB.
*/

#include <stdio.h>

#include <stdlib.h>
#include "busmgr.h"
#include "sicl.h"

void main{(void)
{ INST instance;
int returncode, errornumber;

char *sessionname = "gpib";

/*

// Open an interface session
*/

instance = iopen(sessionname);
if (instance == NULL) {

errornumber = igeterrno();
fprintf (stderr,
"\tUnable to open <%s>, error = %s (%d)}\n\r",
sessionname,
igeterrstr (errornumber) ,errornumber) ;
exit(l);
}
returncode = ixtrig(instance,I_TRIG_STD);
if (returncode != I_ERR_NOERROR) {
fprintf (stderr,
"\tIxtrig failed\n\r");
fprintf(stderr,
"\terror = %s (%d)\n\r",
igeterrstr (returncode), returncode) ;
exit(2);

}
exit(0);

2-252

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

3. Advanced Topics

This chapter discusses topics of interest to advanced application programmers.
Topics include:

Byte Ordering and Data Representation

. Correcting Data Structure Byte Ordering

. SRQ, Interrupt, and Error Handler Execution
. Handler Operations Under DOS

. VXITTL Trigger Interrupts on' an EPC-7

. Microsoft Quick C

. Borland C

. Interfacing to Other Language Environments

. Terminating GPIB communication

3-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Application cleanup

SICL has defined a special function, _siclcleanup(), to ensure that Windows performs
the necessary clean-up required when a SICL program completes execution. Each
SICL application should call siclcleanup() before exiting or posting a WM_QUIT
message in order to release resources allocated for the application by the SICL library.
Without this call, you may experience difficulty in executing your application,
especially form within debuggers.

Note that the I ERROR_EXIT handler calls siclcleanup() automatically before it
exits.

Memory Models

We strongly recommend that you use the large memory model when designing
applications that call SICL functions. This is because SICL requires all pointer
parameters to be "far" pointers. Most SICL function prototypes in the sicl.h header
file explicitly declare all pointer parameters to be far. However, there is no way to

* declare pointer types for functions that take a variable number 6f arguments (such as
SICL's formatted I/O routines), and your compiler will not be able to properly check
or cast types for these functions.

3-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

3.1 Byte Ordering and Data Representation

Byte ordering adds complexity to the VXIbus interface. Many VXIbus devices use
the data formats of Motorola microprocessors. Others, including RadiSys EPC
controllers, use the data format of Intel microprocessors. Although the Motorola and
Intel microprocessors use the same data types, the hardware representations of these
data types differ.

Figure 3-1 shows how the same sequence of bytes in memory is interpreted by Intel
and Motorola microprocessors. Memory value 11 is the lowest address and memory
value AA is the highest address. The data widths shown correspond to the data
operand sizes found on both microprocessors.

Memory Intel Data Motorola
Value Order Width Order

11 11 8 bits 11
22 2211 16 bits 1122
33 '

44 44332211 32 bits 11223344
55

66

77

88 8877665544332211 64 bits 1122334455667788
99

AA AA0998877665544332211 80 bits 112233445566778899AA

Figure 3-1. Byte Order Example

33

3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Byte Swapping Functions

The following functions, which are not part of the SICL library, convert 16-bit, 32-bit,
64-bit, and 80-bit data between Intel and Motorola byte orders (8-bit data does not
require conversion).

Swapl6 is a function that takes a pointer to a 16-bit value as a parameter and
byte-swaps the value in place:

void Swaplé6 {char *value)

{

char temp;

temp = valuel[0]:; value(0] = value(l); value[l] = temp:;

Swap32 is a function that takes a pointer to a 32-bit value as a parameter and
byte-swaps the value in place:

void Swap32(char *value)
{

char temp;

value(3}; value(3)
valuel2]; value(2]

value([0]; value[0]
value(l]; value[l]

temp
temp

temp;
temp;

Swap64 is a function that takes a pointer to a 64-bit value as a parameter and
byte-swaps the value in place:

void Swap64 (char *value)

{

char temp;

temp = valuel[0]; value[0] = value(7]; valuel7] = temp;
temp = valuel[l]l; value([l] = value(6]; valuel[6] = temp;
temp = value([2]); value[2] = value([5]; value([S5] = temp;
temp = value[3]; valuel3] = value[4]; valuel[d4] = temp;

3.4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

Swap80 is a function that takes a pointer to an 80-bit value as a parameter and
byte-swaps the value in place:

void Swap80 (char *value)
{

char temp;

temp = value(0]; value(0] = value[9]; value[9] = temp:
temp = valuel[l]; value[l] = value([8]; value([8] = temp;
temp = value(2]; value([2] = value[7]); value[7] = temp;
temp = value(3]; value(3] = value[6]; value[6] = temp;
temp = value[4]; value(4] = value[5}; value[5] = temp;

}

The SICL 16-bit peek and poke functions (iwpeek and iwpoke) and 32-bit peek and
poke functions (ilpeek and ilpoke) always perform byte-swapping. The peek
functions assume the data at the specified address is in Motorola byte order, and
byte-swaps the data to Intel byte order after reading it. Conversely, the SICL poke
functions assume the specified data is in Intel byte order, and byte-swaps the data to
Motorola byte order before writing it to the specified address.

The SICL 16-bit block transfer functions (iwblockcopy, iwpopfifo, and iwpushfifo)
and 32-bit block transfer functions (ilblockcopy, ilpopfifo, and ilpushfifo)
conditionally perform byte-swapping. Unless specifically directed to perform
byte-swapping, the SICL block transfer functions assume that both the source and
destination addresses of the transfer use Intel byte order.

3-5

3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Correcting Data Structure Byte Ordering

The SICL 16-bit and 32-bit peek and poke (ilpeek, iwpeek, ilpoke, and iwpoke) and
block transfer functions (ilblockcopy and iwblockcopy) do not solve all byte ordering
problems. Even if byte-swapping occurs during a SICL block transfer function, byte
ordering problems occur when Motorola-ordered data is copied to EPC memory using
a different data width than the width of the operand itself. This situation occurs when
a data structure containing mixed-type fields is copied in a single operation. The
following code fragment illustrates how to correct the byte order in the local copy of
the data structure:

struct DataStructure

{

char field8;
short fieldl6;
long field32;
double field64d;
char field80(10];

} data;
/* Copy the data structure to local memory from the VMEbus. */
ibblockcopy (ID, VMEADDR, &data, sizeof({struct DataStructure));

/* Byte-swap the individual structure fields (data.field8 is an
8-bit field, so it is already correct).

*

/

Swapl6 (&data.fieldls);
Swap32(&data.field32);
Swap64 (&data.field6d) ;
Swap80 (data.field80);

In the above example, the data structure was copied from VXIbus memory one byte at
a time. To copy data from EPC memory to Motorola-ordered memory, byte-swap the
fields of the structure in local memory (using the above byte swapping functions) and
copy the data using the SICL ibblockcopy function.

It is usually more efficient to copy biocks of data using data transfer width greater
than the expected data width. If you use a greater data transfer width to copy data
structures containing mixed-type fields to/from Motorola-order memory, do not use
the SICL function byte-swapping feature. Swap the data structure fields individually.

3-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

3.2 SRQ Handler Execution

These conditions must be true before an application's SICL SRQ handlers can
execute:

. The application must call ionsrq to install a session's SRQ handler.

L A SRQ must occur. 3
. The application must call iwaithdlr or enable asynchronous event
processing by calling iintron.

SICL discards all SRQ events that occur before the application installs a SRQ handler.

When an application installs a SRQ handler and enables asynchronous event
processing, the SRQ handler processes SRQ events as soon as they are received.
Under DOS, the installed handler executes as part of an interrupt thread, with
processor interrupts enabled, and using the SICL driver's interrupt stack.

When an application installs a SRQ handler and does not enable asynchronous event
processing, SICL queues SRQ events as they are received. The number of events to
queue is set by the eventqueuesize variable in the SICLIF file. The SRQ handler will
process the queued events when the application enables asynchronous event
processing or calls iwaithdlr. If the application removes the installed SRQ handler
before processing the queued events, the handler discards the events. Under DOS, the
installed SRQ handler executes as part of the application's thread, with processor
interrupts in a state defined by the application, and using the application's stack.

37

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

3.3 Interrupt Handler Execution

These conditions must be true before an application’s SICL interrupt handlers can

execute:
. The application must use ionintr to install an interrupt handler.
L The application must use isetintr to enable interrupt reception.
. An interrupt must occur.
. The application must call iwaithdlr or enable asynchronous event

processing by calling iintron.

SICL discards all interrupt events that occur before the application installs an interrupt
handler and enables interrupt reception.

When an application installs an interrupt handler, enables interrupt reception, and
enables asynchronous event processing, the interrupt handler processes interrupts as
soon as they are received. Under DOS, the installed interrupt handler executes as part
of an interrupt thread, with processor interrupts enabled, and using a SICL driver's
interrupt stack.

When an application installs an interrupt handler, enables interrupt reception, and
does not enable asynchronous event processing, SICL queues the interrupts as they are
received. The number of events to queue is set by the eventqueuesize variable in the
SICLIF file. The interrupt handler will process the interrupts when the application
enables asynchronous event processing or calls iwaithdlr. If the application removes
the interrupt handler before processing the queued interrupts, the handler discards the
interrupts. Under DOS, the installed interrupt handler executes as part of the
application's thread, with processor interrupts in a state defined by the application, and
using the application's stack.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

3.4 Error Handler Execution

These conditions must be true before an application’s SICL error handler can execute:
. The application must use ionerror to install the error handler.
. A SICL error must occur.

SICL discards all errors that occur before the application installs an error handler.

When an application has installed an error handler, and an error occurs, and if the
handler is not already executing as part of one of the application’s other threads, the
error handler processes the error.

When an application has installed an error handler and an error occurs and the handler
is already executing as part of one of the application's other threads, the SICL queues
the error. The number of events to queue is set by the errorqueuesize variable in the
SICLIF file. The error handler process the queued error when it finishes its current
execution. ' '

It is possible for error handlers to execute either as part of the application's thread or
as part of an interrupt thread because errors can occur as part of a SRQ handler, a
interrupt handler, or the main program.

Enabling or disabling asynchronous event processing does not affect error handler
execution.

3-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

3.5 Handler Operations Under DOS

SRQ, interrupt, and error handlers can execute as part of an interrupt thread under
DOS. This feature implies that a SICL handler can only call fully reentrant C library
and SICL library functions. Also, a SICL handler can only invoke fully reentrant
DOS and BIOS support functions, and cannot execute unprotected floating point
instructions under DOS.

The following C library functions are reentrant under Microsoft C Version 6.0, and
may be called from a SICL handler or any application code that executes as part of an
interrupt thread (it is likely that this list is different for other releases of the Microsoft

C compiler and for compilers from other vendors):

abs memccpy strcat strnset
atoi memchr strchr strrchr
atol memcmp strcmp strrev
bsearch memcpy strempi strset
chdir memicmp strepy strstr
getpid meminove stricmp strupr
halloc memset strlen swab
hfree mkdir striwr tolower
itoa movedata strncat toupper
labs putch strncmp
Ifind rmdir strncpy
Isearch segread strnicmp

3-10

Artisan Technology Group - Quality Instrumentation

... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

All the SICL library functions except iopen, iclose, imap, iunmap, iprintf, iscanf,
ipromptf, and isetbuf are fully reentrant, and may be called from a SICL handler or
any application code that executes as part of an interrupt thread. These eight
functions execute non-reentrant floating point, dynamic memory management, file
I/O, and task management functions. This is a departure from the SICL specification,
which states that iprintf, iscanf, and ipromptf can be called from a SICL handler. In
the DOS implementation iprintf, iscanf, and ipromptf functions are reentrant only
when performing formatted I/O that does not include the conversion of floating point
values.

Not all DOS and BIOS functions are fully reentrant. However, mechanisms exist (the
"InDos” and "CriticalError" flags) for avoiding DOS reentrancy by delaying
background processing until DOS is not in use.

Under DOS, floating point operations and standard floating point libraries provided
with ANSI compilers are fully reentrant.

3.6 VXI TTL Trigger Interrupts on an EPC-7 '

Receiving and processing VXI TTL trigger interrupts on an EPC-7 requires software
intervention.

EPC-7 hardware generates a VXI TTL trigger interrupt when all of the following
conditions are true:

. A bit in the TTL trigger interrupt enable register is set. The SICL
function isetintr sets one or more of these bits when enabling the
reception of I_INTR_TRIG interrupts for a VXI interface session.

. The corresponding bit in the TTL trigger latch register is clear.
. The corresponding TTL trigger line is asserted for at least 30
nanoseconds.

The main complication to this scenario is that the TTL trigger latch register cannot be
cleared until a TTL trigger is deasserted. In order to clear a bit in the register, the
register must be read while the corresponding TTL trigger is deasserted. A TTL
trigger assertion is not necessarily under EPC control.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

The operation of the EPC-7 TTL trigger latch register has two potential side effects
for SICL software:

] If the TTL trigger latch register is not cleared before isetintr enables the
reception of I_INTR_TRIG interrupts for a VXI interface session, it is
possible to receive one or more interrupts for a TTL trigger that was
asserted, latched, and deasserted long before isetintr was called.

. If the TTL trigger latch register is not cleared after an I_INTR_TRIG
interrupt is signaled to a VXI interface session, the EPC will not latch

subsequent TTL trigger assertions and, therefore, will miss subsequent
I_INTR_TRIG interrupts.

The following function, WaitForTriggerDeassert, clears the EPC-7 TTL trigger
latch register.

#define EPC2 1
#include <conio.h>
#include "sicl.h”
#include “"vmeregs.h”

int PASCAL
WaitForTriggerDeassert (long TriggerMask, long RetryCount)
{

long index;

/*

* Wait for the desired TTL latch register bits
* to clear, indicating that the trigger(s) have
* been deasserted. Return an error if the

* trigger(s) are not deasserted.

*/
for { index = 0;
{{long) INPORT(BTTL) & TriggerMask) i= 0;
index += 1)
(
if (index == RetryCount)

{
}

return (I_ERR_IO);

}
return (I_ERR_NOERROR) ;

3-12

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

To avoid the problem of receiving extraneous SICL TTL trigger interrupts, execute
WaitForTriggerDeassert before calling isetintr to enable a I_INTR_TRIG
interrupts for a VXI interface session. To avoid the problem of missing
I_INTR_TRIG interrupts, execute WaitForTriggerDeassert as soon as possible
after receiving each trigger interrupt, preferably as part of the interrupt handler routine
itself.

Reading the TTL trigger latch register (as in WaitForTriggerDeassert) clears all
previously latched and deasserted TTL triggers, not just one particular trigger. To
avoid the loss of TTL trigger interrupts, the TTL trigger latch register should only be
read with processor interrupts enabled.

3.7 Microsoft Quick C

SICL supports Microsoft's Quick C version 2.5 and above. Quick C can link with the
standard Microsoft C SICL library, MSSICL.LIB, to create Quick C applications.
The following is an example of a typical Quick C compiler and linker invocation,

qc /G2s /Ox /W4 /AL /Ic:\epconnechinclude application

qlink /B /NOD application,,c:\epconnec\lib\mssicl\
+c:\epconnec\epcmsc+ilibee.lib;

See the Microsoft Quick C documentation for specific details about the Quick C
compiler and linker.

3-13

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

3

SICL for DOS Programmer's Reference

3.8 Borland C or C++

SICL supports Borland C and C++ version 2.0 and above. Borland C users must link
with the Borland SICL library, BSICL.LIB, to create their application. The following
is an example of a typical Borland C compiler and linker invocation..

bee -2 -Ox -¢ -M -ml -w -ic:\epconnec\include application

tlink \bc\bin\cO0l+ application,,,c:\epconnec\lib\bsicl+c:\epconnec\epcmsc\
+\bc\bin\emu+\bec\bin\mathl+\bc\bin\cl;

See the Borland C Tools and Utilities guide and Users guide for specific details on the
Borland C/C++ compiler and linker.

3.9 Interfacing to Other Language
Environments

The MSSICL.LIB uses Microsoft's C runtime library and BSICL.LIB uses Borland's
C runtime library. If you need to use another compiler or language than those
discussed earlier, that compiler must be able to interpret either Microsoft or Borland
object formats. Linking applications with other compilers or runtime libraries
requires resolution of bindings required by the SICL library and resolution of bindings
introduced by the application. In addition, the compiler must be capable of generating
code in the Pascal calling convention and in CDECL format for formatted I/O.
Failure to resolve binding results in unresolved externals during the linking process.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Advanced Topics

3.10 Terminating GPIB Communication

When using National Instruments GPIB drivers with SICL for DOS, the EOI message
is not recognized to end communications. You must do one of the following:

D Wait for the buffer to fill. This is the default.

2) Use itermchr to specify a termination character. The default is not to use
a terminating character.

3) Use itimeout to specify a timeout period. The default is infinite time.

3-15

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

NOTES

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4. Error Messages

This chapter contains an alphabetic listing of error messages that may be returned
when installing the following SICL drivers:

. BIMGR.SYS
. SICLGPIB.SYS
) SICLVXI.SYS

Accompanying each error message is the probable cause of the error, a suggested
action to take to correct the error , and the source of the error.

All three device drivers are installed by the CONFIG.SYS file in the root directory.
If you make changes to CONFIG.SYS, be sure to reboot your system so the change
will take effect.

Bad parameter /parameter -- Missing "=" or *:"

Cause Parameter specified on the BIMGR.SYS installation line of
the CONFIG.SYS file is incorrectly formatted.
BIMGR.SYS was not installed.

Corrective Correct parameter format (refer to EPConnect/VXI for DOS

Action Programmer’s Reference for a list of valid options) and
reboot.
Source BIMGR.SYS

4-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

Bad value for parameter /parameter -- should be valid_value

Cause The value of parameter on the BIMGR.SYS installation line
in the CONFIG.SYS file is not valid. BIMGR.SYS was not
installed.

Corrective Change value of parameter to valid_value and reboot.
Action

Source BIMGR.SYS

*** BIMGR.SYS is not instalied ***
*** SICLVXI.SYS installation aborted ***

Cause The SICLVXI.SYS device driver was installed before the
BIMGR.SYS device driver.

Corrective Edit the CONFIG.SYS file so that SICLVXI.SYS is loaded

Action after BIMGR.SYS and reboot.

Source SICLVXI.SYS

*** Device name parameter syntax error -- default used ***

Cause The device name parameter specified on the SICLGPIB.SYS
installation line of the CONFIG.SYS file is not syntactically
correct.

Corrective Correct device name. Refer to Chapter 2, Installation and

Action Configuration, in the EPConnect/VXI for DOS and Windows
User's Guide, for SICLGPIB device names. The default
device name EPCDEV1 was used to complete the device
driver installation.

Source SICLGPIB.SYS

4-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

*** Driver name parameter syntax error -- default used ***

Cause The driver name parameter specified on the device driver

installation line of the CONFIG.SYS file is not syntactically
correct.

Corrective Correct driver name. Refer to Chapter 2, Installation and

Action Configuration, in the EPConnect/VXI for DOS and Windows
User’s Guide for driver name parameter syntax.
Source SICLGPIB.SYS or SICLVXIL.SYS

*** Duplicate device driver name ***
*** SICLGPIB.SYS installation aborted ***

Cause CONFIG.SYS tried to install SICLGPIB.SYS more than
once.

Corrective Remove redundant SICLGPIB.SYS installation lines from
Action the CONFIG.SYS file.

Source SICLGPIB.SYS

*** Duplicate device driver name ***
*** SICLVXI.SYS installation aborted ***

Cause CONFIG.SYS tried to install SICLVXIL.SYS more than
once.

Corrective Remove redundant SICLVXI.SYS installation lines from
Action the CONFIG.SYS file.

Source SICLVXI.SYS

4-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

*** EPConnect BusManager NOT INSTALLED due to configuration errors ***

Cause One or more parameters on the BIMGR.SYS installation
line of the CONFIG.SYS file is not valid.

Corrective Correct invalid parameter (refer to EPConnect/VXI for DOS

Action Programmer's Reference for a list of valid options) and
reboot.
Source BIMGR.SYS

ERROR: Unknown EPC Hardware!

Cause BIMGR.SYS does not recognize the EPC hardware.
BIMGR.SYS was not installed.

Corrective Verify that BIMGR.SYS version supports EPC model

Action number. Install correct BIMGR.SYS version, update
CONFIG.SYS installation line, and reboot.
Source BIMGR.SYS

ERROR: VXI hardware not responding!

Cause CONFIG.SYS tried to load BIMGR.SYS on a non-EPC
computer, or there is a problem with the VXIbus interface
registers on the EPC. BIMGR.SYS was not installed.

Corrective Verify the state of the hardware by rebooting the system and
Action checking the EPC power-on self-test (POST) results.

Source BIMGR.SYS

4-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

Interrupt Stack Overflow Detected in BusManager ***
--Hit CTRL-ALT-DEL to reboot

Cause BIMGR.SYS detected an overflow in the BIMGR.SYS
stack.

Corrective Correct nesting error in BIMGR.SYS calls by user-installed
Action VXIbus interrupt handlers.

Source BIMGR.SYS

*** Not enough memory to allocate stacks ***
*** SICLGPIB.SYS installation aborted *** 4

Cause 128 KB of DOS memory would not be available after
SICLGPIB.SYS installation.

Corrective Decrease the number of device drivers and/or their memory
Action usage by editing the CONFIG.SYS file and reboot.

Source SICLGPIB.SYS

*** Not enough memory to allocate stacks ***
*** SICLVXI.SYS installation aborted ***

Cause 128 KB of DOS memory would not be available after
SICLVXISYS installation.

Corrective Decrease the number of device drivers and/or their memory
Action usage by editing the CONFIG.SYS file and reboot.

Source SICLVXI.SYS

*** Parameter syntax error -- parameter ignored ***

Cause The parameter specified on the device driver installation line
of the CONFIG.SYS file is not syntactically correct.

Corrective Correct parameter syntax. Refer to Chapter 2, Installation

Action and Configuration, in the EPConnect/VXI for DOS and
Windows User's Guide for driver name parameter syntax.
Source SICLGPIB.SYS or SICLVXI.SYS

4-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

*** Process count parameter invalid -- maximum used ***

Cause The process count parameter specified on the device driver
installation line of the CONFIG.SYS is too large. Device
driver was installed using the maximum process count of 16

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User’s Guide for
valid device driver process count parameter values.
Source SICLGPIB.SYS or SICLVXLSYS
4 *** Process count parameter invalid -- minimum used ***
Cause The process count parameter specified on the device driver

installation line of the CONFIG.SYS is too small. Device
driver was installed using the minimum process count of 1

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver process count parameter values.
Source SICLGPIB.SYS or SICLVXLSYS

*** Process count parameter syntax error -- default used ***

Cause The process count parameter specified on the device driver
installation line of the CONFIG.SYS file is not syntactically
correct. Device driver was installed using the default
process count of 4.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver process count parameter values.
Source SICLGPIB.SYS or SICLVXILSYS

4-6

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

*** Session count parameter invalid -- maximum used ***

Cause The session count parameter specified on the device driver
installation line of the CONFIG.SYS is too large. Device
driver was installed using the maximum session count of 256.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver session count parameter values.
Source SICLGPIB.SYS or SICLVXILSYS

*** Session count parameter invalid -- minimum used ***

Cause The session count parameter specified on the device driver
installation line of the CONFIG.SYS is too small. Device
driver was installed using the minimum session count of 1.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver session count parameter values.
Source SICLGPIB.SYS or SICLVXLSYS

*** Session count parameter syntax error -- default used ***

Cause The session count parameter specified on the device driver
installation line of the CONFIG.SYS file is not syntactically
correct. Device driver was installed using the default session
count of 16.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver session count parameter values.
Source SICLGPIB.SYS or SICLVXILSYS

4-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

*** Stack count parameter invalid -- maximum used ***

Cause The stack count parameter specified on the device driver
installation line of the CONFIG.SYS is too large. Device
driver was installed using the maximum stack count of 256.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver stack count parameter values.
Source SICLGPIB.SYS or SICLVXIL.SYS
4 *** Stack count parameter invalid -- minimum used ***
Cause The stack count parameter specified on the device driver

installation line of the CONFIG.SYS is too small. Device
driver was installed using the minimum stack count of 1.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
device driver stack count parameter values.
Source SICLGPIB.SYS or SICLVXLSYS

*** Stack parameter syntax error -- default used ***

Cause The stack parameter specified on the device driver
installation line of the CONFIG.SYS file is not syntactically
correct. Device driver was installed using the default values
of four 1 KB stacks.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver stack size parameter values.
Source SICLGPIB.SYS or SICLVXLSYS

4-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

*** Stack size parameter invalid -- maximum used ***

Cause The stack size parameter specified on the device driver
installation line of the CONFIG.SYS is too large. Device
driver was installed using the maximum stack size of 64 KB.

Corrective Refer to Chapter 2, Installation and Configuration, in the

Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver stack size parameter values.
Source SICLGPIB.SYS or SICLVXI.SYS
*** Stack size parameter invalid -- minimum used *** 4
Cause The stack size parameter specified on the device driver

installation line of the CONFIG.SYS is too small. Device
driver was installed using the minimum stack size of 256

bytes.
Corrective Refer to Chapter 2, Iristallation and Configuration, in the
Action EPConnect/VXI for DOS and Windows User's Guide for
valid device driver stack size parameter values.
Source SICLGPIB.SYS or SICLVXLSYS

4-9

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

*** Unable to initialize GPIB interface ***
*** SICLGPIB.SYS installation aborted ***

Cause SICLGPIB.SYS was unable to complete GPIB interface
initialization for one or more of the following reasons:

1. GPIB hardware is not present or is improperly installed in
the system (EPC-7 only).

2. The GPIB.COM device driver was not installed before the
SICLGPIB.SYS device driver.

3. The GPIB.COM driver does not recognize the GPIB
board name "GPIBO".

4. The device name parameter specified on the
SICLGPIB.SYS installation line of the CONFIG.SYS file
does not match any of the configured GPIB devices and/or
the GPIB.COM driver does not recognize the default GPIB
device name "EPCDEV1".

Corrective 1. (EPC-7 only) Verify that each EXM-4 module is properly

Action seated in it's slot and verify the EXM's configuration. If the
system reports EXM configuration errors at boot time or if
DMA channel, IRQ, or I/O base address conflicts exist, EXM
configuration is not correct. See the appropriate EXM
hardware reference manual(s) for details.

2. Edit the CONFIG.SYS file so that SICLGPIB.SYS is
loaded after GPIB.COM and reboot.

3. Execute the program IBCONF.EXE and ensure that the
GPIB board name "GPIB0" exists and reboot.

4. Execute the program IBCONF.EXE and ensure that the
GPIB device name "EPCDEV 1" exists, edit the
CONFIG.SYS file so that no device name parameter is
present on the SICLGPIB.SYS installation line, and reboot
the system.

Source SICLGPIB.SYS

4-10

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Error Messages

Unrecognized flag: /flag_value

Cause Flag_value specifies an unrecognized BIMGR.SYS
installation parameter in the CONFIG.SYS file.
BIMGR.SYS was not installed.

Corrective Correct or delete flag_value (refer to EPConnect/VXI for

Action DOS Programmer's Reference for a list of valid options) and
reboot.
Source BIMGR.SYS
4-11

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

NOTES

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

5. Support and Service

5.1 In North America

5.1.1 Technical Support

RadiSys maintains a technical support phone line at (503) 646-1800 that is staffed
weekdays (except holidays) between 8 AM and 5 PM Pacific time. If you have a
problem outside these hours, you can leave a message on voice-mail using the same
phone number. You can also request help via electronic mail or by FAX addressed to
RadiSys Technical Support. The RadiSys FAX number is (503) 646-1850. The
RadiSys E-mail address on the Internet is support@radisys.com. If you are sending
E-mail or a FAX, please include information on both the hardware and software
being used and a detailed description of the problem, specifically how the problem
can be reproduced. We'will respond by E-mail, phone or FAX by the next business
day.

Technical Support Services are designed for customers who have purchased their
products from RadiSys or a sales representative. If your RadiSys product is part of a
piece of OEM equipment, or was integrated by someone else as part of a system,
support will be better provided by the OEM or system vendor that did the integration
and understands the final product and environment.

5.1.2 Bulletin Board

RadiSys operates an electronic bulletin board (BBS) 24 hours per day to provide
access to the latest drivers, software updates and other information. The bulletin board
1s not monitored regularly, so if you need a fast response please use the telephone or
FAX numbers listed above.

The BBS operates at up to 14400 baud. Connect using standard settings of eight data
bits, no parity, and one stop bit (8, N, 1). The telephone number is (503) 646-8290.

5-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference

5.2 Other Countries

Contact the sales organization from which you purchased your RadiSys product for
service and support.

5-2

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

A

address space

deleting, 2-196

getting, 2-111

mapping, 2-107
address string

device session, 2-132

interface session, 2-132
application data structure, 2-33, 2-181
application development

compiling, paths, 1-6

portability, 1-3
architecture, EPConnect software, 1-4
assert, interface triggers, 2-250
ATN line, controlling, 2-64

B
BIMGR.SYS, error messages, 4-1
Borland
C compiler, 1-6
linker, 1-7
Borland C, using SICL with, 3-13
BSICL.LIB library, 1-6
buffers, see /O buffers
byte
controller's status, setting, 2-187
copying, 2-10
copying from fifo, 2-17
copying to fifo, 2-20
ordering, 3-2
reading, 2-13
swapping, 3-3
writing, 2-15

C

command bytes, writing, 2-82
compiler

Microsoft C, 1-7
compiler errors, 1-5
compiling SICL applications, 1-6
compiling under C++, 1-6
compiling, applications, 1-6
configuration files

DEVICES, 3-14
configuring, parallel poll response, 2-78
constants

interface type, 2-40

SICL.H, 3-21
controller status, passing, 2-72
controller, set status byte, 2-187
copying

byte, 2-10

iblockcopy, 2-10

ilblockcopy, 2-88

iwblockcopy, 2-231

long word, 2-88

word, 2-231

D

data structure

application, 2-33, 2-181

byte ordering, 3-5

session, getting, 2-181
deassert, interface triggers, 2-250
default

interfaces, 2-133
defining, trigger routes, 2-203

I-1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference Guide

description
formatted I/O, 2-3
SICL header file, 1-5
unformatted /O, 2-3

device
address, getting, 2-36
clearing, 2-24
formatted /O, reading, 2-152, 2-164
formatted /O, writing, 2-137, 2-152
information, 2-207
locking, 2-92
putting in local mode, 2-90
putting in remote mode, 2-162
reading data, 2-114, 2-155
reading status byte, 2-159
send word serial command, 2-227
session, opening, 2-132
SRQ handler, installing, 2-130
trigger, sending, 2-192
unlocking, 2-195
writing data, 2-118, 2-247

device session
address string, 2-132

DEVICES file, 3-14

DOS, handler operations, 3-9

E

ECL, triggers, 2-214, 2-216
EPC-7, TTL interrupt triggers, 3-10
EPConnect header file, 1-5
EPConnect, software, 1-4
error generation, when locked, 2-186
error handler

execution, 3-8

igetonerror, 2-45

ionerror, 2-122

query, 2-45
error handlers

installing, 2-122
error messages, listing, 4-1
error number

getting, 2-38
setting, 2-23
error string, getting, 2-39
event processing
disabling, 2-86
enabling, 2-87

F
fifo
byte copying to, 2-20
byte, copying, 2-17
long word copying to, 2-104
long word, copying, 2-101
word copying to, 2-244
word, copying, 2-241
file
DEVICES, 3-14
SICLIF, 3-21
[formatted /O
buffer flushing, 2-28
description, 2-3
iflush, 2-28
isetbuf, 2-177
reading, 2-152
setting buffer size, 2-177
writing, 2-152
formatting, characters, special, 2-137
functions, byte swapping, 3-3
functions, reentrant, 3-9

G

getting started, 1-7

GPIB
ATN line, controlling, 2-64
controller status, passing, 2-72
LLO mode, 2-70
parallel poll , configuring, 2-78
parallel poll, execute, 2-75
REN line, controlling, 2-80
status, getting, 2-66
write command bytes, 2-82

I-2

Artisan Technology Group - Quality Instrumentation

... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

handler
error, 2-122
handlers
error, execution, 3-8
interrupt, 2-124
interrupt execution, 3-7
operations under DOS, 3-9
SRQ, 2-130
SRQ, execution, 3-6
hang, when locked, 2-186
header file
description, 1-5

I/0 buffers

creating, 2-177

flushing, 2-28
I/O formating, special characters, 2-137
ibblockcopy (function), 2-10
ibpeek (function), 2-13
ibpoke (function), 2-15
ibpopfifo (function), 2-17
ibpushfifo (function), 2-20
icauseerr (function), 2-23
iclear (function), 2-24
iclose (function), 2-26
iflush (function), 2-28
igetaddr (function), 2-31
igetdata (function), 2-33
igetdevaddr (function), 2-36
igeterrno (function), 2-38
igeterrstr (function), 2-39
igetintftype (function), 2-40
igetlockwait (function), 2-42
igetlu (function), 2-44
igetonerror (function), 2-45
igetonintr (function), 2-48
igetonsrq (function), 2-54
igetsesstype (function), 2-57
igettermchr (function), 2-60

igettimeout (function), 2-62
igpibatnctl (function), 2-64
igpibbusstatus (function), 2-66
igpibllo (function), 2-70
igpibpassctl (function), 2-72
igpibppoll (function), 2-75
igpibppollconfig (function), 2-78
igpibrenctl (function), 2-80
igpibsendemd (function), 2-82
ihint (function), 2-85
itntroff (function), 2-86
iintron (function), 2-87
ilblockcopy (function), 2-88
ilocal (function), 2-90
ilock (function), 2-92
ilpeek (function), 2-95
ilpoke (function), 2-98
ilpopfifo (function), 2-101
ilpushfifo (function), 2-104
imap (function), 2-107
imapinfo (function), 2-111
inbread (function), 2-114
inbwrite (function), 2-118
installing
error handler, 2-122
SRQ handler, 2-130
Intel, byte ordering, 3-2
interface
address space, getting, 2-111
clearing, 2-24
constants, type, 2-40
formatted I/O, reading, 2-152, 2-164
formatted I/O, writing, 2-137, 2-152
locking, 2-92
reading data, 2-114, 2-155
session address string, 2-132
session type, getting, 2-40
session, opening, 2-132
trigger, sending, 2-192
triggers, assert or deassert, 2-250
unlocking, 2-195

I-3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference Guide

writing data, 2-118, 2-247
interface record, SICLIF, 3-21
interfaces

default, 2-133
interrupt

disabling event processing, 2-86

enabling, 2-182

enabling event processing, 2-87

handler execution, 3-7

types, valid, 2-183

wait for execution, 2-230
interrupt handler

getting, 2-48

installing, 2-124
interrupts

disabling, 2-182

enabling, 2-182
ionerror (function), 2-122
ionintr (function), 2-124
ionsrq (function), 2-130
iopen (function), 2-132
iprintf (function), 2-137
ipromptf (function), 2-152
iread (function), 2-155
ireadstb (function), 2-159
iremote (function), 2-162
iscanf (function), 2-164
isetbuf (function), 2-177
isetdata (function), 2-181
isetintr (function), 2-182
isetlockwait (function), 2-186
isetstb (function), 2-187
itermchr (function), 2-188
itimeout (function), 2-190
itrigger (function), 2-192
tunlock (function), 2-195
iunmap (function), 2-196
ivxibusstatus (function), 2-199
ivxigettrigroute (function), 2-203
ivxirminfo (function), 2-207
ivxiservants (function), 2-211

tvxitrigoff (function), 2-214
ivxitrigon (function), 2-216
ivxitrigroute (function), 2-220
ivxiwaitnormop (function), 2-225
ivxiws (function), 2-227
iwaithdlIr (function), 2-230
iwblockcopy (function), 2-231
iwpeek (function), 2-235
iwpoke (function), 2-238
iwpopfifo (function), 2-241
iwpushfifo (function), 2-244
iwrite (function), 2-247

ixtrig (function), 2-250

L

languages, other, using SICL with, 3-13
library configuration record, SICLIF, 3-
21
linker

Borland, 1-7

Microsoft, 1-7
local mode, device, put in, 2-90
lock-wait flag, getting, 2-42
locking

device, 2-92

functions affected, 2-93

generate error, 2-186

hang, 2-186

ilock, 2-92

interface, 2-92

nesting, 2-92

suspend, 2-186 -~
logical unit, 2-132
long word

copying, 2-88

copying from fifo, 2-101

copying to fifo, 2-104

reading, 2-95

writing, 2-98

I-4

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

M

memory

mapping, 2-107

mapping constants, 2-107, 2-111

unmapping, 2-196
memory mapping, delete, 2-196
Microsoft C, 3-13
Microsoft, quick C, 3-12
Motorola, byte ordering, 3-2
MSSICL.LIB library, 1-6

N
normal operation, VXIbus, 2-225
number, error, getting, 2-38

0]
opening, a session, 2-26, 2-132

. P
parallel poll, execute, 2-75
portability, application, 1-3
primary address, 2-132

Q
quick C, using SICL with, 3-12

R

read buffer, size setting, 2-177
read termination, reasons, 2-115, 2-156
read/write buffers, flushing, 2-28
read/write, formatted /O, 2-152
reading

byte, 2-13

data with blocking, 2-155

data without blocking, 2-114

formatted I/O, 2-164

long word, 2-95

status byte, 2-159

word, 2-235
reentrant, functions, 3-9
remote mode, device, put in, 2-162

REN line, controlling, 2-80
routing, trigger lines, 2-220

S
sample devices file, 3-19
secondary address, 2-132
send, word serial command, 2-227
servants, VXIbus, list of, 2-211
session
address string, getting, 2-31
closing, 2-26
constants, type, 2-57
data structure, getting, 2-33, 2-181
installing interrupt handler, 2-124
interface type, getting, 2-40
interrupt handler, getting, 2-48
lock-wait flag, getting, 2-42
opening, 2-132
SRQ handler, getting, 2-54,
termination character, getting, 2-60
timeout, getting, 2-62
timeout, setting, 2-190
type, getting, 2-57
ULA, getting, 2-44
setting
error number, 2-23
termination character, 2-188
SICL
standard, compliance, 1-3
SICL.H
structure, 1-5
SICL.H header file, 1-5
SICLGPIB.SYS
error messages, 4-1
SICLIF file, 3-21
SICLVXILSYS
error messages, 4-1
size, setting buffer, 2-177
software
EPConnect, 1-4
special characters, /O formatting, 2-137

I-5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference Guide

SRQ

disabling event processing, 2-86

enabling event processing, 2-87

handler execution, 3-6

handler, getting, 2-54

handler, installing, 2-130

wait for execution, 2-230
starting, 1-7
status byte

reading, 2-159

setting controller's, 2-187
status, GPIB

constants, 2-66

getting, 2-66
status, VXIbus, getting, 2-199
string, error, getting, 2-39
SURM

name generation, 2-133
symbolic names, 2-132

defined, 2-133

T
Techncial Support
electronic bulletin board (BBS), 5-1
Technical Support, 5-1
E-mail, 5-1
E-mail address, 5-1
FAX, 5-1
termination character
getting, 2-60
setting, 2-188
timeout
functions, affected, 2-190
session, getting, 2-62
session, setting, 2-190
trigger
constants, 2-124
interface, assert or deassert, 2-250
lines, asserting, 2-216
lines, deasserting, 2-214
lines, routing, 2-220

route, getting, 2-203
routes, defining, 2-203
sending, 2-192
TTL interrupt, 3-10
trigger lines
asserting, 2-216
deasserting, 2-214
TTL interrupt triggers, EPC-7, 3-10
TTL, triggers, 2-214, 2-216
type, session, getting, 2-57
types, interrupt, valid, 2-183

U
ULA, getting, 2-44
unformatted 1/O,description, 2-3
unlocking
device, 2-195
interface, 2-195
using SICL
with Borland C, 3-13
with Microsoft Quick C, 3-12
with other languages, 3-13

Vv

VXIbus
device information, getting, 2-207
memory mapping, 2-107
memory unmapping, 2-196
normal operation, wait for, 2-225
route trigger lines, 2-220
send word serial command, 2-227
servants, list of, 2-211
status constants, 2-199
status, getting, 2-199
trigger lines, asserting, 2-216
trigger lines, deasserting, 2-214
trigger routing, getting, 2-203

W
wait, SRQ or interrupt execution, 2-230
word

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

copying, 2-231
copying from fifo, 2-241
copying to fifo, 2-244
reading, 2-235
writing, 2-238
word serial command, send, 2-227
write buffer, setting size, 2-177
writing
byte, 2-15
data with blocking, 2-247
data without blocking, 2-118
iwrite, 2-247
long word, 2-98
word, 2-238
writing, formatted /O, 2-137

I-7

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

SICL for DOS Programmer's Reference Guide

1-8

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions We buy equipment Learn more!

Extend the life of your critical industrial, Planning to,upgrade your/current Visit us at artisantg.com for more info
commercial, and military systems with our equipment? Have/surplus equipment taking on price quotes, drivers, technical

superior service and support. up’shelf'space? Well give'it a new home. specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, represéntative, or authorized distributor for any manufacturer listed herein.

(217) 352-9330 | sales@artisantg.com | artisantg.com TECHNOLOGY GROUP

We’re here to make your life easier. How can we help you today? Vl ARTISAN

