Your **definitive** source for quality pre-owned equipment.

Artisan Technology Group
(217) 352-9330 | sales@artisantg.com | artisantg.com

Full-service, independent repair center
with experienced engineers and technicians on staff.

We buy your excess, underutilized, and idle equipment
along with credit for buybacks and trade-ins.

Custom engineering
so your equipment works exactly as you specify.

- Critical and expedited services
- In stock / Ready-to-ship
- Leasing / Rentals / Demos
- ITAR-certified secure asset solutions

Expert team | Trust guarantee | 100% satisfaction

Find the Kollmorgen / Thompson OMNIDRIVE ODM-005 at our website: [Click HERE](#)
Installation Manual for Models

ODM-005 and ODM-005i
ODM-010 and ODM-010i
ODM-020 and ODM-020i

Thomson Industries, Inc.
2 Channel Drive
Port Washington, NY 11050
Product Notice

Use of OMNIDRIVEs

OMNIDRIVEs are intended for use as transistorized electronic amplifiers powering servo motors in machinery. As such, they must be part of a controlled system that includes a controlling device. They are not intended to independently control a motor. Instructions in the motor and control system manuals must be observed; this document does not replace those instructions.

Unless specified otherwise, OMNIDRIVEs are intended for use in a normal industrial environment, installed in a suitable electrical cabinet without exposure to excessive or corrosive moisture or abnormal ambient temperatures. The exact operating conditions may be established by referring to the data for the drive. The connection and control of drives in machinery is a skilled operation, disassembly or repair must not be attempted. In the event that a drive fails to operate correctly, contact the place of purchase for return instructions.

Safety Notes

There are some possible hazards associated with the use of drives. The following precautions should be observed. Specific Warnings and Cautions are listed in the Preface to the manual.

Installation and Maintenance: Installation and maintenance or replacement must be carried out by suitably qualified service personnel, paying particular attention to possible electrical and mechanical hazards.

Weight: Large drives are heavy, the center of gravity may be offset and removable covers shield internal components. When handling, take appropriate precautions and lift the equipment using permanent, fixed surfaces, such as the base; avoid lifting the device using protective cover shields that may be loose. Beware of sharp edges; use protective gloves when handling such assemblies.

Flying Leads and Loose Cables: Ensure that flying leads or loose cables are suitably restrained, to prevent snagging or entanglement, or are disconnected before carrying drives with such leads or cables.

Generation: If a motor is driven mechanically, it may generate hazardous voltages which are conducted from its power input terminals to the drive. The power connector must be suitably guarded to prevent a possible shock hazard.

Loose Drives: When running an unmounted drive, ensure that the cooling fan is adequately guarded and sufficient airflow is provided around the drive to ensure adequate cooling. The mounting surface of the drive is a heatsink and its surface temperature may increase when the drive is operating. If a motor is connected to the drive, remove the key which otherwise could fly out and restrain the motor before applying power to the drive.

Damaged Cables: Damage to cables or connectors may cause an electrical hazard. Ensure there is no damage before energizing the system.

Supply: Drives connect to a permanent main power source; not a portable power source. Suitable fusing and circuit protection devices are required. Consult the instructions and adhere to local and national regulations before connecting and energizing the drive. Current limits must be set correctly when operating a ODM-075 using a single phase power source.

Safety Logic Signals: Logic signals from the drive are interruptible signals; they are removed when power is removed from the drive. Consult the manual for information on auxiliary power connections that may be employed when these signals are used for safety purposes.

Safety Requirements: The safe incorporation of OMNIDRIVE products into a machine system is the responsibility of the machine designer, who should comply with the local safety requirements at the place where the machine is to be used. In Europe this is likely to be the Machinery Directive, the ElectroMagnetic Compatibility Directive and the Low Voltage Directive. In the United States this is likely to be the National Electrical Code.

Mechanical Connection: Drives must be installed inside an electrical cabinet that provides environmental controls and protection. Installation information for the drive is provided in the manual and list the minimum installation requirements for the drive are provided in the manual. Motors and controlling devices that connect to the drive should have specifications that complement the capabilities of the drive.

Motors: Motors controlled by the drive should only connect to the drive; they should not connect directly to the AC line. Use of custom motors requires the entering of a valid thermal time constant, otherwise the motor overload protection will not function properly.

Disposal: OMNIDRIVEs do not contain hazardous substances. They may be disposed of as mechanical scrap. You may return the drive at your cost for disposal by us.
Installation Manual for Models

ODM-005 and ODM-005i
ODM-010 and ODM-010i
ODM-020 and ODM-020i

Thomson Industries, Inc.
2 Channel Drive
Port Washington, NY 11050
516-883-8000 - main
516-883-9039 - fax
1-800-554-THOMSON - technical support
Contents

List of Figures

List of Tables

Preface

Who Should Use this Manual
OMNIDRIVE Product Receiving and Storage Responsibility
Thomson Industries Support
Local Product Support
Technical Product Assistance
Purpose and Contents of this Manual
Additional Instructions and Manuals
Host Commands and OMNI LINK
TouchPad
Symbols and Conventions
Typographical and Wording Conventions
Graphical Symbols and Warning Classifications

CHAPTER 1

Safety

Installing and Using the OMNIDRIVE
Safety Classifications
Potential Hazards
Your Responsibilities
General Safety Guidelines

CHAPTER 2

Selecting Other System Components

OMNIDRIVE Overview
OMNIDRIVE Features
Drive Power Ratings
High Performance Microcontroller Technology
IPM Technology
Analog and Digital Interfaces
Encoder Control
Encoder Output
Digital I/O
Analog I/O
AC Input Power
Personality Module
Multiple Protection Circuits
Serial Command Sources
Analog Command Sources
I/O Interface. .. 2-4
 Analog Input .. 2-4
 Analog Output .. 2-4
 Digital Inputs .. 2-4
 Control Inputs .. 2-4
 Selectable Inputs 2-4
 Digital Outputs .. 2-4
 Control Outputs 2-4
 Selectable Outputs 2-4
 Auxiliary Encoder Interface 2-5
 Encoder Inputs 2-5
 Encoder Output 2-5
 Autotuning ... 2-5
 Agency Approvals 2-5
 Interface Cables 2-5
 OMNI LINK Software 2-5
 Motors .. 2-6
 European Union Requirements 2-6

CHAPTER 3
OMNI LINK
Installation
Hardware and Software Requirements 3-1
Installing OMNI LINK 3-2
Starting and Quitting OMNI LINK 3-2
 The OMNI LINK Start-Up Screen 3-3
 Version Level ... 3-3
 The Readme File .. 3-4
 Miscellaneous Files 3-4
 Firmware Files .. 3-4

CHAPTER 4
Unpacking,
Inspecting, and
Storing
Unpacking the Drive .. 4-1
Inspection Procedure 4-1
Testing the Unit .. 4-2
 Hardware Set Up 4-3
 Drive Checkout Test 4-3
Storing the Unit .. 4-6

CHAPTER 5
Installation
Mechanical Installation Requirements 5-1
 Interface Connections 5-4
 Wiring ... 5-4
 Electromagnetic Compatibility 5-4
 AC Line Filters .. 5-6

CHAPTER 6
Interfaces
J1 – Controller ... 6-1
Digital I/O Power .. 6-3
Digital Inputs ... 6-3
Contents

Input Interface Circuit Examples .. 6-6
Digital Outputs .. 6-8
Analog Inputs ... 6-13
Analog Outputs ... 6-15
Motor Encoder Output Signals ... 6-16
IOUT Signal Generation ... 6-17
Auxiliary Encoder Inputs Types ... 6-18
Interface Cable Examples .. 6-20
J1 Terminal Strip/Breakout Board ... 6-24
J2 – Encoder ... 6-25
J2 Terminal Strip/Breakout Board ... 6-27
J5 – Serial Port ... 6-27
Serial Communications Overview .. 6-28
RS-232 Connections .. 6-28
Four Wire RS-485 Connections .. 6-30

CHAPTER 7
Power Connections
Motor Power Cabling .. 7-2
Shield Termination of Power Cables 7-2
Motor Overload Protection .. 7-3
Power Supply Protection .. 7-3
Emergency Stop Wiring ... 7-4
AC Power Cabling ... 7-5
DC Bus ... 7-6

CHAPTER 8
Application and Configuration Examples
Analog Control .. 8-1
Hardware Set Up ... 8-1
Connection Diagram .. 8-1
Configuration .. 8-1
Tuning .. 8-3
Operation ... 8-4
Preset Controller ... 8-5
Hardware Set Up ... 8-5
Connection Diagram .. 8-6
Configuration .. 8-6
Tuning .. 8-8
Operation ... 8-8
Position Follower (Master Encoder) 8-9
Hardware Set Up ... 8-9
Connection Diagram .. 8-10
Configuration .. 8-10
Tuning .. 8-12
Operation ... 8-12
Position Follower (Step/Direction) 8-13
Hardware Set Up ... 8-13
Connection Diagram .. 8-14
Configuration .. 8-14
Tuning .. 8-16
Operation ... 8-16
<table>
<thead>
<tr>
<th>Position Follower (Step Up/Step Down)</th>
<th>8-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Set Up</td>
<td>8-17</td>
</tr>
<tr>
<td>Connection Diagram</td>
<td>8-18</td>
</tr>
<tr>
<td>Configuration</td>
<td>8-18</td>
</tr>
<tr>
<td>Tuning</td>
<td>8-20</td>
</tr>
<tr>
<td>Operation</td>
<td>8-20</td>
</tr>
<tr>
<td>Incremental Indexing</td>
<td>8-21</td>
</tr>
<tr>
<td>Hardware Set Up</td>
<td>8-22</td>
</tr>
<tr>
<td>Connection Diagram</td>
<td>8-22</td>
</tr>
<tr>
<td>Configuration</td>
<td>8-22</td>
</tr>
<tr>
<td>Tuning</td>
<td>8-24</td>
</tr>
<tr>
<td>Operation</td>
<td>8-24</td>
</tr>
<tr>
<td>Registration Indexing</td>
<td>8-26</td>
</tr>
<tr>
<td>Hardware Set Up</td>
<td>8-26</td>
</tr>
<tr>
<td>Connection Diagram</td>
<td>8-27</td>
</tr>
<tr>
<td>Configuration</td>
<td>8-27</td>
</tr>
<tr>
<td>Tuning</td>
<td>8-29</td>
</tr>
<tr>
<td>Operation</td>
<td>8-30</td>
</tr>
<tr>
<td>Absolute Indexing</td>
<td>8-31</td>
</tr>
<tr>
<td>Hardware Set Up</td>
<td>8-31</td>
</tr>
<tr>
<td>Connection Diagram</td>
<td>8-32</td>
</tr>
<tr>
<td>Configuration</td>
<td>8-32</td>
</tr>
<tr>
<td>Tuning</td>
<td>8-34</td>
</tr>
<tr>
<td>Operation</td>
<td>8-34</td>
</tr>
<tr>
<td>Modifying User Units</td>
<td>8-35</td>
</tr>
<tr>
<td>Changing the Display Units Settings</td>
<td>8-35</td>
</tr>
</tbody>
</table>

CHAPTER 9 Tuning

Tuning Guidelines .. 9-1
 General Tuning Rules .. 9-1
 High Inertia Loads .. 9-1
 Mechanical Resonance .. 9-1
 Backlash ... 9-2
Auto Tune Mode ... 9-3
 Auto Tuning .. 9-4
Manual Tune Mode .. 9-5
 Gains ... 9-5
 Filters ... 9-6
 Manual Tuning .. 9-7
 Velocity Loop Tuning Examples ... 9-9

CHAPTER 10 Status Display

Status Indicator .. 10-1
Error Messages ... 10-1
 Run-Time Error Codes .. 10-1
 Power-Up Error Codes ... 10-2

CHAPTER 11 Maintenance and Troubleshooting

Maintenance .. 11-1
 Periodic Maintenance .. 11-1
Firmware Upgrading ... 11-2
 Firmware Upgrade Procedure using OMNI LINK 11-2
Troubleshooting .. 11-3
Error Codes ... 11-3
RS-232 Communication Test 11-6
Testing Digital Outputs ... 11-7
Testing Digital Inputs ... 11-8
Testing Analog Output .. 11-8
Testing Analog Input .. 11-9
Testing Encoder Inputs .. 11-9

APPENDIX A TouchPad Instructions
Installation and Operation .. A-1
TouchPad Commands ... A-3
Supplemental Instructions ... A-6
Motor Selection ... A-6
Analog Output Scaling ... A-6
Displays .. A-6
TouchPad Options .. A-8
TouchPad Lists .. A-9

APPENDIX B Creating Custom Motor Files
Drive and Motor File Configuration with OMNI LINK B-2
Motor Parameter Set. .. B-2
General Parameters ... B-4
Feedback Parameters ... B-7
Electrical Parameters ... B-9
Rating Parameters .. B-9
Example of Custom Motor File Creation B-12
Manufacturer's Data ... B-12
Parameter Conversions .. B-13
Custom Motor File .. B-14
Troubleshooting Custom Motor Files B-14

APPENDIX C Electromagnetic Compatibility Guidelines for Machine Design
Introduction ... C-1
Filtering .. C-2
AC Line Filter Selection .. C-2
Grounding ... C-4
Shielding and Segregation .. C-5

APPENDIX D Dynamic Braking Resistor Selection
Introduction ... D-1
Dynamic Braking Equations .. D-1
Sample Calculations ... D-3

APPENDIX E Specifications
Power .. E-3
Power Dissipation ... E-4

Index of Topics Help-1
Our Warranty

Defective Equipment ... Help-7
Return Procedure .. Help-7

Product Support ... Help-9
List of Figures

CHAPTER 1 Safety

CHAPTER 2 Selecting Other System Components

CHAPTER 3 OMNI LINK Installation

CHAPTER 4 Unpacking, Inspecting, and Storing

CHAPTER 5 Installation

CHAPTER 6 Interfaces
List of Figures

Single-Ended Encoder Interface via Standard TTL Signals (not recommended) 6-21
Single-Ended Encoder Interface via Open Collector Transistor with 5 VDC to 12 VDC Pull-up (not recommended) ... 6-22
Single-Ended Encoder Interface via Open Collector Transistor with 24 VDC Pull-up (not recommended) ... 6-22
External Step/Direction Interface via TTL Differential Line Drivers 6-23
External Step/Direction Interface via Single-Ended TTL Line Drivers (not recommended) ... 6-23
External CW/CCW (Step Up/Step Down) Interface via TTL Differential Line Drivers 6-24
External CW/CCW (Step Up/Step Down) Interface via Single-Ended Line Drivers (not recommended) ... 6-24
Motor Encoder Interface Circuit .. 6-25
Hall Effect Sensor Circuit .. 6-25
OMNIDRIVE Motor Encoder Connections ... 6-26
RS-232/485 Interface Circuit ... 6-27
RS-232 Connection Diagrams .. 6-29
RS-485/RS-422 Communication Comparison ... 6-30
Four Wire RS-485 Daisy Chain Connection Diagram .. 6-32

CHAPTER 7

Power Connections
Motor Power EMC Shield Connection ... 7-2
Emergency Stop Contactor Wiring ... 7-4

CHAPTER 8

Application and Configuration Examples
Analog Controller Connection Diagram .. 8-2
Preset Controller Connection Diagram ... 8-6
Position Follower (Master Encoder) Connection Diagram 8-10
Step/Direction Controller Connection Diagram ... 8-14
Step Up/Step Down Controller Connection Diagram .. 8-18
Incremental Indexing Examples .. 8-21
Incremental Indexing Connection Diagram .. 8-22
Registration Indexing Examples .. 8-26
Registration Indexing Connection Diagram ... 8-27
Absolute Indexing Examples ... 8-31
Absolute Indexing Connection Diagram ... 8-32
PC Display Units – Default Dialog .. 8-35

CHAPTER 9

Tuning
Velocity Loop Structure ... 9-2
Torque Current Conditioning Structure .. 9-3
Signal Nomenclature ... 9-9
Underdamped Signal .. 9-9
Overdamped Signal .. 9-10
Critically Damped Signal (Ideal Tuning) ... 9-10

CHAPTER 10

Status Display

CHAPTER 11

Maintenance and Troubleshooting

APPENDIX A

TouchPad Instructions
TouchPad Connection and Pinouts ... A-1
APPENDIX B

Creating Custom Motor Files

Thomson Industries Motor Naming Convention .. B-3
Required Back-EMF and Hall Signal Phasing for Clockwise Rotation B-3
Phasing of the Encoder Signals for Clockwise Rotation. B-4
Index Offsets .. B-7
Hall Offsets .. B-8
Motor Thermal Protection Software Method .. B-10
Back-EMF and Hall Signals, Clockwise Rotation ... B-12

APPENDIX C

Electromagnetic Compatibility Guidelines for Machine Design

EMI Source-Victim Model .. C-1
AC Line Filter Installation .. C-3
Single Point Ground Types .. C-4

APPENDIX D

Dynamic Braking Resistor Selection

APPENDIX E

Specifications
CHAPTER 8 Application and Configuration Examples
Preset Binary Inputs ... 8-5

CHAPTER 9 Tuning
Velocity Loop Gains ... 9-5
Position Loop Gains ... 9-6

CHAPTER 10 Status Display
Run-Time Error Codes ... 10-1
Power-Up Error Codes ... 10-2

CHAPTER 11 Maintenance and Troubleshooting
Troubleshooting Guide ... 11-3

APPENDIX A TouchPad Instructions
TouchPad Fault/Error/Warning Displays A-8
Option Selections for the TouchPad A-8
Drive Communications Parameter List for the TouchPad A-9
Baud Rate Parameter List for TouchPad A-9
Encoder Output Parameter List for TouchPad A-9
IO Mode Parameter List for TouchPad A-9
Index Pointer Parameter List for TouchPad A-9
Index Termination Parameter List for TouchPad A-10
Home Type Parameter List for TouchPad A-10
Homing Auto-Start Parameter List for TouchPad A-10
Reverse Enable for Homing A-10
Digital Input Parameter List for TouchPad A-10
Digital Output Parameter List for TouchPad A-11
Analog Output Parameter List for TouchPad A-11
Drive Status List for TouchPad A-11
Input Flags Parameter List for TouchPad A-12
Output Flags Parameter List for TouchPad A-12

APPENDIX B Creating Custom Motor Files

APPENDIX C Electromagnetic Compatibility Guidelines for Machine Design

APPENDIX D Dynamic Braking Resistor Selection
Dynamic Braking Resistor Parameters D-1

APPENDIX E Specifications
OMNIDRIVE Power Ratings E-3
Read this preface to familiarize yourself with the rest of the manual. This preface covers the following topics:

- who should use this manual
- the purpose and contents of this manual
- storing the product
- related documentation
- conventions used in this manual
- safety precautions

Who Should Use this Manual

Use this manual if you are responsible for designing, installing, programming, or troubleshooting the OMNIDRIVE family of products.

If you do not have a basic understanding of the OMNIDRIVE, contact your local Thomson representative for information available on this product.

OMNIDRIVE Product Receiving and Storage Responsibility

You, the customer, are responsible for thoroughly inspecting the equipment before accepting the shipment from the freight company. Check the item(s) you receive against your purchase order. If any items are obviously damaged, it is your responsibility to refuse delivery until the freight agent has noted the damage on the freight bill. Should you discover any concealed damage during unpacking, you are responsible for notifying the freight agent. Leave the shipping container intact and request that the freight agent make a visual inspection of the equipment.

Leave the drive in its shipping container prior to installation. If you are not going to use the equipment for a period of time, store it:

- in a clean, dry location
- within an ambient temperature range of -40 to 70°C (-40 to 158°F)
- within a relative humidity range of 5% to 95%, non-condensing
- in an area where it cannot be exposed to a corrosive atmosphere
- in a non-construction area

The “Drive Checkout Test” on page 4-3 is useful to verify that the unit is operating correctly after delivery.

Thomson Industries Support

Thomson Industries offers support services worldwide.
Local Product Support
Contact your local Thomson representative for:
- sales and order support
- product technical training
- warranty support
- support service agreements

Technical Product Assistance
If you need to contact Thomson Industries for technical assistance, please review the information in the Appendix, “Maintenance and Troubleshooting” first. Then call your local Thomson distributor. For the quickest possible response, we recommend that you have the part and model numbers and/or software revision level of your products available when you call. The Thomson Industries Technical Support telephone number is listed on the back cover of this manual.

Purpose and Contents of this Manual
This manual is a user guide for the OMNIDRIVE. It gives you an overview of the OMNIDRIVE family and describes the procedures you use to install, setup, use, and troubleshoot the OMNIDRIVE.
This manual provides instructions on how to setup and connect the OMNIDRIVE to a controlling device and a motor. An OMNIDRIVE can operate in one of several different functional modes. The hardware connections necessary to run the drive are detailed in this manual and basic software instructions are provided for common setup procedures. For detailed explanation of software instructions, refer to the comprehensive online instructions available in the OMNI LINK software.

The instructions in this manual detail how to install your OMNIDRIVE using OMNI LINK software with a personal computer. If you are using a TouchPad device, abbreviated command titles are displayed but the setup steps remain the same. If you are using the serial Host Command Language to control the drive, comprehensive instructions are accessible through the Host Command Reference icon displayed in the OMNI LINK window.

This manual is organized into numbered chapters and alphabetical appendices. The topics covered in each chapter and section are briefly described. Typographical conventions, warning and cautions specific to the drive, and complementary manuals are also described.

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Lists general safety requirements that must be followed when installing or servicing the drive.</td>
</tr>
<tr>
<td>Selecting Other System Components</td>
<td>Identifies motors and signal types that are compatible with OMNIDRIVEs.</td>
</tr>
<tr>
<td>OMNI LINK Installation</td>
<td>Provides snapshot instructions for installing, accessing and exiting OMNI LINK.</td>
</tr>
<tr>
<td>Unpacking, Inspecting and Storing</td>
<td>Lists what should be included with your OMNIDRIVE and instructs you on how to perform a basic functional test before installing or storing the drive.</td>
</tr>
<tr>
<td>Installation</td>
<td>Instructs you on how to physically install your OMNIDRIVE.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Each signal or set of signals is identified by:</td>
</tr>
<tr>
<td></td>
<td>• Power requirements for driving the signal.</td>
</tr>
<tr>
<td></td>
<td>• Functions performed by the signal.</td>
</tr>
<tr>
<td></td>
<td>• Specifications, including ON and OFF states.</td>
</tr>
<tr>
<td></td>
<td>• Schematic depictions of the circuit design for each signal type.</td>
</tr>
<tr>
<td></td>
<td>The signals are grouped by the connector on which they are present.</td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>J1 - Controller Connector</td>
<td>Diagrams depict the cable connections necessary for common controller interfaces.</td>
</tr>
<tr>
<td>J2 - Encoder</td>
<td>Provides comprehensive information about the encoder signals, Hall Effect switches and thermostat connections available through this connector.</td>
</tr>
<tr>
<td>J5 - Serial Port</td>
<td>Diagrams and instructions detail how to communicate with a drive using serial communications.</td>
</tr>
</tbody>
</table>

Power Connections

Provides information on making motor power, DC bus and AC Power connections.

Application and Configuration Examples

Describes the hardware and software set up necessary to install the drive as one of the following types operating in a specific mode:

- Analog Control
 - Velocity or torque mode
- Preset Controller
 - Velocity or torque mode
- Position Follower (Master Encoder)
 - Velocity mode
- Position Follower (Step/Direction)
 - Velocity mode
- Position Follower (Step Up/Step Down)
 - Velocity mode
- Incremental Indexing
 - Velocity mode
- Registration Indexing
 - Velocity mode
- Absolute Indexing
 - Velocity mode

Tuning

Provides instructions on how to tune a drive and motor combination using the autotuning or manual tuning features in OMNI LINK.

Status Display

Discusses the Status LED indicator on the front panel. Operating or Error Messages accessible through the TouchPad or a PC are explained.

Maintenance and Troubleshooting

Describes the minimal maintenance necessary with the OMNIDRIVEs and provides a comprehensive troubleshooting chart of potential problems and their solutions.

Touchpad Instructions

Describes how to program an OMNIDRIVE using the optional TouchPad device. Tables reference the various motor types that are programmed to work with the OMNIDRIVE. A copy of the TouchPad Command Tree card for the current firmware version is bound into the manual.

Creating Custom Motor Files

Describes how to create a custom motor file for use with an OMNIDRIVE.

Electromagnetic Compatibility Guidelines

Describes common electrical noise problems and suggests methods to ensure ElectroMagnetic Compatibility.

Dynamic Braking Resistor Selection

Provides equations to assist in sizing resistors for dynamic braking.

Specifications

Details the design and operational specifications for the OMNIDRIVEs in a tabular format.

Warranty

Provides a synopsis of the warranty coverage and how to obtain warranty assistance.

Product

Describes the product assistance available, and lists telephone numbers for product assistance and additional on-line information.
Additional Instructions and Manuals

Host Commands and OMNI LINK

All OMNIDRIVEs are setup through serial Host Commands. The drives may be configured directly through the Host Command language or indirectly through the OMNI LINK software. OMNI LINK is a graphical user interface that provides a visual method of accessing the Host Command language through the Microsoft Windows Operating System.

All documentation for both the Host Commands and OMNI LINK is on-line. Host Command information is available through a comprehensive on-line reference manual. OMNI LINK information is available through Help menus. The on-line documents provide in-depth explanations of the Host Command language as well as the menus, windows and dialog boxes that make OMNI LINK a convenient method for programming OMNIDRIVE.

- To access the Host Command Reference
 Click on the Host Command Reference icon in the OMNI LINK program group.
- To access OMNI LINK Help
 Open OMNI LINK by clicking on the OMNI LINK icon in the OMNI LINK group, and Press the F1 key.

TouchPad

The optional TouchPad may be used to monitor and configure the OMNIDRIVE. The TouchPad command structure is similar to the structure of OMNI LINK, but operates through an abbreviated keypad interface. The card TouchPad Instructions is provided with the TouchPad. It describes the installation and operational instructions in a pocket-sized directory. The TouchPad Command Tree Card and additional instructions for the TouchPad are included in the section titled, “TouchPad Instructions” which begins on page A-1. The TouchPad Command Tree Card is a graphical presentation of both the operational instructions and the command structure for the OMNIDRIVE. You may find it convenient to refer to the card when using the TouchPad with a drive.
Symbols and Conventions

Typographical and Wording Conventions

This manual uses the following typographical and wording conventions:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
</table>
| » | Text preceded by right guillemet explains how to access the particular function in the preceding paragraph. For example, To Start OMNI LINK in Windows
| | » Choose the icon OMNI LINK. |
| Drive Set Up | Text shown in this font and underlined indicates a Hot Key (keystroke combination) to quickly access a command. For example,
| | Choose Drive Set Up. indicates typing ALT+D followed by ENTER accesses this command. |
| OMNI LINK | Text shown in this font is information to enter in a window or dialog box. For example,
| | Choose the icon OMNI LINK. |
| win | Text in lower case bold is information to enter at a keyboard. For example,
| | To start Windows from the DOS prompt, type win and then press ENTER. |
| ALT+F4a | Keys that should be pressed simultaneously are shown with a plus sign (+) between the key names. This example closes the active window. |
| ALT, F, N | Keys that should be pressed in sequence are shown with a comma (,) between the key names. This example opens the File menu and then opens a new file. |
| Choose | The wording indicates that an icon or a command is to be selected from a window or a command box. For example, the instruction for accessing the command icon Drive Set Up states:
| | Choose Drive Set Up. |
| Select | The wording indicates that options are to be defined or selected from a list. For example, the instruction for accessing or entering information states:
| | Select Drive Type and Motor Model from the respective list box. |
| Type | The wording indicates that commands are to be entered into a command box. For example, the instruction for loading OMNI LINK states:
| | Type assetup and then press ENTER. |
| Tips | Tips provide hints or shortcuts that are useful to know. For example, |
| TIP | OMNI LINK always displays the Help menu - Quick Start - when it is first accessed.
| | To disable this automatic display, choose the menu item Show Quick Start from the Help menu. |

a. Microsoft® Windows™ reserves certain multiple keystroke combinations to activate Windows commands.
Graphical Symbols and Warning Classifications

This manual uses the following graphical symbols and warning classifications. The use of a symbol and signal word is based on an estimation of the likelihood of exposure to the hazardous situation and what could happen as a result of exposure to the hazard.

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protective conductor terminal (Earth ground)</td>
</tr>
<tr>
<td></td>
<td>Chassis terminal (not a protective ground)</td>
</tr>
<tr>
<td></td>
<td>Risk of electrical shock.</td>
</tr>
<tr>
<td></td>
<td>Symbol plus DANGER, WARNING or CAUTION: These notices provide information intended to prevent potential personal injury and equipment damage.</td>
</tr>
</tbody>
</table>
Safety

Installing and Using the OMNIDRIVE

Read the complete manual before attempting to install or operate the OMNIDRIVE. By reading the manual you will become familiar with practices and procedures that allow you to operate the OMNIDRIVE safely and effectively.

Specific Warnings and Cautions appear throughout the manual.

Safety Classifications

Safety notices describe the likelihood of exposure to hazardous situations and what could happen as a result of exposure to the hazard. Following are symbols and words used to introduce the information that is intended to prevent potential personal injury and equipment damage.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DANGER: Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is limited to the most extreme situations.</td>
</tr>
<tr>
<td></td>
<td>WARNING: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td></td>
<td>CAUTION: Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may be used for situations that cause property damage only. It may also be used to alert against unsafe practices.</td>
</tr>
</tbody>
</table>

Potential Hazards

The equipment described in this manual is intended for use in industrial drive systems. This equipment can endanger life through rotating machinery and high voltages, therefore it is essential that guards for both electrical and mechanical parts are not removed. The main hazards which can be encountered in the use of this equipment are:

- Electric shock hazards
- Electric fire hazards
- Mechanical hazards
- Stored energy hazards

These hazards must be controlled by suitable machine design, using the safety guidelines which follow. There are no chemical or ionizing radiation hazards.

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
Voltage Potentials

Voltage potentials for the internal drive circuitry vary from 325 Volts above to 325 Volts below earth ground for a 240 Volt input. Voltages can exceed 450 VDC or 240 VAC within the OMNIDRIVE. All circuits, including the connections on the front panel, should be considered “hot” when main or auxiliary power is connected and for the time specified in the warning on the front of the drive after power is removed.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.</td>
</tr>
</tbody>
</table>

Your Responsibilities

As the user or person installing this drive, you are responsible for determining the suitability of the product for the intended application. Thomson Industries is neither responsible nor liable for indirect or consequential damage resulting from the inappropriate use of this product.

A qualified person is someone who is familiar with all safety notes and established safety practices, with the installation, operation and maintenance of this equipment and the hazards involved. For more detailed definitions, refer to IEC 364.

It is recommended that anyone who operates or maintains electrical or mechanical equipment should have a basic knowledge of First Aid. As a minimum, they should know where the First Aid equipment is kept and the identity of the official First Aiders.

These safety notes do not represent a complete list of the steps necessary to ensure safe operation of the equipment. If you wish further information, please contact your nearest Thomson Industries representative.
General Safety Guidelines

Electrical shock and fire hazards are avoided by using normal installation procedures for electrical power equipment in an industrial environment. Installation must be undertaken by suitably qualified personnel. Note that this amplifier must be installed in an industrial cabinet such that access is restricted to suitable qualified personnel.

Mechanical hazards are associated with potentially uncontrolled movement of the motor shaft. If this imposes a risk in the machine, then appropriate precautions must be made to electrically disconnect the motor from the drive when personnel have access to moving parts of the machine. Note also that the motor must be securely mounted at all times.

Stored energy hazards are both electrical and mechanical.

1. Electrical hazards can be avoided by disconnecting the drive from its power source and measuring the DC bus voltage to verify it has reached a safe level or by waiting for the time indicated in the warning on the front of the drive prior to removing the protective covers or touching any connections.

2. Mechanical hazards require a risk analysis on the effects of stored mechanical energy when the machine is running at speed, as well as the potential for the conversion of electrical energy stored in the drive being converted to mechanical energy. Electrical energy may be stored in drive for the time indicated in the warning on the front of the drive.

The following points should be observed for the safety of personnel. These safety notes do not represent a complete list of the steps necessary to ensure safe operation of the equipment. Contact your nearest Thomson Industries representative for additional information.

- Only qualified personnel familiar with the equipment are permitted to install, operate and maintain the device.
- System documentation must be available and observed at all times.
- All non-qualified personnel are kept at a safe distance from the equipment.
- The system must be installed in accordance with local regulations.
- The equipment is intended for permanent connection to a main power input. It is not intended for use with a portable power input.
- Do not power up the unit without the covers in place and the protective conductor connected.
- Do not operate the unit without connecting the motor conductor to the appropriate terminal on the drive.
- Always remove power before making or removing any connection on the unit.
- Before removing the cover of the unit, shut off the main and auxiliary power and measure the DC bus voltage to verify it has reached a safe level or wait for the time indicated in the warning on the front of the drive.
- Do not make any connections to the internal circuitry. Connections on the front panel are the only points where users should make connections.
- Be careful of the DC bus and shunt terminals. High voltage is present when power is applied to the OMNIDRIVE.
- Never connect the DC- terminal to earth ground, the drive requires a floating DC bus.
- Do not use the ENABLE input as a safety shutdown. Always remove power to the OMNIDRIVE before maintaining or repairing the unit.
- When operating a ODM-075 or ODM-075i with a single phase power input, the current limits must be set correctly.
- Motors without thermal protection devices require a valid thermal time constant. Otherwise the motor overload protection will not function properly.
CHAPTER 2: Selecting Other System Components

This chapter reviews the OMNIDRIVE ODM-005, -005i, -010, -010i, -020 and -020i, command sources and interfaces for the drives, and complementary motors and accessory equipment. Selection of complementary servo components allows you to efficiently connect other devices to your microdrive. Pertinent information about each is provided to assist you in planning your servo system.

The Thomson Industries OMNIDRIVEs are part of a family of digital drives that use microcontrollers to manage the current, velocity, and position. All system and application parameters are set in software, which ensures repeatability of all functions and prevents element drift.

This chapter reviews the OMNIDRIVE and associated motors, command sources and interfaces. Selection of complementary servo components allows you to efficiently connect other devices to your OMNIDRIVE. Pertinent information about each is provided to assist you in planning your servo system.

OMNIDRIVE Overview

The OMNIDRIVEs are part of a family of universal digital drives. OMNIDRIVEs use microcontrollers to digitally manage the current, velocity, and position. All system and application parameters are set in software, which ensures repeatability of all functions and prevents element drift.

A single unit fully encloses all electronics. An external transformer is not required on the power line. All connectors and indicators are accessible and clearly marked on the front panel.

OMNIDRIVE Features

Drive Power Ratings

Several power levels of OMNIDRIVEs are available. All models have integral power supplies and use a single phase power source. They differ only in physical size, indexing capability and output power:

- ODM-005 and -005i with continuous output power of 500 Watts.
- ODM-010 and -010i with continuous output power of 1000 Watts.
- ODM-020 and -020i with continuous output power of 2000 Watts.

The OMNIDRIVEs, when combined with brushless servo motors, provide continuous torque ranging from 0.17 Nm to 2.5 Nm (1.5 to 22.5 lb-in) and peak torque ranging from 0.48 Nm to 7.12 Nm (4.3 lb-in to 63 lb-in).

High Performance Microcontroller Technology

All digital current, velocity and position loop calculations as well as the motor commutation calculation are performed by a microcontroller.

IPM Technology

IPM (Intelligent Power Module) technology in the output stage provides a high frequency, digital PWM (Pulse Width Modulation) sine wave that controls the current loop, including overcurrent, short circuit and overtemperature protection.

1. ODM-005, -005i, -010, -010i and -020 and -020i require an external 12-24VDC power source for I/O.
Analog and Digital Interfaces

All OMNIDRIVEs allow the user to select one of the following analog or digital command interfaces:

- ±10 Volt analog interface – position, velocity or torque control
- Presets (from one to eight binary inputs) – torque or velocity control
- Quadrature encoder digital interface – electronic gearing position follower
- Step/Direction digital interface – position control
- CW/CCW (step up/step down) interface – position control
- Indexing (available only on ODM-010i, ODM-020i, ODM-030i, ODM-075i and ODM-150i).

Encoder Control

A single, motor mounted encoder provides complete commutation information and velocity feedback. Low velocity regulation is enhanced by the use of a 8000PPR (pulses per revolution) incremental encoder.

Encoder Output

A selectable output allows the encoder resolution to be specified for maximum performance without adding circuitry. Outputs are differential line drivers capable of dividing the motor encoder signal, PPR, by a factor of 1, 2, 4 or 8.

Digital I/O

Digital I/O channels allow the user to program the drive to fit the specific application. Power for the I/O must be supplied by an 12-24 VDC external I/O power supply. Selections include:

- Four selectable (INPUT1, INPUT2, INPUT3 and FAULT RESET), current sinking, optically isolated, active high inputs.
- One dedicated, control (ENABLE), current sinking, optically isolated, active high input.
- Two selectable, current sourcing, optically isolated and short circuit protected, active high outputs.
- Two dedicated (BRAKE/DRIVEENABLED and DRIVE READY), normally open relay outputs.

Analog I/O

Two analog inputs are dedicated to current limits and two analog outputs can be customized to fit the application:

- One dedicated 10 bit, 0 – 10 Volt, analog inputs (EXTERNAL CURRENT LIMIT)
- One selectable, ±10 Volt analog outputs, one 12-bit and one 8-bit (ANALOG).

AC Input Power

OMNIDRIVEs covered by this manual are powered directly from a main 100-240 VAC single phase line.

Personality Module

EEPROM (electrically erasable programmable read-only memory) stores both motor and application specific settings and parameters for the drive.
Multiple Protection Circuits

Device and circuit protection, and diagnostic information is provided by:

- Bi-color single point LED
- Overtemperature, short circuit and overcurrent protection for the power output
- I²T (power-time) protection
- Bus Overvoltage
- Bus Undervoltage
- Overspeed
- Fault diagnostics
- Watchdog timers provide fail-safe operation

Serial Command Sources

OMNIDRIVEs are configured and controlled via a serial communication link. Commands may be issued from a variety of sources through a serial communications port. Possible command sources include:

- Personal computers
- Host computers
- Programmable Logic Controllers
- Motion controllers
- TouchPad.

The serial communication interface for the OMNIDRIVE supports:

- RS-232 and the four wire RS-485 communications standards
- NRZ (non-return to zero) asynchronous serial format
- Baud rates: 1200, 2400, 4800, 9600 and 19200
- Parity generation and checking: Even, Odd or None.

Connection of communication cables between the drive and user-supplied equipment is described in the following sections:

One OMNIDRIVE - "Single Position RS-232 Set-up"
Multiple OMNIDRIVEs - "Multiple Position RS-485 Communications".

Analog Command Sources

In the analog mode of operation, the OMNIDRIVE requires a variable ±10 Volt DC external analog signal capable of driving the servo regulator’s command input at an input impedance of 13.3 kOhms. Choose a source such as a PLC (programmable logic controller), the DAC (digital-to-analog converter) of a computer, or a motion controller that meets this requirement.

Differential or single-ended line drivers may supply the signals for the auxiliary encoder inputs, step and direction inputs, and step up/down inputs. The differential signal must be capable of supplying at least 5 mA with 2.0 Volts across the + and - inputs. A differential signal source provides the best noise margin of all the interface circuit options. Single-ended signals from TTL drivers must be capable of sourcing or sinking 5 mA.

In the preset mode, the controlling device should be capable of sourcing 10 mA into the digital inputs.
I/O Interface

Analog Input
One analog input channel is accessible to the user. The analog input limits the peak current available from the drive.
- **I LIMIT (current limit)**

The analog signal must be within 0-10 Volt range and single-ended.

If this signal is not provided, the peak current of the drive may be set in software through the Drive Parameter window.

Analog Output
One analog output channel may be defined by the user through software:
- **ANALOG is a ±10 Volt signal. The allowable current draw of the load is ±2 mA**

This analog output is designed for monitoring purposes only. This signal should not be used for control purposes due to the relatively high ripple voltage (1%).

Digital Inputs

Control Inputs
One optically isolated, single ended, active high, dedicated control input provides the controller ENABLE function. This input operates with switch closure or sourcing type transistor outputs.

The current rating is 10 mA maximum.

Selectable Inputs
Four optically isolated, single ended, active high inputs (INPUT1, INPUT2, INPUT3 and FAULT RESET) support logic type interfaces. The input circuits operate with switch closure or sourcing type transistor circuits.

The current rating of each input is 10 mA maximum.

Digital Outputs

Control Outputs
Two normally open relays are dedicated control outputs to the following signals:
- **BRAKE/DRIVE ENABLED**
- **DRIVE READY.**

The current ratings of each relay is 1 Amp at 30 VDC.

If using a motor with the 90VAC brake option, a user-provided relay may be driven by these outputs up to the specified levels. Refer to "BRAKE/DRIVE ENABLE Application Example" for information about the necessary hardware connections. Consult the I/O Configuration in the on-line OMNI LINK help for additional information about the software parameters.

NOTE: Power for the I/O must be supplied by an external 12 - 24 VDC power source.
Selectable Outputs
Two optically isolated, single ended, active high, current sourcing, discrete output channels provide logic outputs under software control.
Each selectable output channel is capable of sourcing 50 mA maximum and is optically isolated and short circuit protected.

Auxiliary Encoder Interface
The external encoder I/O port permits quadrature type encoder signals for applications, such as electronic gearing.

Encoder Inputs
Software automatically selects the appropriate input based on the command source:
- Master Encoder
- Step/Direction
- Step Up/Step Down.

Encoder Output
The resolution of the encoder output channel is under software control. The motor encoder signal is divided by 1, 2, 4 or 8 to provide an output from a differential line driver measured in PPR (pulses per revolution). The maximum encoder frequency output is 1 MHz (4 MHz quadrature).

TIP
NOTE: If a controller requires synchronization to a specific output state, please refer to "IOUT Signal Generation" for additional information.

Autotuning
Digital auto tuning allows easy setup. All adjustments are made in software, which immediately sets the servo system compensation parameters. This eliminates the time-consuming adjustments required by potentiometers.

Agency Approvals
- UL listed
- cUL listed
- CE marked

Interface Cables
Standard motor power and encoder feedback cables, as well as communications cables, are available to complete your motion control system and provide reliable, trouble free start-up. Use of factory supplied cables is required for compliance to the European Electromagnetic Compatibility (EMC) Directive and to protect your warranty rights.

OMNI LINK Software
A Windows based software interface provides start-up selections. Tasks are organized for efficient set up, control and maintenance. Context sensitive, on-line help provides immediate assistance.
Selecting Other System Components

Set up is simplified by a series of logically arranged set up screens.
Files can be stored and printed for on-line or off-line modification, and on-site or off-site back-up.
Diagnostic and set up tools make system integration easy.
Critical information is available with complete on-line help.
User defined velocity, acceleration, position and torque parameters.
Tuning and diagnosis is aided with an on-screen dual channel digital oscilloscope.
On-screen meters and software tools provide rapid debugging and measurement.

Motors

The OMNIDRIVE is compatible with many motors, both Thomson motors and motors from other manufacturers. Drive and motor parameters for all compatible motors are programmed into each OMNIDRIVE at the factory.

OMNI LINK software speeds drive and motor set up by predefined parameters for each drive and motor combination.
Refer to the Torque/Speed curves in the Thomson Motion Control Catalog and Handbook or contact your local Thomson distributor for motor sizing and compatibility assistance.
Custom motors or motors not manufactured by Thomson may be interfaced. Contact Product Support for assistance. Phone and fax numbers for product related assistance are listed under “Applications Engineers and Field Service” on the inside rear cover. *(see Appendix B).

- Power and feedback cables are potted and molded with 360 degree shielding.
- AC line filters.
- Breakout boards for I/O control and encoder interface.
- TouchPad - a compact and highly portable input and display device.

European Union Requirements

OMNIDRIVEs conform to the following European Union Directives:

Compliance with the EEC Directives is contingent on:

A. Installation of AC line filters between the power source and the drive, and
B. Use of factory authorized cables to connect motors.

“European Union EMC Directives” on page 5-4.

Use of this product with other non-CE products or in a manner inconsistent with established testing requirements invalidates the CE registration as declared by Thomson.
CHAPTER 3: OMNI LINK
Installation

Installation of OMNI LINK on a PC is covered in this chapter, which:

- Lists the minimum PC hardware and software necessary to run OMNI LINK.
- Provides step-by-step instructions on how to load OMNI LINK.
- Shows you how to start and quit OMNI LINK and introduces the Drive Window, the main command window for OMNI LINK.
- Instructs you on how to access on-line help.

Instructions for using the features available in OMNI LINK are detailed in on-line help. To access the Help menu, depress the F1 key.

Hardware and Software Requirements

The minimum personal computer (PC) requirements to run the software are:

- A DOS computer with a 286 microprocessor
- A hard disk, with 2.0 MB of free disk space
- 3½ inch, 1.44MB floppy disk drive
- 2 MB of RAM
- A Video Graphics Array (VGA) monitor
- Microsoft Windows version 3.1
- A mouse is recommended.

Windows must be installed on your PC. If Windows is not already installed, refer to the appropriate Microsoft manual to install Windows on your computer.
Installing OMNI LINK

To install OMNI LINK software on a hard drive:

1. Make a backup copy of the OMNI LINK disk in one of the following ways:
 - Copy the OMNI LINK disk using the disk menu in the Windows File Manager.
 - If your computer has only one floppy disk drive, type from the DOS command line prompt
 `diskcopy a: b:` and then press ENTER. The software will prompt you when to insert
 the SOURCE (OMNI LINK) disk and when to insert the TARGET (blank) disk.

2. If Windows is not running, type `win` at the DOS prompt (`C:`).
 If Windows is already running, close any open applications.

3. Insert the OMNI LINK disk into a 1.44MB floppy disk drive, typically drive A:, and close the
 drive door.

4. Choose Run, from the File menu in Windows Program Manager.

5. Type `a:setup` and then press ENTER. A message box will appear saying that the setup is ini-
 tializing. The message box may be present for up to 40 seconds, depending on the speed of the
 PC.

6. A dialog box requires you to confirm whether or not OMNI LINK should be installed on the hard
 drive (C: drive) of the PC.
 - To install OMNI LINK, choose Continue, or press ENTER, and continue with the next step.
 - To stop the installation, choose Exit. You are returned to Windows.

7. Setup then asks where you would like to install OMNI LINK.
 - To accept the path that Setup proposes in the Path: box (c:\omnilink\...), choose Continue,
 - To choose another directory, type a new path in the Path: box, and then choose Continue.
 You will not have the opportunity to confirm your entry so type carefully.
 - To return to the initial Setup window, choose Back.
 - To stop the installation, choose Exit. You will return to Windows.
 - To obtain on-line help with the installation, Choose Help.

8. A status bar will keep you informed of the installation progress. When Setup is complete, choose
 OK or press ENTER to return to Windows.

Starting and Quitting OMNI LINK

Setup automatically creates the OMNI LINK program group and then returns you to Windows. The OMNI
LINK program group provides access to the OMNI LINK application icon,

From the C:> Prompt

1. Type `win c:\omnilink\omnilink.exe`.

 Tip: This step assumes OMNI LINK was loaded into the `c:\omnilink` directory during
 setup.

 The OMNI LINK start-up screen will open.
From Windows

1. Choose the OMNI LINK program group from the Program Manager in Windows.

If the OMNI LINK window is not active, hold down ALT and press TAB (ALT+TAB) until the OMNI LINK title bar and icon are highlighted, or select OMNI LINK from the list in the Window menu.

2. Choose the OMNI LINK icon from the OMNI LINK program group.

The OMNI LINK start-up screen will open.

The OMNI LINK Start-Up Screen

When OMNI LINK starts for the first time, its default instructions are:

- Display the Help menu - Quick Start.
- Present the Drive Select window. The Drive Select window offers Drive 0, which is the default drive address assigned at the factory.

The default OMNI LINK Start-up screen is shown below. The comments point out many of the Windows controls that are available in OMNI LINK.

Version Level

The release level and date for OMNI LINK may be displayed by selecting About OMNI LINK from the Help menu. This information also appears in the initial OMNI LINK screen. The About OMNI LINK window includes additional data about system resources typically displayed in Windows Help.
The Readme File
A file, titled README, may be included in the OMNI LINK directory. This file contains installation instructions, change notes from previous revisions, and information that became available after this manual was printed. After you install OMNI LINK you can access this file by choosing the Read Me icon in the OMNI LINK window or by using Microsoft Write or an equivalent application program to view the file readme.wri in the directory path where OMNI LINK is installed.

Miscellaneous Files

Firmware Files
Firmware files are supplied in the Miscellaneous directory on the OMNI LINK diskette.

The current revision level of drive firmware, excluding the TouchPad firmware, is displayed in the Drive Information window of OMNI LINK. The current revision level of TouchPad firmware is displayed as part of the TouchPad initialization when a TouchPad is connected to the drive.

The types of files and their functions are:

- Firmware – Main Operating firmware for the drive
- Boot Block – Drive Initialization firmware for the drive
This chapter describes four steps which should ensure that the drive functions correctly. The steps include:

- Unpacking the OMNIDRIVE
- Inspecting the drive for shipping damage
- Testing the basic functionality of the drive
- Guidelines for storing the drive.

Unpacking the Drive

1. Remove the OMNIDRIVE from the shipping carton and remove all packing materials from the unit. The materials and carton may be retained for storage or shipment of the drive.

2. Check all items against the packing list. A label located on the side of the unit identifies:
 - Model number
 - Serial number
 - Manufacturing date code.

Inspection Procedure

To protect your investment and ensure your rights under warranty, we recommend the following steps be performed upon receipt of the unit:

- Inspect the unit for any physical damage that may have been sustained during shipment.
- Perform the drive checkout test to verify the functionality of the unit.

If you find damage, either concealed or obvious, contact your buyer to make a claim with the shipper. If degraded performance is detected when testing the unit, contact your distributor or Thomson Industries to obtain a Return Material Authorization (RMA). Do this as soon as possible after receipt of the unit.

“Our Warranty” lists the period and conditions under which OMNIDRIVEs are warranted against defects.
Testing the Unit

Drives are burned-in and individually tested before they leave the factory. However, damage may occur during shipping. Perform the procedures below to ensure the OMNIDRIVE is operational and undamaged. Abbreviated directions for connecting the drive to a motor and a PC are provided.

The test requires:

- Approximately 20 minutes to complete
- A motor with appropriate power and encoder cables
- A PC with the OMNI LINK software package installed
- An RS-232 communications cable
- A single phase 100-240 VAC, 50/60 Hz power source. Standard wall outlet power is suitable for verification testing of OMNIDRIVEs.
- A test cable constructed from two normally open switches, several pieces of 1.5 mm² (16 AWG) wire and a mating connector.

During the test, power is removed several times. Always measure the DC bus voltage to verify the bus capacitors are fully discharged, or wait for the time indicated in the warning on the front of the drive. The bus capacitors must be fully discharged for the subsequent steps to be valid.

If problems are encountered during this procedure, refer to “Troubleshooting” on page 11-3, review other appropriate sections in this manual, or call your local Thomson Industries distributor.

WARNING

Perform the initial power-up with the motor shaft disconnected from a load and the shaft key removed. Improper wiring or undiscovered shipping damage could result in undesired motor motion. Be prepared to remove power if excessive motion occurs.
Hardware Set Up

Make the connections described below.

1. Connect an external I/O power supply (12-24VDC) to J1-5(+) and J1-6(-), or J1-26(+) and J1-13(-).
2. Connect an RS-232 cable between the serial port on the PC and the J5 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.
3. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.
4. Connect a jumper wire with a toggle switch between J1-20 (ENABLE) and J1-26 (+24VDC). This provides manual control for enabling or disabiling the drive. The figure below shows the jumper, including its normally open toggle switch.
5. Connect a power cable between the external 100/240 V AC, 50/60 Hz power source and the L1, L2/N and (Gnd) connections.

Drive Checkout Test

This test sequentially verifies that:

- Drive power wiring is correct and start-up logic is functioning
- The drive and motor are correctly wired
- Drive serial communications are operational

Before beginning “Initial Power-up”, please check the following:

- All wiring and mounting to verify correct installation
- Input voltages to ensure they do not exceed specifications for the drive or motor.

Initial Power-up

1. Verify the AC power is within specifications at the terminal strip.
2. Switch the AC Power to ON and verify the Status LED is green.
3. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts, to prevent electrical shock.
4. Connect the motor windings to:
 - R (TB1-6) for the Phase R winding
 - S (TB1-7) for the Phase S winding
 - T (TB1-8) for the Phase T winding
 - (TB1-9) for the Ground connection.
5. If a brake motor is being used for the test, connect the brake relay:
 - BRAKE ENABLE + (J1-49) to the Motor Brake+

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
Unpacking, Inspecting, and Storing

6. Switch the AC Power to ON and verify the Status LED is green.

7. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts.
Communications Verification

8. Start OMNI LINK on the PC.
9. Close any windows that are open in OMNI LINK.
10. Select **PC Set Up** from the **Communications** menu in OMNI LINK.
11. Verify the communication port settings match those of the drive, then select **OK**. Factory default drive settings are:
 - **Baud Rate:** 9600
 - **Data Bits:** 8
 - **Parity:** None
 - **Stop Bits:** 1
 - **Serial Port:** COM1

Assignment of communications ports on PCs varies between manufacturers. The COM port setting for the drive and PC must match. Refer to “Troubleshooting” on page 11-3 if communication problems are encountered.

12. Switch AC power ON.

13. Select **Read Drive Parameters** from the **Communications** menu in OMNI LINK.

14. Select **OK** in the Drive Select dialog box. A dialog box indicating that the PC is reading drive parameters should appear.

If this dialog box does not appear, a message appears that advises you to check the COM settings and the communication cable. If necessary, refer to “Troubleshooting” on page 11-3 for instructions on how to perform these checks.

Initial Drive Operation

15. When the message appears that a motor must be selected, choose **OK**. The Drive Select dialog box is selected with Motor Selection active.

16. Select the appropriate motor from the drop-down Motor Selection box.

17. Choose **OK** when the message appears advising that the drive must reset. A change in motor parameters requires a software reset.

18. Choose **Close** from the Drive Setup window.

19. Select the **Control Panel** icon from the Drive Window.

20. Close the connection between J1-26 and J1-20 to enable the drive.

21. Holding torque should be sufficient so that the shaft is either immovable or very resistant to rotation.

22. Move the Slide Bar in the Control Panel window to the right and then to the left. Verify that the motor rotates:
 - **CW** as the Slide Bar is moved right of center, and
 - **CCW** as the Slide Bar is moved left of center.

If the motor rotates in the wrong direction (CCW when the slide bar is set to the right of center) or jumps and locks-up, motor phasing and encoder feedback phasing may be incorrect. If necessary, refer to Chapter 11, “Maintenance and Troubleshooting” for instructions on how to correct the motor power connections at TB1-1, -2, -3 and -4 or the encoder feedback connections at J2.

23. Choose **Set to Zero**. The motor will stop rotating.
24. Choose Drive Disable and verify the motor shaft can be rotated by hand.

25. Choose Drive Enable and verify the motor shaft has holding torque. (i.e., The shaft cannot be moved or moves with resistance.)

26. Open the connection between J1-26 and J1-20 to disable the drive.

27. Choose Close from the Control Panel window.

A drive completing these steps is functional. If the OMNIDRIVE did not pass the steps above, refer to “Maintenance and Troubleshooting” on page 11-1.

TIP

For information on testing digital and analog signals, refer to, “Testing Analog Output” on page 11-8 and “Testing Analog Input” on page 11-9

Storing the Unit

Return the OMNIDRIVE to its shipping carton using the original packing materials to enclose the unit. Store the drive in a clean, dry place that will not exceed the following ranges:

- Humidity: 5% to 95%, non-condensing
- Storage temperature: -40° to 70° Celsius (-40° to 158° Fahrenheit).
CHAPTER 5:

Installation

Mechanical Installation Requirements

1. Mount the unit in an enclosure providing protection to IP54 (protected against dust and splashing water), or IP65 (dust free and protected against water jets) if the work environment is poor. Many NEMA (National Electrical Manufacturers Association) Type 4 cabinets provide this level of protection. Minimum cabinet requirements are:
 - Depth: 24.38 cm (9.6 inches).
 - Adequate sizing and/or ventilation to dissipate the heat generated by the OMNIDRIVEs. Refer to “Power Dissipation” on page E-7 for the amount of heat generated by OMNIDRIVEs and enclosure sizing equations.

2. Minimum unobstructed surrounding space for cooling air intake and fan exhaust:
 - Above: 5 cm (2 inches)
 - Below: 5 cm (2 inches)
 - Sides: 1.25 cm (0.5 inches)
 - Front: 7.5 cm (3.0 inches) for cable clearance.

 CAUTION
 If the cabinet is ventilated, use filtered or conditioned air to prevent the accumulation of dust and dirt on electronic components. The air should be free of oil, corrosives, or electrically conductive contaminates.

3. Position the drive in a vertical position on a flat, solid surface that meets the mounting hardware should meet the following weight, vibration and shock, altitude and humidity, airflow clearance, and temperature requirements. Unit weights are:
 - ODM-010 and ODM-010i: 1.7 Kg (3.7 lbs)
 - ODM-010 and ODM-010i: 2.05 Kg (4.5 lbs)
 - ODM-020 and ODM-020i: 2.0 Kg (4.4 lbs)

 Vibration and shock, altitude and humidity limits are:
 - Vibration: 2g at 10 to 2000 Hz
 - Shock: 15g 11 msec half sine
 - Altitude: 1500 meters (5000 feet), Derate power performance 3% for each 300 m above 1500 m (1000 ft above 5000 ft).
 - Humidity: 5% to 95% non-condensing

 Ambient operating temperature range and airflow clearances are:
 - 0 ° to 55° Celsius (32° to 131° Fahrenheit).
 - 50.8 mm (2 inches) above and below unit for airflow.

4. Bolt the unit to the cabinet using the mounting slots in the drive. Mounting dimensions are shown in Figure 5.1. The recommended size of mounting hardware is:
 - M5 Metric (1/4-20 equivalent), or
- #10 MS bolts.

FIGURE 5.1 ODM-005 and ODM-005i Mounting Dimensions

TABLE 5.1 ODM-005 and -005i Mounting Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>198.12</td>
<td>7.80</td>
</tr>
<tr>
<td>A1</td>
<td>184.9</td>
<td>7.28</td>
</tr>
<tr>
<td>A2</td>
<td>6.35</td>
<td>0.25</td>
</tr>
<tr>
<td>A3</td>
<td>13.0</td>
<td>0.51</td>
</tr>
<tr>
<td>A4</td>
<td>6.07</td>
<td>0.23</td>
</tr>
<tr>
<td>A5</td>
<td>94.49</td>
<td>3.72</td>
</tr>
<tr>
<td>A6a</td>
<td>5.0</td>
<td>0.20</td>
</tr>
<tr>
<td>A7</td>
<td>22.10</td>
<td>0.87</td>
</tr>
<tr>
<td>A8</td>
<td>31.75</td>
<td>1.25</td>
</tr>
<tr>
<td>A9</td>
<td>8.64</td>
<td>0.34</td>
</tr>
<tr>
<td>A10</td>
<td>31.75</td>
<td>1.25</td>
</tr>
<tr>
<td>A11</td>
<td>57.15</td>
<td>2.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>72.60</td>
<td>2.86</td>
</tr>
<tr>
<td>B1</td>
<td>65.02</td>
<td>2.56</td>
</tr>
<tr>
<td>B2</td>
<td>38.10</td>
<td>1.50</td>
</tr>
<tr>
<td>B3</td>
<td>18.54</td>
<td>0.73</td>
</tr>
<tr>
<td>B4</td>
<td>13.21</td>
<td>0.52</td>
</tr>
<tr>
<td>B5</td>
<td>5.58</td>
<td>0.22</td>
</tr>
<tr>
<td>C</td>
<td>146.05</td>
<td>5.75</td>
</tr>
<tr>
<td>C1</td>
<td>129.03</td>
<td>5.08</td>
</tr>
</tbody>
</table>

a. Power Cable bracket extends up to 20mm (0.80 inches)

Minimum Unobstructed Surrounding Space
for Cooling and Exhaust Air
Above 50.8 mm (2 inches)
Below 50.8 mm (2 inches)
Sides 12.5 mm (0.5 inches)
for Cable Bend Radius
Front 76.2 mm (3 inches)
FIGURE 5.2 ODM-010, -010i, -020 and -020i Mounting Dimensions

Minimum Unobstructed Surrounding Space
for Cooling and Exhaust Air
Above 50.8 mm (2 inches)
Below 50.8 mm (2 inches)
Sides 12.5 mm (0.5 inches)
for Cable Bend Radius
Front 76.2 mm (3 inches)

NOTE: Fan on ODM-020 only

TABLE 5.2 ODM-010, -010i, -020 and -020i Mounting Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>198.12</td>
<td>7.80</td>
</tr>
<tr>
<td>A1</td>
<td>184.9</td>
<td>7.28</td>
</tr>
<tr>
<td>A2</td>
<td>6.35</td>
<td>0.25</td>
</tr>
<tr>
<td>A3</td>
<td>13.0</td>
<td>0.51</td>
</tr>
<tr>
<td>A4</td>
<td>6.07</td>
<td>0.24</td>
</tr>
<tr>
<td>A5</td>
<td>94.49</td>
<td>3.72</td>
</tr>
<tr>
<td>A6(^a)</td>
<td>5.0</td>
<td>0.20</td>
</tr>
<tr>
<td>A7</td>
<td>22.10</td>
<td>0.87</td>
</tr>
<tr>
<td>A8</td>
<td>31.75</td>
<td>1.25</td>
</tr>
<tr>
<td>A9</td>
<td>8.64</td>
<td>0.34</td>
</tr>
<tr>
<td>A10</td>
<td>31.75</td>
<td>1.25</td>
</tr>
<tr>
<td>A11</td>
<td>57.15</td>
<td>2.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>97.30</td>
<td>3.83</td>
</tr>
<tr>
<td>B1</td>
<td>65.02</td>
<td>2.56</td>
</tr>
<tr>
<td>B2</td>
<td>38.10</td>
<td>1.50</td>
</tr>
<tr>
<td>B3</td>
<td>18.54</td>
<td>0.73</td>
</tr>
<tr>
<td>B4</td>
<td>13.21</td>
<td>0.52</td>
</tr>
<tr>
<td>B5</td>
<td>5.58</td>
<td>0.22</td>
</tr>
<tr>
<td>C</td>
<td>146.05</td>
<td>5.75</td>
</tr>
<tr>
<td>C1</td>
<td>129.03</td>
<td>5.08</td>
</tr>
</tbody>
</table>

\(^a\) Power Cable bracket extends up to 20mm (0.80 inches)
Interface Connections

Input/output and power cables connect to the front panel of a OMNIDRIVE, no internal connections are necessary.

DANGER

The user is responsible for conforming with all applicable local, national and international codes. Wiring practices, grounding, disconnects and overcurrent protection are of particular importance. Failure to observe this precaution could result in severe bodily injury or loss of life.

I/O Connections are fully described in the following sections:

- “J1 – Controller” on page 6-1 defines the controller connections
- “J2 – Encoder” on page 6-25 defines the motor encoder connections
- “J5 – Serial Port” on page 6-27 defines the RS-232/RS-485 serial port connections

Power Connections are fully described in the following sections:

- “Power Connections” on page 7-1 defines the AC, DC Bus and Motor power connections.

Specific operational set ups are depicted in Figure 8.1 through Figure 8.11 (pages 8-1 through 8-32, respectively). These figures cover velocity and torque mode controls for:

- Analog Controllers in velocity or torque modes,
- Preset Controllers in velocity or torque modes,
- Position Followers using a Master Encoder,
- Position Followers using a Step/Direction signal,
- Position Followers using Step Up/Down signals,
- Incremental Indexing over a specific distance,
- Registration Indexing from a mark, or
- Absolute Indexing to a home position.

Wiring

Wiring sizes and practices, as well as grounding and shielding techniques are described in the sections listed below. Refer to the “Motor Power Contact and Wire Size Recommendations” on page 7-3 for graphic depictions and recommended wire gaging.

The descriptions represent common wiring practices and should prove satisfactory in the majority of applications.

Minimum wire gages for power cables are listed in:

- Motor Power Contact and Wire Sizing Recommendations,
- “TB1 - AC Power Terminals” on page 7-5.

Electromagnetic Compatibility

General Guidelines

European Union EMC Directives

The OMNIDRIVEs are designed and tested to meet the European EMC Directive. Declarations of conformity, which enumerates the standards used, are included in the manual.
Installation requirements are necessary to meet the directives:

1. Use of factory supplied cables,
2. Use of an external AC line filter, and
3. If an external supply powers the I/O, grounding of this power supply is required.

The following diagrams show the mounting dimensions for single phase AC Line Filters.

Table 5.3 shows a typical filter selection matrix for OMNIDRIVEs. All the filters identified below are manufactured by Schaffner or Roxburgh and are widely available. There are many AC line filter manufacturers whose filters can be successfully integrated. Thomson Industries recommends Schaffner or Roxburgh filters based on our test results, but the machine builder is responsible for the suitability of the filter selection in a specific application. These filters can be used for distributing power to multiple drives, rather than using an individual filter for each drive. Further information is available from Schaffner (1-800-367-5566) or Roxburgh (01724.281770 [011.44.1724.281770 from the USA]).

AC line filters for use with OMNIDRIVEs are listed below:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Drive Description</th>
<th>Roxburgh</th>
<th>Schaffner</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIF 06, MDF 06</td>
<td>ODM-005 and ODM-005i</td>
<td>FN 350-8</td>
<td></td>
</tr>
<tr>
<td>MIF 10, MDF 16</td>
<td>ODM-010, ODM-010i and OD-010</td>
<td>FN 350-12</td>
<td></td>
</tr>
<tr>
<td>MIF 23, MDF 18</td>
<td>ODM-020, ODM-020i and OD-020</td>
<td>FN 350-20</td>
<td></td>
</tr>
<tr>
<td>MIF 32, MDF 36</td>
<td>OD-030</td>
<td>FN 350-30</td>
<td></td>
</tr>
<tr>
<td>MIF 330, MIF 336</td>
<td>OD-075 (3- phase)</td>
<td>FN 351-36</td>
<td></td>
</tr>
</tbody>
</table>

The Roxburgh filters differ in the number of stages. The MDF (Motor Drive Filters) filters are single stage filters; the MIF (Motor Inverter Filters) filters are three-stage filters. The three-stage filter will remove more of the noise, but the cost is more panel space in the higher current filters. In the lower current filters (<50 A), the panel space used is less for the MIF filters.

The Schaffner filters are single-stage filters. These differ from the Roxburgh filters in component types, values and placement. The leakage current is generally lower, but the amount of attenuation is lower too. These filters will work if the amount of noise in the environment is low, or if the design of the machine is such that only a nominal amount of attenuation is needed.

Basic guidelines for reducing electrical noise and increasing electromagnetic compatibility (EMC) are listed in “Electromagnetic Compatibility Guidelines for Machine Design” on page C-1.

WARNING

Large leakage currents exist in AC line filters. They must be grounded properly before applying power. Filter capacitors retain high voltages after power removal. Before handling the equipment, voltages should be measured to determine safe levels prior to handling the equipment. Failure to observe this precaution could result in severe bodily injury.
AC Line Filters

FIGURE 5.3

MIF Single Phase AC Line Filter Mounting Diagram

TABLE 5.4

<table>
<thead>
<tr>
<th>MIF Single Phase AC Line Filter Engineering Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE PHASE</td>
</tr>
<tr>
<td>6A</td>
</tr>
<tr>
<td>DIMENSIONAL DATA</td>
</tr>
<tr>
<td>MEASUREMENT</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>ELECTRICAL and MECHANICAL SPECIFICATIONS</td>
</tr>
<tr>
<td>Voltage/Freq.</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Overload Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Leakage Current</td>
</tr>
<tr>
<td>Electric Strength</td>
</tr>
<tr>
<td>Power Loss</td>
</tr>
<tr>
<td>Terminals</td>
</tr>
</tbody>
</table>
DIMENSIONAL DATA

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>SINGLE PHASE 6A</th>
<th>SINGLE PHASE 10A</th>
<th>SINGLE PHASE 23A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0.3 Kg (0.66 Lb.)</td>
<td>0.95 Kg (2.0 Lb)</td>
<td>1.6 Kg (2.5 Lb)</td>
</tr>
<tr>
<td>Back Mounting</td>
<td>4 x M4</td>
<td>4 x M4</td>
<td>4 x M4</td>
</tr>
<tr>
<td>Side Mounting</td>
<td>2 x M5</td>
<td>2 x M6</td>
<td>2 x M6</td>
</tr>
</tbody>
</table>

Line filters are manufactured to millimeter dimensions (inches are approximate conversions).

NOTES

1. **SUPPLY CONNECTIONS**: Wires required for installation may be different in length and diameter depending on the specific installation. Please refer to the installation manual for specific requirements.
2. **OUTPUT POWER WIRING**: Ensure that the output wiring is properly connected to avoid any damage to the equipment. Use only the recommended power wires specified in the installation manual.
3. **INSTALLATION**: Follow the installation instructions carefully to ensure proper functioning of the equipment. Inadequate installation may lead to damage or malfunction.
4. **MAINTENANCE**: Regular maintenance is required to ensure the equipment remains in good condition. Refer to the maintenance instructions provided in the manual.
5. **SPECIAL PRECAUTIONS**: Certain procedures should be followed during installation to prevent accidents or damage. Please refer to the installation manual for specific precautions.

INSTALLATION MANUAL for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i

Artisan Technology Group - Quality Instrumentation... Guaranteed | (888) 88-SOURCE | www.artisantg.com
FIGURE 5.4 Power Wiring Diagram

![Power Wiring Diagram](image-url)

Diagram Description

- **Digital Drive Module Input Current Requirements**
 - DC 24V DC 12V
 - AC 110V AC 220V

Note: Power requirements for a short period of pulsed current or load for this level of input power. Slow blow fuses are recommended. These fuses must be selected according to local regulations.
CHAPTER 6: Interfaces

This chapter provides information about:

- Interface signals available on the OMNIDRIVE
 - J1 - The Controller interface for commanding and reporting motion
 - J2 - The Encoder interface for reporting movement by the motor
 - J5 - The Serial interface for communicating with the drive.
- Commonly encountered interface cabling methods
- Optional signal extension kits and standard cables.

J1 – Controller

J1 is a 50 pin female mini-D connector (AMP 2-178238-7) for connecting a host computer or controller to the OMNIDRIVE. Contact between the connector’s shell and the grounded chassis provides shield termination. This section list the connector pin-outs and provides signal specifications.

Thomson Industries cables are available in various lengths for connecting between J1 and a suitable controller.
TABLE 6.1 J1 Controller Pin-Outs

Cables are available in various lengths for connecting between J1 and a suitable controller. “J1 Terminal Strip/Breakout Board” on page 6-36 details the optional signal extension kit that is available. “Interface Cable Examples” beginning on page 6-28 depict various interface cable types commonly encountered in applications.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VDC</td>
<td>Encoder +5V DC</td>
<td>21</td>
<td>RESET</td>
<td>Fault Reset</td>
<td>41</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>22</td>
<td>COMMAND+</td>
<td>Analog Command+</td>
<td>42</td>
<td>OUTPUT1</td>
<td>Selectable Output 1</td>
</tr>
<tr>
<td>3</td>
<td>+5VDC</td>
<td>Encoder +5V DC</td>
<td>23</td>
<td>COMMAND-</td>
<td>Analog Command-</td>
<td>43</td>
<td>OUTPUT2</td>
<td>Selectable Output 2</td>
</tr>
<tr>
<td>4</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>24</td>
<td>READY+</td>
<td>Drive Ready+</td>
<td>44</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I/O PWR</td>
<td>External I/O Power (12-24 VDC)</td>
<td>25</td>
<td>READY-</td>
<td>Drive Ready-</td>
<td>45</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I/O COM</td>
<td>External I/O Common</td>
<td>26</td>
<td>I/O PWR</td>
<td>External I/O Power (12-24 VDC)</td>
<td>46</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AOUT+</td>
<td>Motor Encoder Output Channel A+</td>
<td>27</td>
<td>I LIMIT</td>
<td>Current Limit</td>
<td>47</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AOUT-</td>
<td>Motor Encoder Output Channel A-</td>
<td>28</td>
<td>ACOM</td>
<td>Analog Common</td>
<td>48</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BOUT+</td>
<td>Motor Encoder Output Channel B+</td>
<td>29</td>
<td>Reserved</td>
<td></td>
<td>49</td>
<td>BRAKE+</td>
<td>Brake Enable+ (Drive Enabled+)</td>
</tr>
<tr>
<td>10</td>
<td>BOUT-</td>
<td>Motor Encoder Output Channel B-</td>
<td>30</td>
<td>Reserved</td>
<td></td>
<td>50</td>
<td>BRAKE-</td>
<td>Brake Enable- (Drive Enabled-)</td>
</tr>
<tr>
<td>11</td>
<td>IOUT+</td>
<td>Motor Encoder Output Channel I+</td>
<td>31</td>
<td>ANALOG1</td>
<td>Analog Output 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IOUT-</td>
<td>Motor Encoder Output Channel I-</td>
<td>32</td>
<td>INPUT1</td>
<td>Selectable Input 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I/O COM</td>
<td>External I/O Common</td>
<td>33</td>
<td>INPUT2</td>
<td>Selectable Input 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AX+/CW+/STEP+</td>
<td>Auxiliary Encoder Channel A+</td>
<td>34</td>
<td>INPUT3</td>
<td>Selectable Input 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>AX-/CW-/STEP-</td>
<td>Auxiliary Encoder Channel A-</td>
<td>35</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>BX+/CCW+/DIR+</td>
<td>Auxiliary Encoder Channel B+</td>
<td>36</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>BX-/CDW-/DIR-</td>
<td>Auxiliary Encoder Channel B-</td>
<td>37</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>IX+</td>
<td>Auxiliary Encoder Channel I+</td>
<td>38</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IX-</td>
<td>Auxiliary Encoder Channel I-</td>
<td>39</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ENABLE</td>
<td>Drive Enable</td>
<td>40</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J1 Controller Pin-Outs

Cables are available in various lengths for connecting between J1 and a suitable controller. “J1 Terminal Strip/Breakout Board” on page 6-36 details the optional signal extension kit that is available. “Interface Cable Examples” beginning on page 6-28 depict various interface cable types commonly encountered in applications.
Digital I/O Power

The drive requires an external 12 to 24VDC power source for the inputs and outputs.

External I/O Power

The external I/O power supply must be capable of supplying at least 250 mA. The pin-outs are:

<table>
<thead>
<tr>
<th>I/O PWR</th>
<th>J1-5</th>
<th>J1-26</th>
<th>(12 to 24 Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O COM</td>
<td>J1-6</td>
<td>J1-13</td>
<td></td>
</tr>
</tbody>
</table>

The external I/O COM must be grounded to meet the European Low Voltage Directive (LVD).

Digital Inputs

OMNIDRIVEs have active high, current sinking inputs, which prevent disconnects and ground faults from activating a drive. The typical ON time for an input to be rec

Dedicated Control Circuits

The ENABLE input interfaces with switch closures or sourcing type outputs. The input channel sinks 4.5 mA nominal.

Selectable Circuits

INPUT 1, INPUT 2, INPUT 3 and FAULT RESET operate with switch closures or sourcing type circuitry. Each input channel sinks 4.5 mA nominal. Selectable inputs are:

- Not Assigned (default)
- Drive Mode Select
- Integrator Inhibit
- Follower Enable
- Forward Enable
- Fault Reset
- Reverse Enable
- Preset Select A
- Preset Select B
- Preset Select C
- Operation Mode Override
- Start Index
- Define Home
• Start Homing
• Sensor (available only on INPUT 2)
• Remove COMMAND Offset

Refer to the I/O Configuration section of the on-line OMNI LINK Help for information on choosing the input type for each channel.

Table 6.2 General and Dedicated Inputs

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Pin Number</th>
<th>Function/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLE</td>
<td>J1-20</td>
<td>Enables and disables the drive. Motor torque cannot be applied unless the ENABLE input is active.</td>
</tr>
<tr>
<td>FAULT RESET</td>
<td>J1-21</td>
<td>General purpose input selectable to one of several drive functions. Refer to OMNI LINK on-line Help and the table below for I/O configuration.</td>
</tr>
<tr>
<td>INPUT 1</td>
<td>J1-32</td>
<td></td>
</tr>
<tr>
<td>INPUT 2</td>
<td>J1-33</td>
<td></td>
</tr>
<tr>
<td>INPUT 3</td>
<td>J1-34</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3 INPUT1, INPUT2, INPUT3 and FAULT RESET Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Mode Select</td>
<td>Active¹ state configures the drive for Torque Mode. Inactive² state selects the personality EEPROM setting as the command source.</td>
</tr>
<tr>
<td>Integrator Inhibit</td>
<td>Active¹ state zeros the Velocity Loop Error Integrator.</td>
</tr>
<tr>
<td>Follower Enable</td>
<td>Active¹ state allows the position loop to track the AUXILIARY POSITION LOOP signal when in the Follower mode.</td>
</tr>
<tr>
<td>Forward Enable</td>
<td>Active¹ state allows forward commands in velocity mode only. If this input is inactive or not connected, no velocity command will be allowed in the forward direction. If motion is in progress when the input is pulled low or disconnected, the drive halts immediately without deceleration control. The COMMAND signal is clamped internally to 0 Volts.</td>
</tr>
<tr>
<td>Reverse Enable</td>
<td>Active¹ state allows reverse commands in velocity mode only. If this input is inactive or not connected, no velocity command will be allowed in the reverse direction. If motion is in progress when the input is pulled low or disconnected, the drive halts immediately without deceleration control. The COMMAND signal is clamped internally to 0 Volts.</td>
</tr>
<tr>
<td>Operation Mode Override</td>
<td>Active¹ state selects the Operation Mode Override setting as the command source. Inactive² state selects the Operation Mode setting as the command source. Table 6.3 on page 6-4 lists the valid Operation Mode and Operation Mode Override combinations.</td>
</tr>
<tr>
<td>Preset Select A</td>
<td>Active⁸ or Inactive⁹ states select one of the eight presets shown in the following binary table:</td>
</tr>
<tr>
<td>Preset Select B</td>
<td></td>
</tr>
<tr>
<td>Preset Select C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BINARY CODE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Preset 1</td>
<td>0</td>
</tr>
<tr>
<td>Preset 2</td>
<td>0</td>
</tr>
<tr>
<td>Preset 3</td>
<td>0</td>
</tr>
<tr>
<td>Preset 4</td>
<td>1</td>
</tr>
<tr>
<td>Preset 5</td>
<td>1</td>
</tr>
<tr>
<td>Preset 6</td>
<td>1</td>
</tr>
<tr>
<td>Preset 7</td>
<td>1</td>
</tr>
</tbody>
</table>

Start Index | A change from inactive to active starts an indexing move. |
Define Home | A change from inactive to active defines the home position for absolute indexing. |
Sensor | A change from inactive to active is sensed as a registration or home sensor. NOTE: This selection is available only on INPUT 2. |
The specifications for these inputs are as follows:

TABLE 6.4 Digital Input Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state Voltage</td>
<td>Voltage applied to the input to guarantee an ON state</td>
<td>10.8 VDC</td>
<td>28 VDC</td>
</tr>
<tr>
<td>ON state Current</td>
<td>Current flow into the input to guarantee an ON state</td>
<td>3.0 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage applied to the input to guarantee an OFF state</td>
<td>-1 VDC</td>
<td>2 VDC</td>
</tr>
<tr>
<td>OFF state Current</td>
<td>External leakage current into the input to guarantee an OFF state</td>
<td>-0.5 mA</td>
<td>0.5 mA</td>
</tr>
</tbody>
</table>

TABLE 6.5 Operation and Override Mode Combinations

<table>
<thead>
<tr>
<th>Operation Modes</th>
<th>Operation Override Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analog Velocity</td>
</tr>
<tr>
<td>Analog Velocity</td>
<td>No</td>
</tr>
<tr>
<td>Analog Torque</td>
<td>Yes</td>
</tr>
<tr>
<td>Preset Velocity</td>
<td>Yes</td>
</tr>
<tr>
<td>Preset Torque</td>
<td>Yes</td>
</tr>
<tr>
<td>Follower Master Encoder</td>
<td>Yes</td>
</tr>
<tr>
<td>Follower Step/Dir</td>
<td>Yes</td>
</tr>
<tr>
<td>Follower Step Up/Down</td>
<td>Yes</td>
</tr>
<tr>
<td>Indexing</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Input Interface Circuit Examples

Figure 6.2 Drive Input Connected to a Switch/Relay Contact

Figure 6.3 Drive Input Connected to an Opto-Isolator

Figure 6.4 Drive Input Connected to an Active High Sourcing Transistor

Figure 6.5 Drive Input Connected to Active Low Output using a Switch/Relay
FIGURE 6.6 Drive Input Connected to Active Low Output using an Opto-Isolator

FIGURE 6.7 Drive Input Connected to Sourcing Output
Digital Outputs
Two types of discrete output circuits are available on the J1 connector:

- Dedicated relay outputs
- Selectable transistor based outputs

Both types support 12-24 VDC logic interfaces:

Dedicated Relay Outputs
BRAKE and DRIVE READY. Each output is a normally open relay. The brake contacts are rated for 1 Amp at 50 Volts. The Drive Ready contacts are rated for 1Amp at 30 VDC.

NOTE: The Brake contacts may be used to control 24VDC brakes on Thomson motors with a 4” frame or smaller. A user provided relay may be driven by these outputs if higher power levels are required. Refer to “BRAKE/DRIVE ENABLE Application Examples” on page 6-9 for examples.

Selectable Transistor Outputs
OUTPUT 1 and OUTPUT 2 are optically isolated, active high, current sourcing, single ended transistor output channels. Each channel sources a maximum of 50 mA.

READY and BRAKE/DRIVE ENABLED Circuits

![Diagram](image)

FIGURE 6.8 READY and BRAKE/DRIVE ENABLED Circuits

The specifications for these outputs are as follows:

Table 6.6 READY and BRAKE/DRIVE ENABLED Output Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state resistance</td>
<td>Internal resistance between J1-24 (+) and J1-25 (-) or J1-49(+) and J1-50(-) when the contacts are closed.</td>
<td>1 Ohm</td>
</tr>
<tr>
<td>ON state current</td>
<td>Current flow through the relay when contacts are closed.</td>
<td>1 Amp</td>
</tr>
<tr>
<td>OFF state current</td>
<td>Leakage current from either output when the relay contacts are open.</td>
<td>0.01 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage difference between the outputs with open relay contacts.</td>
<td>30 Volts</td>
</tr>
</tbody>
</table>
Suggested brake wiring when 24VDC brake current exceeds 500mA or for 90VDC brakes:

FIGURE 6.9

Digital Output Circuit.

Suggested brake wiring when 24VDC brake current exceeds 500mA or for 90VDC brakes:

FIGURE 6.10

BRAKE/DRIVE ENABLE Application Examples
TABLE 6.7 Selectable Output Circuits

<table>
<thead>
<tr>
<th>Digital Output</th>
<th>Pin Number</th>
<th>Function/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>J1-24 (+)</td>
<td>Relay closure indicates the drive does not have a fault. (Refer to “READY and BRAKE/DRIVE ENABLED Output Specifications” on page 6-8)</td>
</tr>
<tr>
<td></td>
<td>J1-25 (-)</td>
<td></td>
</tr>
<tr>
<td>BRAKE</td>
<td>J1-49 (+)</td>
<td>Relay closure releases the brake. Delay time is selectable (Refer to OMNI LINK - I/O configuration) and may be used as a drive enabled output.</td>
</tr>
<tr>
<td></td>
<td>J1-50 (-)</td>
<td>This signal is the inverse of the ENABLE output, although a time delay may be selected. (Refer to BRAKE Output Specifications)</td>
</tr>
<tr>
<td>OUTPUT 1</td>
<td>J1-42</td>
<td>General purpose output. Selectable from one of several drive functions. (Refer to Table 6.8)</td>
</tr>
<tr>
<td>OUTPUT 2</td>
<td>J1-43</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6.8 OUTPUT1 and OUTPUT2 Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Position</td>
<td>An active state indicates the position window condition is satisfied, and the zero speed condition is satisfied. The position window and zero speed range are selectable settings.</td>
</tr>
<tr>
<td>Within Window</td>
<td>An active state indicates the position window condition is satisfied. The position window range is a selectable setting.</td>
</tr>
<tr>
<td>Zero Speed</td>
<td>An active state indicates the velocity loop zero speed signal is active. The zero speed limit is a selectable setting.</td>
</tr>
<tr>
<td>Speed Window</td>
<td>An active state indicates the velocity loop speed window is active. The speed window range is a selectable setting.</td>
</tr>
<tr>
<td>Current Limit</td>
<td>An active state indicates the torque current is limited.</td>
</tr>
<tr>
<td>Up To Speed</td>
<td>An active state indicates the velocity loop AT SPEED signal is active. The at speed level is a selectable setting.</td>
</tr>
<tr>
<td>Drive Enabled</td>
<td>An active state indicates the ENABLE signal is active and no fault is detected.</td>
</tr>
<tr>
<td>Bus Charged</td>
<td>An active state indicates the DC bus is energized.</td>
</tr>
<tr>
<td>Disabling Fault</td>
<td>An active state indicates a fault disabled the drive.</td>
</tr>
<tr>
<td>In Motion</td>
<td>An active state indicates the indexing sequence is in the motion portion.</td>
</tr>
<tr>
<td>In Dwell</td>
<td>An active state indicates the indexing sequence is in the dwell portion.</td>
</tr>
<tr>
<td>Sequence Complete</td>
<td>An active state indicates all batches of the indexing sequence are finished.</td>
</tr>
<tr>
<td>Registered</td>
<td>An active state indicates the indexing move has been adjusted after sensing the registration sensor.</td>
</tr>
<tr>
<td>At Home</td>
<td>An active state indicates the drive is at the home position.</td>
</tr>
<tr>
<td>Axis Homed</td>
<td>An active state indicates the drive has been homed.</td>
</tr>
</tbody>
</table>

NOTE: Refer to the I/O Configuration section of the OMNI LINK on-line Help for further explanation of these output signals.

TABLE 6.9 Transistor Output Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state Voltage</td>
<td>Voltage difference between the +24 VDC supply and the output when the transistor is ON.</td>
<td>0 VDC</td>
<td>1.5 VDC</td>
</tr>
<tr>
<td>ON state current</td>
<td>Current flow when the transistor is ON.</td>
<td>0 mA</td>
<td>50 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage difference between the +24 VDC supply and the output when the transistor is OFF.</td>
<td>0 Volts</td>
<td>50 Volts</td>
</tr>
<tr>
<td>OFF state current</td>
<td>Leakage current from the output when the transistor is OFF.</td>
<td>-0.1 mA</td>
<td>0.1 mA</td>
</tr>
</tbody>
</table>
Output Interface Circuit Examples

Figure 6.11 Drive Output Connected to an Opto-Isolator

Figure 6.12 Drive Output Connected to an LED Indicator

Figure 6.13 Drive Output Connected to a Resistive Load

Figure 6.14 Drive Output Connected to a Switch/Relay
FIGURE 6.15 Drive Output Connected to Active Low Input using a Switch/Relay

FIGURE 6.16 Drive Output Connected to Active Low Input using an Opto-Isolator

FIGURE 6.17 Drive Output Connected to Active High (Sinking) Input

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
Analog Inputs

Two types of analog input circuits are available on the J1 connector:

- The current limiting inputs support 0 to +10 Volt signals
- The command input supports 0 to ±10 Volt signals.

External Current Limit (I LIMIT)

![FIGURE 6.18 External Current Limit Circuit]

The I LIMIT limits the current, which provides torque to the motor. The range is 0 to +10 Volts (where 10 Volts corresponds to maximum drive current). The analog I LIMIT signal is converted into a digital word by a 10-bit ADC (analog to digital converter). If the I LIMIT input is not connected, current is not limited.

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Limit</td>
<td>J1-27</td>
<td>Limits the peak positive current command, which produces torque.</td>
</tr>
</tbody>
</table>

![TABLE 6.10 Analog Inputs (I LIMIT)]

External Current Limit Input Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Current</td>
<td>Short circuit between the input and ground.</td>
<td></td>
<td>-1.5 mA</td>
</tr>
<tr>
<td>Input Signal Range</td>
<td>Allowable voltage applied to the input.</td>
<td>0 Volts</td>
<td>+10 Volts</td>
</tr>
</tbody>
</table>

Command Input

![FIGURE 6.19 Analog COMMAND Input Circuit]

The analog command signal to the drive has a range of ±10 Volts. The signal is either a torque, velocity or position command, depending on the software configuration of the drive. The differential input is processed by a 16 bit analog to digital converter (ADC) to produce a digital value.
Table 6.12 Analog Command Input

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>J1-22 (+)</td>
<td>Analog command signal is a differential type signal to drive the servo controller. If the drive is in Velocity Mode configuration, the differential COMMAND signal is the velocity command. If the drive is in Torque Mode configuration, the differential COMMAND signal is the torque or current command. Separate scale and offset parameters are used for the input, depending on whether the signal is a velocity command or a torque current command.</td>
</tr>
<tr>
<td></td>
<td>J1-23 (+)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.13 Analog Command Input Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Open circuit impedance measured between (+) and (-).</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>(kOhms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Signal Range</td>
<td>Allowable voltage applied between (+) and (-) inputs.</td>
<td>0</td>
<td>±10</td>
</tr>
<tr>
<td>(Volts)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analog Outputs

![Diagram of Analog Output Circuit](image)

FIGURE 6.20 Analog Output Circuits

A selectable output is available for monitoring by the user: ANALOG 1 (J1-31).

TABLE 6.14 Analog Outputs: ANALOG 1

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG 1</td>
<td>J1-31</td>
<td>Selectable analog output. Displays the selected firmware variable along with selectable scale and offset (refer to the OMNI LINK – I/O Configuration section).</td>
</tr>
<tr>
<td>ACOM</td>
<td>J1-28</td>
<td>Analog Common (return).</td>
</tr>
</tbody>
</table>

TABLE 6.15 Analog Output Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current (mA)</td>
<td>Allowable current draw of the load</td>
<td>-2</td>
<td>+2</td>
</tr>
<tr>
<td>Output Signal Range (Volts)</td>
<td>Voltage range of the signal</td>
<td>-10</td>
<td>+10</td>
</tr>
</tbody>
</table>

The following signals can be mapped to the analog output.

- Current – Command
- Velocity – Command
- Current – Average
- Velocity – Error
- Current – Peak +
- Position – Motor Feedback
- Current – Peak -
- Position – Command
- Current – Input Limit +
- Position – Error
- Current – Input Limit -
- Position – Error Peak +
- Velocity – Motor Feedback
- Position – Error Peak -

WARNING

The user may need to provide an external circuit to delay output of the analog signal when the signal is used to perform an operation. After reset both analog outputs may be in an indeterminate state for a short period before they stabilize at the setting stored in memory. Failure to observe this precaution could result in severe bodily injury.

The following signals can also be monitored when OMNI LINK is configured for Advanced Mode.

- Position – Master
- Torque Current
- Position – Loop Output
- Field Current
- Velocity – Loop Output
- Torque Voltage Command
- Filter Output
- Field Voltage Command
- R-Phase Current
- Analog COMMAND Input
- T-Phase Current
- Bus Voltage
Motor Encoder Output Signals

\[f_{out} = \frac{\text{Vm} \cdot \text{linecount}}{60 \cdot N} \]

where:
- \(\text{Vm} \) is the motor encoder velocity in rpm
- \(\text{linecount} \) is the number of encoder lines/revolution of the motor mounted encoder, and
- \(N \) is the output divider from the software selected parameter (1, 2, 4 or 8).

If the device connected to the motor encoder output counts all edges, the count frequency is four times \(f_{out} \).

For example, a motor with a 2000 line encoder is rotating at 3000 rpm, and the Motor Encoder Output signal is set to Divide by 1, the encoder signal frequency is:

\[f_{out} = \frac{3000 \cdot 2000}{60 \cdot 1} = 100 kHz \]

A counter counting all edges registers 400 kHz for this example.

<table>
<thead>
<tr>
<th>Encoder Output</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOUT (+)</td>
<td>J1-7 (+)</td>
<td>Motor Output Channels A(+) and A(-). Differential TTL levels from line driver. Signal resolution is selectable.</td>
</tr>
<tr>
<td>AOUT (-)</td>
<td>J1-8 (-)</td>
<td></td>
</tr>
<tr>
<td>BOUT (+)</td>
<td>J1-9 (+)</td>
<td>Motor Output Channels B(+) and B(-). Differential TTL levels from line driver. Signal resolution is selectable.</td>
</tr>
<tr>
<td>BOUT (-)</td>
<td>J1-10 (-)</td>
<td></td>
</tr>
<tr>
<td>IOUT (+)</td>
<td>J1-11 (+)</td>
<td>Motor Output Channels I(+) and I(-). Differential TTL levels from line driver. Output pulse occurs once per motor shaft revolution.</td>
</tr>
<tr>
<td>IOUT (-)</td>
<td>J1-12 (-)</td>
<td></td>
</tr>
</tbody>
</table>
IOUT Signal Generation

The Index output signal (IOUT) is *not synchronized* to a particular state of the A and B output signals (AOUT and BOUT). Some controllers, such as those used in the CNC industry, use the condition I=1, A=1, B=1 to indicate a home position. In such applications the encoder outputs from the drive *cannot* be used, since an active IOUT signal (IOUT=1) cannot be guaranteed during the state AOUT=1, BOUT=1. Instead, the unbuffered motor encoder signals can be used as shown below. The J2 Breakout Board assembly connects the motor encoder signals directly to the position feedback of the controller.

If a controller connected to the drive requires the Index Output (IOUT) signal to be synchronized to a particular state of the A and B Outputs (AOUT and BOUT) the unbuffered encoder outputs from the motor must be used.

![Diagram of J2 Breakout Board Assembly](image)

TIP

Drives are tested using specific installation methods, and the information above is based on successful tests. If the drives are installed in this manner, then compliance with European EMC requirements may be expected, although it is impossible to guarantee that a specific installation will meet EMC requirements without testing it.

- Install the drive and J2 breakout board assembly (terminal block and cables) inside a grounded metal enclosure.
- or -
- Install ferrites of an appropriate rating at the specific locations:
 1. J2 Cable – 230 Ohm @ 100 MHz toroid (FerriShield P/N SS28B2032) immediately adjacent to the J2 connector on the drive.
 2. Pigtailed Motor Encoder Cable – 215 Ohm @ 100 MHz ribbon cable clamp (Fair-Rite P/N 2643164051 and clips Fair-Rite P/N 0199001401) over the unshielded conductors.

Figure 6.22

J2 Breakout Board Assembly - European Union EMC Compliance

Two options are available to achieve European Union EMC compliance when a OMNIDRIVE uses the J2 Breakout Board Assembly to transfer an unbuffered encoder signal to a control device. Either method of installation reduces the radiated emissions to an acceptable level. Be aware that either installation option is in addition to the EMC requirements specified elsewhere in this manual.

- Install the drive and J2 breakout board assembly (terminal block and cables) inside a grounded metal enclosure.
- or -
- Install ferrites of an appropriate rating at the specific locations:
 1. J2 Cable – 230 Ohm @ 100 MHz toroid (FerriShield P/N SS28B2032) immediately adjacent to the J2 connector on the drive.
 2. Pigtailed Motor Encoder Cable – 215 Ohm @ 100 MHz ribbon cable clamp (Fair-Rite P/N 2643164051 and clips Fair-Rite P/N 0199001401) over the unshielded conductors.
Auxiliary Encoder Inputs Types

The OMNIDRIVE may be electronically geared by a remote signal. Electronic gearing may be driven by any of the following three signals:

- A master incremental encoder that generates quadrature encoder signals
- Step and direction signals, such as those created by indexers for step motors
- CW (Step Up)/CCW (Step Down) signals, typically used with stepper indexers.

Tip

The use of differential signals is strongly recommended. Single-ended signals are susceptible to noise, which may cause intermittent or continuous errors.

To improve noise immunity, terminate cable shields at both ends of the cable. Connect shields to the backshell of the connector with a complete circumferential (360°) termination. The cable connector should then connect to chassis ground (not signal ground.)

Table 6.18 Motor Encoder Output Signal

<table>
<thead>
<tr>
<th>Auxiliary Encoder Input</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX + and AX-, or Step + and Step-, or CW+ (Step Up+) and CW- (Step Up-)</td>
<td>J1-14 (+) J1-15 (-)</td>
<td>Auxiliary Channels A(+) and A(-). Differential, quadrature, or TTL level encoder input. The signal input and resolution are selectable.</td>
</tr>
<tr>
<td>BX (+) and BX(-), or DIR (+) and DIR(-), or CCW+ (Step Down+) and CCW- (Step Down-)</td>
<td>J1-16 (+) J1-17 (-)</td>
<td>Auxiliary Channels B(+) and B(-). Differential, quadrature, or TTL level encoder inputs. The signal input and resolution are selectable.</td>
</tr>
<tr>
<td>IX (+) and IX (-)</td>
<td>J1-18 (+) J1-19 (-)</td>
<td>Auxiliary Input Channels I(+) and I(-). Differential, quadrature, or TTL level encoder inputs.</td>
</tr>
</tbody>
</table>
The input circuits shown in the following diagrams support connections to differential TTL line drivers, single-ended TTL line drivers and open collector devices. These inputs are selectable under software control.

Table 6.19 Quadrature Interface Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON State Voltage (Volts)</td>
<td>Voltage difference between the + and – inputs that indicate an ON state.</td>
<td>1.0</td>
<td>+15</td>
</tr>
<tr>
<td>OFF State Voltage (Volts)</td>
<td>Voltage difference between the + and – inputs that indicate an OFF state.</td>
<td>-1.0</td>
<td>-15</td>
</tr>
<tr>
<td>Common Mode Voltage (Volts)</td>
<td>Voltage difference between an encoder signal input and the reference ground of the drive.</td>
<td>-15</td>
<td>+15</td>
</tr>
<tr>
<td>Current Draw (mA)</td>
<td>Current draw into the + input or – input</td>
<td>-5</td>
<td>+5</td>
</tr>
<tr>
<td>A or B Signal Frequency (MHz)</td>
<td>Frequency of the A or B line inputs. Count frequency is 4 times this frequency, since the circuitry counts each of the four transitions in a single line.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Index Pulse Width (nsec)</td>
<td>Pulse width of the index signal. The index signal is active for a percentage of the revolution, therefore the speed of the encoder dictates the pulse width.</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
Interface Cable Examples

The use of differential signals is highly recommended. This is due to the immunity of differential signals to common mode interference. Single-ended encoder interface circuits are not recommended, and may result in system malfunction.

To improve noise immunity, a cable shield should terminate at both ends of the cable. Shields should connect to the backshell of the connectors with termination around the full circumference (360°). The connectors should attach to chassis ground (not signal common).

![External Encoder Interface via TTL Differential Line Drivers](image1)

![Complementary Encoder Interface via 7406 Line Drivers with Pull-up Resistors](image2)
Figure 6.27
Complementary Encoder Interface via Standard TTL Logic

Figure 6.28
Single-Ended Encoder Interface via Open Collector Transistor without Pull-up (not recommended)

Figure 6.29
Single-Ended Encoder Interface via Standard TTL Signals (not recommended)
FIGURE 6.30 Single-Ended Encoder Interface via Open Collector Transistor with 5 VDC to 12 VDC Pull-up (not recommended)

FIGURE 6.31 Single-Ended Encoder Interface via Open Collector Transistor with 24 VDC Pull-up (not recommended)
TABLE 6.20 Step/Direction and CW/CCW (Step Up/Step Down) Interface Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal frequency (MHz)</td>
<td>Frequency of the input signal.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pulse Width (nsec)</td>
<td>Time interval the step (CW/CCW) signal must remain in a single state for detection.</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Setup Time (nsec)</td>
<td>Time interval the direction (CW/CCW) signal must be stable before the corresponding step (CCW/ CW) signal changes state.</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

The following diagram shows the relationship between STEP and DIRECTION inputs.

![Diagram showing the relationship between STEP and DIRECTION inputs.](image)

FIGURE 6.32 External Step/Direction Interface via TTL Differential Line Drivers

FIGURE 6.33 External Step/Direction Interface via Single-Ended TTL Line Drivers (not recommended)
External CW/CCW (Step Up/Step Down) Interface via TTL Differential Line Drivers

External CW/CCW (Step Up/Step Down) Interface via Single-Ended Line Drivers (not recommended)

J1 Terminal Strip/Breakout Board

A 50-pin terminal strip kit is available for extending the signals from the J1 connector. The kit includes a 1 meter (3-foot) interface cable, a 50-pin terminal strip and mounting hardware.
J2 – Encoder

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EPWR</td>
<td>Encoder Power</td>
<td>11</td>
<td>(+)</td>
<td>Motor Encoder Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Channel (+)</td>
</tr>
<tr>
<td>2</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>12</td>
<td>(-)</td>
<td>Motor Encoder Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Channel (-)</td>
</tr>
<tr>
<td>3</td>
<td>EPWR</td>
<td>Encoder Power</td>
<td>13</td>
<td>A</td>
<td>Hall Effect A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>B</td>
<td>Hall Effect B</td>
</tr>
<tr>
<td>5</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>15</td>
<td>C</td>
<td>Hall Effect C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td>ABS Absolute Position</td>
</tr>
<tr>
<td>7</td>
<td>A (+)</td>
<td>Motor Encoder Input</td>
<td>17</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel A(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A (-)</td>
<td>Motor Encoder Input</td>
<td>18</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel A(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B (+)</td>
<td>Motor Encoder Input</td>
<td>19</td>
<td>TS(+)</td>
<td>Thermal Switch (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel B(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B (-)</td>
<td>Motor Encoder Input</td>
<td>20</td>
<td>TS(-)</td>
<td>Thermal Switch (-)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel B(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION
Ensure that the encoder signals are connected properly. Incorrect connection of the encoder signals will result in improper rotor position, incorrect commutation and/or a runaway motor condition.

Thomson Industries cables are available in various lengths for connecting between J1 and a suitable controller.

FIGURE 6.36 Motor Encoder Interface Circuit

FIGURE 6.37 Hall Effect Sensor Circuit
TABLE 6.21 J2- Motor Encoder Connector Pin-Outs

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPWR</td>
<td>J2-1, J2-3, J2-5</td>
<td>Encoder power</td>
</tr>
<tr>
<td>ECOM</td>
<td>J2-2, J2-4, J2-6</td>
<td>Encoder common</td>
</tr>
<tr>
<td>A(+)</td>
<td>J2-7 (+), J2-8 (-)</td>
<td>Motor Encoder Input Channel A(+) and Channel A(-). Accepts TTL level signals from a line driver.</td>
</tr>
<tr>
<td>A (-)</td>
<td>J2-9 (+), J2-10 (-)</td>
<td>Motor Encoder Input Channel B(+) and Channel B(-). Accepts TTL level signals from a line driver.</td>
</tr>
<tr>
<td>B(+)</td>
<td>J2-11 (+), J2-12 (-)</td>
<td>Motor Encoder Input Channel I(+) and Channel I(-). Accepts TTL level signals from a line driver. Output pulse occurs once per motor shaft revolution.</td>
</tr>
<tr>
<td>HALL A</td>
<td>J2-13</td>
<td>Hall Effect A sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor.</td>
</tr>
<tr>
<td>HALL B</td>
<td>J2-14</td>
<td>Hall Effect B sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor.</td>
</tr>
<tr>
<td>HALL C</td>
<td>J2-15</td>
<td>Hall Effect C sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor.</td>
</tr>
<tr>
<td>ABS</td>
<td>J2-16</td>
<td>Absolute Position used on Thomson Industries motors for commutation.</td>
</tr>
<tr>
<td>J2-17, J2-18</td>
<td></td>
<td>Reserved.</td>
</tr>
<tr>
<td>TS+</td>
<td>J2-19</td>
<td>Thermal Switch + and Thermal Switch – are a motor overtemperature signal. a</td>
</tr>
<tr>
<td>TS–</td>
<td>J2-20</td>
<td></td>
</tr>
</tbody>
</table>

a. OMNI LINK software automatically determines the presence or absence of a motor thermal switch signal based on the motor selected in the Drive Select window.

FIGURE 6.36 OMNIDRIVE Motor Encoder Connections

NOTES:
1. For encoders with differential Hall outputs (A+, A-, B+, B-, C+ and C-) connect only the + outputs to the drive.
2. The ABS signal is only available on selected Thomson Industries encoders.
J2 Terminal Strip/Breakout Board

A 25-pin terminal strip kit is available for extending the encoder signals from the J2 connector. The kit includes a 3-foot (1 meter) interface cable a 25-pin terminal strip, and mounting hardware.

J5 – Serial Port

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RCV(+)</td>
<td>Receive (+)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>2</td>
<td>RCV</td>
<td>Receive</td>
<td>RS-232</td>
</tr>
<tr>
<td>3</td>
<td>XMT</td>
<td>Transmit</td>
<td>RS-232</td>
</tr>
<tr>
<td>4</td>
<td>XMT(+)</td>
<td>Transmit (+)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>5</td>
<td>COM</td>
<td>+5 VDC Common</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Reserved(^a)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RCV(-)</td>
<td>Receive (-)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>8</td>
<td>XMT(-)</td>
<td>Transmit (-)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Reserved(^1)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Do not connect any device to J4-6, J5-6, J4-9 or J5-9 except an Thomson Industries TouchPad.

J5 is a 9 pin female D-shell (AMP 205204-4, pins AMP 66506-3) connector. This connector is a serial interface that allows communication with another OMNIDRIVE, a PC, a terminal, a host computer, a controller or an optional TouchPad. The shell of the connector is grounded to the chassis for shield termination.

RS-232/485 Interface Circuit

The serial interface of the OMNIDRIVE uses the standard NRZ asynchronous serial format, and supports both the RS-232 and the four wire RS-485 communications standards.

- Standard baud rates include 1200, 2400, 4800, 9600 and 19200 baud. 9600 is the factory default setting.
- Even, odd, and no parity generation/checking are supported. No parity is the factory default setting.
- The maximum number of OMNIDRIVEs allowable on an RS-485 bus is 32.
- The maximum length of an RS-232 cable is 15 meters (50 feet).
The maximum length of an RS-485 cable is 1220 meters (4000 feet) with 0.20 mm² (24 AWG) wire. Thomson Industries cables are available in various lengths for connecting to the serial port of an OMNIDRIVE and a control unit, such as a PC.

The shell of the connector is grounded to the chassis for shield termination.

The following table lists the pin-outs for J5.

Table 6.22 J5 – Serial Port Connector Pin-Outs

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCV (+)</td>
<td>J4 - 1 (+)</td>
<td>RS-485 differential receiver input (to drive)</td>
</tr>
<tr>
<td>RCV (-)</td>
<td>J4 - 7 (-)</td>
<td></td>
</tr>
<tr>
<td>XMT (+)</td>
<td>J4 - 4 (+)</td>
<td>RS-485 differential transmitter output (from drive)</td>
</tr>
<tr>
<td>XMT (-)</td>
<td>J4 - 8 (-)</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>J4 - 5</td>
<td>Common serial port interface</td>
</tr>
<tr>
<td></td>
<td>J4 - 6</td>
<td>Reserveda</td>
</tr>
<tr>
<td>RCV</td>
<td>J4 - 2</td>
<td>RS-232 receiver input (to drive)</td>
</tr>
<tr>
<td>XMT</td>
<td>J4 - 3</td>
<td>RS-232 transmitter output (from drive)</td>
</tr>
<tr>
<td></td>
<td>J4 - 9</td>
<td>Reserveda</td>
</tr>
</tbody>
</table>

a. Do not connect any device to J4-6, J4-9, or J5-9, except a Thomson Industries TouchPad.

Serial Communications Overview

OMNIDRIVEs communicate via a standard NRZ (non-return to zero) asynchronous serial format, which supports either RS-232 or four wire RS-485. The pin-out arrangement on the drive serial ports provides self-sensing of the communication standard. To change from RS-232 to four wire RS-485 requires a simple change of the cable.

In multiple drive installations, a unique address must be assigned to each drive through software. The factory default drive address is setting is Address 0. All addresses changes are made through OMNI LINK software selection. Up to 32 (1 through 32) are supported.

NOTE: Address and communications settings changes are not immediate; they are logged but do not become active until after the drive is RESET.

Each drive may be assigned a unique name of up to 32 characters in length; a name is often easier to remember than the address of a drive. OMNI LINK software automatically associates a drive name with the correct drive address.

RS-232 Connections

The address of each drive is set using OMNI LINK software. Refer to the OMNILINK on-line Help.

Do not connect any device to J5-6 or J5-9 except a Thomson Industries TouchPad.

Single Axis RS-232 Set Up

A single OMNIDRIVE may be selected using RS-232 communications. After cabling is attached to the unit and the drive address is assigned, configuration of (i.e., communications with) the unit may proceed.

The following steps outline how to select the communications options:
Factory default settings for a OMNIDRIVE are:

- Address 0
- 9600 Baud
- 8 Data, No Parity, 1 Stop bit

The following steps outline how to select the communications options:

1. Connect an RS-232 cable between the computer and a serial connector on the drive (J5).

2. Verify the computer can communicate with the drive by performing the following:
 - Switch drive power to ON
 - Start OMNI LINK on the attached PC
 - Choose CANCEL from the Drive Select window
 - Select Communications from the menu
 - Select PC Set Up from the pull down menu
 - Verify the port settings, and if necessary, change them, then choose OK.
 - Select Communications from the menu
 - Select Read Drive Parameters from the pull down menu
 - Choose OK in the Drive Select window.

3. Verify that OMNI LINK reads the drive parameters. If not, refer to “Troubleshooting” on page 11-3.
NOTE: The Scan Port for Attached Drives option in the Drive Select window of OMNI LINK will identify any attached drives. If a drive is identified, but cannot be communicated with, the Baud Rate selection must be modified.

The cable diagrams provide wiring examples for both 9 pin and 25 pin serial ports from an IBM compatible personal computer to the drive. RS-232 pin-outs vary between computer manufacturers. Check the hardware reference manual of your machine to ensure correct signal connections between the computer and the drive.

Four Wire RS-485 Connections

The OMNIDRIVEs use a variation of the RS-485 standard, known as four wire RS-485. Four wire RS-485 uses one differential signal for host to drive transmissions, and another differential signal for drive to host transmissions. (The RS-485 standard specifies a single differential signal for transmissions in both directions.)

The four wire RS-485 configuration also allows the host to use a RS-422 type interface. Because the host is driving multiple receivers and receiving from multiple transmitters, RS-422 is limited to multiple axes connections with 10 or less drives. The figure below summarizes the four wire RS-485, RS-422, and RS-485 standards.

<table>
<thead>
<tr>
<th>Four Wire RS-485</th>
<th>
 Differential
 4 Wires
 2 Signal Pairs
 1 to 32 Transmitters
 1 to 32 Receivers</th>
<th>![Four Wire RS-485 Diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-422</td>
<td>Differential
 4 Wires
 2 Signal Pairs
 1 Transmitter
 1 to 10 Receivers</td>
<td>![RS-422 Diagram]</td>
</tr>
<tr>
<td>RS-485 Standard</td>
<td>Differential
 2 Wires
 1 Signal Pair
 1 to 32 Transmitters
 1 to 32 Receivers</td>
<td>![RS-485 Standard Diagram]</td>
</tr>
<tr>
<td>NOTE: Not applicable to OMNIDRIVEs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 6.40 RS-485/RS-422 Communication Comparison
Multiple Axes Four-Wire RS-485 Communications

Do not connect any device to J5-6 or J5-9 except an Thomson Industries TouchPad.

1. Select a previously unused address (1-32) from OMNI LINK - Drive Set Up.

2. Connect cables between:
 - The host computer and the serial port on the initial drive (J5) in the multiple drive configuration.
 - The other serial port on the initial drive (J5) and the serial port on the next drive (J5) in the multiple drive configuration

Flat ribbon cable is not recommended for RS-485 connections.

3. Verify the communication settings on the computer are correct:
 - Start OMNI LINK on the attached PC
 - Choose CANCEL from the Drive Select window
 - Select Communications from the menu
 - Select PC Set Up from the pull down menu.
 - Verify the port settings, and if necessary, change them, then choose OK.

Address 0 is the preferred address for the initial configuration of a drive. It forces the drive to the default communications parameters.

4. Verify the ability to communicate between the computer and the connected drives by:
 - Switch drive power to ON
 - Select Communications from the menu
 - Select Read Drive Parameters from the pull down menu
 - Select the drive to communicate with from Drive Select window (the drive must have an address that matches one of the drive addresses in the chain)
 - Choose OK in the Drive Select window.

5. Verify that OMNI LINK loads the drive parameters. If not, refer to the troubleshooting section.

6. Repeat the preceding two steps for each additional drive.

Four wire RS-485 connections are shown below. The cable diagram provides a wiring example of a daisy chain connection in a typical installation A multi-drop cable (Figure 6.41) may also be used.

Multiple Axes RS-232 Communications

Multiple axes systems may be controlled by a computer with an RS-232 serial port. An RS-232 serial communication port may be converted to four wire RS-485 communication by attaching an RS-232 to four wire RS-485 converter. The figure below depicts the use of such a device.
FIGURE 6.41 Four Wire RS-485 Daisy Chain Connection Diagram

* Pin-outs may vary by manufacturer
CHAPTER 7: Power Connections

DC bus, single phase AC power and motor connections are provided on the Terminal Block (TB-1).

TABLE 7.1 TB1 – DC Bus and AC Power Terminal Block Connections

<table>
<thead>
<tr>
<th>Description</th>
<th>Identifier</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Bus + voltage</td>
<td>DC BUS +</td>
<td>1</td>
</tr>
<tr>
<td>DC Bus - voltage</td>
<td>DC BUS -</td>
<td>2</td>
</tr>
<tr>
<td>100-240 VAC input power</td>
<td>L1 (Line 1)</td>
<td>3</td>
</tr>
<tr>
<td>100-240 VAC input power</td>
<td>L2 (Line 2)/N (Neutral)</td>
<td>4</td>
</tr>
<tr>
<td>Safety (earth) ground</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>R phase power to motor</td>
<td>R</td>
<td>6</td>
</tr>
<tr>
<td>S phase power to motor</td>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td>T phase power to motor</td>
<td>T</td>
<td>8</td>
</tr>
<tr>
<td>Motor case ground</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Power Wiring Connection Diagrams for the ODM-005, -005i, -010, -010i, -020 and -020i are provided on page 5-8. Wiring for the external I/O power is described and depicted in the chapter “Application and Configuration Examples” on page 8-1

DANGER

DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING

Motor power connectors are for assembly purposes only. They should not be connected or disconnected while the drive is powered.
Motor Power Cabling

TB1-6, TB1-7, TB1-8 and TB1-9 are the terminals for connecting the drive to the windings of a motor.

Proper phasing of these outputs relative to the motor terminals is critical. Double check the connections after wiring the motor.

Table 7.2 lists the drive terminals and typical motor connections. Table 7.3 lists the minimum wire size for making power wiring connections.

Table 7.2 Motor Power Terminals

<table>
<thead>
<tr>
<th>Motor Phase Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R phase from drive</td>
<td>TB1-6</td>
</tr>
<tr>
<td>S</td>
<td>S phase from drive</td>
<td>TB1-7</td>
</tr>
<tr>
<td>T</td>
<td>T phase from drive</td>
<td>TB1-8</td>
</tr>
<tr>
<td>±</td>
<td>Ground for the motor case</td>
<td>TB1-9</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

Shield Termination of Power Cables

Shielded power cables must be grounded at a minimum of one point for safety. Failure to ground a shielded power cable will result in potentially lethal voltages on the shield and anything connected to it.

Thomson Industries motor power cables are shielded. The power cable is designed to be terminated at the drive during installation. A small portion of the cable jacket is stripped, which exposes the shield wires. The exposed area must be clamped at the left front of the drive chassis using the clamp provided near the bottom. It is critical for EMC performance that the shield wires be clamped against the area of the chassis which is not painted. This section of the chassis is labeled with the chassis ground symbol.
Motor Overload Protection

The drive utilizes solid state motor overload protection which operates:

- within 8 minutes at 200% overload
- within 20 seconds at 600% overload.

Power Supply Protection

The feedback encoder, auxiliary encoder and optional TouchPad are powered by a single internal power supply. The power supply has a “resettable” fuse that opens at 3 amps and automatically resets itself when the current falls below 3 amps. There are no internal fuses requiring replacement.

TABLE 7.3 Motor Power Contact and Wire Size Recommendations

<table>
<thead>
<tr>
<th>Motor Size</th>
<th>Motor Power Mating Maximum Contact Size mm² (AWG)a</th>
<th>Minimum Recommended 90°C Power Wire mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 through 3016</td>
<td>1.5 (16)</td>
<td>1.5 (16)</td>
</tr>
<tr>
<td>4030</td>
<td>4 (12)</td>
<td>1.5 (16)</td>
</tr>
<tr>
<td>4050</td>
<td>4 (12)</td>
<td>2.5 (14)</td>
</tr>
</tbody>
</table>

a. See note.
Emergency Stop Wiring

An overlapping contactor may be inserted between the motor and the drive for emergency stop purposes. The contactor must not simply break the motor current, it also must switch a three phase resistive load in parallel with the motor windings.

The three resistors provide dynamic braking. In addition, they prevent continuous arcing at the main contacts when breaking DC currents, such as when the motor stalls. Simply breaking the motor current can result in high voltages due to motor inductance, which will cause prolonged arcing in the contactor. In extreme cases, the prolonged arcing could result in the contactor catching fire. An overlapping contactor provides the required timing by engaging the braking contactors before the drive contactors disengage.

Figure 7.2 depicts a contactor installation with resistive loads. Follow these guidelines:

- The resistor values should be one to four times the winding resistance for good braking performance. Refer to Appendix D, “Dynamic Braking Resistor Selection” for resistor sizing equations.
- Screen and ground cables should be connected as shown.
- Shields should be unbraided (not a drain wire soldered to the shield).
- Connection lengths should be minimized.
- Safety ground (GND) and shield connections are permanently connected. This is essential for electrical safety.
- EMC guidelines require connection of the shield at the point where the contactor is inserted.

![Emergency Stop Contactor Wiring Diagram](image-url)

Figure 7.2 Emergency Stop Contactor Wiring
AC Power Cabling

The ODM-005, -005i, -010, -010i, -020 and -020i drives require single phase, 100 to 240 VAC rms power with an input frequency of 47 - 63 Hz. “Power” on page E-6 lists the output power characteristics of the drives. The AC input supplies power to the motor. Alternatively, the drive may be powered by an external DC power source. In either case, an external power source must provide input power to the I/O.

TB1-3, TB1-4 and TB1-5 are the single phase AC input power terminals for the ODM-005, -005i, -010, -010i, -020 and -020i.

DANGER
The user is responsible for conforming with all applicable local, national and international codes. Wiring practices, grounding, disconnects and overcurrent protection are of particular importance. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING
High voltage may be present on the terminals of the OMNIDRIVE. Ensure that the drive is connected to a safety (earth) ground.

CAUTION
Do not tin (solder) the exposed leads on cables. Solder contracts over time and may loosen the connection.

The inputs to the main (logic and motor supply) and the auxiliary (logic supply only) power sources are separated. This permits independent powering of the control power and the motor power. This dual power sourcing is useful for troubleshooting and diagnostics.

TABLE 7.4

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>100 to 240 Volts AC Line 1 input power.</td>
<td>TB1-3</td>
</tr>
<tr>
<td>L2/N</td>
<td>100 to 240 Volts AC Neutral.</td>
<td>TB1-4</td>
</tr>
<tr>
<td>()</td>
<td>Safety (earth) ground</td>
<td>TB1-5</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

TABLE 7.5

<table>
<thead>
<tr>
<th>Drive Model</th>
<th>Input Current</th>
<th>Inrush Current</th>
<th>Fuse Size¹</th>
<th>Wire Size mm (AWG)</th>
<th>Transformer Size²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODM-005 or ODM-005i</td>
<td>5 A AC rms</td>
<td>75 A peak</td>
<td>5 A</td>
<td>1.5 (16)</td>
<td>1 kVA min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 kVA max</td>
</tr>
</tbody>
</table>

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
DC Bus

TB1-1 and TB1-2 are the DC Bus connections for an external shunt.

<table>
<thead>
<tr>
<th>ODM-010 or ODM-010i</th>
<th>9 A. ACrms</th>
<th>100 A peak</th>
<th>10 A</th>
<th>2.5 (14)</th>
<th>2 kVA min</th>
<th>100 kVA max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODM-020 or ODM-020i</td>
<td>18 A. ACrms</td>
<td>100 A peak</td>
<td>20 A</td>
<td>4.0 (12)</td>
<td>4 kVA min</td>
<td>100 kVA max</td>
</tr>
</tbody>
</table>

1. In the United States, the National Electrical Code (NEC), specifies that fuses must be selected based on the motor full load amperage (FLA), which is not to be confused with the drive input current. The largest fuse allowed under any circumstances is four times the motor FLA. Therefore the largest fuse permissible for use with the OMNIDRIVE is four times the motor rated continuous current (converted to an RMS value). The Digital Servo Drive has been evaluated and listed by Underwriters Laboratories Inc. with fuses sized as four times the continuous output current of the drives (FLA), according to UL 508C.

In almost all cases fuses selected to match the drive input current rating will meet the NEC requirements and provide the full drive capabilities. Dual element, time delay (slow acting) fuses should be used to avoid nuisance trips during the inrush current of power initialization. The fuse sizes listed are recommended values, but local regulations must be determined and adhered to.

The OMNIDRIVE utilizes solid state motor short circuit protection rated as follows:

- Short Circuit Current Rating with No Fuse Restrictions:
 Suitable for use on a circuit capable of delivering not more than 5000 RMS symmetrical Amperes, 240 Volts maximum.

- Short Circuit Current Rating with Fuse Restrictions:
 Suitable for use on a circuit capable of delivering not more than 200,000 RMS symmetrical Amperes, 240 Volts maximum, when protected by high interrupting capacity, current limiting fuses (Class CC, G, J, L, R, T).

a. Technical Note Number 1 details Transformer Sizing requirements for a variety of applications.

DANGER

DC bus capacitors may retain hazardous voltages after input power has been removed, but will normally discharge in several seconds. Before working on the drive, measure the DC bus voltage to verify it has reached a safe level or wait the full time interval listed on the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING

External shunt resistors connect directly to the power bus. For safety reasons, external shunt resistors must be enclosed.

CAUTION

Do not connect an external I/O power supply to the DC Bus. The DC+ and DC- terminals connect directly to the power bus of the drive.
CHAPTER 8: Application and Configuration Examples

This section explains how to install and verify the OMNIDRIVE for various modes of operation. The procedures verify the installation by:

- Showing how the power and logic wiring is connected.
- Selecting the Operation Mode setup for the drive.
- Tuning the drive for a particular motor type and size.
- Verifying the basic functionality of the drive and motor combination.

How to modify the units of measurement for OMNI LINK displays is explained on page 8-35.

Analog Control

The OMNIDRIVE can be set up as an analog drive in either the Velocity or Torque mode by making the hardware connections and performing the software setup and tuning described below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

Hardware Set Up

Make the connections described below and shown in the figure.

1. Connect a ±10VDC power source between J1-22 and J1-23 (ANALOG CMND +/-) to provide the analog speed or torque command.

2. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

3. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

5. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

7. Connect the drive to a single phase 100/240 V AC, 50/60 Hz power source.

Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
8-2 Application and Configuration Examples

Status LED is green. Refer to “Status indicator” on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
 - Parity: None
 - Stop Bits: 1
 - Serial Port: COM1

 Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

9. If the message box appears that a motor must be selected, select OK. The Drive Set Up window is displayed with Motor Model selection parameter active. The motor may be selected from the

Figure 8.1 Analog Controller Connection Diagram

- Status LED is green. Refer to “Status indicator” on page 10-1 for an explanation of the display codes.

- Start OMNI LINK on the PC.

- Choose Cancel from the Drive Select dialog box.

- Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

- Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
 - Parity: None
 - Stop Bits: 1
 - Serial Port: COM1

 Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

- Select Read Drive Parameters from the Communications menu.

- Verify the Drive Name and Address are correct for the drive that is being addressed.

- Choose OK to load the drive parameters.

TIP

A motor must be selected for the parameters to load.
drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes.

12. Select the Operation Mode parameters for the drive:

<table>
<thead>
<tr>
<th>Velocity Mode Settings</th>
<th>Torque Mode Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Velocity Input as the Operation Mode</td>
<td>Analog Torque Input as the Operation Mode</td>
</tr>
</tbody>
</table>

13. Choose Close to exit the Drive Set Up window.

14. Choose the Drive Parameters icon from the Drive window and then select the Analog tab.

15. Enter appropriate Scale and Offset values for the input.

Tuning

TIP Do not attempt to Tune a drive with the Command mode set for Analog Torque Input. If the drive is set to Torque mode, continue with the Operation section below.

TIP Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window. The drive must be configured in Velocity mode for tuning to be effective.

2. Select AutoTune from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:
 - Distance and
 - Step Current.

4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.

7. Open the switch between J1-26 and J1-20 to disable the drive.

8. Choose Normal Drive Operation from the Tuning window.

9. Choose Close to exit the Tuning windows.
10. Close any open windows or dialogs.

Operation

The drive is now configured as an Analog Controller in either the velocity or torque mode.

- The current loop is compensated properly for the selected motor.
- The servo parameters have been setup with an unloaded motor.
- The motor speed or current is commanded through the analog input.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.
Preset Controller

The OMNIDRIVE can be set up as a preset controller in the Velocity or Torque mode by making the connections described below. Three discrete digital inputs provide the programmable speed or torque control. Up to eight different preset speed or torque settings can be selected by using the three digital inputs in various binary combinations, as shown in the table below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

TABLE 8.1 Preset Binary Inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Preset 0</td>
<td>0</td>
</tr>
<tr>
<td>Preset 1</td>
<td>0</td>
</tr>
<tr>
<td>Preset 2</td>
<td>0</td>
</tr>
<tr>
<td>Preset 3</td>
<td>0</td>
</tr>
<tr>
<td>Preset 4</td>
<td>1</td>
</tr>
<tr>
<td>Preset 5</td>
<td>1</td>
</tr>
<tr>
<td>Preset 6</td>
<td>1</td>
</tr>
<tr>
<td>Preset 7</td>
<td>1</td>
</tr>
</tbody>
</table>

1. A preset input signal that is OFF is inactive, which means no current flows through the optocoupler.
2. A preset input signal that is ON is active, which means current flows through the optocoupler.

Hardware Set Up

Make the connections described below and shown in Figure 8.2.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)
 - J1-34 (INPUT3) and J1-26 (I/O PWR)
 - Connect a switch between J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.
1. Connect an external 12 to 24 VDC power supply for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

2. Connect the drive to a single phase 100/240 VAC, 50/60 Hz power source.

Connection Diagram

![Connection Diagram](image)

FIGURE 8.2 Preset Controller Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: 9600
- Data Bits: 8
- Parity: None
- Stop Bits: 1
- Serial Port: COM1
Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select OK. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes,

12. Select the Operation Mode parameter for the drive:

13. Choose Close from the Drive Setup window.

14. Choose the Drive Parameters command icon from the Drive window and then select the Preset tab.

15. Enter the appropriate parameters for the Command mode in which the drive will operate:

<table>
<thead>
<tr>
<th>Velocity Mode Settings</th>
<th>Torque Mode Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset Velocities as the Operation Mode</td>
<td>Preset Torques as the Operation Mode</td>
</tr>
</tbody>
</table>

Up to eight presets (0-7) may be programmed.

16. Choose Close to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the I/O Configuration command icon from the Drive window.

19. Assign one of the three Preset Selects (A, B and C) to each of the Digital Input Assignments. For example, the following selects three presets:

 • Input 1 to Preset Select A
 • Input 2 to Preset Select B
 • Input 3 to Preset Select C

The presets provide up to eight binary combinations of speed or current. Unassigned preset inputs should be set to Not Assigned, which forces an OFF state.

20. Verify all Digital Output Assignments are Not Assigned.

21. Choose Close to exit the I/O Configuration window.
Tuning

Do not attempt to Tune a drive with the Command mode set for Preset Torques. If the drive is set to Torque mode, continue with the Operation section below.

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window. The drive must be configured in Velocity mode for tuning to be effective.

2. Select AutoTune from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:
 - Distance
 - Step Current

4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.

7. Choose Normal Drive Operation from the Tuning window.

8. Open the switch between J1-26 and J1-20 to disable the drive.

9. Choose Close to exit the Tuning window.

10. Verify the Status indicator is green.

11. Close any open windows or dialog boxes.

Operation

The drive is now configured as a Preset Controller in Velocity or Torque mode.
- The servo parameters have been setup with the unloaded motor.
- The motor speed or current is controlled through the digital inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.

2. Close any of the switches for INPUT1, INPUT2 or INPUT3 to run the drive at the programmed preset speed or torque.

TIP
Do not attempt to Tune a drive with the Command mode set for Preset Torques. If the drive is set to Torque mode, continue with the Operation section below.

TIP
Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

Position Follower (Master Encoder)

The OMNIDRIVE can be electronically geared to a master incremental encoder generating quadrature encoder signals by making the hardware connections and performing the software setup and tuning described below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

Hardware Set Up

Make the connections described below and shown in Figure 8.3.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

3. Connect a Power cable from the motor to TB1 (terminals R, S, T and \(\oplus \)) on the drive.

4. Connect the Master Encoder to the drive as shown in the diagram.

5. Connect a jumper wire with a switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

7. Connect the drive to a single phase 100/240 VAC, 50/60 Hz power source.
Connection Diagram

Note 1. Refer to Figure 6.23 - Figure 6.30 for additional details on the Control Interface Cable.

Position Follower (Master Encoder) Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: 9600
– Data Bits: 8
– Parity: None
– Stop Bits: 1
– Serial Port: COM1

Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

TIP

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Follower: Master Encoder** as the Operation Mode for the drive.

13. Choose **Close** from the Drive Setup window.

14. Choose the **Drive Parameter** command icon from the Drive window, then select the **Follower** tab.

15. Enter an appropriate **Gear Ratio** as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming master pulse.

16. Choose **Close** to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the **I/O Configuration** command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

 For example:

 - **Follower Enable** as Input 1
 - **Not Assigned** as Inputs 2 through 3.
 - **Not Assigned** as Outputs 1 through 2.

20. Choose **Close** to exit the I/O Configuration window.

21. Verify the Status indicator is green.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance and
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Verify the Status indicator is green.
11. Close any open windows or dialog boxes.

Operation
The drive is now configured as a Position Follower (Master Encoder).

- The current loop is compensated properly for the selected motor.
- The servo parameters have been setup with the unloaded motor.
- The motor position is controlled by the master encoder input.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the switch between J1-26 and J1-32 to enable following.
Position Follower (Step/Direction)

The OMNIDRIVE can be set up as a Position Follower using Step/Direction commands by making the hardware connections and performing the software setup and tuning described below. This configuration allows the OMNIDRIVE to electronically gear or drive a servo motor using step and direction signals that typically control a stepper drive. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a stepper indexer requires similar circuitry from the stepper indexer to J1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad may also be used.

Hardware Set Up

Make the connections described below and shown in Figure 8.4.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect the Step/Direction signals to the drive as shown in the diagram.

5. Connect a jumper wire with a switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

6. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

7. Connect the drive to a single phase 100/240 VDC, 50/60 Hz power source.
Connection Diagram

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.
3. Choose Cancel from the Drive Select dialog box.
4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.
5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600

Note 1. Refer to Figure 6.23 - Figure 6.30 and for additional details on the Control Interface Cable.

FIGURE 8.4 Step/Direction Controller Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.
3. Choose Cancel from the Drive Select dialog box.
4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.
5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600

Note 1. Refer to Figure 6.23 - Figure 6.30 and for additional details on the Control Interface Cable.
– Data Bits: 8
– Parity: None
– Stop Bits: 1
– Serial Port: COM1

Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select OK. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes.

12. Select Follower: Step/Direction as the Operation Mode for the drive.

13. Choose Close to exit the Drive Set Up window.

14. Choose the Drive Parameters command icon from the Drive window and then select the Follower tab.

15. Enter an appropriate Gear Ratio as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming step pulse.

16. Choose Close to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the I/O Configuration command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window. For example:

 • Follower Enable as Input 1
 • Not Assigned as Inputs 2 through 3.
 • Not Assigned as Outputs 1 through 2.

20. Choose Close to exit the I/O Configuration window.
Tuning

TIP
Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance and
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Verify the Status indicator is green.
11. Close any open windows or dialog boxes.

Operation
The drive is now configured as a Position Follower (Step/Direction).

- The servo parameters have been setup with the unloaded motor.
- The motor position is controlled by the step/direction inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to enable following.
Position Follower (Step Up/Step Down)

The OMNIDRIVE can be set up as a Position Following using Step Up and Step Down signals typically used to control stepper drives. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a controller requires similar circuitry from the indexer to J1. Instructions are provided to configure the drive with OMNI LINK software.

Hardware Set Up

Make the connections described below and shown in Figure 8.5.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.
2. Connect a Motor/Feedback cable from the motor to the J2 connector on the OMNIDRIVE.
4. Connect the Stepper Indexer to the drive as shown in the diagram.
5. Connect a jumper wire with a toggle switch between the following pins:
 • J1-20 (ENABLE) and J1-26 (I/O PWR)
 • J1-32 (INPUT1) and J1-26 (I/O PWR)
 • J1-21 (FAULT RESET) and J1-26 (I/O PWR).
These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.
6. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).
7. Connect the drive to a single phase 100/240 V AC, 50/50 Hz power source.
Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.
2. Start OMNI LINK on the PC.
3. Choose Cancel from the Drive Select dialog box.
4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.
5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.
 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
 - Parity: None

Note 1. Refer to Figure 6.23 - Figure 6.30 and for additional details on the Control Interface
– Stop Bits: 1
– Serial Port: COM1

Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

TIP

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Follower: Step Up/Step Down** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose **Drive Parameters** command icon from the Drive window and then select the **Follower** tab.

15. Enter an appropriate **Gear Ratio** as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming step pulse.

16. Choose **Close** to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the **I/O Configuration** command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.
 For example:
 - **Follower Enable** as Input 1
 - **Not Assigned** as Inputs 2 through 3.
 - **Not Assigned** as Outputs 1 through 2.

20. Choose **Close** to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance and
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Verify the Status indicator is green.
11. Close any open windows or dialog boxes.

Operation

The drive is now configured as either a Position Follower (Step Up/Step Down).
 - The servo parameters have been setup with the unloaded motor.
 - The motor position is controlled by the step indexer.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to enable following.
Incremental Indexing

This feature is available only on drives capable of indexing: ODM-005i, ODM-010i, ODM-020i.

The OMNIDRIVE can be set up as an incremental indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6-1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

The following examples depict a simple incremental index move and a batched (multiple) move using incremental indexing.

INCREMENTAL INDEXING

Batch count = 1

INCREMENTAL INDEXING – BATCHED

Batch count = 3

FIGURE 8.6 Incremental Indexing Examples
Hardware Set Up

Make the connections described below and shown in the Figure 8.7.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the OMNIDRIVE.

3. Connect a Power cable from the motor to TB1 (terminals R, S, T and (±) on the drive.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

5. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

6. Connect the drive to a single phase 100/240 VAC, 50/60 Hz power source.

Connection Diagram

![Incremental Indexing Connection Diagram](image)

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the
display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
 - Parity: None
 - Stop Bits: 1
 - Serial Port: COM1

 Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

9. If the message box appears that a motor must be selected, select OK. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes.

12. Select Indexing as the Operation Mode for the drive.

13. Choose Close to exit the Drive Set Up window.

14. Choose the Drive Parameters command icon from the Drive window and then select the Indexing tab.

15. Enter the following values for Index 0. Refer to “Incremental Indexing Examples” on page 8-21 for examples of Single and Batched Incremental Indexing profiles.

 Single Move Settings
 - Incremental as Mode
 - 8000 as Distance
 - 1 as the Batch Count
 - 0 as Dwell
 - Appropriate values for Acceleration and Deceleration

 Batched Move Settings
 - Incremental as Mode
 - 8000 as Distance
 - 3 as the Batch Count
 - 1000 as Dwell
 - Appropriate values for Acceleration and Deceleration

TIP
A motor must be selected for the parameters to load.

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
16. Choose Close to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the I/O Configuration command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.
 For example:
 - Start Index as Input 1
 - Not Assigned as Inputs 2 through 3.
 - Not Assigned as Outputs 1 through 2.

20. Choose Close to exit the I/O Configuration window.

Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.

2. Select AutoTune from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:
 - Distance and
 - Step Current.

4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.

7. Choose Normal Drive Operation from the Tuning window.

8. Open the switch between J1-26 and J1-20 to disable the drive.

9. Choose Close to exit the Tuning window.

10. Close any open windows or dialog boxes.

Operation

The drive is now configured as an Incremental Indexing controller.

- The servo parameters have been setup with the unloaded motor.
• Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.

2. Close the toggle switch between J1-26 and J1-32 to start Index 0.
Registration Indexing

The OMNIDRIVE can be set up as a registration indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6-1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

The following example depicts a batched (multiple) move using registration indexing.

![Diagram of registration indexing](image)

Figure 8.8 Registration Indexing Examples

Outputs
- In Motion
- In Dwell
- Registered

Hardware Set Up

Make the connections described below and shown in the Figure 8.9.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the OMNIDRIVE.

4. Connect the Index Sensor to the drive as shown in the diagram.

5. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.
6. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

7. Connect the drive to a single phase 100/240 VAC, 50/60 Hz power source.

Connection Diagram

![Connection Diagram](image)

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Indexing** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Indexing** tab.

15. Enter the following values for Index 0:

 Single Move Settings
 - Registration as Mode
 - 8000 as Distance
 - 1 as the Batch Count
 - 0 as Dwell
 - Appropriate values for Acceleration and Deceleration

 Batched Move Settings
 - Registration as Mode
 - 8000 as Distance
 - 3 as the Batch Count
 - 1000 as Dwell
 - Appropriate values for Acceleration and Deceleration

 TIP
 - A motor must be selected for the parameters to load.

 TIP
 - The Registration Distance must be longer than the Deceleration Distance or the move will not be registered.

16. Choose **Close** to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the **I/O Configuration** command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

 For example:
 - Start Index as Input 1
 - Registration Sensor as Input 2.
• Not Assigned as Inputs 3.
• Not Assigned as Outputs 1 through 2.

20. Choose Close to exit the I/O Configuration window.

Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 • Distance and
 • Step Current.
4. Select the appropriate entry for the Motor Direction:
 • BiDirectional,
 • Forward Only or
 • Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Verify the Status indicator is green.
11. Close any open windows or dialog boxes.
Operation
The drive is now configured as a Registration Indexing controller.

- The servo parameters have been setup with the unloaded motor.
- Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to start Index 0.
3. Close the toggle switch between J1-26 and J1-33 to simulate registration.
Absolute Indexing

The OMNIDRIVE can be set up as a absolute indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6–1. Instructions are provided to configure the drive using a PC with OMNI LINK software, but the optional TouchPad also may be used.

TIP
This feature is available only on drives capable of indexing: ODM-005i, ODM-010i, ODM-020i.

The following example depicts a simple move from a home position.

Hardware Set Up

Make the connections described below and shown in the Figure 8.11.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the OMNIDRIVE. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the OMNIDRIVE.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

5. Connect an external 12 to 24 VDC power source for powering I/O to J1-5 (I/O PWR) and J1-6 (I/O COM).

6. Connect the drive to a single phase 100/240 VAC, 50/60 Hz power source.
Connection Diagram

Figure 8.11 Absolute Indexing Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Status LED is green. Refer to "Status indicator" on page 10-1 for an explanation of the display codes.

2. Start OMNI LINK on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in OMNI LINK to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: 9600
 - Data Bits: 8
 - Parity: None
 - Stop Bits: 1
 - Serial Port: COM1

 Refer to the section “RS-232 Communication Test” on page 11-6 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.
7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select OK. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes.

12. Select Indexing as the Operation Mode for the drive.

13. Choose Close to exit the Drive Set Up window.

14. Choose the Drive Parameters command icon from the Drive window and then select the Indexing tab.

15. Select the following values for Index 0:
 - Absolute as Mode
 - 8000 as Position
 - 1 as Batch Count
 - 0 as Dwell
 - Appropriate values for Velocity, Acceleration and Deceleration

16. Choose Close to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the I/O Configuration command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.
 For example:
 - Start Index as Input 1.
 - Define Home as Input 2.
 - Not Assigned as Inputs 3.
 - Not Assigned as Outputs 1 through 2.

20. Choose Close to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The OMNIDRIVE will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - Bidirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then OMNI LINK displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Verify the Status indicator is green.
11. Close any open windows or dialog boxes.

Operation

The drive is now configured as a Absolute Indexing controller.
- The servo parameters have been setup with the unloaded motor.
- Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-20 and J1-26 to enable the drive.
2. Close the toggle switch between J1-32 and J1-26 to start Index 0.
3. Close the switch between J1-33 and J1-26 to define the Home position.
Modifying User Units

The units displayed for any OMNIDRIVE may be modified using a PC with OMNI LINK software. The PC Display Units help menu defines the various parameters displayed by OMNI LINK. Default settings for Units are shown in Figure 8.12.

Changing the Display Units Settings

The following example changes the Label and Conversion Factor for the Position and Acceleration parameters. This example assumes a 2000 line encoder (8000 pulses/revolution).

- Position – from Counts to Motor Revolutions
- Acceleration – from RPM/sec² to Revs/sec²

1. Choose the **Drive Parameters** command icon from the Drive window and then select the **Units** button. The PC Display Units dialog appears with default settings as shown.

2. Select the Position Label cell, and change **counts** to **Mtr Revs**.

3. Select the Position Conversion Factor cell, and change **1000** to **0.125**.
 Mathematically 1/8 (0.125) of a motor revolution is 1000 counts, given that the motor has a 2000 line (8000 count) encoder.

4. Select the Acceleration Label cell, and change **RPM/sec** to **Revs/sec**.

5. Select the Acceleration Conversion Factor cell, and change 1. to .016.
 Mathematically 1.6 x 10⁻² revs/sec² is 1 RPM/sec, given the motor has a 2000 line (8000 count) encoder.

6. Choose **OK** to exit the PC Display Units dialog.

TIP

Labels are limited to 8 characters.

The modified units will be displayed where appropriate within the OMNI LINK windows. For example, these changes cause the Indexing tab in the Drive Parameters window to display:

- Distance in Mtr Revs
- Acceleration in Revs/sec^2
- Deceleration in Revs/sec^2

The following units were not effected by the changes:

- Dwell in msec
- Velocity in RPM
OMNIDRIVE are tuned quickly and easily for a wide variety of applications. Two tuning modes are available through the software:

- Auto Tune
- Manual Tune

Tuning Guidelines

The following tuning guidelines briefly describe the tuning adjustments. These guidelines provide you with a basic reference point should the application require additional adjustments.

General Tuning Rules

1. Tune the velocity loop first and then, if the drive uses following or step/direction commands, tune the position loop.

2. To widen the velocity loop bandwidth, increase the P-gain setting, decrease the I-gain setting or increase the low-pass filter bandwidth. This provides a faster rise time and increases drive response.

3. To increase stiffness, increase the I-gain setting. It rejects load disturbance and compensates for system friction.

4. To reduce velocity loop overshoot, increase P-gain or D-gain, or decrease I-gain.

5. To reduce mechanical resonance, use a stiffer mechanical coupling or select a negative (−) D-gain value. Alternatively, decrease the low-pass filter value and the velocity loop update rate.

6. If the motor oscillates, decrease either individually or together the:
 - P-gain
 - I-gain
 - low-pass filter bandwidth.

High Inertia Loads

Proper compensation of load inertia may not be simply a matter of increasing the P-gain and I-gain settings. Problems are often encountered when tuning systems with a high load to motor inertia ratio.

Mechanical Resonance

Mechanical resonance between the motor and the load occurs when the motor and load are oscillating with the same frequency but opposite phase: when the motor is moving clockwise the load is moving counterclockwise. The amplitude of the motor and load oscillations is such that the total momentum of the oscillating system is zero. In the case of a high load to motor inertia ratio this means that the motor may be moving quite a lot while the load is not moving nearly as much. Mechanical resonance occurs as a result of compliance (springiness) between the motor inertia and load inertia. It may result from belts, flexible couplings or the finite torsional stiffness of shafts. In general, the stiffer the couplings, the higher the resonant frequency and lower the amplitude. If the motor shaft is directly coupled to the load, a mechanically resonating system usually emits a buzz or squeal at the motor.
There are several ways of dealing with this problem but they fall into two groups: change the mechanical system or change the servo-motor response. Changing the mechanical system might involve reducing the inertia ratio via gearboxes or pulleys, or by increasing the stiffness of the couplings. For very high performance systems and systems with low resonance frequencies the mechanics may require changing to effectively deal with the resonance.

The second way of dealing with mechanical resonance is by changing the servo-motor response. This may be done by reducing the P-gain, I-gain, velocity loop update rate or low-pass filter value. The D-term of the PID velocity regulator (see the velocity and torque current conditioning structure) subtracts (or adds) a proportion of the motor acceleration from the velocity error. The D-gain has the effect of increasing the acceleration current if the motor is accelerating in the wrong direction, but reducing the acceleration current if the motor is already accelerating in the right direction. When used in this way the D-gain dampens an oscillating or ringing system. In the case of motor-load mechanical resonance, a positive D-gain actually worsens the situation. When a negative D-gain value is used in a mechanically resonating system it may be thought of as subtracting the load acceleration (the opposite sign of the motor acceleration since the system is resonating). This tends to bring the motor and load back into phase with each other and therefore reduces or eliminates mechanical resonance.

Reducing the value of the P-gain, low-pass filter frequency and the update frequency all have the effect of reducing the servo-motor bandwidth. As long as the resonating frequency is fairly high this will likely be acceptable, but if the resonating frequency is low it may be necessary to modify the mechanics of the system.

Backlash

Backlash between the motor and load effectively unloads the motor over a small angle. Within this small angle, the increased bandwidth can result in oscillations. Some backlash may be unavoidable, especially with gear reduction. If backlash is present, the inertia match between the load and motor must be properly sized for good servo performance (load inertia should roughly equal motor inertia). Gearing reduces the inertia reflected to the motor by the square of the gear reduction from motor to load. Therefore, the gear ratio must provide the required match.
Auto Tune Mode

The Auto Tune mode uses a “self-tuning” algorithm that automatically adjusts the drive’s velocity loop gain parameters. Adjustments do not require special equipment. This mode will tune a drive for constant velocity loop response across different applications. The results will often provide acceptable response but in general should be considered a starting point.

Tuning parameters adjustments are set to achieve a reasonable bandwidth and servo response based on the system inertia and friction. Auto tune may be used when a significant amount of compliance or backlash exists (for example, belt systems) in the mechanical load, but precise tuning requires the load be fully coupled to the motor. Instability problems occur when the load is not fully coupled to the motor.

TIP

The autotune algorithm will not provide satisfactory results in systems with significant gravitational effects.
Auto Tuning

A PC running OMNI LINK is required to perform tuning on a OMNIDRIVE. The optional TouchPad does not support tuning.

Before auto tuning is invoked, three autotuning parameters must be set:

- Distance sets the rotation limit of the motor. This is the maximum distance the motor is allowed to move during any one test. (Note: a test in the bi-directional mode includes two different tests.)
- Step Current sets the amount of current given to the motor during the test. If this is set too low, a system may not move enough to gather sufficient data, if it is set too high the test will be too short and very jerky.
- Motor Direction (Forward Only/Reverse Only/Bi-directional) sets the rotational direction for the test. The bi-directional test does the same test in both directions, with the forward rotation first.

Auto tune procedures are explained for each drive configuration in “Application and Configuration Examples” starting on page 8-1. The following steps generalize these procedures.

When autotuning is selected, the drive rotates the motor shaft for a short time interval, typically a few seconds. Motor movement should not exceed 30 seconds.

1. Choose the Tuning command icon from the Drive window.
2. Choose Auto Tune from the Tuning window. This activates the Auto Tune Command and Motor Direction boxes within the Tuning window. Then enter or select:
 - appropriate values for Distance in the Auto Tune Command box,
 - appropriate values for Step Current in the Auto Tune Command box, and
 - an appropriate motor rotation in the Motor Direction box, either:
 - BiDirectional, if the motor will be powered in both the forward and reverse directions.
 - Forward Only, if the machinery is designed to operate only in the forward direction.
 - Reverse Only, if the motor will be powered only in the reverse direction.
3. Enable the drive.
4. Choose Start from the Tuning window. The drive rotates the motor shaft and then motion will cease. The calculated gains are displayed and the drive is disabled.
5. Disable the drive manually.
6. Choose Normal Drive Operation from the Tuning window.
7. Enable the drive.

TIP: Autotuning in the bi-directional mode includes two different tests.

WARNING: Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and final installation.
8. Choose Close to exit the Tuning window.

Auto tuning does not have a velocity limit, but it does adhere to the motor Overspeed setting in the Drive Parameters window.

Manual Tune Mode

Manual tuning may be used to adjust the gain settings and filter frequency of the velocity regulator. The following sections briefly explain these settings. An understanding of the function for each type of gain and filtering will allow you to effectively tune the system.

Two types of manual tuning are available:

- Velocity tuning
- Position tuning.

Before manual tuning is invoked, the Velocity, Distance and Motor Direction parameters must be set. Refer to “Auto Tune Mode” on page 9-3 for information on setting these parameters.

The velocity loop should always be tuned before the position loop, as velocity loop tuning affects the position loop response.

Gain settings and signal filtering are the primary methods to electrically tune a system. A understanding of the types of gain and their purposes, as well as a general understanding of filtering, are essential background knowledge to properly tune a servo system.

Gains

<table>
<thead>
<tr>
<th>TABLE 9.1 Velocity Loop Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>P-gain</td>
</tr>
<tr>
<td>I-gain</td>
</tr>
</tbody>
</table>
Filters

The velocity regulator has one low pass filter. The filter bandwidth range is from 1 Hz to 992 Hz. The filter serves two purposes:

- Adjust the frequency range to remove (filter) the noise produced by encoder resolution.
- Reduce the amount of the mechanical resonance in the mechanical system (e.g., belt systems).

Similar results may often be achieved by reducing the update rate of the velocity loop.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Kp-gain | Proportional gain of the position loop. Kp-gain changes:
 • The position loop bandwidth.
 • The settling time of the position loop.
 In general, the higher the value of Kp-gain the faster the settling time. However, a high value of Kp-gain with inadequate velocity loop bandwidth results in overshoot and ringing.
 Note: Kp-gain is only for use with the position following mode. |
| Kd-gain | Differential gain of the position loop. Provides position loop damping and reduces overshoot caused by Kp or Ki gain. |
| Kff-gain | Feedforward gain of the position loop. Kff-gain reduces following error. However, a high value of Kff-gain can result in position overshoot. A reduction in following error allows the system to more closely approximate gear driven systems. |
| Ki-gain | Integral gain of the position loop. Ki-gain decreases the time period for the error to decay.
 A non-zero value of Ki allows integration in the position loop which eliminates the steady state following error. However, a non-zero value for Ki may introduce overshoot and ringing, which cause system instability (oscillation).
 Note: Ki-gain is used in conjunction with the Ki Zone-value.
 Ki Zone - is the area around the commanded position where Ki - gain is active. |
Manual Tuning

Manual tuning may be used to adjust the gain control parameters P, I, D and the filters. A square wave is generated by the drive to assist in the adjustment. Manual velocity tuning requires the following:

- Step Period value to be specified
- Step Velocity value to be specified.

Always tune the velocity loop before the position loop, as Velocity loop tuning affects the position loop response.

Tuning the Velocity Loop

The Auto Tune procedure provides a starting point for velocity loop tuning. Manual tuning is desirable when very precise adjustments are required.

The following steps describe how to manually tune the velocity loop. These steps precede the manual position loop tuning procedure, which should follow velocity loop tuning.

1. Disable the drive.
2. Choose Manual Tune (Velocity Step) from the Tuning window.
3. Enter the desired step Velocity (rpm) of the internal square wave generator.
4. Enter the desired Time to complete one cycle of the square wave of the internal step velocity.
5. Select the desired Motor Direction (Forward Only, Reverse Only, or Bi-Directional).
6. Select the Oscilloscope.
7. Enable the drive.
8. Choose Start. The motor should start moving and the oscilloscope will display the commanded velocity and the motor velocity.
9. While monitoring the motor velocity waveform, increase P-gain until the desired rise time is achieved.
10. While monitoring the motor velocity waveform, increase I-gain until an acceptable amount of overshoot is reached.
11. Apply filtering by selecting Filters, and then select Filter Enable.
12. While monitoring the motor velocity waveform, decrease the filter Bandwidth until the overshoot begins to increase (in many applications the filter is not necessary).
13. Choose Stop.
14. Disable the drive.
15. Choose Normal Drive Operation.
17. Enable the drive.

The drive’s velocity loop is tuned.
Tuning the Position Loop

Specify the step period and step position values, and then input a square wave to the position loop. Adjust the gain controls parameters K_p, K_d, K_{ff}, K_i, and K_i Zone Filters to tune the system.

TIP

Tune the velocity loop before attempting to tune the position loop. The bandwidth of the velocity loop must be set before position loop tuning is attempted.

1. Disable the drive.
2. Choose Manual Tune (Position Step) from the tuning window.
3. Enter an appropriate Distance count (step position) for the internal square wave.
4. Enter an appropriate time to complete one cycle of the square wave for the internal step position.
5. Select the desired Motor Direction (BiDirectional, Forward Only or Reverse Only).
6. Select the Oscilloscope.
7. Enable the drive.
8. Choose Start. The motor will move and the oscilloscope will display the Position Motor Feedback signal.
9. Increase the K_p gain while monitoring the signal on the scope. The K_p gain should be adjusted until the desired rise time is achieved, with no overshoot. Refer to Figure 9.3.
10. Increase K_i very slowly until the signal begins to overshoot.
11. Increase K_d very slowly to remove the overshoot caused by K_i.
12. In general you may leave the K_{ff} gain set to 100.
13. Choose Stop.
14. Disable the drive.
15. Choose Normal Drive Operation.
17. Enable the drive.

The position loop has been tuned. The drive may be operated as a master encoder, step/direction or step up/down configuration.
Velocity Loop Tuning Examples

FIGURE 9.3 Signal Nomenclature

UNDERDAMPED
Motor Velocity consistently overshoots
the Velocity Command. To correct:
Decrease P-gain
Decrease I-gain

FIGURE 9.4 Underdamped Signal
OVERDAMPED
Motor Velocity consistently undershoots the Velocity Command. To correct:
 Increase I-gain
 Increase P-gain

Figure 9.5

Overdamped Signal

CRITICALLY DAMPED
Motor Velocity quickly settles to the Velocity Command.

Figure 9.6

Critically Damped Signal (Ideal Tuning)
CHAPTER 10: Status Display

A single front panel indicator displays the status of the drive on a continuous basis:

- The Status LED lights whenever the bus is energized.

Status Indicator

The Status indicator is a three level LED, which indicates the current operational state of the drive. The status level is indicated by the color of the LED:

- Green = Normal operation
- Blinking Green/Orange = Drive Fault
- Orange = Hardware malfunction
- Blank = Power not supplied or hardware malfunction

Error Messages

If there is a fault, the specific error messages may be accessed by attaching a PC or TouchPad to the OMNIDRIVE. Faults are detected by the drive in two ways: power-up hardware and run-time faults. A power-up fault usually requires servicing of the hardware, while a run-time fault can be cleared by resetting the drive.

“Maintaining and Troubleshooting the OMNIDRIVE” lists the error codes and possible actions or solutions to take when resolving the error condition.

Run-Time Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-03</td>
<td>Reserved</td>
</tr>
<tr>
<td>04</td>
<td>Motor Overtemperature, Thermostat</td>
</tr>
<tr>
<td>05</td>
<td>IPM Fault (Overtemperature / Overcurrent / Short Circuit)</td>
</tr>
<tr>
<td>06-08</td>
<td>Reserved</td>
</tr>
<tr>
<td>09</td>
<td>Bus Undervoltage</td>
</tr>
<tr>
<td>10</td>
<td>Bus Overvoltage</td>
</tr>
<tr>
<td>11</td>
<td>Illegal Hall State</td>
</tr>
<tr>
<td>12-16</td>
<td>Reserved</td>
</tr>
<tr>
<td>17</td>
<td>Excessive Average Current</td>
</tr>
<tr>
<td>18</td>
<td>Motor Overspeed</td>
</tr>
<tr>
<td>19</td>
<td>Excessive Following Error</td>
</tr>
<tr>
<td>20</td>
<td>Motor Encoder State Error</td>
</tr>
<tr>
<td>21</td>
<td>Auxiliary Encoder State Error</td>
</tr>
<tr>
<td>22</td>
<td>Motor Thermal Protection</td>
</tr>
<tr>
<td>23</td>
<td>IPM Thermal Protection</td>
</tr>
<tr>
<td>24</td>
<td>Excess Velocity Error</td>
</tr>
<tr>
<td>25</td>
<td>Commutation Angle Error</td>
</tr>
<tr>
<td>26</td>
<td>Reserved</td>
</tr>
<tr>
<td>27</td>
<td>Axis not Homed</td>
</tr>
<tr>
<td>28</td>
<td>No Motor Selected</td>
</tr>
</tbody>
</table>
Power-Up Error Codes

A power-up error indicates in almost all cases that the drive should be returned to the factory for service. In general, any occurrence of a Power-up error should be treated with extreme caution. It may indicate the hardware is marginal.

Situations that may cause drive hardware errors, and which can be remedied outside the factory include:

The drive is powered-down while a firmware upgrade is loading into flash memory. A program memory error occurs when power is reapplied. To remedy the problem, reload the firmware using OMNI LINK.

A watchdog time-out error may result from electrical “noise” (electromagnetic interference - EMI), a firmware error, or a hardware malfunction. The context of the watchdog error needs to be investigated to determine the source of the problem.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Program Memory Boot Block Error</td>
</tr>
<tr>
<td>52</td>
<td>Program Memory Main Block Error</td>
</tr>
<tr>
<td>53</td>
<td>Uninitialized Personality EEPROM Error</td>
</tr>
<tr>
<td>54</td>
<td>Personality EEPROM Read Error</td>
</tr>
<tr>
<td>55</td>
<td>Personality EEPROM Data Corruption</td>
</tr>
<tr>
<td>56</td>
<td>Main Processor Watchdog Error</td>
</tr>
<tr>
<td>57</td>
<td>Reserved</td>
</tr>
<tr>
<td>58</td>
<td>Processor RAM Error</td>
</tr>
<tr>
<td>59</td>
<td>Reserved</td>
</tr>
<tr>
<td>60</td>
<td>Uninitialized Service EEPROM Error</td>
</tr>
<tr>
<td>61</td>
<td>Service EEPROM Read Error</td>
</tr>
<tr>
<td>62</td>
<td>Service EEPROM Data Corruption Error</td>
</tr>
<tr>
<td>63-73</td>
<td>Reserved</td>
</tr>
<tr>
<td>75-78</td>
<td>Sine Table Generation Error</td>
</tr>
<tr>
<td>79-n</td>
<td>Data Out of Range</td>
</tr>
<tr>
<td></td>
<td>where n = suberror parameter</td>
</tr>
<tr>
<td>1</td>
<td>Serial baud rate selection</td>
</tr>
<tr>
<td>2</td>
<td>Serial stop bits/parity selection</td>
</tr>
<tr>
<td>3</td>
<td>Position Loop Kp</td>
</tr>
<tr>
<td>4</td>
<td>Position Loop Ki</td>
</tr>
<tr>
<td>5</td>
<td>Position Loop Kff</td>
</tr>
<tr>
<td>6</td>
<td>Position Loop Kd</td>
</tr>
<tr>
<td>7</td>
<td>Gear ratio</td>
</tr>
<tr>
<td>8</td>
<td>Encoder Output Divider</td>
</tr>
<tr>
<td>9</td>
<td>Velocity Loop Update Period</td>
</tr>
<tr>
<td>10</td>
<td>Velocity Loop P Gain</td>
</tr>
<tr>
<td>11</td>
<td>Velocity Loop I Gain</td>
</tr>
<tr>
<td>12</td>
<td>Velocity Loop D Gain</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Analog Command Velocity Offset</td>
</tr>
<tr>
<td>15</td>
<td>Analog Command Torque Offset</td>
</tr>
<tr>
<td>16</td>
<td>User D/A Variable Selection</td>
</tr>
<tr>
<td>17</td>
<td>Command Source</td>
</tr>
<tr>
<td>18</td>
<td>Drive Mode (Torque/Velocity)</td>
</tr>
<tr>
<td>19</td>
<td>Tuning Direction</td>
</tr>
<tr>
<td>20</td>
<td>Motor/Encoder User Alignment Offset</td>
</tr>
<tr>
<td>21</td>
<td>Encoder Size</td>
</tr>
<tr>
<td>22</td>
<td>Motor Torque Constant</td>
</tr>
<tr>
<td>23</td>
<td>Motor Inertia</td>
</tr>
<tr>
<td>24</td>
<td>Motor Back EMF</td>
</tr>
<tr>
<td>25</td>
<td>Motor Resistance per Phase</td>
</tr>
<tr>
<td>26</td>
<td>Motor Inductance per Phase</td>
</tr>
<tr>
<td>27</td>
<td>Motor Commutation Type</td>
</tr>
<tr>
<td>28</td>
<td>Motor Encoder Hall Offset</td>
</tr>
<tr>
<td>29</td>
<td>Motor Encoder Index Offset</td>
</tr>
<tr>
<td>30</td>
<td>Motor Pole Count</td>
</tr>
<tr>
<td>31-50</td>
<td>Reserved</td>
</tr>
<tr>
<td>51-73</td>
<td>Reserved</td>
</tr>
<tr>
<td>75-78</td>
<td>Reserved</td>
</tr>
<tr>
<td>79-99</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Motor Selection not in Table</td>
</tr>
<tr>
<td>30</td>
<td>EEPROM Write Error</td>
</tr>
<tr>
<td>31-50</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Maintenance and Troubleshooting

CHAPTER 11: Maintenance and Troubleshooting

Maintenance

The OMNIDRIVE is designed to function with minimum maintenance.

Periodic Maintenance

Normally the only maintenance required is removal of superficial dust and dirt from the drive and a quick check of cable insulation and connections.

Cleaning

To clean the drive, use an OSHA approved nozzle that provides compressed air under low pressure ≤20 kPa (30 psi) to blow the exterior surface and the vents clean.

Cable Inspection

Inspect the connections, particularly the power connections, to ensure their tightness.

- All power connections should be torqued to 1.2 Nm (11 lb-in).
- D-shell signal connectors can be inspected for proper seating.
- Visually inspect all cables for abrasion.

CAUTION

DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

Data Transfer

After you have configured the drive and tuned the drive, the data stored in the EEPROM personality module should be saved off-line. Saving the parameters off line will allow you to clone several machines with the same mechanics and provides an emergency backup of the drive data.

To transfer the data from the drive to a PC:

1. While on-line with a drive, click on File in the toolbar menu.
2. Select Save As..., the Save As window will appear.
3. Enter the file name and press ENTER or choose OK to save.

To transfer the data from a PC to a drive:

1. Close all windows in OMNI LINK.
2. Choose File in the toolbar menu.
3. Choose Open.
4. Select the desired file name or enter the file name to be loaded and press ENTER or choose OK. If you do not know the name of the file to be loaded, select the correct directory from the Direct-
tories box and select the file name from the displayed list of file names. The OMNI LINK window appears, along with the selected file name.

5. Select **Communications** from the toolbar menu.

6. Select **Overwrite Drive Parameters**. The Drive Select window will appear.

7. Select the drive to be configured, and then press **ENTER** or choose **OK** to load the parameters into the personality module.

Firmware Upgrading

OMNIDRIVEs may be upgraded in the field to the latest version of firmware. Firmware versions are available from the Thomson Industries Product Support group. The procedure describes how to reload the firmware installed in your drive using the Upgrade Firmware command available in OMNI LINK software.

OMNI LINK provides extensive checks and controls through message boxes which ensure that the loading of firmware is performed properly.

Firmware Upgrade Procedure using OMNI LINK

1. Copy the new firmware into the Firmware subdirectory of the OMNI LINK application directory.

2. Start OMNI LINK.

3. When the Drive Select window appears, select **Cancel**. The Drive Select window closes without connecting to the drive.

4. Choose **Upgrade Firmware** from the File menu. The Drive Select window will appear.

5. Select the drive to upgrade, and then select **OK**. The Select Firmware File window will appear.

6. The Select Firmware File window contains a list of firmware files identified by version information. Only the files that can be applied to the connected drive are displayed, which minimizes the danger of transferring an incorrect file. To select the firmware files:
 - Select the appropriate file to upgrade the drive firmware.
 - Select **OK** when the file is highlighted.

 A visual indicator traces the progress of the firmware upgrade.

7. When the upgrade is complete a dialog box confirms completion of the upgrade and reminds you that the drive must be reset at this time.
 - Select **Yes** if you want to perform a software reset of the drive.
 - Select **No** if you wish to reset the drive by removing power.

TIP

Do not remove power or reset either the drive or the PC during the upgrade. Any interruption of the firmware upgrade could cause the drive to become inoperable.
Troubleshooting

A single LED on the front panel indicates the status of the drive on a continuous basis:

- **Green** = Normal operation
- **Blinking Green/Orange** = Drive Fault
- **Orange** = Hardware malfunction
- **Blank** = Power not supplied or hardware malfunction

A table of problems, potential causes, and appropriate actions to take to resolve the problem is included below.

If problems persist after attempting to carefully troubleshoot the system, please contact your local distributor for further assistance.

Error Codes

Error codes may be accessed by attaching either a PC with OMNI LINK software or a TouchPad to the serial port (J5):

- OMNI LINK displays errors in two windows: Fault History and Display Fault Status.
- The TouchPad display errors in the DrvStat parameter under the STATUS branch title.

If problems persist after attempting to carefully troubleshoot the system, please contact your local distributor for further assistance.

TABLE 11.1 Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status LED not lit.</td>
<td></td>
<td>No AC power</td>
<td>Verify power (115/230 VAC single phase) is applied to the drive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal power supply malfunction.</td>
<td>Call factory</td>
</tr>
<tr>
<td>Motor jumps when first enabled</td>
<td></td>
<td>Motor encoder wiring error</td>
<td>Check motor encoder wiring. See Figure 6.36 on page 26 to verify connection of encoder power sense signals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Absolute signal at J2-16</td>
<td>Monitor Absolute signal at J2-16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect motor chosen in personality module</td>
<td>Select the proper motor in OMNILINK.</td>
</tr>
<tr>
<td>Digital I/O not working correctly</td>
<td></td>
<td>I/O power supply disconnected</td>
<td>Verify connections and I/O power source.</td>
</tr>
<tr>
<td>Motor Overtemperature</td>
<td>04</td>
<td>Motor TS+ (J2-19) and TS- (J2-20) pins open</td>
<td>Verify TS+ (J2-19) and TS- (J2-20) connections for continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor thermostat trips due to: High motor ambient temperature, and/or Excessive RMS torque</td>
<td>Operate within (not above) the continuous torque rating for the ambient temperature (40°C maximum). Lower ambient temperature.</td>
</tr>
</tbody>
</table>
Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPM Fault</td>
<td>05</td>
<td>Motor cables shorted</td>
<td>Verify continuity of motor power cable and connector.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor winding shorted internally</td>
<td>Check for short on R,S,T and Gnd windings of the motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive temperature too high</td>
<td>Check for clogged or defective fan. Ensure cooling is not restricted by insufficient space around the unit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation above continuous power rating</td>
<td>Verify ambient temperature is not too high (above 60° C). Operate within the continuous power rating.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output short circuit or overcurrent</td>
<td>Drive has a bad IPM, replace drive.</td>
</tr>
<tr>
<td>Bus Undervoltage</td>
<td>09</td>
<td>Low AC line/AC power input (100 V AC minimum for safe drive operation)</td>
<td>Verify voltage level of the incoming VAC power. Check main VAC power source for glitches or line drop (below 90 VAC). Install an uninterruptible power supply (UPS) on your VAC input.</td>
</tr>
<tr>
<td>Bus Overvoltage</td>
<td>10</td>
<td>Excessive regeneration of power When the drive is driven by an external mechanical power source, it may regenerate too much peak energy through the drive’s power supply. The system faults to save itself from an overload.</td>
<td>Change the deceleration or motion profile and/or reduce the reflected inertia of your mechanical system. Use a larger system (motor and drive).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excessive AC input voltage</td>
<td>Verify input is below 264 VAC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output short circuit</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor cabling wires shorted together</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal motor winding short circuit</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td>Illegal Hall State</td>
<td>11</td>
<td>Incorrect phasing</td>
<td>Check the Hall phasing. Verify the Hall wiring.</td>
</tr>
<tr>
<td>RESERVED</td>
<td>12</td>
<td>Bad connections</td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Excessive Average Current | 17 | Excessive time at peak current | Reduce acceleration rates
Increase time permitted for motion.
User larger drive and motor. |
| | | Software parameter set too low | Increase Average Current parameter to a less restrictive setting. |
| | | Insufficient bus voltage | Correct the under voltage condition or intermittent AC power or install a larger size transformer. |
Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Overspeed</td>
<td>18</td>
<td>OVERSPEED parameter in the drive set to low for the application</td>
<td>Using OMNI LINK (refer to Drive Parameters section) set Overspeed parameter to an acceptable range for the application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor commanded to run above Overspeed setting</td>
<td>Reduce command from position controller or change velocity parameter in the position controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor Phasing is incorrect</td>
<td>Check motor phasing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor encoder phasing is incorrect</td>
<td>Check encoder phasing.</td>
</tr>
<tr>
<td>Excess Following Error</td>
<td>19</td>
<td>Software position error limit was exceeded</td>
<td>Increase the feed forward gain to 100%. Increase the following error window (refer to OMNI LINK Drive Parameters section). Retune the drive to reduce the following error. Increase the slew limit window (refer to OMNI LINK Drive Parameters).</td>
</tr>
<tr>
<td>Motor Encoder State Error</td>
<td>20</td>
<td>Motor encoder encountered an illegal transition</td>
<td>Replace the motor/encoder Use shielded cables with twisted pair wires. Route the feedback away from potential noise sources. Check the system grounds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bad encoder</td>
<td>Replace motor/encoder.</td>
</tr>
<tr>
<td>Auxiliary Encoder state error</td>
<td>21</td>
<td>Auxiliary encoder encountered an illegal transition</td>
<td>Use shielded cables with twisted pair wires. Route the encoder cable away from potential noise sources. Bad encoder - replace encoder Check the ground connections</td>
</tr>
<tr>
<td>Motor Thermal Protection Fault</td>
<td>22</td>
<td>Internal filter protecting the motor from overheating has tripped.</td>
<td>Reduce acceleration rates Reduce duty cycle (ON/OFF) of commanded motion. Increase time permitted for motion. User larger drive and motor.</td>
</tr>
<tr>
<td>IPM Thermal Protection Fault</td>
<td>23</td>
<td>Internal filter protecting the IPM at slow speed has tripped.</td>
<td>Reduce acceleration rates Reduce duty cycle (ON/OFF) of commanded motion. Increase time permitted for motion. User larger drive and motor.</td>
</tr>
<tr>
<td>Excess Velocity Error</td>
<td>24</td>
<td>Velocity error exceeded allowable range.</td>
<td>Increase time or size of allowable error.Reduce acceleration.</td>
</tr>
<tr>
<td>Commutation Angle Error</td>
<td>25</td>
<td>Encoder index location is inconsistent.</td>
<td>Replace encoder. Check encoder and motor power wiring.</td>
</tr>
<tr>
<td>RESERVED</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RS-232 Communication Test

This test verifies communications between an OMNIDRIVE and a personal computer by connecting the XMT pin to the RCV pin. The jumper bypasses the potentially defective cable and remote unit.

Test equipment requirements are:
- A PC running OMNI LINK
- The Terminal mode available in Microsoft® Windows™

1. Close all OMNI LINK windows.
2. Select Communication from OMNI LINK and verify your communication settings.
3. Verify the communication cable pin out and check cable continuity. Refer to “RS-232 Connection Diagrams” on page 6-29.
4. If the communication cable is OK, do the following:
 A. Disconnect the communication cable from the drive (but leave the cable connected to the PC).
 B. Jumper pins 2 and 3 on the D connector of the communication cable.
 C. Close and exit from OMNI LINK.
 D. Select the Terminal from the Program Manager (Terminal is usually in the Accessories group).
 E. Select Settings from the Main menu:
 - Select Terminal Emulation from the drop down menu,
 - Choose DEC VT-100,
 - Choose OK to close the dialog box.
 F. Select Settings from the Main menu
 - Select Communications from the drop down menu
 - Choose COM1 (or the number of the communication port the drive is connected to) from the Connections sliding list.
 - Set Baud Rate to 9600
 - Set Data Bits to 8
 - Set Stop Bits to 1
 - Set Parity to NONE
 - Set Flow Control to XON/XOFF
 - Choose OK to close the dialog box.
5. Type any character on the keyboard. The character should echo back on the screen.

If you see the character on the screen remove the jumper between pins 2 and 3, close the Windows Terminal and restart OMNI LINK.

If the character does not echo back on the screen, do the following:
- Disconnect the cable from your PC.

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Motor Selected</td>
<td>28</td>
<td>No motor was selected when the drive was enabled.</td>
<td>Select a motor before enabling the drive.</td>
</tr>
<tr>
<td>Motor Information Missing</td>
<td>29</td>
<td>Motor number is referencing a motor that is not currently in the drive.</td>
<td>Select a motor that is in the drive. Update the motor tables in the drive (contact the factory).</td>
</tr>
<tr>
<td>RESERVED</td>
<td>30-99</td>
<td></td>
<td>Call the factory.</td>
</tr>
</tbody>
</table>
Jumper Pins 2 and 3 on the communication port of the PC.

Type any character on the keyboard.
- If the character echoes back, the communication port is OK and the cable or the connectors are defective. Replace the communication cable assembly.
- If the character did not echo back, the communication port is defective. Replace the communication port.

Testing Digital Outputs
This test verifies the functionality of the selectable outputs.
Test equipment requirements are:
- A PC running OMNI LINK
- A multimeter.

This test assumes there are no error codes displayed, and the I/O power supply (internal for OD-010, -020, -030 or -075 and external for ODM-005, -005i, -010, -010i, -020 or -020i) for the drive is connected correctly.

1. Disable the drive by opening the switch connecting J1-26 and J1-20.
2. From the Drive Window select the Output Diagnostics command icon.
3. Verify each of the Digital Outputs in the Output Diagnostics window registers the appropriate readings on a multimeter when the following values are set:

 A. Drive Ready box, then measure the resistance between J1-24 and J1-25.
 - If the box is checked, the resistance should read approximately 1 Ohm.
 - If the box is not checked, the resistance should read very high (> 1 MOhm).

 B. Brake Enable box, then measure the resistance between J1-49 and J1-50.
 - If the box is checked, the resistance should read approximately 1Ohm.
 - If the box is not checked, the resistance should be very high (> 1 MOhm).

 A load is necessary to test the transistor outputs listed below. A 1 kOhm resistor may be connected from the transistor output (J1-42 or J1-43) to the I/O COM (J1-6).

 C. Digital Output 1, then measure the voltage between J1-42 and J1-13.
 - If the box is checked, the voltmeter should read approximately +24 VDC.
 - If the box is not checked, the voltmeter should read approximately 0 VDC.

 D. Digital Output 2, then measure the voltage between J1-43 and J1-13.
 - If the box is checked, the voltmeter should read approximately +24 VDC.
 - If the box is not checked, the voltmeter should read approximately 0 VDC.

4. After the test has been completed you may select Close to exit Output Diagnostics window.

If you determine that a digital output is defective, refer to “Return Procedure” on page Help-7 to return the unit.

NOTE: Disconnect the outputs from any external hardware while performing this test.

NOTE: This test assumes that I/O power is 24 VDC.
Testing Digital Inputs

This test verifies the functionality of the selectable inputs.

NOTE: This test assumes that I/O power is 24 VDC.

Test equipment requirements are:
- A PC running OMNI LINK
- A jumper wire.

It assumes there are no error codes displayed, and the 24V power supply is connected correctly.

1. Disable the drive by opening the switch connecting J1-26 and J1-20.
2. Choose the I/O Display command icon from the Drive Window.

 A. Connect J1-20 to J1-26. The Enable indicator activates.
 C. Connect J1-31 to J1-26. The Input 1 indicator activates.
 D. Connect J1-32 to J1-26. The Input 2 indicator activates.
 E. Connect J1-33 to J1-26. The Input 3 indicator activates.
3. Choose Close to exit the I/O Display window.

If you determine that a digital input is defective, please refer to “Return Procedure” on page Help-7 to return the unit for repair.

Testing Analog Output

The following tests verify the functionality of the analog outputs.

NOTE: This test assumes that I/O power is 24 VDC.

Test equipment requirements are:
- A PC running OMNI LINK
- A voltmeter.

Testing Analog Output 1

1. Disable the drive, by opening the connections between the ENABLE input and the I/O Power (I/O PWR).
2. Disconnect the connections to J1-31.
3. Select Output Diagnostics icon from the Drive Window.
4. From the Output Diagnostics window select Analog Output 1.
5. Enter 1000 in the D/A level box.
6. Connect a DC voltmeter across analog test points J1-31 and J1-28. The meter should read approximately 1 Vdc.
7. Repeat step using different positive or negative values for the D/A Level. Verify the meter reads the values you enter.

If you determine that the output is defective, please refer to “Return Procedure” on page Help-7 to return the unit.
Testing Analog Input

The following test verifies the functionality of the analog input.

NOTE: This test assumes that I/O power is 24 VDC.

The tests require:
- a PC running OMNI LINK, and
- a 10 kOhm potentiometer.

Testing the Current Limit Input

1. Verify the accuracy of the potentiometer with an ohmmeter before installing.
2. Disable the drive by opening the connections between the ENABLE input and the I/O Power (I/O PWR).
3. Disconnect the connections to J1-27 and J1-28.
 Refer to “J1 Controller Pin-Outs” on page 6-2 for a diagram showing the location of the pins.
5. Choose the Drive Signals command icon from OMNI LINK.
6. Choose Set Up, if the Drive Signals Set Up window is not already active.
7. Choose Current - Input Limit + as the analog signal.
8. Choose OK to close the Set Up window and activate the Drive Signals window.
9. Slowly adjust the potentiometer while viewing the Drive Signals window. The Current - Input Limit + value should update as the potentiometer is adjusted.

If you determine that the analog input is defective, refer to “Return Procedure” on page Help-7 to return the unit.

Testing Encoder Inputs

The following test verifies both reception and transmission of the line count from an encoder by the drive.

NOTE: This test assumes that I/O power is 24 VDC.

The tests require:
- a PC running OMNI LINK, and
- a motor encoder.

Testing Encoder Inputs

1. Disable the drive by opening the connections between the ENABLE input and I/O Power (I/O PWR).
2. Choose the Drive Set Up command icon from OMNI LINK.
3. Choose Divide by 1 as the Motor Encoder Output Signal.
4. Make the following hardware connections:
 - Connect the motor encoder to J2.
 - Jumper the Auxiliary Encoder Inputs to the Motor Encoder Outputs by connecting the fol-
lowing pins:
J1-7 to J1-14 J1-10 to J1-17
J1-8 to J1-15 J1-11 to J1-18
J1-9 to J1-16 J1-12 to J1-19

5. Choose the **Encoder Diagnostics** command icon from OMNI LINK.

6. Choose **Zero Count** for both the Motor Encoder and Master Position Input.

7. Slowly rotate the encoder shaft by hand while observing the counts for both the Motor Encoder and Master Position Input. The Motor Encoder and Master Position Input line counts should be equal.

If you determine that the analog input is defective, refer to “Return Procedure” on page Help-7 to return the unit.
Installation and Operation
1. Power down the drive and remove all serial connections.
2. Install the TouchPad as shown.
3. Reapply power to the drive. TouchPad communications are: Address 0, 19200 Baud, 8 Data bits, 1 Stop bit and No Parity. Drive EEPROM settings are overridden by the TouchPad.
4. Verify the FW Ver##.## displayed during Self Test is correct. An incorrect match causes an error. The number must agree with that listed for the Command Tree on the reverse side.
5. Depress the Mode/Enter key to select the Mode of Operation: Parameter or Modify.
6. Depress the arrow keys to display a parameter or modify the value of a parameter. The diagram on the reverse side depicts the structure of the TouchPad Command Tree.

Supplemental Instructions
Refer to the Installation Manual for additional instructions.
1. Eight alphanumeric characters are displayed. Parameters longer than eight characters may require scrolling with the Left and Right Arrow keys.
2. Flashing characters appear in the Modify mode.
 - Replace characters by scrolling through the list of ASCII characters using the Up or Down arrow key.
 - Change the cursor position using the Right and Left arrow keys.
3. If a drive is faulted or an invalid parameter entry is made:
 - Errors alternately display Error and a name.
 - Press the Mode/Enter key to clear an error.
 - Warnings momentarily display a name. Warnings are automatically cleared.
 - Clear a fault by pressing and simultaneously. Refer to the Installation Manual for fault/errors/warnings.
4. Parameter settings may not exceed the maximum or minimum parameter limits, regardless of the cursor position.
 For example, if 5200 rpm is the maximum rpm setting and 5000 is the parameter setting while the cursor location is in the 1000 position, the parameter will only increment to 5200 when the Up arrow key is depressed. However, depressing the Down arrow key will decrement the parameter to 4000.
5. The most significant digit is reserved when a parameter allows a negative (-) setting. The Up or Down arrow key toggles the minus sign.
6. DRVSETUP, I/OCONFIG and STATUS parameters provide lists from which a choice may be selected:
 - A filled arrow, precedes the active choice.
 - Unfilled arrows, , precede inactive choices. The Mode/Enter key selects a choice.

TouchPad Commands
Commands are entered by depressing a single key or combination of keys. Two modes of operation are available.
 - **Parameter** mode allows you to move through the TouchPad Command Tree to each parameter.
 - **Modify** mode allows you to monitor and change each parameter, often while the drive is operational.

TouchPad Command Tree

Version 12.10

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
</table>
| ![Left Arrow](example) | **Mode/Enter**
| ![Right Arrow](example) | Toggles the display between two operating modes.
| ![Down Arrow](example) | **Previous Branch**
| ![Up Arrow](example) | Selects the previous branch in the command tree.
| ![Up and Down Arrows](example) | **Move Left**
| ![Left Arrow](example) | Moves the character selection to the left, advancing the cursor setting.
| ![Down Arrow](example) | **Next Branch**
| ![Up Arrow](example) | Selects the next branch in the command tree.
| ![Right Arrow](example) | Move Right
| ![Left Arrow](example) | **Next Parameter**
| ![Right Arrow](example) | Selects the next parameter down the branch of the command tree.
| ![Up Arrow](example) | **Previous Parameter**
| ![Up and Down Arrows](example) | select up the branch of the command tree.
| ![Left Arrow](example) | **Move Left**
| ![Up Arrow](example) | **Move Right**
| ![Down Arrow](example) | **Decrement Character**
| ![Up Arrow](example) | Decreases the character that is selected.
| ![Down Arrow](example) | **Increment Character**
| ![Up Arrow](example) | Increases the character that is selected.
| ![Up and Down Arrows](example) | **Undo Change**
| ![Left Arrow](example) | Restores a changed parameter to its original setting.
| ![Left Arrow](example) | **Next Mode/Last Parameter**
| ![Left Arrow](example) | On a parameter, enters the Modify mode of operation.
| ![Left Arrow](example) | On a branch title, selects the last parameter modified.

The TouchPad Command Tree is depicted on the reverse side. Refer to the on-line BRU Master help menus for command names, parameter ranges and limits.
APPENDIX A: TouchPad Instructions

The optional TouchPad is a compact and rugged device for interfacing with OMNIDRIVEs. It provides the operator with a convenient device for accessing status information, program variables, and control functions, plus message display capabilities on any OMNIDRIVE.

An 8-character dot matrix display and a sealed-membrane type keyboard are housed in a compact case. A locking tab and a single 9-pin D shell serial connector on the backpanel connects the TouchPad to any OMNIDRIVE via four-wire RS-485 communications.

Four cursor keys and a Mode/Enter key provide access to the TouchPad menus and enable the user to select and change parameters, activate commands, and monitor drive variables. The TouchPad also allows the user to display drive status and diagnostic information, and to control functions, such as distances, speeds, and other alphanumeric data.

Installation and Operation

1. Power down the drive.

2. Plug the TouchPad into the serial port on the OMNIDRIVE by latching the tab into the drive and then mating the connector as shown.

3. Power-up the drive. Installing the TouchPad defaults the drive to the following settings:
 - Address 0
 - 8 Data bits
 - 19200 Baud
 - 1 Stop bit
 - No Parity bit

 The personality module settings stored in the drive are not affected by the installation or removal of the TouchPad.

4. Verify the Ver###.## displayed is correct at power-up. The version number designates the type of drive and its firmware level. Figure A.2 explains this display.
 - If you are referring to the TouchPad Command Tree card, verify the version number display and the Drive Type and Firmware Version of the card are the same.

5. After self-test is completed, the TouchPad display defaults to the branch title DRVSETUP.

6. Horizontal and vertical movement through the TouchPad Command Tree and parameter modification is explained below. The "TouchPad Command Tree" on page A-4 illustrates the structure.
A-2 TouchPad Instructions

Intro

FIGURE A.2 TouchPad Version Number Display

Drive Type:
1 = ODM-010 or ODM-010i,
 ODM-020 or ODM-020i,
 ODM-030 or ODM-030i,
 ODM-075 or ODM-075i,
 ODM-150 or ODM-150i
2 = ODM-005 or ODM-005i,
 ODM-009 or ODM-009i,
 ODM-019 or ODM-019i

Firmware Level:
1.00 = Version 1.00
1.10 = Version 1.10
2.00 = Version 2.00 (Indexing capable)

FIGURE A.2 TouchPad Version Number Display
TouchPad Commands

Commands are entered by pressing a single key or combination of keys. Two modes of operation are available. Parameter mode allows you to move through the TouchPad Command Tree to each parameter. Modify mode allows you to monitor and change each parameter, often while the drive is operational.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Mode/Enter</td>
<td>Toggles the parameter display between the two operating modes.</td>
</tr>
<tr>
<td></td>
<td>Parameter mode shows the abbreviated command name of the selected parameter. Refer to the TouchPad Command Tree Chart for a full text definition.</td>
</tr>
<tr>
<td></td>
<td>Modify mode shows the setting, often a number, for the selected parameter. Key functions in each mode are explained below.</td>
</tr>
</tbody>
</table>

The Parameter mode displays for the TouchPad Command Tree are explained in the "Supplemental Instructions" on page A-6.

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Previous Branch/Decrement #</th>
<th>Next Branch/Increment #</th>
<th>Next Parameter</th>
<th>Previous Parameter</th>
<th>Up Arrow</th>
<th>Up & Down Arrows</th>
<th>Mode/Enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Selects the previous branch in the command tree, or Decreases the Preset number when in Preset Drive Parameter mode.</td>
<td>Selects the next branch in the command tree, or Increases the Preset number when in Preset Drive Parameter mode.</td>
<td>Selects the next parameter down the branch of the command tree.</td>
<td>Selects the next parameter up the branch of the command tree.</td>
<td>Not functional in this mode.</td>
<td>Press both keys at the same time</td>
<td>When displaying a parameter, enters the Modify mode of operation. When displaying a branch title, selects the last parameter modified in branch.</td>
</tr>
</tbody>
</table>
FIGURE A.3 TouchPad Command Tree

* Up to eight presets (0 - 7) are available using and keys
** Up to nine index selections (0 - 9) are available using and keys

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
Supplemental Instructions

Motor Selection
Enter a Motor Identification number to load the correct motor parameters into the drive. Table A.2 and Table A.3 list the motors available in the motor table directory.

Analog Output Scaling
Selection of Analog Output Scaling through the TouchPad requires manual input of the scaling parameters. To calculate the necessary scaling parameters, first determine the Command Source (Analog or Preset/Follower). If Analog is the Command source, then determine the Drive Mode (Velocity or Torque). Depending on the Command Source/Drive Mode, calculate the scaling information to be input at the Analog Output Scaling display as follows:

Analog in Velocity Mode
1. Divide the desired velocity scale (rpm) by the maximum motor speed (rpm) and multiply that value by 16383.

Analog in Torque Mode
1. Divide the desired current scale by the lesser of the following:
 - Motor Continuous Current (Amps) times 3, or
 - Drive Rated Current (Amps)
2. Multiply that value by 8191.

Preset/Follower
1. Enter the desired position (in counts).

Displays
Selection of a motor defines default operating parameters for the drive and motor combination.

Text
A drive name longer than eight characters may require scrolling with the Left, ➡️, and Right, ➩️, arrow keys. Drive names may be up to 32 characters in length.

Flashing characters in the Modify mode display are the characters that are active.

- Change the cursor position and resolution using the ➡️ and ➩️ keys. For example: If the Drv Name in the Modify mode displays InFeed with the F flashing, pressing the ➡️ key causes the first e to flash.
- Press the ➡️ or ➩️ keys to increment or decrement a character by scrolling through the list of valid ASCII characters. For example, If the Drv Name in the Modify mode displays InFfed with the lowercase f is flashing, pressing the ➩️ key causes the flashing character to decrement to e.
Numeric

Flashing characters in the Modify mode display are the numbers that are active.

- Change the cursor position and resolution using the [] or [] key. For example: If the Over Spd in the Modify mode displays 5200 and 52 is flashing, pressing the [] key causes 520 to flash.

- Press the [] or [] key to increment or decrement these numbers. For example: If the Over Spd value is 5200 and 52 is flashing, pressing the [] key causes the setting to increment by 100 rpm each time the key is pressed.

- Parameter values may not exceed the maximum or minimum limits, regardless of the cursor position. For example: If the SpeedWin setting is 5000 rpm and the Maximum Speed in the motor table is 5200, pressing the [] key increases the parameter to 5200 (the upper limit), but pressing the [] key decrements the parameter to 4000.

The most significant digit is reserved when a parameter allows a negative (-) setting or the parameter provides a list of possible selections. The [] or [] key toggles the minus sign.

List

The most significant digit is reserved for an active/inactive selection marker when a parameter provides a list of possible selections.

- A filled arrow, ▲, in the most significant digit indicates the active setting from a list of possible settings. Inactive settings are indicated by an unfilled arrow, ▼. For example: If the drive is functioning as Preset Controller in the Velocity mode, pressing the [] key from DRVPARAM scrolls through the CmdSrc list which includes Presets, Analog, StepDir, StepU/D, and AuxEnc.

- The Mode/Enter, [] key selects a parameter from the list.

- List selections that are undefined are indicated by Unknown. This display indicates the TouchPad data table is incompatible with the drive.

Lists are associated with all parameters, except DISPLAY and DRVINFO. Refer to page A-12 for items in each list. Table A.17, "Drive Status List for TouchPad" on page A-15 is read-only; all other lists contain possible parameter selections. After an option is selected, the display reverts to the parameter from which the option was selected. For example: Selection of the EncAlign parameter under STATUS provides the options ▲ Normal and ▼ Align. Selection of either option returns you to the EncAlign display.

Ratio

A FolRatio (gear ratio) longer than eight characters may require scrolling with the [] and [] keys. The ratios are numeric values that increment or decrement by 1 each time the [] or [] key is pressed. The method of display is dependent on the length of the ratios:

- If the ratio is eight characters or less, it is displayed in full. For example, a Master to Follower ratio of one-thousand to nine-hundred is displayed as 1000:900.

- If the ratio requires more than eight characters the ratio is displayed in two parts: a Master Ratio and a Follower Ratio. The position of the colon (:) after or before each numeric value indicates Master or Follower for these larger ratios. The [] and [] keys toggle between the Master Ratio and the Follower Ratio. For example: A Master to Follower ratio on 1001:1000 is displayed in two separate displays. The Master Ratio is displayed as 1001: and pressing [] displays the Follower Ratio :1000.

Fault/Error/Warning

Table A.1 lists the possible fault, error and warning messages that may appear on the TouchPad. The items below describe the different types of messages.
The TouchPad displays **Fault** and a description. A Fault message requires additional troubleshooting of the drive. Clear the fault display by depressing the ↵ and ← keys simultaneously. Fault codes are stored in the TouchPad parameter **DrvStat** and are explained with troubleshooting guidelines in Table 11.1 on page 11-3.

- The TouchPad alternately displays **Error** and the error name. Clear an error by pressing the ↵ key.
- The TouchPad momentarily displays and then clears a warning when an invalid entry is made.

Table A.1 TouchPad Fault/Error/Warning Displays

<table>
<thead>
<tr>
<th>Display</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BufOvFlo</td>
<td>Error</td>
<td>Communications buffer overflowed.</td>
</tr>
<tr>
<td>Can'tDo</td>
<td>Error</td>
<td>An invalid function type encountered in the TouchPad data table. The Touch-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pad data table is incorrect for the drive.</td>
</tr>
<tr>
<td>Checksum</td>
<td>Error</td>
<td>The checksum of the command is in error. Information is corrupted.</td>
</tr>
<tr>
<td>CmdNoEnb</td>
<td>Error</td>
<td>The command is not enabled.</td>
</tr>
<tr>
<td>DataDisp</td>
<td>Warning</td>
<td>The parameter is a live data display and cannot be modified.</td>
</tr>
<tr>
<td>DrvEnabl</td>
<td>Warning</td>
<td>The parameter cannot be changed while the drive is enabled.</td>
</tr>
<tr>
<td>Fault</td>
<td>Fault</td>
<td>Drive fault detected.</td>
</tr>
<tr>
<td>InvData</td>
<td>Warning</td>
<td>Invalid data was entered for the parameter.</td>
</tr>
<tr>
<td>InvlFn</td>
<td>Error</td>
<td>Illegal function code received by drive. The TouchPad data table is incorrect for the drive.</td>
</tr>
<tr>
<td>InvlRsp</td>
<td>Error</td>
<td>Invalid Response received from drive. Received code did not match transmitted code.</td>
</tr>
<tr>
<td>Lower Lim</td>
<td>Warning</td>
<td>The lower limit of the parameter has been reached.</td>
</tr>
<tr>
<td>NoMemory</td>
<td>Error</td>
<td>TouchPad memory has been exhausted.</td>
</tr>
<tr>
<td>NoRetSel</td>
<td>Warning</td>
<td>Mode/Enter key incorrectly pressed.</td>
</tr>
<tr>
<td>OverRng</td>
<td>Error</td>
<td>Value from drive is too large to display.</td>
</tr>
<tr>
<td>RAMWrite</td>
<td>Error</td>
<td>An error was detected while writing the drive's parameter memory.</td>
</tr>
<tr>
<td>ReadOnly</td>
<td>Warning</td>
<td>The parameter is Read Only and cannot be modified.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Error</td>
<td>The communications port timed out.</td>
</tr>
<tr>
<td>UnxpChar</td>
<td>Error</td>
<td>The communications port received an unexpected character.</td>
</tr>
<tr>
<td>UpperLim</td>
<td>Warning</td>
<td>The upper limit of the parameter has been reached.</td>
</tr>
</tbody>
</table>

TouchPad Options

Table A.2 Option Selections for the TouchPad

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccelEn</td>
<td>Enable/Disable</td>
<td>SWEnable</td>
<td>Enable/Disable</td>
</tr>
<tr>
<td>SlewEnab</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I OverRd</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EncAlign</td>
<td>Normal/Align</td>
<td>Start</td>
<td>Normal/CtlPanel</td>
</tr>
<tr>
<td>RmvOfst</td>
<td>to Rmv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TouchPad Lists

TABLE A.3 Drive Communications Parameter List for the TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>7 Data Bits, 1 Stop Bit, Even Parity</td>
</tr>
<tr>
<td>01</td>
<td>7 Data Bits, 1 Stop Bit, Odd Parity</td>
</tr>
<tr>
<td>02</td>
<td>8 Data Bits, 1 Stop Bit, No Parity</td>
</tr>
<tr>
<td>03</td>
<td>8 Data Bits, 1 Stop Bit, Even Parity</td>
</tr>
<tr>
<td>04</td>
<td>8 Data Bits, 1 Stop Bit, Odd Parity</td>
</tr>
</tbody>
</table>

TABLE A.4 Baud Rate Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1200 Baud</td>
</tr>
<tr>
<td>01</td>
<td>2400 Baud</td>
</tr>
<tr>
<td>02</td>
<td>4800 Baud</td>
</tr>
<tr>
<td>03</td>
<td>9600 Baud</td>
</tr>
<tr>
<td>04</td>
<td>19200 Baud</td>
</tr>
</tbody>
</table>

TABLE A.5 Encoder Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>÷ by 1</td>
<td>Divide Encoder counts by 1</td>
</tr>
<tr>
<td>÷ by 2</td>
<td>Divide Encoder counts by 2</td>
</tr>
<tr>
<td>÷ by 4</td>
<td>Divide Encoder counts by 4</td>
</tr>
<tr>
<td>÷ by 8</td>
<td>Divide Encoder counts by 8</td>
</tr>
</tbody>
</table>

TABLE A.6 IO Mode Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc</td>
<td>Incremental Indexing</td>
</tr>
<tr>
<td>Abs</td>
<td>Absolute Indexing</td>
</tr>
<tr>
<td>Reg</td>
<td>Registration Indexing</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

TABLE A.7 Index Pointer Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Index 0</td>
</tr>
<tr>
<td>01</td>
<td>Index 1</td>
</tr>
<tr>
<td>02</td>
<td>Index 2</td>
</tr>
<tr>
<td>03</td>
<td>Index 3</td>
</tr>
<tr>
<td>04</td>
<td>Index 4</td>
</tr>
<tr>
<td>05</td>
<td>Index 5</td>
</tr>
<tr>
<td>06</td>
<td>Index 6</td>
</tr>
<tr>
<td>07</td>
<td>Index 7</td>
</tr>
<tr>
<td>08</td>
<td>RAM Index</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.
Table A.8: Index Termination Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>NxtINow</td>
<td>Start another Index immediately</td>
</tr>
<tr>
<td>NxtIWt</td>
<td>Start another Index at next Start Index transition</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

Table A.9: Home Type Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sns/Mrk</td>
<td>Home to Sensor, then to Marker</td>
</tr>
<tr>
<td>Marker</td>
<td>Home to Marker</td>
</tr>
<tr>
<td>Sensor</td>
<td>Home to Sensor</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

Table A.10: Homing Auto-Start Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td>Auto-Start Homing inactive</td>
</tr>
<tr>
<td>Enb/Rst</td>
<td>Auto-Start Homing if not already Homed</td>
</tr>
<tr>
<td>Enable</td>
<td>Auto-Start on every Enable</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

Table A.11: Reverse Enable for Homing

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>No reversing if started on Sensor</td>
</tr>
<tr>
<td>Active</td>
<td>Reverse if started on Sensor</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

Table A.12: Digital Input Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Asgn</td>
<td>Not Assigned (not used)</td>
</tr>
<tr>
<td>DrvMode</td>
<td>Drive Mode</td>
</tr>
<tr>
<td>IntInh</td>
<td>Integrator Inhibit</td>
</tr>
<tr>
<td>FolEnab</td>
<td>Follower Enable</td>
</tr>
<tr>
<td>FwdEnab</td>
<td>Forward Enable</td>
</tr>
<tr>
<td>RevEnab</td>
<td>Reverse Enable</td>
</tr>
<tr>
<td>CMD Ovrd</td>
<td>Analog COMMAND Input Override</td>
</tr>
<tr>
<td>PreSelA</td>
<td>Preset Select Line A</td>
</tr>
<tr>
<td>PreSelB</td>
<td>Preset Select Line B</td>
</tr>
<tr>
<td>PreSelC</td>
<td>Preset Select Line C</td>
</tr>
<tr>
<td>StrtInd</td>
<td>Start Index</td>
</tr>
<tr>
<td>DefHome</td>
<td>Define Home</td>
</tr>
<tr>
<td>Registr</td>
<td>Registration/Sensor</td>
</tr>
<tr>
<td>-CmdOfs</td>
<td>Remove Command Offset</td>
</tr>
<tr>
<td>Home</td>
<td>Start Homing</td>
</tr>
<tr>
<td>FaltRst</td>
<td>Fault Reset</td>
</tr>
</tbody>
</table>
TABLE A.13 Digital Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Asgn</td>
<td>Not Assigned (not used)</td>
</tr>
<tr>
<td>InPos</td>
<td>In Position</td>
</tr>
<tr>
<td>PosWin</td>
<td>Within Position</td>
</tr>
<tr>
<td>0 Speed</td>
<td>Zero Speed</td>
</tr>
<tr>
<td>SpdWin</td>
<td>Speed Window</td>
</tr>
<tr>
<td>+ILimit</td>
<td>Positive Current Limit</td>
</tr>
<tr>
<td>-ILimit</td>
<td>Negative Current Limit</td>
</tr>
<tr>
<td>UpToSpd</td>
<td>Up to Speed</td>
</tr>
<tr>
<td>DrvEnab</td>
<td>Drive Enable</td>
</tr>
<tr>
<td>BusChg</td>
<td>Bus Charged</td>
</tr>
<tr>
<td>Fault</td>
<td>Disabling Fault</td>
</tr>
<tr>
<td>AtHome</td>
<td>At Home</td>
</tr>
<tr>
<td>SeqEnd</td>
<td>Sequence Complete</td>
</tr>
<tr>
<td>Moving</td>
<td>In Motion</td>
</tr>
<tr>
<td>InDwell</td>
<td>In Dwell</td>
</tr>
<tr>
<td>Homed</td>
<td>Axis Homed</td>
</tr>
</tbody>
</table>

TABLE A.14 Analog Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Cmd</td>
<td>Current Command</td>
</tr>
<tr>
<td>I Avg</td>
<td>Average Current Command</td>
</tr>
<tr>
<td>IPeak+</td>
<td>Positive Current Peak</td>
</tr>
<tr>
<td>IPeak-</td>
<td>Negative Current Peak</td>
</tr>
<tr>
<td>ILimit+</td>
<td>Positive Current Limit</td>
</tr>
<tr>
<td>ILimit-</td>
<td>Negative Current Limit</td>
</tr>
<tr>
<td>VelMtr</td>
<td>Motor Velocity</td>
</tr>
<tr>
<td>VelCmd</td>
<td>Velocity Command</td>
</tr>
<tr>
<td>VelErr</td>
<td>Velocity Error</td>
</tr>
<tr>
<td>PosMtr</td>
<td>Motor Position</td>
</tr>
<tr>
<td>PosCmd</td>
<td>Position Command Slewed</td>
</tr>
<tr>
<td>PosErr</td>
<td>Position Error</td>
</tr>
<tr>
<td>PosEPk+</td>
<td>Positive Position Peak Error</td>
</tr>
<tr>
<td>PosEPk-</td>
<td>Negative Position Peak Error</td>
</tr>
<tr>
<td>PosMstr</td>
<td>Master Position</td>
</tr>
</tbody>
</table>

TABLE A.15 Drive Status List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrvEnab</td>
<td>Drive Enabled</td>
</tr>
<tr>
<td>DrvRdy</td>
<td>Drive Ready</td>
</tr>
<tr>
<td>+24 Fuse</td>
<td>+24 VDC Fuse blown</td>
</tr>
<tr>
<td>5v Fuse</td>
<td>+5 VDC Fuse blown</td>
</tr>
<tr>
<td>EncFuse</td>
<td>Encoder Power Fuse blown</td>
</tr>
<tr>
<td>MtrOvT</td>
<td>Motor Thermostat Overtemperature</td>
</tr>
<tr>
<td>IPMFalt</td>
<td>IPM Fault (Overtemperature/Overcurrent/Short Circuit)</td>
</tr>
<tr>
<td>IMLinBk</td>
<td>Channel IM Line Break</td>
</tr>
<tr>
<td>BMLinBk</td>
<td>Channel BM Line Break</td>
</tr>
<tr>
<td>AMLinBk</td>
<td>Channel AM Line Break</td>
</tr>
</tbody>
</table>

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
Table A.15

Drive Status List for TouchPad (continued)

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BusOvV</td>
<td>Bus Undervoltage</td>
</tr>
<tr>
<td>BusUndV</td>
<td>Bus Overvoltage</td>
</tr>
<tr>
<td>IlglHal</td>
<td>Illegal Hall State</td>
</tr>
<tr>
<td>SubIntr</td>
<td>Unused Interrupt - sub processor</td>
</tr>
<tr>
<td>MainInt</td>
<td>Unused Interrupt - main processor</td>
</tr>
<tr>
<td>ExsAvgI</td>
<td>Excessive Average Current</td>
</tr>
<tr>
<td>OvSpeed</td>
<td>Motor Overspeed</td>
</tr>
<tr>
<td>ExsFErr</td>
<td>Excessive Following Error</td>
</tr>
<tr>
<td>MtrEnc</td>
<td>Motor Encoder State Error</td>
</tr>
<tr>
<td>MstrEnc</td>
<td>Auxiliary Encoder State Error</td>
</tr>
<tr>
<td>MtrThrm</td>
<td>Motor Thermal Protection</td>
</tr>
<tr>
<td>IPMThrm</td>
<td>IPM Thermal Protection</td>
</tr>
<tr>
<td>EnNoMtr</td>
<td>No Motor Selected while enabling drive</td>
</tr>
<tr>
<td>MtrType</td>
<td>Motor Selection not in Table</td>
</tr>
<tr>
<td>PersWrt</td>
<td>Personality Write Error</td>
</tr>
<tr>
<td>ServWrt</td>
<td>Service Write Error</td>
</tr>
<tr>
<td>CPUComm</td>
<td>CPU Communications Error</td>
</tr>
<tr>
<td>MtrOvt</td>
<td>Motor Overtemperature</td>
</tr>
<tr>
<td>IPMFalt</td>
<td>IPM Fault</td>
</tr>
<tr>
<td>ExsVErr</td>
<td>Excess Velocity Error</td>
</tr>
<tr>
<td>Comutat</td>
<td>Commutation Angle Error</td>
</tr>
<tr>
<td>Not Homd</td>
<td>Axis Not Homed</td>
</tr>
</tbody>
</table>

NOTE: The Drive Status display is read-only. DrvEnab and DrvRdy indicate the drive is functional. The other displays indicate an error condition.

Table A.16

Input Flags Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FltRst</td>
<td>Fault Reset Input Flag</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Drive Enable Input Flag</td>
</tr>
<tr>
<td>Input1</td>
<td>Input 1 Input Flag</td>
</tr>
<tr>
<td>Input2</td>
<td>Input 2 Input Flag</td>
</tr>
<tr>
<td>Input3</td>
<td>Input 3 Input Flag</td>
</tr>
<tr>
<td>Input4</td>
<td>Input 4 Input Flag</td>
</tr>
</tbody>
</table>

Table A.17

Output Flags Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>Ready Output Flag</td>
</tr>
<tr>
<td>BRAKE</td>
<td>Brake Output Flag</td>
</tr>
<tr>
<td>Outpt1</td>
<td>Output 1 Flag</td>
</tr>
<tr>
<td>Outpt2</td>
<td>Output 2 Flag</td>
</tr>
<tr>
<td>Outpt3</td>
<td>Output 3 Flag</td>
</tr>
<tr>
<td>Outpt4</td>
<td>Output 4 Flag</td>
</tr>
</tbody>
</table>
Creating Custom Motor Files

Each motor controlled by a OMNIDRIVE requires a unique parameter set. The parameter set provides the drive with information about the motor necessary for proper commutation, precise control and protection.

Two types of motor parameter sets can be selected for a OMNIDRIVE using OMNI LINK software:

- Standard motors parameters reside in a motor lookup table stored in the drive. Up to 65535 motors may be stored in the drive.
- Custom motor parameters are created off-line and downloaded to the drive’s personality module (EEPROM). Only one custom motor may be stored in the drive.

Additional custom motors may be stored off-line as files accessible via a personal computer.

This appendix defines the motor parameters and explains how the drive uses the parameters to control the motor. A step-by-step example details how to set up a motor file for an application using the motor’s parameters. Difficulties commonly encountered when creating custom motor files also are explained.

OMNI LINK Advanced is required to access Custom Motor features. The Help menu in OMNI LINK explains how to access the Advanced features.
Drive and Motor File Configuration with OMNI LINK

At startup OMNI LINK examines the contents of the /MOTORDIR subdirectory to determine the list of motors it will display. If a custom motor file is to appear, it must be copied into the /MOTORDIR directory before OMNI LINK is started. Each motor file is a binary file that contains:

- the motor parameter set,
- a table ID number, and
- a text string.

Because they are binary files, only OMNI LINK can be used for editing and generation (i.e., you cannot edit motor files using a text editor.)

Motor Parameter Set

The motor parameter set configures the OMNIDRIVE to control a specific motor. Motor parameters provide information about the electrical properties, ratings and construction of the motor. Subsequent sections of this appendix explain these properties with meaningful depth. For now it is sufficient to know that accurate and complete definition of the motor’s properties is necessary to achieve good performance.

Table ID

The table ID number tells OMNI LINK whether the motor file represents a standard motor or a custom motor:

- Standard motor table IDs occupy the range 0 to 65534.
- The custom motor table ID is 65535 (also known as “-1”).

Standard motor parameter sets are stored in the drive as well as in the motor file. Thus OMNI LINK needs to transmit only the table ID to select the motor model from the drive's personality EEPROM. For custom motor files, OMNI LINK must transmit not only the custom motor’s table ID but also the complete motor parameter set from the custom motor file.

Text String

The text string allows OMNI LINK to display a meaningful name in the motor model window. The text string displays one of three possible messages when a motor is loaded into the drive:

- “BLX232A2”, or equivalent if a valid motor model number is loaded.
- “Custom” if a custom motor file is loaded.
- “Unknown” if an unrecognized motor file is loaded.

The text string translates the table ID into a real motor model number for display.

Motor Phasing

The phasing of the back-EMF and Hall feedback signals must be verified before a custom motor file can be created. Thomson Industries motors use back-EMF and Hall feedback signals phased as shown in Figure B.2. Motors not manufactured by Thomson Industries require the back-EMF and Hall feedback signals be phased to match those of Thomson Industries motors. Often this requires swapping of the R-, S- and T-phase control signals with each other, as well as swapping the Hall A, Hall B, and Hall C signals with each other.

Back-EMF and Hall Signals

Figure B.2(a) shows the required phasing of the line-to-line back-EMF signals and Figure B.2(b) shows the proper phasing of the Hall feedback signals, when the motor is rotating clockwise (CW) as seen looking at the motor shaft from the load.
The relationship of the Hall signals to the back-EMF signals is not important at this stage. However, the sequencing of the back-EMF signals must conform to Figure B.2(a), and the sequencing of the Hall feedback signals must conform to Figure B.2(b).

Many motor manufacturers include drawings in their data sheets that identify the phasing of the back-EMF and Hall feedback signals, or an application engineer may have access to an internal document listing the information. As a last resort, the motor can be rotated in the lab to check the phasing.

If the phasing is not correct, the respective leads must be physically swapped to correct the sequencing. A custom motor file cannot be created until the sequencing is correct because the offset of the Hall signals from the Thomson Industries standard must be defined, and swapping wires affects the offset value.
Encoder Sequencing

Separate from the phasing of the commutation and motor power signals, the encoder A quad B signals must sequence properly. The A channel must lead the B channel for CW motion when viewed looking at the motor shaft from the load. Figure B.3 depicts this encoder signal sequencing. If the encoder phasing is not as shown in Figure B.3, the encoder leads must be swapped.

![Figure B.3 Phasing of the Encoder Signals for Clockwise Rotation](image)

Motor Parameter Definitions

The parameters to configure in a custom motor file are defined below. OMNI LINK arranges motor parameters in an index card format. The groupings are:

- General,
- Feedback,
- Current Loop,
- Electrical, and
- Ratings.

General Parameters

Motor Model

The motor model field is a text display from which a motor is selected.

If the motor model text string is changed, OMNI LINK assumes that a new motor file is being created, and the user must supply a new filename. This prevents the text string being changed on an existing motor file. However, a filename may be recycled by:

1. Assign the new file a tentative filename.
2. Delete the old file.
3. Rename the new file, using the old filename.

Table ID

The table ID value determines whether the motor file represents a standard motor or a custom motor. A table ID in the range of 0 to 65534 identifies a standard motor file, and a table ID of 65535 (also known as table ID “-1”) identifies a custom motor file. Users may define motor parameters for multiple custom motors on a PC, but only one custom motor file may be stored on the drive. (i.e., All custom motor files have the table ID value of “-1”.)

Motor File

The motor file is the filename of the custom motor file, it is different from the motor model text field. The filename can have up to 8 characters and must have a .MTR extension. If the motor model text string is altered, OMNI LINK prompts the user for a new filename.
Synchronous/Induction

This field identifies whether the motor is a synchronous (permanent magnet) motor or an induction motor. The motor type informs OMNI LINK which fields are valid for a particular motor, and which fields are invalid (grayed).

These instructions only cover permanent magnet motors, so the *Synchronous* box must be checked.

Number of Poles

The number of poles specifies the number of electrical cycles in two mechanical revolutions. For example, a 6-pole motor will have three electrical cycles per mechanical cycle. The firmware can support only 2-, 4-, 6-, and 8-pole motors.

Occasionally a manufacturer specifies the number of pole pairs in a motor data sheet. Pole pairs should not be confused with the number of poles. A 6-pole motor has 3 pole pairs.

K_T (Torque Constant)

The torque constant, also known as the torque sensitivity, specifies the amount of torque that the motor can produce with a given value of sinusoidal current. The torque constant is measured in units of N-m/Amp, and its range is 0.0002 to 15.9998 N-m/Amp.

Conversion formulas between N-m/Amp, in-lb/Amp, and oz-in/Amp, are:

$$\frac{1 \text{ Newton} \cdot \text{meter}}{\text{Amp}} = 8.85075 \frac{\text{inch} \cdot \text{pound}}{\text{Amp}} = 141.612 \frac{\text{ounce} \cdot \text{inch}}{\text{Amp}}$$

The denominator units of the required torque constant are peak Amps, rather than rms Amps. To convert the torque constant from units of N-m/Amp(rms), use the formula:

$$\frac{1 \text{ Newton} \cdot \text{meter}}{\text{Amp}} = 0.707 \frac{\text{Newton} \cdot \text{meter}}{\text{Amp}(\text{rms})}$$

Many Thomson Industries motors specify the torque constant in units of N-m/rmsA/phase. In this case, in addition to conversion from rms Amps to peak Amps, the value needs to be multiplied by three because it has been defined as “per phase”.

If a motor operates with trap drives, the torque constant is specified as a “square wave” torque constant. However, OMNIDRIVEs are sinusoidal drives and the torque constant must be specified as a “sine wave” torque constant or “sinusoidal” torque constant. To convert between sinusoidal torque constants and square wave torque constants, usually a factor of 5-10% is required. The motor manufacturer should be able to specify the sinusoidal torque constant, even if it is not shown in the data sheet.

J_M (Inertia)

The rotor inertia specifies the inertia of the motor, not including the load, and is required in units of Kg-cm². The inertia can be in the range of 0.0156 to 1023.9844 Kg-cm².

The conversion formulas between Kg-cm², Kg-m², in-lb-s², and oz-in-s² are:

$$1 \text{ Kg} \cdot \text{cm}^2 = 0.0001 \text{ Kg} \cdot \text{m}^2 = \frac{1}{1129.85} \text{ in} \cdot \text{lb} \cdot \text{s}^2 = \frac{1}{70.6155} \text{ oz} \cdot \text{in} \cdot \text{s}^2$$

K_E (Back EMF)

The back-EMF is the peak value of the line-to-line sinusoidal EMF generated at 1000 RPM, and is required in units of Volts/KRPM or Volts/1000 RPM. The back-EMF value can be in the range of 0.0039 to 255.9961 Volts/KRPM.
Note that the required value is a peak value, rather than an rms value. To convert the back-EMF from units of Volts(rms)/kRPM, use the formula:

\[
1 \text{ Volts} \frac{\text{Volts(rms)}}{1000 \text{ RPM}} = 1.414 \cdot \text{Volts(rms)} \frac{1}{1000 \text{ RPM}}
\]

Also, a line-to-line value is required, rather than a line-to-neutral. A line-to-line value equals a line-to-neutral value times two.
Feedback Parameters

Linecount

The encoder linecount, or size, specifies the number of encoder lines per mechanical revolution of the motor, and is required in units of lines/mechanical revolution. The linecount value can be in the range from 100 to 15000 lines/rev.

Note that the linecount value is in units of lines/rev, rather than counts/rev. The number of lines/rev will be 1/4th of the number of counts/rev.

Index Offset

The index offset specifies the offset of the encoder index signal in some special motors, and is required in units of electrical degrees. If the startup commutation type specifies that the index be used for the final commutation angle measurement, then the drive uses the index offset to determine the commutation angle when the index is first located (the rising edge). The index offset value can be in the range from 0 to 359 degrees.

For custom motor files, this parameter is not required. Set it to 0, since only the Hall signals are needed for most custom motor files.

Figure B.4(a) shows the 0° index location, and Figure B.4(b) shows an example of a 30° index offset.

Hall Offset

The Hall offset specifies the offset of the Hall feedback signals relative to the Thomson Industries standard. The drive uses the Hall offset to determine the commutation angle at startup. Hall offset is specified as a value in the range from 0 to 359 electrical degrees.

The Hall signals, as well as the line-to-line back-EMF voltages, must sequence according to the Thomson Industries standard (refer to Figure B.2 and the “Motor Phasing” on page B-2). The Hall offset value is the value the drive uses to correct for Hall signals that are shifted from the line-to-line back-EMF.

Figure B.5(a) shows the Thomson Industries standard for orientation of the Hall signals to the line-to-line back-EMF voltages. Figure B.5(b) shows an example of a 60° Hall offset from the standard location.
Startup Commutation

The startup commutation list box specifies the type of commutation to be used at startup. The choices are:

- 6-Step ABS/Index,
- 8-Step ABS/Index,
- Hall/Index, and
- Hall/Hall.

The different types of startup are identified by their initial and final commutation angle measurement. For example, the 6-Step ABS/Index startup uses the 6-Step ABS for the initial commutation angle measurement, and the index signal for the final commutation angle measurement.

The Hall/Hall type of startup commutation should be used:

- Hall/Hall commutation means that the location of the Index signal is unimportant.

If the drive is set up for Hall/Hall startup commutation, the initial commutation angle is determined by the state of the three Hall feedback inputs: 001, 010, 011, 100, 101, or 110. When the motor begins moving, a transition from one Hall state to another (for example, 001 to 101) identifies a precise commutation angle, and the measurement is completed. After the final Hall measurement occurs, the encoder A/B inputs are used to track the commutation angle.

Invert Direction

The invert direction check box may be used as a substitute for swapping the motor phase leads and Hall feedback signal wires. This option is valid only if the motor runs backwards from the Thomson Industries standard and only if counter-clockwise (CCW) rotation produces the same motor power and Hall feedback sequencing as rotating an Thomson Industries motor clockwise (CW).

The invert direction check box may also be checked for some Thomson Industries motors, where the definition of forward is opposite that of Thomson Industries (i.e., CCW rather than CW). In such a case, a software inversion is preferable to the physical swapping of leads, because the signals look identical when rotated CCW rather than CW.

For custom motors, other than those mentioned above, leave this box unchecked and swap the motor power and Hall feedback signals to correct the phasing.
Electrical Parameters

Resistance

The resistance value is the measured phase-to-phase resistance of the stator winding in Ohms. The resistance is used to set the current regulator gains, and is critical to current loop performance. The resistance value can be in the range from 0.0039 to 255.9961 Ω.

The ratio of motor inductance to motor resistance is defined as the electrical time constant of the motor. This value should always be checked to verify that it is in an acceptable range. Electrical time constants less than ~1mS, and higher than ~50mS, present difficulties for current regulation and should be avoided.

Some manufacturers specify the resistance in Ohms/phase. The phase-to-phase resistance requested by OMNI LINK is twice the per phase value.

Inductance

The inductance value is the measured phase-to-phase inductance in milliHenries of the stator winding. The inductance is used to set the current regulator gains, and is critical to current loop performance. The inductance value can be in the range from 0.0039 to 255.9961mH.

The ratio of motor inductance to motor resistance is defined as the electrical time constant of the motor. Always verify this value is in a reasonable range. Electrical time constants less than ~1mS, and higher than about ~50mS, present difficulties in the current regulator and should be avoided.

Inductances less than ~1mH suffer from high current ripple, and are not recommended for use with the OMNIDRIVEs.

Some manufacturers specify the inductance in milliHenries/phase. The phase-to-phase inductance is twice the per phase value.

Rating Parameters

Continuous Torque

Continuous torque specifies the rated current of the motor in peak Amps. (Note: Continuous torque is peak Amps, rather than rms.) The drive uses the continuous torque current value in its motor thermal protection software. The drive generates a fault if the square of the actual current, after passing through a low pass filter, exceeds the square of the continuous torque current value. The square is used because the power dissipation in the motor is approximated as I^2R losses. The continuous torque value may be in the range from 0.0078 to 255.9922 Amps.

Some manufacturers specify the rated current of a motor in rms Amps. To convert from rms Amps to peak Amps, use the formula:

$$1 \cdot \text{Amps} = 1.414 \cdot \text{Amps(rms)}$$

Occasionally a manufacturer specifies only the rated torque, and does not include the rated current specification. In such a case, the rated current can be computed using the rated torque and the torque constant. A factor of 1.1 is included to allow for degradation of the torque constant at high temperatures, etc. The formula, assuming the torque constant has already been converted to N-m/A(peak), is:

$$I_{\text{RATED}} = 1.1 \cdot \frac{\text{rated torque in N-m}}{K_T}$$
Peak Torque

The peak or maximum torque specifies the maximum current capability of the motor in peak Amps. (Note: This is peak Amps, rather than rms.) The drive uses the maximum torque value to limit the current applied to the motor. At run-time, the instantaneous current of the drive is limited to the minimum of this value, the drive's peak rating, the analog current limit inputs, and the software current limits. The maximum torque value can be in the range from 0.0078 to 255.9922 Amps.

Some manufacturers specify the maximum current of a motor in rms Amps. To convert from rms Amps to peak Amps, use the formula:

\[I_{\text{peak}} = 1.414 \cdot I_{\text{rms}} \]

Occasionally a manufacturer specifies only the maximum instantaneous torque, and does not include the maximum current specification. In such a case, the peak current can be computed using the peak torque and the torque constant. A factor of 1.1 is included to allow for degradation of the torque constant at high temperatures, etc. The formula, assuming the torque constant has already been converted to N-m/A(peak), is given by:

\[I_{\text{peak}} = 1.1 \cdot \frac{\text{maximum torque in N-m}}{K_T} \]

Thermal Time Constant

The thermal time constant check box indicates if a valid thermal time constant exists for the motor. If this check box is not selected, the motor thermal protection software is disabled.

Enabling of the motor thermal protection software is recommended, even if the thermal time constant is not known. This software feature significantly reduces the chance of damage to the motor, even when the motor has an integral thermostat.

The thermal time constant value, also known as the cool down time constant, identifies how fast the motor winding temperature dissipates heat. The value is entered in seconds. The thermal time constant value can be in the range from 1 to 65535 seconds.

The thermal time constant of the motor is measured by stabilizing the motor temperature at its rated condition, disabling the drive, and measuring the time for the hottest part of the motor winding to drop 63% of the difference from ambient. Thomson Industries, as well as many other motor manufacturers, specifies this parameter for motors, although it may not be published in catalogs or data sheets.

If the thermal time constant of a motor is unknown or unavailable, an estimated value is preferable to disabling the motor thermal protection software. A reasonable substitute is to find an Thomson Industries motor with similar capability, and use its thermal time constant value for the custom motor.

The motor thermal protection algorithm filters the square of the torque current (using the motor thermal time constant value) and generates a motor thermal protection fault if the output of the filter exceeds the square of the motor's continuous torque current rating. The square of the current is used because the power dissipated in the motor is approximated as I²R losses. Figure D.6 shows the method to be used for protection, with \(t \) defined as the motor thermal time constant.

![Motor Thermal Protection Software Method](image-url)
Integral Thermostat
The integral thermostat check box should be checked if the motor has a built-in thermostat. If this box is not checked, the thermostat inputs to the drive are ignored.

When the integral thermostat check box is selected, a motor overtemperature fault is displayed if the thermostat inputs to the drive are in an open state.

Maximum Speed
This value specifies the maximum speed in RPM that the motor can safely maintain on a continuous basis. The maximum speed value can be in the range from 0.00002 to 32767.99998 RPM.
Example of Custom Motor File Creation
The following is an example of a custom motor. A 50:1 gear is included inside this motor. The example illustrates how to configure a custom motor.

Manufacturer’s Data
The following specifications were taken from the manufacturer’s data sheet:

- Reduction Ratio = 1:50
- Rated Current = 1.4 Amp
- Maximum Current = 3.8 Amp
- Maximum Speed = 80 RPM
- Torque Constant = 270 in-lb/Amp
- BEMF = 1.1 Volt/RPM per phase
- Motor Resistance = 3.7Ω per phase
- Motor Inductance = 5.0mH per phase
- Thermal Time Constant = 30 minutes
- Moment of Inertia = 5.1 in-lb-sec²
- Encoder Linecount = 1500 lines/rev
- No Integral Thermostat

A check with the manufacturer yielded that the motor has 8 poles, and that the line-to-line back-EMF and Hall signals are as shown in Figure B.7, below. The figure indicates that no lead swapping is necessary but the Hall offset is 120°.

![Back-EMF and Hall Signals, Clockwise Rotation](image.png)
Parameter Conversions

The 1:50 gearing makes this motor an unusual case. The motor file must be generated as if the motor and gear are two separate devices. The inertia, torque, speed, etc., must be computed based on the motor side of the gearing, rather than the load side.

The maximum speed of the motor, before gearing, is computed as:

\[
V_{\text{MAX}} = \left(80 \frac{\text{rev}}{\text{min}} \right) \cdot 50 = 4000 \frac{\text{rev}}{\text{min}}
\]

The torque constant of the motor, before gearing, is computed as:

\[
K_T = \left(270 \frac{\text{in} \cdot \text{lb}}{\text{Amp}} \right) \cdot \left(\frac{1}{8.85075 \frac{\text{N} \cdot \text{m}}{\text{in} \cdot \text{lb}}} \right) \cdot \left(\frac{1}{50} \frac{\text{N} \cdot \text{m}}{\text{Amp}} \right) = 0.61 \frac{\text{N} \cdot \text{m}}{\text{Amp}}
\]

The back-EMF constant of the motor, before gearing, is computed as:

\[
K_E = \left(1.1 \frac{\text{Volts}}{\text{RPM}} \right) \cdot \left(\frac{1000 \frac{\text{RPM}}{1 \text{KRPM}}} {1 \text{ KRPM}} \right) \cdot \left(\frac{1}{50} \right) = 44 \frac{\text{Volts}}{\text{KRPM}}
\]

Note that the back-EMF was specified as a per phase value, and is doubled to obtain a line-to-line value.

The motor inertia, before gearing, is computed as:

\[
J_M = \left(5 \frac{\text{in} \cdot \text{lb} \cdot \text{s}^2}{\text{m}^2} \right) \cdot \left(1129.85 \frac{\text{Kg} \cdot \text{cm}^2}{\text{in} \cdot \text{lb} \cdot \text{s}^2} \right) \cdot \left(\frac{1}{50^2} \right) = 2.26 \frac{\text{Kg} \cdot \text{cm}^2}{\text{s}^2}
\]

The resistance and inductances are also specified as per phase values, and are computed as:

\[
R_{L-L} = \left(3.7 \frac{\text{Ohms}}{\text{Phase}} \right) \cdot (2) = 7.4 \text{ Ohms}
\]

\[
L_{L-L} = \left(5.0 \frac{\text{mH}}{\text{Phase}} \right) \cdot (2) = 10.0 \text{ mH}
\]

The thermal constant is specified in minutes, and is computed as:

\[
\text{thermal time constant} = (30 \text{ min}) \cdot \left(60 \frac{\text{sec}}{\text{min}} \right) = 1800 \text{ sec}
\]
Custom Motor File

The custom motor file parameters are as follows:

<table>
<thead>
<tr>
<th>GENERAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Model:</td>
<td>A_CUSTOM</td>
</tr>
<tr>
<td>Table ID:</td>
<td>-1</td>
</tr>
<tr>
<td>Motor File:</td>
<td>CUSTOM21.MTR</td>
</tr>
<tr>
<td>Motor Type:</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Number of Poles:</td>
<td>8</td>
</tr>
<tr>
<td>Kt:</td>
<td>0.61 N-m/Amp</td>
</tr>
<tr>
<td>Jm:</td>
<td>2.26 kg-cm^2</td>
</tr>
<tr>
<td>Ke:</td>
<td>44.0 Volts/kRPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT LOOP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Feedforward:</td>
<td>0 degrees / kRPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRICAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance:</td>
<td>7.4 Ohms</td>
</tr>
<tr>
<td>Inductance:</td>
<td>10.0 mH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATINGS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Torque:</td>
<td>1.4 Amps</td>
</tr>
<tr>
<td>Peak Torque:</td>
<td>3.8 Amps</td>
</tr>
<tr>
<td>Thermal Time Constant:</td>
<td>Checked, 1800 sec</td>
</tr>
<tr>
<td>Integral Thermostat:</td>
<td>Unchecked</td>
</tr>
<tr>
<td>Maximum Speed:</td>
<td>4000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEEDBACK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Linecount:</td>
<td>1500 lines/rev</td>
</tr>
<tr>
<td>Index Offset:</td>
<td>0 degrees</td>
</tr>
<tr>
<td>Hall Offset:</td>
<td>120 degrees</td>
</tr>
<tr>
<td>Startup Commutation:</td>
<td>Hall / Hall</td>
</tr>
<tr>
<td>Invert Direction:</td>
<td>Unchecked</td>
</tr>
</tbody>
</table>

Troubleshooting Custom Motor Files

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor locks at a certain location.</td>
<td>1. Motor phasing is incorrect.</td>
</tr>
<tr>
<td>Motor jumps once at startup.</td>
<td>2. Hall Offset is incorrect.</td>
</tr>
<tr>
<td>Motor runs away.</td>
<td>3. Incorrect startup commutation.</td>
</tr>
<tr>
<td>Low torque production.</td>
<td>4. Incorrect encoder phasing.</td>
</tr>
<tr>
<td></td>
<td>5. Incorrect pole count.</td>
</tr>
<tr>
<td></td>
<td>6. Incorrect encoder linecount.</td>
</tr>
<tr>
<td>High audible noise from motor.</td>
<td>1. Incorrect motor resistance.</td>
</tr>
<tr>
<td>Velocity loop difficult to stabilize.</td>
<td>2. Incorrect motor inductance.</td>
</tr>
<tr>
<td>Shaft vibration.</td>
<td>3. Inductance too low.</td>
</tr>
<tr>
<td></td>
<td>4. Electrical time constant too low.</td>
</tr>
<tr>
<td></td>
<td>5. Low encoder linecount.</td>
</tr>
<tr>
<td>Underdamped velocity response.</td>
<td>1. Incorrect motor inertia.</td>
</tr>
<tr>
<td>Overdamped velocity response.</td>
<td>2. Incorrect torque constant.</td>
</tr>
</tbody>
</table>

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
APPENDIX C: Electromagnetic Compatibility Guidelines for Machine Design

This appendix provides background information about Electromagnetic Interference (EMI) and machine design guidelines for Electromagnetic Compatibility (EMC). The OMNIDRIVE installation requirements for compliance to the European Electromagnetic Compatibility Directive are specified on page 2-8. AC Line Filters necessary for European EMC compliance are listed in Chapter 5, “Installation”.

Introduction

Perhaps no other subject related to the installation of industrial electronic equipment is so misunderstood as electrical noise. The subject is complex and the theory easily fills a book. This section provides guidelines that can minimize noise problems.

The majority of installations do not exhibit noise problems. However, the filtering and shielding guidelines are provided as counter measures. The grounding guidelines provided below are simply good grounding practices. They should be followed in all installations.

Electrical noise has two characteristics: the generation or emission of electromagnetic interference (EMI), and response or immunity to EMI. The degree to which a device does not emit EMI, and is immune to EMI is called the device’s Electromagnetic Compatibility (EMC).

“EMI Source-Victim Model” shows the commonly used EMI model. The model consists of an EMI source, a coupling mechanism and an EMI victim. Devices such as servo drives and computers, which contain switching power supplies and microprocessors, are EMI sources. The mechanisms for the coupling of energy between the source and victim are conduction and radiation. Victim equipment can be any electromagnetic device that is adversely affected by the EMI coupled to it.

Immunity to EMI is primarily determined by equipment design, but how you wire and ground the device is also critical to achieving EMI immunity. Therefore, it is important to select equipment that has been designed and tested for industrial environments. The EMI standards for industrial equipment include the EN61000-4 series (IEC 1000-4 and IEC801), EN55011 (LISDR11), ANSI C62 and C63 and MIL-STD-461. Also, in industrial environments, you should use encoders with differential driver outputs rather than single ended outputs, and digital inputs/outputs with electrical isolation, such as those provided with optocouplers.

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
The EMI model provides only three options for eliminating the EMC problem:

- reduce the EMI at the source,
- increase the victim’s immunity to EMI (harden the victim), or
- reduce or eliminate the coupling mechanism.

In the case of servo drives, reducing the EMI source requires slowing power semiconductor switching speeds. However, this adversely affects drive performance with respect to heat dissipation and speed/torque regulation. Hardening the victim equipment may not be possible, or practical. The final, and often the most realistic solution is to reduce the coupling mechanism between the source and victim. This can be achieved by filtering, shielding and grounding.

Filtering

As mentioned above, high frequency energy can be coupled between circuits via radiation or conduction. The AC power wiring is one of the most important paths for both types of coupling mechanisms. The AC line can conduct noise into the drive from other devices, or it can conduct noise directly from the drive into other devices. It can also act as an antenna and transmit or receive radiated noise between the drive and other devices.

One method to improve the EMC characteristics of a drive is to use an isolation AC power transformer to feed the amplifier its input power. This minimizes inrush currents on power-up and provides electrical isolation. In addition, it provides common mode filtering, although the effect is limited in frequency by the interwinding capacitance. Use of a Faraday shield between the windings can increase the common mode rejection bandwidth, (shield terminated to ground) or provide differential mode shielding (shield terminated to the winding).

![TIP]

“Common mode” noise is present on all conductors referenced to ground.
“Differential mode” noise is present on one conductor referenced to another conductor.

One alternative to AC line filters to reduce the conducted EMI emitting from the drive. This allows nearby equipment to operate undisturbed. In most cases an AC line filter will not be required unless other sensitive circuits are powered off the same AC branch circuit. The basic operating principle is to minimize the high frequency power transfer through the filter. An effective filter achieves this by using capacitors and inductors to mismatch the source impedance (AC line) and the load impedance (drive) at high frequencies.

For drives brought into use in Europe, use of the correct filter is essential to meet emission requirements. Detailed information on filters is included in the manual and transformers should be used where specified in the manual.

AC Line Filter Selection

Selection of the proper filter is only the first step in reducing conducted emissions. Correct filter installation is crucial to achieving both EMI attenuation and to ensure safety. All of the following guidelines should be met for effective filter use.

1. The filter should be mounted to a grounded conductive surface.

2. The filter must be mounted close to the drive input terminals. If the distance exceeds 1 foot, then a strap should be used to connect the drive and filter, rather than a wire.

3. The wires connecting the AC source to the filter should be shielded from, or at least separated from the wires (or strap) connecting the drive to the filter. If the connections are not segregated from each other, then the EMI on the drive side of the filter can couple over to the source side of the filter, thereby reducing, or eliminating the filter effectiveness. The coupling mechanism can be radiation, or stray capacitance between the wires. The best method of achieving this is to
mount the filter where the AC power enters the enclosure. “AC Line Filter Installation” shows a good installation and a poor installation.

FIGURE 11.2

AC Line Filter Installation

When multiple power cables enter an enclosure, an unfiltered line can contaminate a filtered line external to the enclosure. Therefore, all lines must be filtered to be effective. The situation is similar to a leaky boat. All the holes must be plugged to prevent sinking.

WARNING

Large leakage currents exist in AC line filters. They must be grounded properly before applying power. Filter capacitors retain high voltages after power removal. Before handling the equipment, voltages should be measured to determine safe levels prior to handling the equipment. Failure to observe this precaution could result in severe bodily injury.

If the filter is mounted excessively far from the drive, it may be necessary to mount it to a grounded conductive surface, such as the enclosure, to establish a high frequency (HF) connection to that surface. To achieve the HF ground, direct contact between the mounting surface and the filter must be achieved. This may require removal of paint or other insulating material from the cabinet or panel.

The only reasonable filtering at the drive output terminals is the use of inductance. Capacitors would slow the output switching and deteriorate the drive performance. A common mode choke, as is used in the OMNIDRIVE, can be used to reduce the HF voltage at the drive output. This will reduce emission coupling through the drive back to the AC line. However, the motor cable still carries a large HF voltage and current. Therefore, it is very important to segregate the motor cable from the AC power cable. More information on cable shielding and segregation is contained in the section on shielding.
Grounding

High frequency (HF) grounding is different from safety grounding. A long wire is sufficient for a safety ground, but is completely ineffective as an HF ground due to the wire inductance. As a rule of thumb, a wire has an inductance of 20 nH/in regardless of diameter. At low frequencies it acts as a constant impedance, at intermediate frequencies as an inductor, and at high frequencies as an antenna. The use of ground straps is a better alternative to wires. However the length to width ratio must be 5:1, or better yet 3:1, to remain a good high frequency connection.

The ground system’s primary purpose is to function as a return current path. It is commonly thought of as an equipotential circuit reference point, but different locations in a ground system may be at different potentials. This is due to the return current flowing through the ground systems finite impedance. In a sense, ground systems are the sewer systems of electronics and as such are sometimes neglected.

The primary objective of a high frequency ground system is to provide a well defined path for HF currents and to minimize the loop area of the HF current paths. It is also important to separate HF grounds from sensitive circuit grounds. “Single Point Ground Types” shows single point grounds for both series (daisy chain) and parallel (separate) connections. A single point, parallel connected ground system is recommended.

![Diagram of Single Point Ground Types](image)

Figure 11.3

Single Point Ground Types

A ground bus bar or plane should be used as the “single point” where circuits are grounded. This will minimize common (ground) impedance noise coupling. The ground bus bar (GBB) should be connected to the AC ground, and if necessary, to the enclosure. All circuits or subsystems should be connected to the GBB by separate connections. These connections should be as short as possible, and straps should be used when possible. The motor ground conductor must return to the ground terminal on the drive, not the GBB.
Shielding and Segregation

The EMI radiating from the drive enclosure drops off very quickly over distance. Mounting the drive in an enclosure, such as an industrial cabinet, further reduces the radiated emissions. The cabinet should have a high frequency ground and the size of the openings should be minimized. In addition, the drive is considered an “open” device which does not provide the proper IP rating for the environment in which it is installed. For this reason the enclosure must provide the necessary degree of protection. An IP rating or Nema rating (which is similar to IP) specifies the degree of protection that an enclosure provides.

The primary propagation route for EMI emissions from a drive is through cabling. The cables conduct the EMI to other devices, and can also radiate the EMI. For this reason, cable segregation and shielding are important factors in reducing emissions. Cable shielding can also increase the level of immunity for a drive. For example:

- Shield termination at both ends is extremely important. The common misconception that shields should be terminated at only one end originates from audio applications with frequencies <20 kHz. RF applications must be terminate the shield at both ends, and possibly at intermediate points for exceptionally long cables.
- When shielded cables are not terminated at the cable connection and pass through the wall of a cabinet, the shield must be bonded to the cabinet wall to prevent noise acquired inside the cabinet from radiating outside the cabinet, and vice versa.
- When shielded cables are terminated to connectors, the shield must be provide complete 360° coverage and terminate through the connector backshell. The shield must not be grounded inside the connector through a drain wire. Grounding the shield inside the connector couples the noise on the shield to the signal conductors sharing the connector and virtually guarantees failure to meet European EMC requirements.
- The shield must be continuous. Each intermediate connector must continue the shield connection through the backshell.
- All cables, both power and signal, should use twisted wire pairing.

The shield termination described above provides a coaxial type of configuration which provides magnetic shielding, and the shield provides a return path for HF currents that are capacitively coupled from the motor windings to the frame. If power frequency circulating currents are an issue, a 250 VAC capacitor should be used at one of the connections to block 50/60 Hz current while passing HF currents. Use of a properly shielded motor cable is essential to meet European EMC requirements.

The following suggestions are recommended for all installations.

1. Motor cables must have a continuous shield and be terminated at both ends. The shield must connect to the ground bus bar or drive chassis at the drive end, and the motor frame at the motor end. Use of a properly shielded motor cable is essential to meet European EMC requirements.
2. Signal cables (encoder, serial, analog) should be routed away from the motor cable and power wiring. Separate steel conduit can be used to provide shielding between the signal and power wiring. Do not route signal and power wiring through common junctions or raceways.
3. Signal cables from other circuits should not pass within 300 mm (1 ft.) of the drive.
4. The length or parallel runs between other circuit cables and the motor or power cable should be minimized. A rule of thumb is 300 mm (1 ft.) of separation for each 10 m (30 ft.) of parallel run. The 30 mm (1 ft.) separation can be reduced if the parallel run is less than 1 m (3 ft.).
5. Cable intersections should always occur at right angles to minimize magnetic coupling.
6. The encoder mounted on the brushless servo motor should be connected to the amplifier with a cable using multiple twisted wire pairs and an overall cable shield. Encoder cables are offered in various lengths that have correct terminations.

Persistent EMI problems may require additional countermeasures. The following suggestions for system modification may be attempted.
1. A ferrite toroid or “doughnut” around a signal cable may attenuate common mode noise, particularly RS-232 communication problems. However, a ferrite toroid will not help differential mode noise. Differential mode noise requires twisted wire pairs.

2. Suppress each switched inductive device near the servo amplifier. Switch inductive devices include solenoids, relay coils, starter coils and AC motors (such as motor driven mechanical timers).

3. DC coils should be suppressed with a “free-wheeling” diode connected across the coil.

4. AC coils should be suppressed with RC filters (a 200 Ohm ½ Watt resistor in series with a 0.5 uF, 600 Volt capacitor is common).

Following these guidelines can minimize noise problems. However, equipment EMC performance must meet regulatory requirements in various parts of the world, specifically the European Union. Ultimately, it is the responsibility of the machine builder to ensure that the machine meets the appropriate requirements as installed.
APPENDIX D: Dynamic Braking Resistor Selection

This appendix provides equations to assist in sizing resistors for dynamic braking.

Introduction

A properly sized resistive load may be required to dynamically brake the system by dissipating the energy stored in a motor. The section “Emergency Stop Wiring” on page 7-4 depicts the necessary circuitry.

Winding inductance is ignored in this analysis, which allows the load on the motor winding to be considered as purely resistive when dynamic braking occurs. This simplifies the evaluation to a scalar analysis, instead of a vector analysis. For simplicity, friction, damping and load torque also are ignored in the equations.

Dynamic Braking Equations

Equations for the magnitude of instantaneous velocity, and per phase current, energy and power are derived by solving the differential equation governing the motor velocity. The equations are shown below.

\[\omega(t) = \omega_0 e^{-t/\tau} \]

where

\[\tau = 0.866 \frac{(R + 2R_L)(J_M + J_L)}{K_E K_T} \]

(1)

\[i(t) = \frac{K_E \omega_0 e^{-t/\tau}}{0.866(R + 2R_L)} \]

\[E(t) = \frac{1}{2}(J_L + J_M) \omega_0^2 e^{-2t/\tau} \]

\[P(t) = \left[\frac{(J_L + J_M) \omega_0^2}{2 \tau} \right] e^{-2t/\tau} = 1.154 \left[\frac{K_E K_T \omega_0^2}{(R + 2R_L)} \right] e^{-2t/\tau} \]

(2)

For this type of response, 98% of the energy will be dissipated in 4 time constants. Therefore the average power for each dynamic braking event can be calculated as:
Equation 1 is used in equation 2 and 3 to put the power in terms of the motor parameters and the dynamic braking resistance (i.e., independent of the load inertia).

\[
P_{AVE} = \frac{1}{2} (J_M + J_L) \omega_0^2 \left(\frac{1}{4T} \right) = 0.144 \frac{K_E K_I \omega_0^2}{(R + 2R_L)}
\]

Equation 1 is used in equation 2 and 3 to put the power in terms of the motor parameters and the dynamic braking resistance (i.e., independent of the load inertia).
Sample Calculations

The following example uses a motor with a 10 times inertia mismatch and dynamic braking resistors sized at four times the motor winding resistance. The average power of the motor is 1116 Watts for the selected parameters, but it is unlikely that a resistor with this Wattage is required. Pulse type currents, such as this example, require sufficient thermal mass to absorb the energy and to dissipate or accommodate the peak Voltage. Adequate information for intermittent duty cycle and surge current applications is seldom provided by resistor manufacturers. However, often they will assist in resistor selection when supplied with the current profile.

Note: The equations using the symbol ":=" are "assigned" in Mathcad®.

H4075 Motor Parameters in MKS Units:

\[
K_T := 0.74 \quad R := 0.9 \quad J_m := 0.00068
\]

\[
K_E := 90 \quad K_E := \frac{K_E \cdot 60}{2 \cdot \pi \cdot 1000} \quad K_E = 0.859
\]

Load Inertia, Dynamic Braking Resistance and Velocity in MKS Units:

\[
R_L := 4 \cdot R \quad J_L := 10 \cdot J_m \quad \omega_o := \frac{3000 \cdot 2 \cdot \pi}{60} \quad \omega_o = 314.159
\]

Time vector:

\[
t := 0, 0.01, \ldots, 0.5
\]

Time Constant (seconds):

\[
\tau = \frac{0.866(R + 2 \cdot R_L) \cdot (J_m + J_L)}{K_E \cdot K_T} \quad \tau = 0.083
\]

Current Calculation (Amps):

\[
i(t) := \frac{K_E \cdot \omega_o \cdot e^{- \frac{2 \cdot t}{\tau}}}{0.866(R + 2 \cdot R_L)}
\]

Instantaneous Power Calculation (Watts):

\[
P(t) := \left[\frac{1.154 \cdot K_E \cdot K_T \cdot \omega_o}{(R + 2 \cdot R_L)} \right] \cdot e^{- \frac{2 \cdot t}{\tau}}
\]
Average Power (Watts):

\[
P_{ave} = 0.144 \cdot \frac{K_E \cdot K_T \cdot \omega_0^2}{R + 2 \cdot R_L}
\]

\[
P_{ave} = 1116
\]
Specifications

Agency Approvals

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL and cUL</td>
<td>UL508C File E145959</td>
</tr>
<tr>
<td>CE mark</td>
<td>Low Voltage Directive and Electromagnetic Compatibility Directive</td>
</tr>
<tr>
<td></td>
<td>Certificate of Conformity from TUV Product Service</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to 55°C (32°F to 131°F)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to 70°C (-40°F to 158°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% non-condensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>1500 meters (5000 feet)</td>
</tr>
<tr>
<td></td>
<td>Derate 3% for each 300 m above 1500 m (1000 ft. above 5000 ft.)</td>
</tr>
<tr>
<td>Vibration</td>
<td>10 to 2000 Hz @ 2g</td>
</tr>
<tr>
<td>Shock</td>
<td>15g 11 millisecond half sine</td>
</tr>
</tbody>
</table>

Weight

- ODM-005 or ODM-005i, ODM-010 or ODM-010i, ODM-020 or ODM-020i,
 - 1.70 Kg (3.7 lbs)
 - 2.05 Kg (4.5 lbs)
 - 2.0 Kg (4.4 lbs)

Dielectric Withstanding Voltage (Hi-Pot)

- Main AC: 1414 (1500) VDC for 1 minute, <5.0mA leakage current
- **NOTE:** Metal Oxide Varistors (MOV's) between line and earth ground must be removed when testing. Internal EMI filter capacitors require testing with DC Voltage.

Motor Encoder Interface

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Output Power</td>
<td>5 Volts DC</td>
</tr>
<tr>
<td>Encoder Inputs</td>
<td>A/B, Differential, 26LS33 input, 1 MHz (4 MHz Quadrature) Maximum Signal Frequency, 1/T Low Speed Measurement</td>
</tr>
<tr>
<td>Thermostat Inputs</td>
<td>Normally closed</td>
</tr>
<tr>
<td>Hall Inputs</td>
<td>Single-ended, 5 Volt Logic</td>
</tr>
<tr>
<td>ABS Input</td>
<td>0 to 5 Volt, 10-bit</td>
</tr>
</tbody>
</table>

User Interface

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port</td>
<td>RS-232 or four wire RS-485, 1200 to 19200 baud</td>
</tr>
<tr>
<td></td>
<td>Daisy-chain connections accommodated by two connectors</td>
</tr>
<tr>
<td>Status Display</td>
<td>3 level LED</td>
</tr>
<tr>
<td>Addressing</td>
<td>Software selected</td>
</tr>
</tbody>
</table>

Digital Inputs

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectable (4)</td>
<td>12-24 Volt, Optically Isolated, Single ended, Active High, 4.5 mA nominal</td>
</tr>
<tr>
<td>ENABLE</td>
<td>24 Volt, Optically Isolated, Single ended, Active High, 4.5 mA nominal</td>
</tr>
</tbody>
</table>

Digital Outputs

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectable (2)</td>
<td>12-24 Volt, Short Circuit Protected, Optically Isolated, Single-ended, Active High, 50 mA maximum</td>
</tr>
<tr>
<td>BRAKE</td>
<td>Normally Open Relay, 1 A</td>
</tr>
<tr>
<td>READY</td>
<td>Normally Open Relay, 100 mA</td>
</tr>
<tr>
<td>Digital I/O Power Supply</td>
<td>User supplied 12 to 24VDC</td>
</tr>
</tbody>
</table>
E-2 Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs</td>
<td></td>
</tr>
<tr>
<td>Current Limit (I LIMIT)</td>
<td>0 to 10 Volt, 10-bit, single-ended, 5 kOhm input Impedance</td>
</tr>
<tr>
<td>COMMAND</td>
<td>±10 Volt, Differential, 16-bit, 13 kOhm input Impedance, offset software adjustable</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td></td>
</tr>
<tr>
<td>ANALOG1</td>
<td>0 to 10 Volt, 8-bit, 2 mA maximum</td>
</tr>
<tr>
<td>Auxiliary Encoder Signal Input</td>
<td></td>
</tr>
<tr>
<td>26LS33 Input</td>
<td>26LS33 Input, 4 MHz Count Frequency Differential/Single-ended A/B Step/Direction CW/CCW</td>
</tr>
<tr>
<td>Motor Encoder Output</td>
<td></td>
</tr>
<tr>
<td>Parameter Data Retention</td>
<td>20 years</td>
</tr>
<tr>
<td>Motor Overload Protection</td>
<td></td>
</tr>
<tr>
<td>Motor overload protection operates within 8 minutes at 200% overload, and within 20 seconds at 600% overload.</td>
<td></td>
</tr>
<tr>
<td>Speed Regulation</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Digital, PID</td>
</tr>
<tr>
<td>-3dB Bandwidth</td>
<td>300 Hz</td>
</tr>
<tr>
<td>-45° Bandwidth</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Ripple</td>
<td>±0.44 RPM with 5000 line encoder</td>
</tr>
<tr>
<td>Speed Range</td>
<td>1:8000 RPM</td>
</tr>
<tr>
<td>Position Regulation</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Digital, PID with Feedforward</td>
</tr>
<tr>
<td>Filters</td>
<td></td>
</tr>
<tr>
<td>Low Pass</td>
<td>Digital, 0 - 1000 Hz, -3 dB Bandwidth, Selectable</td>
</tr>
<tr>
<td>Software Controls</td>
<td></td>
</tr>
<tr>
<td>Data Collection (2)</td>
<td>128 samples @ 5 kHz Sample Rate</td>
</tr>
<tr>
<td>Firmware</td>
<td></td>
</tr>
<tr>
<td>Factory installed EEPROM</td>
<td></td>
</tr>
<tr>
<td>Operating Modes</td>
<td></td>
</tr>
<tr>
<td>Torque, Position or Velocity</td>
<td></td>
</tr>
<tr>
<td>Command Sources</td>
<td></td>
</tr>
<tr>
<td>Analog</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Encoder</td>
<td></td>
</tr>
<tr>
<td>Presets</td>
<td></td>
</tr>
<tr>
<td>Step/Direction</td>
<td></td>
</tr>
<tr>
<td>CW/CCW</td>
<td></td>
</tr>
<tr>
<td>Indexing: Incremental, Registration, Absolute (Indexing on ODM-005i, -010i and -020i only)</td>
<td></td>
</tr>
<tr>
<td>Autotuning</td>
<td></td>
</tr>
<tr>
<td>Position and Velocity Loop</td>
<td></td>
</tr>
<tr>
<td>Manual Tuning</td>
<td></td>
</tr>
<tr>
<td>Position or Velocity Loop</td>
<td></td>
</tr>
<tr>
<td>User Set-up</td>
<td></td>
</tr>
<tr>
<td>OMNI LINK or TouchPad</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
<tr>
<td>Motor or Auxiliary Encoder Checks</td>
<td></td>
</tr>
<tr>
<td>Digital Output Override</td>
<td></td>
</tr>
<tr>
<td>Analog Output Override</td>
<td></td>
</tr>
<tr>
<td>Serial Protocol</td>
<td></td>
</tr>
<tr>
<td>7-bit ASCII, Checksum, Active Response</td>
<td></td>
</tr>
</tbody>
</table>
Power

Table E.1 OMNIDRIVE Power Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>ODM-005, ODM-005i</th>
<th>ODM-010, ODM-010i</th>
<th>ODM-020, ODM-020i</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Voltage (rms Volts nominal)</td>
<td>100 to 240</td>
<td>100 to 240</td>
<td>100 to 240</td>
<td></td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>47 - 63</td>
<td>47 - 63</td>
<td>47 - 63</td>
<td></td>
</tr>
<tr>
<td>AC Input Current (rms Amps)</td>
<td>5</td>
<td>9</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Bus Voltage (Volts DC)</td>
<td>141-339</td>
<td>141-339</td>
<td>141-339</td>
<td></td>
</tr>
<tr>
<td>Peak Output Current (Amps)</td>
<td>7.5</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Continuous Output Current (peak)</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bus Capacitance Energy Absorption (from 325-420 Vdc Bus)(a) (Joules)</td>
<td>38 C=1410uF</td>
<td>51 C=1880uF</td>
<td>51 C=1880uF</td>
<td></td>
</tr>
</tbody>
</table>

\(a\): Guaranteed | (888) 88-SOURCE | www.artisantg.com
E-4 Specifications

Power Dissipation

The OMNIDRIVE controller dissipates power that results in cabinet heating. The following table lists power dissipation values for the OMNIDRIVEs. Calculate the cabinet cooling requirements using the power dissipation information and formulas below.

Maximum power losses are shown to help size a NEMA 12 or equivalent enclosure and to ensure the required ventilation. Typical power losses are about one-half maximum power losses.

When sizing an enclosure with no active method of heat dissipation, the following equation approximates the size of enclosure necessary:

\[T_F = 4.08 \times (Q/A) + 1.1 \]

where:

- \(T_F \) = Temperature difference between inside air and outside ambient (°F)
- \(Q \) = Heat generated in enclosure (watts)
- \(A \) = Enclosure surface area in ft\(^2\) = \((2d + 2h + 2w) / 144\)
- \(d \) = Depth in inches
- \(h \) = Height in inches
- \(w \) = Width in inches

Table E.1 OMNIDRIVE Power Ratings (continued)

<table>
<thead>
<tr>
<th></th>
<th>ODM-005, ODM-005i</th>
<th>ODM-010, ODM-010i</th>
<th>ODM-020, ODM-020i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Capacitance (µF)</td>
<td>1170</td>
<td>1950</td>
<td>2730</td>
</tr>
<tr>
<td>Peak Power Output(^b) (kWatts @ 120 V(_{rms}))</td>
<td>0.9</td>
<td>1.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>2.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Continuous Power Output(^b) (kWatts @ 120 V(_{rms}))</td>
<td>0.3</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a. Bus capacitance energy absorption is based on the following equations:

\[\varepsilon = \frac{1}{2}C(V_o^2) - \frac{1}{2}C(V_i^2) \]

\[\varepsilon = \frac{1}{2}C(420)^2 - \frac{1}{2}C(325)^2 \]

\[\frac{1}{2}C \cdot (420^2 - 325^2) = C(35387) \]

if \(C = 17 \times 470\mu\text{F} \), \(\varepsilon = 282 \)

b. Power outputs are based on the following equation:

Output Power (in kWatts) = \(\left(\frac{R}{\sqrt{2}} \right) (0.85) \text{(input rms Volts)} \text{(output Amps)} \)

Power Dissipation

The OMNIDRIVE controller dissipates power that results in cabinet heating. The following table lists power dissipation values for the OMNIDRIVEs. Calculate the cabinet cooling requirements using the power dissipation information and formulas below.

<table>
<thead>
<tr>
<th>Current as % of Rated Continuous Current</th>
<th>ODM-005, ODM-005i</th>
<th>ODM-010, ODM-010i</th>
<th>ODM-020, ODM-020i</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>48 W</td>
<td>48 W</td>
<td>50W</td>
</tr>
</tbody>
</table>

NOTE: These values do not include external shunt regulator power (regenerated power).
Symbols

• Auto Tune 9-1

A

ABS Input E-1
Absolute Indexing 8-31
AC
Bus 7-5
Current input 7-5
inrush 7-5
Line Filters 5-5
Power 7-5
see also Power
Address Switch E-1
Agency Approvals E-1
Altitude E-1
Analog Controller 8-1
Inputs E-2
COMMAND signal E-2
Current Limit 6-13
Outputs E-2
Analog Controller 8-1
Analog Inputs 2-4
Troubleshooting 11-9
Analog Outputs
Troubleshooting 11-8
Application Example, see Example
Auto Tune
Guidelines 9-3
Overspeed Parameter 9-5
Procedure 9-4
Auxiliary Encoder Error, see Troubleshooting
Auxiliary Encoder Signal Inputs E-2

B

Backlash 9-2
Bandwidth, see Specifications
BRAKE, see Specifications
Breakout Board
J1 (50 pin) 6-24
J2 (25 pin) 6-27
Bus
Capacitance E-3
Overvoltage 11-4
Undervoltage 11-4
Voltage E-3
see also Troubleshooting

C

Cables
European Union Directives 5-5
Caution, defined Intro-22
COMMAND signal E-2
Inrush Current 7-5
Inspection Procedures
 Checkout Test 4-3
 Communications Verification 4-5
 Hardware Set Up 4-3
 Initial Drive Operation 4-5
 Initial Power-up 4-3
 Shipping Damage 4-1
Installing
 Software 3-2
 TouchPad A-1
Instructions, see Software
Interconnect Cables
 European Union Directives 5-5
Interface
 Connections 5-3
 Signals 6-1
IOUT Signal Generation 6-17
IPM Short, see Troubleshooting
IPM, see Troubleshooting

J
J1
 Analog
 Command Signal 6-13
 Inputs 6-13
 Outputs 6-15
 Auxiliary Encoder Inputs 6-18
 Circuit Examples 6-6
 Dedicated Relay Outputs 6-8
 Digital
 Inputs 6-3
 Outputs 6-8
 Interface Cable Examples 6-20
 Motor Encoder Signal 6-16
 Output Circuit Examples 6-11
 Pin-outs 6-1
 Power 6-3
 Selectable Outputs 6-8
J2
 Pin-outs 6-25
 Terminal Strip/Breakout Board 6-27
J4
 Pin-outs 6-27
J5
 Pin-outs 6-27

K
Kd-gain 9-6
Kff-gain 9-6
Ki-gain 9-6
Kp-gain 9-6

L
LED
 DC Bus 10-1
Line Drivers 2-3
Low Pass Filter E-2

M
Main Power, see Power
Maintenance 11-1
 Cleaning 11-1
Manual Tune
 Filter Adjustment 9-6
 Guidelines 9-5
 Procedure
 Position Loop 9-8
 Velocity Loop 9-7
 Velocity Loop Examples 9-9
Mechanical Installation 5-1
Mechanical Resonance
 Possible Causes 9-1
 Tuning Guidelines 9-1
Modifying User Units, see User Units
Motor
 Cabling 7-2
 Custom 2-6, B-1
 Default Parameters E-4
 Information Missing 11-6
 Overload Protection E-2
 Overspeed 11-5
 Overview 2-6
 Phase Connections 7-2
 Thermal Protection 11-5
 Troubleshooting
 Overtemperature 11-3
 see also Troubleshooting
Motor Encoder
 Error 11-5
 Interface E-1
 Input E-1
 Power E-1
 Output E-2
 see also Troubleshooting
Mounting Requirements 5-1

O
Operating Temperature E-1
Output Current
 Continuous (peak) E-3
 Peak E-3

P
PC Display Units Dialog 8-35
P-gain, defined 9-5
Position Follower
 Master Encoder 8-9
 Step Up/Down 8-17
 Step/Direction 8-13
Position Regulation E-2
Power
 AC
 Cabling 7-5
 Terminals 7-1
 Connections 7-2
 Input Frequency 7-5
 Main E-3
 Output
 Continuous E-4

Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i
Installation Manual for Models ODM-005, ODM-005i, ODM-010, ODM-010i, ODM-020 and ODM-020i

Output Current
Continuous (peak) E-3
Peak E-3
Position Regulation E-2
Power Output
Continuous E-4
Peak E-4
Power Ratings E-3
Power-Up Faults E-3
Run-Time Faults E-3
Selectable Digital Inputs E-3
Selectable Digital Outputs E-3
Serial Ports E-1
Serial Protocol E-2
Shock E-1
Speed Control Command E-3
Speed Regulation
Bandwidth E-2
Resolution E-2
Ripple E-2
Status Display E-1
Storage Temperature E-1
Thermostat Inputs E-1
Vibration E-1
Weight E-1
Speed Control Command E-3
Starting and Quitting
Software 3-2
Status Display E-1
Storage Intro-17
Storage Temperature E-1
Storing the Drive 4-6
Support Help-9
Rockwell Automation Intro-18
Symbols and Conventions Intro-21

TB-1 7-5
AC Power Terminals 7-1
DC Bus Terminals 7-1
Power Terminals 7-2
Technical Assistance Help-9
Terminal Strip
J1 (50 pin) 6-24
J2 (25 pin) 6-27
Terminal Strip/Breakout Board 6-24, 6-27
Testing the Drive 4-2
Thermostat Inputs E-1
Timing Diagram
Absolute Indexing 8-31
Incremental Indexing 8-21
Registration Indexing 8-26
Torque (Current) Loop Diagram 9-3
TouchPad A-1, A-3
Character Selection A-6
Cursor Movements A-6, A-7
Default Settings A-1
Drive Addressing Defaults A-1
Error Display A-8
Gear Ratios A-7
Installation and Operation A-1
Instructions Intro-18
Lists
Baud Rate A-9
Drive Communications A-9
Selections A-7
Modes of Operation A-3
Motor Selection A-6
Revision Level 3-4
Text Selection A-7
Version Display A-1
Transformer Sizing 7-5
Troubleshooting 11-1
Analog Outputs 11-8
Auxiliary Encoder Error 11-5
Bus
Overvoltage 11-4
Undervoltage 11-4
Current Limit 11-9
Digital Inputs 11-8
Digital Outputs 11-7
Encoder Inputs 11-9
Excess Error 11-5
Excessive Average Current 11-4
Gain Adjustments 9-2
IPM
Thermal Protection Fault 11-5
IPM Short 11-4
Motor
Buzz or Squeal 9-1
Information Missing 11-6
Overspeed 11-5
Thermal Protection 11-5
Motor Encoder Error 11-5
Motor Overtemperature 11-3
RS-232 Communications 11-6
Status Display 11-3
Tuning
Backlash 9-2
Gravitational Effects 9-3, 9-4
Tuning Guidelines 9-1
Auto Tune 9-3
Effect of Gain Settings 9-5
General 9-1
High Inertia Loads 9-1
Mechanical Resonance 9-1
Tuning Procedure
Auto Tune 9-4
Filter for Velocity Loop 9-6
Overspeed Parameter 9-5
Velocity Loop Examples 9-9
Typographical Conventions Intro-21

Unpacking the Drive 4-1
User Units 8-35

Velocity Loop Diagram 9-2
Version Level
Firmware 3-4
Software 3-3
Version Level, TouchPad A-1
Vibration E-1
Index of Topics

W

Warning
 Classifications Intro-22
 Defined Intro-22
Warranty Coverage Help-7
Weight E-1
Wire Size 7-5
Wiring I/O 5-4
Wording Conventions Intro-21
The following product warranty and returned goods information summarizes the product warranty and return policy of Thomson Industries. A copy of the formal "Returned Goods and Field Service Policy" is available upon request from Thomson Industries.

Defective Equipment

If you are unable to correct a problem, and the product is defective, you may return the unit to your Thomson Industries distributor for repair or replacement.

There are no field serviceable parts in the drive, other than fuses and jumpers. If the drive fails, the unit should be returned to the factory repair or replacement. To save unnecessary work and repair charges, please verify that the drive unit is defective before returning it for repair.

The Thomson Industries OMNIDRIVEs are warranted against defects in material and assembly. Limitations to warranty coverage are detailed in “Returned Goods and Field Service Policy.” Products that have been modified by the customer, physically mishandled, or otherwise abused through incorrect wiring, inappropriate settings, and so on, are exempt from the warranty plan.

Return Procedure

To ensure accurate processing and prompt return of any Thomson Industries product, the following procedure must be followed:

1. Call your Thomson Industries distributor to obtain a Return Material Authorization (RMA) number. Do not return the drive or any other equipment without a valid RMA number. Returns lacking a valid RMA number will not be accepted and will be returned to the sender.

2. Pack the drive in the original shipping carton. Thomson Industries is not responsible or liable for damage resulting from improper packaging or shipment.

3. Include a detailed description of the problem and any relevant information.

Repaired units are shipped via UPS Ground delivery. If another method of shipping is desired, please indicate this when requesting the RMA number and include this information with the returned unit.
Thomson Industries product support is available over the phone. When you call, you should be at your computer and have the hardware and software manuals at hand. Be prepared to give the following information:

- The version numbers of the hardware and software products.
- The type of hardware that you are using.
- The fault indicators and the exact wording of any messages that appears on your screen.
- How you tried to solve the problem.

Distributor & Representative Network

Thomson Industries has a wide network of distributors that are trained to support our products. If you encounter problems, call the distributor or representative where you purchased the product before contacting the factory.

Applications Engineers

In the United States you can reach the Thomson Industries factory based support staff by phone between 8:30 AM and 5:00 PM (EST) Monday through Friday at 1-800-554-Thomson. The applications engineers can assist you with programming difficulties as well as ideas for how to approach your automation task. The applications engineers can also be reached via fax at 1-516-883-9039. The fax machine is open 24 hours 7 days a week. Faxes will be answered during regular business hours only.

In Europe, support can be obtained through Thomson IBL Limited. The support staff may be reached by telephone between 8:30 and 17:30 local time, Monday through Friday at [44] 1271-334-500, or via fax at [44] 1271-334-502.
Artisan Technology Group is an independent supplier of quality pre-owned equipment.

Gold-standard solutions
Extend the life of your critical industrial, commercial, and military systems with our superior service and support.

We buy equipment
Planning to upgrade your current equipment? Have surplus equipment taking up shelf space? We’ll give it a new home.

Learn more!
Visit us at artisantg.com for more info on price quotes, drivers, technical specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We’re here to make your life easier. How can we help you today?
(217) 352-9330 | sales@artisantg.com | artisantg.com